EP2071561B1 - Absorbent structure for reducing the noise generated in particular by a rotor and fairing comprising such a structure - Google Patents

Absorbent structure for reducing the noise generated in particular by a rotor and fairing comprising such a structure Download PDF

Info

Publication number
EP2071561B1
EP2071561B1 EP08020965.3A EP08020965A EP2071561B1 EP 2071561 B1 EP2071561 B1 EP 2071561B1 EP 08020965 A EP08020965 A EP 08020965A EP 2071561 B1 EP2071561 B1 EP 2071561B1
Authority
EP
European Patent Office
Prior art keywords
absorbent structure
structure according
height
cavities
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08020965.3A
Other languages
German (de)
French (fr)
Other versions
EP2071561A2 (en
EP2071561A3 (en
Inventor
Henri-James Marze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters SAS
Original Assignee
Airbus Helicopters SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Helicopters SAS filed Critical Airbus Helicopters SAS
Publication of EP2071561A2 publication Critical patent/EP2071561A2/en
Publication of EP2071561A3 publication Critical patent/EP2071561A3/en
Application granted granted Critical
Publication of EP2071561B1 publication Critical patent/EP2071561B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the present invention relates to the general technical field of acoustic treatment to reduce noise pollution emitted by rotors, motors or others.
  • Such an acoustic treatment often proves to be essential in the aeronautical field and in particular on helicopters.
  • the present invention relates more particularly to an acoustic treatment of an anti-torque ducted rotor vein also called “fenestron”.
  • Any rotor rotating in a vein, fed by more or less turbulent air, will generate acoustic waves which can be organized or random.
  • Organized waves constitute what is commonly called rotational noise, which is characterized in the noise spectrum by discrete frequencies (lines) corresponding to the frequencies of rotation of the blades, of the transmission shaft, of their sub-harmonics and harmonics or at frequencies modulated by an angular phase shift of the blades or of the rotational speed.
  • Random waves are characterized in the noise spectrum by a high spectral density over a very wide band of frequencies. These random waves generate so-called “broadband” noise.
  • absorbent structures to reduce the propagation of acoustic waves emitted by noisy devices of the rotor or motor type, comprising a rigid partition, a porous wall and separation means for placing the porous wall at a determined distance. of the rigid partition, by delimiting cavities between said porous wall and said rigid partition, the height of which is determined to obtain maximum absorption of a given frequency of the acoustic waves emitted.
  • the audible acoustic waves emitted are most often composed of random and organized waves, distributed in a wide band of frequencies, making the known materials insufficiently efficient to effectively attenuate, in any flight envelope, the acoustic waves thus composed. It is necessary for example to treat pure tones and their harmonics but also noise sources operating over a wide range of speed variation as is the case for aircraft and operating over a temperature range of - 40 ° VS at + 40 ° C. The sources of parasitic noise that must be treated are therefore numerous and very diverse.
  • the document US 6,114,652 describes, for example, a method for producing acoustic attenuation chambers using a honeycomb structure.
  • the cells comprise at least two absorbent and porous layers in which perforations are formed by means of a laser.
  • the material constituting the layers is based on polymers and is chosen for its energy absorption properties according to a given radiation frequency of the laser.
  • the layers thus have perforations of different diameter, distributed differently, to optimize the sound absorption properties.
  • an absorbent structure for reducing the propagation of acoustic waves comprising a rigid partition, at least one porous wall and separation means for placing the porous wall at a determined distance from the rigid partition, by delimiting cavities of a height given between said porous wall and said rigid partition.
  • the document EP 1 111 584 also describes a method of making acoustic attenuation chambers for aircraft jet engine nacelles. Such chambers are thus produced using a honeycomb structure forming a separation between a wave reflective bottom and an acoustically resistive layer. This acoustically resistive layer is formed by a woven metal fabric on which are placed in superposition son impregnated with resin oriented in a predetermined direction.
  • the acoustically resistive layer also requires an operation consisting in orienting the impregnated threads relatively with respect to the threads constituting the fabric of metallic threads oriented in at least two distinct directions.
  • absorbent structures comprising a rigid partition, separation means, a porous wall and complementary absorption means.
  • a porous wall comprises a first layer formed by a perforated sheet and a second layer of fiber felt.
  • the first layer of the porous wall is arranged towards the interior of the structure and the second layer of the porous wall is arranged the exterior.
  • the objects of the present invention are therefore aimed at providing a novel absorbing structure making it possible to attenuate pure tones as well as to exhibit a high efficiency of absorption of acoustic waves in a wide frequency band.
  • the absorbent structure in accordance with the invention thus makes it possible to process groups of pure tones and / or so-called “broadband” noises. There is thus obtained a substantial and audible reduction of the parasitic noises generated.
  • Another object of the present invention aims to provide an absorbent structure providing an acoustic covering on the one hand and constituting a rigid structural element on the other hand.
  • the absorbent structure constitutes the air flow duct of said anti-torque rotors.
  • Another object of the present invention aims to provide an absorbent structure which does not increase significantly. significant the weight and / or size of the elements on which or in which it is used as a replacement for metal elements in single sheet or single walls in composite materials.
  • an absorbent structure to reduce the propagation of acoustic waves emitted by noisy devices such as rotors or motors, comprising a rigid partition, at least one porous wall and means separation to dispose the porous wall at a determined distance from the rigid partition, by delimiting cavities of a height h1 between said porous wall and said rigid partition, said height h1 being determined to obtain maximum absorption of a base frequency F1 given of the acoustic waves emitted, said structure comprising complementary absorption means to obtain a maximum absorption of the acoustic waves emitted at at least one additional base frequency Fi, of the spectrum of the acoustic waves emitted, i being a whole number greater than or equal at 2,
  • the porous wall comprises at least a first layer and at least a second layer of fiber felt, characterized in that said first layer is formed of fine mesh mesh and in that said first layer is positioned on said second layer of fiber felt to constitute an assembly of two layers, said second layer of fiber felt felt
  • the complementary absorption means in combination with the porous wall and the cavities therefore make it possible to obtain a maximum absorption coefficient of 100% for at least one base frequency F1 and Fi and an absorption coefficient of approximately 80% around these base frequencies F1 and Fi, and this over a wide frequency band ranging for example from 0.77Fi to 1.3.Fi.
  • the absorbent structure according to the invention also has the advantage of having, in addition to a maximum attenuation for each base frequency F1 or Fi, a maximum attenuation for multiples of the base frequencies corresponding to (2n + 1) .Fi, where n is an integer greater than or equal to 1.
  • the total attenuation of a line at 1000 Hz is therefore accompanied by an attenuation of about 80% of the other lines of the noise spectrum, representative of noise at frequencies between 667 Hz and 1333 Hz and preferably between 700 Hz and 1300 Hz and those between 1400 Hz and 2600 Hz.
  • the additional absorption means comprise a complementary porous wall, arranged in the cavities, at an intermediate height h2.
  • the heights h1 and h2 consequently correspond respectively to the attenuation of the respective frequencies F1 and F2.
  • the cavities of height h1 and h2 are thus arranged in parallel, in this way reducing the overall thickness of the absorbent structure with respect to an arrangement in series of two successive cavities of height h1 and h2.
  • the additional absorption means are materialized by an inclination of the rigid partition with respect to to the porous wall so as to continuously modify, in at least one direction, the height h1 from one cavity to another.
  • Such a design makes it possible to promote the processing of noise over a wide band of frequencies. It is therefore advantageous, according to another exemplary embodiment in accordance with the invention, to combine these complementary absorption means with complementary absorption means favoring the processing of noise at one or more base frequencies Fi.
  • the complementary absorption means comprise, alternately with the cavities of height h1, additional cavities of height h3, said height h3 being less than height h1.
  • These additional cavities of height h3 are for example produced with a deposit of an absorbent material on the rigid partition in certain cavities of height h1, for example in every other cavity.
  • the cavities are delimited with rising partitions, extending substantially orthogonally from the rigid partition to a porous wall.
  • the mesh and / or the felt are preferably made of metallic or composite materials.
  • the first layer and the second layer are assembled by gluing or welding. These operations, as well as the assembly of a porous wall and of the rigid partition delimiting the cavities, can easily be automated during the manufacture of the absorbent structure.
  • the rigid partition is preferably made of glass fibers. It is the same, preferably, for the rising partitions. This gives the rigidity, strength and lightness required in particular in the field of helicopters.
  • a faired anti-torque rotor for helicopters comprising a fairing constituted at least in part of an absorbent structure as presented.
  • the absorbent structure according to the invention comprises a rigid partition 1, for example of glass fibers, as well as rising partitions 2 extending substantially orthogonally from the rigid partition 1 in order to define cavities 3.
  • the rising partitions 2, for example of glass fibers, extend to a porous wall 4 and constitute means of separation between the rigid partition 1 and the porous wall 4.
  • the cavities 3 have a height h1 whose value, with a good approximation, is proportional to the inverse of the base frequency F that should be absorbed, and this at a given temperature T.
  • h vs . T 1 / 2 .1 / F
  • c is a constant, F being the frequency to be absorbed, is known as such.
  • the value h corresponds approximately to a quarter or to a multiple of a quarter of the wavelength of the frequency F which should be absorbed.
  • the porous wall 4 comprises a first layer 4a of fine or very fine mesh metal mesh and a second layer 4b of felt of metal fibers.
  • the mesh and the felt can also be made of composite materials.
  • the layers 4a and 4b are for example assembled by gluing or by welding.
  • the figure 2 illustrates an exemplary embodiment of the absorbent structure according to the invention.
  • the latter comprises a second porous wall 5 arranged between the rigid partition 1 and the porous wall 4.
  • Each of the cavities 3 is thus divided into two by means of the second porous wall 5.
  • the porous wall 5 is moved away from the rigid partition 1 by extending to a height h2 less than h1.
  • the height h2 is determined by the same relation as that determining h1 and specified above.
  • the porous wall 5 is preferably identical or similar to the porous wall 4 and comprises a first layer 5a in wire mesh with fine mesh and a second 5b in felt of metallic fibers.
  • This absorbing structure makes it possible to absorb two base frequencies F1 and F2, corresponding to two distinct lines of the noise spectrum which should be attenuated.
  • the figure 3 illustrates another exemplary embodiment of the absorbent structure according to the invention.
  • the complementary absorption means comprise additional cavities 7 having a height h3, alternating with cavities of height h1.
  • the height h3 is also determined by the relation specified above.
  • the additional cavities 7 are obtained by depositing an absorbent material 7a on the rigid partition 1, in certain cavities 3.
  • every other cavity 3 can thus be transformed into an additional cavity 7 having a height h3.
  • the cavities 3 and the additional cavities 7 thus make it possible to absorb respectively acoustic waves of frequencies F1 and F3 distinct from the spectrum of the emitted noise.
  • the figure 4 shows another embodiment of the absorbent structure according to the invention, in which the additional absorption means are obtained by an inclination of the rigid partition 1 relative to the porous wall 4. This results in rising partitions 2 having a different height h1 (n) when passing from one riser 2 to the next.
  • Particular cavities 8 are thus obtained having a rising partition 2 of height h1 (n) and a neighboring rising partition 2 of height h1 (n + 1) .
  • the variation in height from one rigid partition to the next is of course determined by the inclination of the rigid partition 1.
  • Such an absorbing structure consequently attenuates a certain number of lines in the spectrum of the noise emitted, and more preferably a wide band. frequencies corresponding to so-called “broadband” noises.
  • the figure 5 schematizes in section an embodiment of a ducted anti-torque rotor of a helicopter.
  • the anti-torque rotor comprises a hub 10 driving the blades 11.
  • Retaining plates 12 are provided for, on the one hand, maintaining the hub 10 in position in an air circulation duct 13 and, on the other hand, ensuring a straightening of the air expelled by said rotor. This recovery is obtained by a particular orientation of the retaining plates 12, for example a radial orientation 12a for one 12a and a quasi-radial orientation for the other 12b of the retaining plates 12, shown for example on figure 6 .
  • the air sucked in by the anti-torque rotor is shown by arrows A.
  • the air sucked in enters the air circulation stream 13 through an inlet 13a of the stream 13, and is expelled via an outlet 13b of the stream 13.
  • the inlet 13a and the outlet 13b of the duct 13 are delimited by a fairing 15 of the rotor.
  • This fairing 15 is produced by means of absorbent structure elements according to the invention or by elements coated with an absorbent structure according to the invention.
  • the air circulation duct 13 also comprises a constriction 16 positioned around the path of the ends of the blades 11.
  • the retaining plates 12a, 12b are for example provided on each of their faces with an absorbent structure according to the invention.
  • all the parts of the fairing 15 delimiting the air circulation duct 13 comprises a coating of an absorbent structure in accordance with the invention.
  • these parts can also be produced directly with elements of absorbent structure.
  • the latter thus constitute rigid structural elements of the anti-torque rotor.
  • the figure 7 illustrates a cross-sectional view of a ducted anti-torque rotor of a helicopter, in which the hub 10 transmits to the blades 11 a rotational movement via a transmission shaft 17.
  • the hub 10 comprises a housing 10a and a cover element 10b coated or made of an absorbent structure according to the invention.
  • the air circulation stream 13 is delimited in particular by air inlet lips 18 and by a diffusion cone 19 coated with or formed with an absorbent structure in accordance with the invention.
  • the whole of the air circulation vein 13 is preferably treated, namely coated or made up, with the absorbent structure according to the invention.
  • the anti-torque rotor as shown in figure 7 can also operate in reverse mode, in which the air circulation through the duct 13 takes place in the opposite direction shown by the arrows R.
  • the air circulation duct 13 retains its noise attenuation properties also in reverse mode.
  • the figure 8 represents for an exemplary embodiment of an absorbent structure according to the invention, the absorption coefficient CA as a function of the frequency F.
  • the base frequencies F1 and F2 2.F1
  • the frequencies 3.F1 and 3.F2 are attenuated to 100%.
  • Other harmonics, also attenuated to 100%, are not shown for reasons of clarity.
  • a wide frequency band of about +/- 30% of the above frequencies is also attenuated to at least 80%. At least 80% noise attenuation is thus obtained for frequencies between 2.1.F2 and 3.9.F2.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Motor Or Generator Frames (AREA)

Description

La présente invention se rapporte au domaine technique général du traitement acoustique pour réduire les nuisances sonores émises par des rotors, moteurs ou autres. Un tel traitement acoustique s'avère souvent indispensable dans le domaine aéronautique et en particulier sur les hélicoptères.The present invention relates to the general technical field of acoustic treatment to reduce noise pollution emitted by rotors, motors or others. Such an acoustic treatment often proves to be essential in the aeronautical field and in particular on helicopters.

La présente invention concerne plus particulièrement un traitement acoustique d'une veine de rotor caréné anticouple appelé également «fenestron».The present invention relates more particularly to an acoustic treatment of an anti-torque ducted rotor vein also called “fenestron”.

De façon générale, on trouve dans le spectre du bruit généré par le rotor arrière anticouple caréné et par la circulation d'air qui en résulte, des raies correspondant à des sons purs dont la fréquence est liée à la vitesse de rotation du rotor, au nombre de pales du rotor, à la configuration géométrique du rotor et d'un redresseur, à la forme et à la structure du carénage.In general, we find in the noise spectrum generated by the shrouded tail rotor and by the resulting air circulation, lines corresponding to pure tones whose frequency is related to the speed of rotation of the rotor, to the number of rotor blades, the geometric configuration of the rotor and a stator, the shape and structure of the fairing.

Tout rotor en rotation dans une veine, alimentée par un air plus ou moins turbulent, va générer des ondes acoustiques qui peuvent être organisées ou aléatoires.Any rotor rotating in a vein, fed by more or less turbulent air, will generate acoustic waves which can be organized or random.

Les ondes organisées constituent ce que l'on appelle communément le bruit rotationnel, qui se caractérise dans le spectre du bruit par des fréquences discrètes (raies) correspondant aux fréquences de rotation des pales, de l'arbre de transmission, de leurs sous harmoniques et harmoniques ou à des fréquences modulées par un déphasage angulaire des pales ou du régime de rotation.Organized waves constitute what is commonly called rotational noise, which is characterized in the noise spectrum by discrete frequencies (lines) corresponding to the frequencies of rotation of the blades, of the transmission shaft, of their sub-harmonics and harmonics or at frequencies modulated by an angular phase shift of the blades or of the rotational speed.

Les ondes aléatoires se caractérisent dans le spectre du bruit par une forte densité spectrale sur une très large bande de fréquences. Ces ondes aléatoires génèrent des bruits dits « larges bande ».Random waves are characterized in the noise spectrum by a high spectral density over a very wide band of frequencies. These random waves generate so-called “broadband” noise.

Il est connu d'utiliser des structures absorbantes pour réduire la propagation d'ondes acoustiques émises par des dispositifs bruyants du genre rotors ou moteurs, comportant une cloison rigide, une paroi poreuse et des moyens de séparation pour disposer la paroi poreuse à une distance déterminée de la cloison rigide, en délimitant des cavités entre ladite paroi poreuse et ladite cloison rigide, dont la hauteur est déterminée pour obtenir une absorption maximale d'une fréquence donnée des ondes acoustiques émises.It is known to use absorbent structures to reduce the propagation of acoustic waves emitted by noisy devices of the rotor or motor type, comprising a rigid partition, a porous wall and separation means for placing the porous wall at a determined distance. of the rigid partition, by delimiting cavities between said porous wall and said rigid partition, the height of which is determined to obtain maximum absorption of a given frequency of the acoustic waves emitted.

On connaît ainsi des matériaux, dits « quart d'onde », présentant des cavités d'une hauteur correspondant au quart de la longueur d'onde de la fréquence de base qu'il convient d'atténuer en priorité. Ces matériaux souffrent cependant d'un certain nombre d'inconvénients.So-called “quarter wave” materials are known which have cavities of a height corresponding to a quarter of the wavelength of the base frequency which should be attenuated as a priority. These materials, however, suffer from a number of drawbacks.

En effet, dans un certain nombre d'applications et notamment dans des applications se rapportant à des rotors anticouples carénés d'hélicoptères, les ondes acoustiques audibles émises, sont le plus souvent composées d'ondes aléatoires et organisées, réparties dans une large bande de fréquences, rendant les matériaux connus insuffisamment performants pour atténuer efficacement, dans tout domaine de vol, les ondes acoustiques ainsi composées. Il est nécessaire par exemple de traiter des sons purs et leur harmoniques mais également des sources de bruit fonctionnant sur une large plage de variation de la vitesse comme c'est le cas pour les aéronefs et fonctionnant sur une plage de températures allant de - 40°C à + 40°C. Les sources de bruits parasites qu'il convient de traiter sont donc nombreuses et très diverses.In fact, in a certain number of applications and in particular in applications relating to shrouded anticouple rotors of helicopters, the audible acoustic waves emitted are most often composed of random and organized waves, distributed in a wide band of frequencies, making the known materials insufficiently efficient to effectively attenuate, in any flight envelope, the acoustic waves thus composed. It is necessary for example to treat pure tones and their harmonics but also noise sources operating over a wide range of speed variation as is the case for aircraft and operating over a temperature range of - 40 ° VS at + 40 ° C. The sources of parasitic noise that must be treated are therefore numerous and very diverse.

Le document US 6 114 652 décrit par exemple un procédé de réalisation de chambres d'atténuation acoustique à l'aide d'une structure à nids d'abeilles. Les cellules comportent au moins deux couches absorbantes et poreuses dans lesquelles sont ménagées des perforations par l'intermédiaire d'un laser. La matière constitutive des couches est à base de polymères et est choisie pour ses propriétés d'absorption de l'énergie selon une fréquence de rayonnement donnée du laser. Les couches présentent ainsi des perforations de diamètre différent, réparties différemment, pour optimiser les propriétés d'absorption acoustique.The document US 6,114,652 describes, for example, a method for producing acoustic attenuation chambers using a honeycomb structure. The cells comprise at least two absorbent and porous layers in which perforations are formed by means of a laser. The material constituting the layers is based on polymers and is chosen for its energy absorption properties according to a given radiation frequency of the laser. The layers thus have perforations of different diameter, distributed differently, to optimize the sound absorption properties.

Ce document décrit une structure absorbante pour réduire la propagation d'ondes acoustiques comportant une cloison rigide, au moins une paroi poreuse et des moyens de séparation pour disposer la paroi poreuse à une distance déterminée de la cloison rigide, en délimitant des cavités d'une hauteur donnée entre ladite paroi poreuse et ladite cloison rigide.This document describes an absorbent structure for reducing the propagation of acoustic waves comprising a rigid partition, at least one porous wall and separation means for placing the porous wall at a determined distance from the rigid partition, by delimiting cavities of a height given between said porous wall and said rigid partition.

Le document EP 1 111 584 décrit également un procédé de réalisation de chambres d'atténuation acoustique pour des nacelles de réacteurs d'aéronef. De telles chambres sont ainsi réalisées à l'aide d'une structure à nids d'abeilles formant une séparation entre un fond réflecteur d'ondes et une couche acoustiquement résistive. Cette couche acoustiquement résistive est formée par un tissu métallique tissé sur lequel sont rapportés en superposition des fils imprégnés de résine orientés selon une direction prédéterminée.The document EP 1 111 584 also describes a method of making acoustic attenuation chambers for aircraft jet engine nacelles. Such chambers are thus produced using a honeycomb structure forming a separation between a wave reflective bottom and an acoustically resistive layer. This acoustically resistive layer is formed by a woven metal fabric on which are placed in superposition son impregnated with resin oriented in a predetermined direction.

Cependant, une telle réalisation de la couche acoustiquement résistive nécessite des opérations d'assemblage et de confection complexes et coûteuses à réaliser.However, such an embodiment of the acoustically resistive layer requires assembly and fabrication operations that are complex and costly to carry out.

En effet, une telle couche acoustiquement résistive nécessite d'une part une opération de tissage complexe réalisée avec des fils de trame et de chaine métalliques donc sensiblement rigides.In fact, such an acoustically resistive layer requires, on the one hand, a complex weaving operation carried out with metallic weft and warp threads which are therefore substantially rigid.

Le tissage de ces fils génère ainsi un embuvage important propre aux tissus et est donc consommateur de matière première. Au surplus, un tel tissage des fils confère une souplesse à la couche ainsi réalisée qui va à l'encontre de la fonction permettant le maintien mécanique d'une autre couche.The weaving of these yarns thus generates a significant trapping specific to the fabrics and therefore consumes raw material. In addition, such a weaving of the threads confers flexibility on the layer thus produced which goes against the function allowing the mechanical retention of another layer.

D'autre part, la couche acoustiquement résistive requière également une opération consistant à orienter les fils imprégnés relativement par rapport aux fils constituant le tissu de fils métalliques orientés suivant au moins deux directions distinctes.On the other hand, the acoustically resistive layer also requires an operation consisting in orienting the impregnated threads relatively with respect to the threads constituting the fabric of metallic threads oriented in at least two distinct directions.

On connait également, tel que décrit dans le document GB 2 059 341 , des structures absorbantes comportant une cloison rigide, des moyens de séparation, une paroi poreuse et des moyens d'absorption complémentaires. Cependant, une telle paroi poreuse comprend une première couche formée par une feuille perforée et une deuxième couche en feutre de fibres.We also know, as described in the document GB 2 059 341 , absorbent structures comprising a rigid partition, separation means, a porous wall and complementary absorption means. However, such a porous wall comprises a first layer formed by a perforated sheet and a second layer of fiber felt.

De plus dans ce document, la première couche de la paroi poreuse est agencée vers l'intérieur de la structure et la deuxième couche de la paroi poreuse est agencée l'extérieure.Further in this document, the first layer of the porous wall is arranged towards the interior of the structure and the second layer of the porous wall is arranged the exterior.

Les objets de la présente invention visent par conséquent à proposer une nouvelle structure absorbante permettant d'atténuer des sons purs ainsi que de présenter une forte efficacité d'absorption des ondes acoustiques dans une large bande de fréquences. La structure absorbante conforme à l'invention permet ainsi de traiter des groupes de sons purs et/ou des bruits dits « large bande ». On obtient ainsi une réduction substantielle et audible des bruits parasites générés.The objects of the present invention are therefore aimed at providing a novel absorbing structure making it possible to attenuate pure tones as well as to exhibit a high efficiency of absorption of acoustic waves in a wide frequency band. The absorbent structure in accordance with the invention thus makes it possible to process groups of pure tones and / or so-called “broadband” noises. There is thus obtained a substantial and audible reduction of the parasitic noises generated.

Un autre objet de la présente invention vise à proposer une structure absorbante réalisant un revêtement acoustique d'une part et constituant un élément structurel rigide d'autre part. Ainsi, dans l'application se rapportant à des rotors anticouples carénés d'hélicoptères, la structure absorbante constitue la veine de circulation d'air dudit rotors anticouple.Another object of the present invention aims to provide an absorbent structure providing an acoustic covering on the one hand and constituting a rigid structural element on the other hand. Thus, in the application relating to faired anti-torque rotors of helicopters, the absorbent structure constitutes the air flow duct of said anti-torque rotors.

Un autre objet de la présente invention vise à proposer une structure absorbante n'augmentant par de façon significative le poids et/ou l'encombrement des éléments sur lesquels ou dans lesquels elle est utilisée en remplacement d'éléments métalliques en tôle simple ou de parois simples en matériaux composites.Another object of the present invention aims to provide an absorbent structure which does not increase significantly. significant the weight and / or size of the elements on which or in which it is used as a replacement for metal elements in single sheet or single walls in composite materials.

Les objets assignés à la présente invention sont atteints à l'aide d'une structure absorbante pour réduire la propagation d'ondes acoustiques émises par des dispositifs bruyants du genre rotors ou moteurs, comportant une cloison rigide, au moins une paroi poreuse et des moyens de séparation pour disposer la paroi poreuse à une distance déterminée de la cloison rigide, en délimitant des cavités d'une hauteur h1 entre ladite paroi poreuse et ladite cloison rigide, ladite hauteur h1 étant déterminée pour obtenir une absorption maximale d'une fréquence de base F1 donnée des ondes acoustiques émises, ladite structure comportant des moyens d'absorption complémentaires pour obtenir une absorption maximale des ondes acoustiques émises à au moins une fréquence de base supplémentaire Fi, du spectre des ondes acoustiques émises, i étant un nombre entier supérieur ou égal à 2, la paroi poreuse comporte au moins une première couche et au moins une seconde couche en feutre de fibres, caractérisé en ce que ladite première couche est formée en grillage à maille fines et en ce que ladite première couche est positionnée sur ladite seconde couche en feutre de fibres afin de constituer un assemblage de deux couches, ladite seconde couche en feutre de fibres étant positionnée sur les moyens de séparation.The objects assigned to the present invention are achieved using an absorbent structure to reduce the propagation of acoustic waves emitted by noisy devices such as rotors or motors, comprising a rigid partition, at least one porous wall and means separation to dispose the porous wall at a determined distance from the rigid partition, by delimiting cavities of a height h1 between said porous wall and said rigid partition, said height h1 being determined to obtain maximum absorption of a base frequency F1 given of the acoustic waves emitted, said structure comprising complementary absorption means to obtain a maximum absorption of the acoustic waves emitted at at least one additional base frequency Fi, of the spectrum of the acoustic waves emitted, i being a whole number greater than or equal at 2, the porous wall comprises at least a first layer and at least a second layer of fiber felt, characterized in that said first layer is formed of fine mesh mesh and in that said first layer is positioned on said second layer of fiber felt to constitute an assembly of two layers, said second layer of fiber felt being positioned on the means of seperation.

L'association de ces deux couches permet d'obtenir d'une part une porosité optimale et d'autre part un maintien mécanique suffisant du feutre, grâce au grillage.The combination of these two layers makes it possible to obtain, on the one hand, optimum porosity and, on the other hand, sufficient mechanical retention of the felt, thanks to the mesh.

Les moyens d'absorption complémentaires, en combinaison avec la paroi poreuse et les cavités permettent donc d'obtenir un coefficient d'absorption maximal, de 100 %, pour au moins une fréquences de base F1 et Fi et un coefficient d'absorption sensiblement de 80 % autour de ces fréquences de base F1 et Fi, et ce sur une large de bande de fréquences allant par exemple de 0,7.Fi à 1,3.Fi.The complementary absorption means, in combination with the porous wall and the cavities therefore make it possible to obtain a maximum absorption coefficient of 100% for at least one base frequency F1 and Fi and an absorption coefficient of approximately 80% around these base frequencies F1 and Fi, and this over a wide frequency band ranging for example from 0.77Fi to 1.3.Fi.

La structure absorbante conforme à l'invention présente également l'avantage de présenter, outre une atténuation maximale pour chaque fréquence de base F1 ou Fi, une atténuation maximale pour des multiples des fréquences de base correspondant à (2n+1).Fi, où n est un nombre entier supérieur ou égal à 1.The absorbent structure according to the invention also has the advantage of having, in addition to a maximum attenuation for each base frequency F1 or Fi, a maximum attenuation for multiples of the base frequencies corresponding to (2n + 1) .Fi, where n is an integer greater than or equal to 1.

À titre d'exemple, on peut obtenir une atténuation du bruit de 100 % pour les fréquences centrales F1 de 1000 Hz et F2=2.F1 de 2000 Hz ainsi qu'une atténuation du bruit de 80 % dans des plages de fréquences allant de préférence et respectivement d'une valeur de deux tiers de chacune des fréquences de base à une valeur de quatre tiers de chacune desdites fréquences de base. L'atténuation totale d'une raie à 1000 Hz est donc accompagnée d'une atténuation d'environ 80 % des autres raies du spectre du bruit, représentatives du bruit à des fréquences comprises entre 667 Hz et 1333 Hz et de préférence comprises entre 700 Hz et 1300 Hz et à celles comprises entre 1400 Hz et 2600 Hz.As an example, a noise attenuation of 100% can be obtained for the center frequencies F1 of 1000 Hz and F2 = 2.F1 of 2000 Hz as well as a noise attenuation of 80% in frequency ranges from preferably and respectively from a value of two thirds of each of the base frequencies to a value of four thirds of each of said base frequencies. The total attenuation of a line at 1000 Hz is therefore accompanied by an attenuation of about 80% of the other lines of the noise spectrum, representative of noise at frequencies between 667 Hz and 1333 Hz and preferably between 700 Hz and 1300 Hz and those between 1400 Hz and 2600 Hz.

Selon un exemple de réalisation conforme à l'invention, les moyens d'absorption complémentaires comportent une paroi poreuse complémentaire, disposée dans les cavités, à une hauteur intermédiaire h2. Les hauteurs h1 et h2 correspondent par conséquent respectivement à l'atténuation des fréquences respectives F1 et F2. Les cavités de hauteur h1 et h2 sont ainsi disposées en parallèle, diminuant de cette façon l'encombrement en épaisseur de la structure absorbante par rapport à une disposition en série de deux cavités successives de hauteur h1 et h2.According to an exemplary embodiment in accordance with the invention, the additional absorption means comprise a complementary porous wall, arranged in the cavities, at an intermediate height h2. The heights h1 and h2 consequently correspond respectively to the attenuation of the respective frequencies F1 and F2. The cavities of height h1 and h2 are thus arranged in parallel, in this way reducing the overall thickness of the absorbent structure with respect to an arrangement in series of two successive cavities of height h1 and h2.

Selon un autre exemple de réalisation conforme à l'invention, les moyens d'absorption complémentaires sont matérialisés par une inclinaison de la cloison rigide par rapport à la paroi poreuse de manière à modifier en continu, selon au moins une direction, la hauteur h1 d'une cavité à une autre. Une telle conception permet de favoriser le traitement du bruit sur une large bande de fréquences. Il est donc intéressant selon un autre exemple de réalisation conforme à l'invention, d'associer ces moyens d'absorption complémentaires à des moyens d'absorption complémentaires favorisant le traitement du bruit à une ou plusieurs fréquences de base Fi.According to another exemplary embodiment according to the invention, the additional absorption means are materialized by an inclination of the rigid partition with respect to to the porous wall so as to continuously modify, in at least one direction, the height h1 from one cavity to another. Such a design makes it possible to promote the processing of noise over a wide band of frequencies. It is therefore advantageous, according to another exemplary embodiment in accordance with the invention, to combine these complementary absorption means with complementary absorption means favoring the processing of noise at one or more base frequencies Fi.

Selon un autre exemple de réalisation conforme à l'invention, les moyens d'absorption complémentaires comportent en alternance avec les cavités de hauteur h1, des cavités additionnelles de hauteur h3, ladite hauteur h3 étant inférieure à la hauteur h1. Ces cavités additionnelles de hauteur h3 sont par exemple réalisées avec un dépôt d'un matériau absorbant sur la cloison rigide dans certaines cavités de hauteur h1, par exemple dans une cavité sur deux.According to another exemplary embodiment in accordance with the invention, the complementary absorption means comprise, alternately with the cavities of height h1, additional cavities of height h3, said height h3 being less than height h1. These additional cavities of height h3 are for example produced with a deposit of an absorbent material on the rigid partition in certain cavities of height h1, for example in every other cavity.

Sans sortir du cadre de la présente invention, il est envisageable dans certains cas de combiner différents modes de réalisation décrits ci-dessus pour améliorer les performances de la structure absorbante.Without departing from the scope of the present invention, it is possible in certain cases to combine different embodiments described above in order to improve the performance of the absorbent structure.

Selon un exemple de réalisation de la structure absorbante conforme à l'invention, les cavités sont délimitées avec des cloisons montantes, s'étendant sensiblement orthogonalement à partir de la cloison rigide jusqu'à une paroi poreuse.According to an exemplary embodiment of the absorbent structure according to the invention, the cavities are delimited with rising partitions, extending substantially orthogonally from the rigid partition to a porous wall.

Selon un exemple de réalisation de la structure absorbante conforme à l'invention, le grillage et/ou le feutre sont de préférence réalisés en matériaux métalliques ou composites.According to one embodiment of the absorbent structure according to the invention, the mesh and / or the felt are preferably made of metallic or composite materials.

Selon un exemple de réalisation de la structure absorbante conforme à l'invention, la première couche et la seconde couche sont assemblées par collage ou par soudage. Ces opérations, de même que l'assemblage d'une paroi poreuse et de la cloison rigide délimitant les cavités, sont facilement automatisables lors de la fabrication de la structure absorbante.According to an exemplary embodiment of the absorbent structure according to the invention, the first layer and the second layer are assembled by gluing or welding. These operations, as well as the assembly of a porous wall and of the rigid partition delimiting the cavities, can easily be automated during the manufacture of the absorbent structure.

Selon un exemple de réalisation de la structure absorbante conforme à l'invention, la cloison rigide est de préférence en fibres de verre. Il en est de même, de préférence, pour les cloisons montantes. On obtient ainsi la rigidité, la solidité et la légèreté, requises notamment dans le domaine des hélicoptères.According to an exemplary embodiment of the absorbent structure according to the invention, the rigid partition is preferably made of glass fibers. It is the same, preferably, for the rising partitions. This gives the rigidity, strength and lightness required in particular in the field of helicopters.

Les objets assignés à la présente invention sont également atteints à l'aide d'une veine de rotor anticouple pour hélicoptères constituée au moins en partie d'une structure absorbante telle que présentée.The objects assigned to the present invention are also achieved with the aid of an anti-torque rotor vein for helicopters constituted at least in part of an absorbent structure as presented.

Les objets assignés à la présente invention sont également atteints à l'aide d'un rotor anticouple caréné pour hélicoptères comportant un carénage constitué au moins en partie d'une structure absorbante telle que présentée.The objects assigned to the present invention are also achieved with the aid of a faired anti-torque rotor for helicopters comprising a fairing constituted at least in part of an absorbent structure as presented.

Les objets assignés à la présente invention sont également atteints à l'aide d'un carénage pour des parties d'hélicoptères, ledit carénage comportant une structure absorbante telle que présentée.The objects assigned to the present invention are also achieved by means of a fairing for parts of helicopters, said fairing comprising an absorbent structure as shown.

D'autres particularités et avantages de l'invention apparaîtront plus en détails à la lecture de la description qui suit, ainsi qu'à l'aide des dessins annexés donnés à titre purement illustratif et non limitatif, parmi lesquels :

  • la figure 1 illustre un exemple de réalisation d'une structure absorbante connue et conforme à l'art antérieur;
  • la figure 2 illustre un exemple de réalisation d'une structure absorbante conforme à l'invention;
  • la figure 3 illustre un autre exemple de réalisation d'une structure absorbante conforme à la invention;
  • la figure 4 illustre un autre exemple de réalisation d'une structure absorbante conforme à la mention;
  • la figure 5 illustre selon une vue schématique et en coupe transversale, un rotor caréné d'hélicoptère agencé dans une veine comportant une structure absorbante conforme à la mention;
  • la figure 6 illustre une vue de dessous de la vue schématique de la figure 5 ;
  • la figure 7 illustre une section transversale d'un rotor caréné d'hélicoptère comportant une veine pourvue d'une structure absorbante conforme à l'invention ainsi qu'un moyeu de rotor comportant également une structure absorbante conforme à la mention ;
  • La figure 8 est un diagramme représentant le coefficient d'absorption du bruit en fonction de la fréquence, correspondant à une structure absorbante conçue pour traiter les fréquences F1 et F2=2.F1.
Other features and advantages of the invention will emerge in more detail on reading the description which follows, as well as with the aid of the appended drawings given purely by way of illustration and not by way of limitation, among which:
  • the figure 1 illustrates an exemplary embodiment of a known absorbent structure in accordance with the prior art;
  • the figure 2 illustrates an exemplary embodiment of an absorbent structure according to the invention;
  • the figure 3 illustrates another exemplary embodiment of an absorbent structure according to the invention;
  • the figure 4 illustrates another embodiment of an absorbent structure according to the mention;
  • the figure 5 illustrates, in a schematic view and in cross section, a ducted rotor of a helicopter arranged in a duct comprising an absorbent structure in accordance with the mention;
  • the figure 6 illustrates a bottom view of the schematic view of the figure 5 ;
  • the figure 7 illustrates a cross section of a faired rotor of a helicopter comprising a duct provided with an absorbent structure according to the invention as well as a rotor hub also comprising an absorbent structure according to the mention;
  • The figure 8 is a diagram representing the noise absorption coefficient as a function of frequency, corresponding to an absorbing structure designed to handle the frequencies F1 and F2 = 2.F1.

La structure absorbante conforme à l'invention, dont une partie est illustrée à la figure 1, comporte une cloison rigide 1, par exemple en fibres de verre, ainsi que des cloisons montantes 2 s'étendant sensiblement orthogonalement à partir de la cloison rigide 1 pour délimiter des cavités 3. Les cloisons montantes 2, par exemple en fibres de verre, s'étendent jusqu'à une paroi poreuse 4 et constituent des moyens de séparation entre la cloison rigide 1 et la paroi poreuse 4.The absorbent structure according to the invention, part of which is illustrated on figure 1 , comprises a rigid partition 1, for example of glass fibers, as well as rising partitions 2 extending substantially orthogonally from the rigid partition 1 in order to define cavities 3. The rising partitions 2, for example of glass fibers, extend to a porous wall 4 and constitute means of separation between the rigid partition 1 and the porous wall 4.

Les cavités 3 présentent une hauteur h1 dont la valeur, avec une bonne approximation, est proportionnelle à l'inverse de la fréquence de base F qu'il convient d'absorber, et ce à une température donnée T. Cette relation : h = c . T 1 / 2 .1 / F

Figure imgb0001
où c est une constante, F étant la fréquence à absorber, est connue en tant que telle.The cavities 3 have a height h1 whose value, with a good approximation, is proportional to the inverse of the base frequency F that should be absorbed, and this at a given temperature T. This relation: h = vs . T 1 / 2 .1 / F
Figure imgb0001
where c is a constant, F being the frequency to be absorbed, is known as such.

La valeur h correspond sensiblement au quart ou à un multiple du quart de la longueur d'onde de la fréquence F qu'il convient d'absorber.The value h corresponds approximately to a quarter or to a multiple of a quarter of the wavelength of the frequency F which should be absorbed.

La paroi poreuse 4 comporte une première couche 4a en grillage métallique à mailles fines ou très fines et une seconde couche 4b en feutre de fibres métalliques. Le grillage et le feutre peuvent également être réalisés en matériaux composites. Les couches 4a et 4b sont par exemple assemblées par collage ou par soudage.The porous wall 4 comprises a first layer 4a of fine or very fine mesh metal mesh and a second layer 4b of felt of metal fibers. The mesh and the felt can also be made of composite materials. The layers 4a and 4b are for example assembled by gluing or by welding.

La figure 2 illustre un exemple de réalisation de la structure absorbante conforme à l'invention. Cette dernière comporte une seconde paroi poreuse 5 disposée entre la cloison rigide 1 et la paroi poreuse 4. Chacune des cavités 3 est ainsi divisée en deux par l'intermédiaire de la seconde paroi poreuse 5.The figure 2 illustrates an exemplary embodiment of the absorbent structure according to the invention. The latter comprises a second porous wall 5 arranged between the rigid partition 1 and the porous wall 4. Each of the cavities 3 is thus divided into two by means of the second porous wall 5.

La paroi poreuse 5 est écartée de la cloison rigide 1 en s'étendant à une hauteur h2 inférieure à h1. La hauteur h2 est déterminée par la même relation que celle déterminant h1 et précisée ci-dessus.The porous wall 5 is moved away from the rigid partition 1 by extending to a height h2 less than h1. The height h2 is determined by the same relation as that determining h1 and specified above.

La paroi poreuse 5 est de préférence identique ou similaire à la paroi poreuse 4 et comporte une première couche 5a en grillage métallique à mailles fines et une seconde 5b en feutre de fibres métalliques.The porous wall 5 is preferably identical or similar to the porous wall 4 and comprises a first layer 5a in wire mesh with fine mesh and a second 5b in felt of metallic fibers.

Cette structure absorbante permet d'absorber deux fréquences de base F1 et F2, correspondant à deux raies distinctes du spectre du bruit qu'il convient d'atténuer.This absorbing structure makes it possible to absorb two base frequencies F1 and F2, corresponding to two distinct lines of the noise spectrum which should be attenuated.

La figure 3 illustre un autre exemple de réalisation de la structure absorbante conforme à l'invention. Dans cette réalisation conforme à l'invention, les moyens d'absorption complémentaires comportent des cavités additionnelles 7 présentant une hauteur h3, en alternance avec des cavités de hauteur h1. La hauteur h3 est également déterminée par la relation précisée ci-dessus.The figure 3 illustrates another exemplary embodiment of the absorbent structure according to the invention. In this embodiment in accordance with the invention, the complementary absorption means comprise additional cavities 7 having a height h3, alternating with cavities of height h1. The height h3 is also determined by the relation specified above.

Les cavités additionnelles 7 sont obtenues grâce à un dépôt d'un matériau absorbant 7a sur la cloison rigide 1, dans certaines cavités 3. A titre d'exemple, une cavité 3 sur deux peut ainsi être transformée en cavité additionnelle 7 présentant une hauteur h3. A titre de variante, on peut envisager également de transformer une cavité sur trois ou sur quatre en cavité additionnelle 7, par exemple.The additional cavities 7 are obtained by depositing an absorbent material 7a on the rigid partition 1, in certain cavities 3. By way of example, every other cavity 3 can thus be transformed into an additional cavity 7 having a height h3. . As a variant, it is also possible to envisage transforming one in three or out of four cavities into additional cavity 7, for example.

Les cavités 3 et les cavités additionnelles 7 permettent ainsi d'absorber respectivement des ondes acoustiques de fréquences distinctes F1 et F3 du spectre du bruit émis.The cavities 3 and the additional cavities 7 thus make it possible to absorb respectively acoustic waves of frequencies F1 and F3 distinct from the spectrum of the emitted noise.

La figure 4 représente un autre exemple de réalisation de la structure absorbante conforme à l'invention, dans lequel les moyens d'absorption complémentaires sont obtenus par une inclinaison de la cloison rigide 1 par rapport à la paroi poreuse 4. Cela se traduit par des cloisons montantes 2 présentant une hauteur différente h1(n) en passant d'une cloison montante 2 à la suivante.The figure 4 shows another embodiment of the absorbent structure according to the invention, in which the additional absorption means are obtained by an inclination of the rigid partition 1 relative to the porous wall 4. This results in rising partitions 2 having a different height h1 (n) when passing from one riser 2 to the next.

On obtient ainsi des cavités particulières 8 présentant une cloison montante 2 de hauteur h1(n) et une cloison montante 2 voisine, de hauteur h1(n+1). La variation de hauteur d'une cloison rigide à la suivante est bien entendu déterminée par l'inclinaison de la cloison rigide 1. Une telle structure absorbante atténue par conséquent un certain nombre de raies du spectre du bruit émis, et plus préférentiellement une large bande de fréquences correspondant à bruits dits de « large bande ».Particular cavities 8 are thus obtained having a rising partition 2 of height h1 (n) and a neighboring rising partition 2 of height h1 (n + 1) . The variation in height from one rigid partition to the next is of course determined by the inclination of the rigid partition 1. Such an absorbing structure consequently attenuates a certain number of lines in the spectrum of the noise emitted, and more preferably a wide band. frequencies corresponding to so-called “broadband” noises.

La figure 5 schématise en coupe un exemple de réalisation d'un rotor anticouple caréné d'hélicoptère. Le rotor anticouple comporte un moyeu 10 entraînant des pales 11.The figure 5 schematizes in section an embodiment of a ducted anti-torque rotor of a helicopter. The anti-torque rotor comprises a hub 10 driving the blades 11.

Des plaques de maintien 12 sont prévues pour d'une part maintenir le moyeu 10 en position dans une veine 13 de circulation d'air et d'autre part assurer un redressement de l'air expulsé par ledit rotor. Ce redressement est obtenu par une orientation particulière des plaques de maintien 12, par exemple une orientation radiale 12a pour l'une 12a et une orientation quasi-radiale pour l'autre 12b des plaques de maintien 12, représentées par exemple à la figure 6.Retaining plates 12 are provided for, on the one hand, maintaining the hub 10 in position in an air circulation duct 13 and, on the other hand, ensuring a straightening of the air expelled by said rotor. This recovery is obtained by a particular orientation of the retaining plates 12, for example a radial orientation 12a for one 12a and a quasi-radial orientation for the other 12b of the retaining plates 12, shown for example on figure 6 .

L'air aspiré par le rotor anticouple est matérialisé par les flèches A. L'air aspiré pénètre dans la veine 13 de circulation d'air par une entrée 13a de la veine 13, et est expulsé via une sortie 13b de la veine 13.The air sucked in by the anti-torque rotor is shown by arrows A. The air sucked in enters the air circulation stream 13 through an inlet 13a of the stream 13, and is expelled via an outlet 13b of the stream 13.

L'entrée 13a et la sortie 13b de la veine 13 sont délimitées par un carénage 15 du rotor. Ce carénage 15 est réalisé par l'intermédiaire d'éléments de structure absorbante conforme à l'invention ou par des éléments revêtus d'une structure absorbante conforme à l'invention.The inlet 13a and the outlet 13b of the duct 13 are delimited by a fairing 15 of the rotor. This fairing 15 is produced by means of absorbent structure elements according to the invention or by elements coated with an absorbent structure according to the invention.

La veine 13 de circulation d'air comporte également un étranglement 16 positionné autour de la trajectoire des extrémités des pales 11.The air circulation duct 13 also comprises a constriction 16 positioned around the path of the ends of the blades 11.

Les plaques de maintien 12a, 12b sont par exemple pourvues sur chacune de leurs faces d'une structure absorbante conforme à l'invention. De préférence, l'ensemble des parties du carénage 15 délimitant la veine 13 de circulation d'air comporte un revêtement d'une structure absorbante conforme à l'invention.The retaining plates 12a, 12b are for example provided on each of their faces with an absorbent structure according to the invention. Preferably, all the parts of the fairing 15 delimiting the air circulation duct 13 comprises a coating of an absorbent structure in accordance with the invention.

A titre de variante, ces parties peuvent également être réalisées directement avec des éléments de structure absorbante. Ces derniers constituent ainsi des éléments rigides structuraux du rotor anticouple.As a variant, these parts can also be produced directly with elements of absorbent structure. The latter thus constitute rigid structural elements of the anti-torque rotor.

La figure 7 illustre une vue en section transversale d'un rotor anticouple caréné d'hélicoptère, dans lequel le moyeu 10 transmet aux pales 11 un mouvement de rotation par l'intermédiaire d'un arbre de transmission 17. Le moyeu 10 comporte un carter 10a et un élément de couverture 10b revêtus ou constitués d'une structure absorbante conforme à l'invention.The figure 7 illustrates a cross-sectional view of a ducted anti-torque rotor of a helicopter, in which the hub 10 transmits to the blades 11 a rotational movement via a transmission shaft 17. The hub 10 comprises a housing 10a and a cover element 10b coated or made of an absorbent structure according to the invention.

La veine 13 de circulation d'air est délimitée notamment par des lèvres d'entrée d'air 18 et par un cône de diffusion 19 revêtus par ou constitués avec une structure absorbante conforme à l'invention. L'ensemble de la veine 13 de circulation d'air est de préférence traitée, à savoir revêtue ou constituée, avec la structure absorbante conforme à l'invention.The air circulation stream 13 is delimited in particular by air inlet lips 18 and by a diffusion cone 19 coated with or formed with an absorbent structure in accordance with the invention. The whole of the air circulation vein 13 is preferably treated, namely coated or made up, with the absorbent structure according to the invention.

Le rotor anticouple tel que représenté à la figure 7, peut également fonctionner en mode inverse, dans lequel la circulation d'air à travers la veine 13 s'effectue dans le sens inverse matérialisé par les flèches R. La veine 13 de circulation d'air conserve ses propriétés d'atténuation de bruit également en mode inverse.The anti-torque rotor as shown in figure 7 , can also operate in reverse mode, in which the air circulation through the duct 13 takes place in the opposite direction shown by the arrows R. The air circulation duct 13 retains its noise attenuation properties also in reverse mode.

La figure 8 représente pour un exemple de réalisation d'une structure absorbante conforme à l'invention, le coefficient d'absorption CA en fonction de la fréquence F. Dans ce cas particulier les fréquences de base F1 et F2=2.F1, de même que les fréquences 3.F1, 5.F1 et 3.F2 sont atténuées à 100%. D'autres harmoniques, également atténués à 100% ne sont pas représentés pour des raisons de clarté. Une large bande de fréquence d'environ +/- 30% des fréquences précitées est également atténuée à au moins 80%. On obtient ainsi une atténuation du bruit à au moins 80% pour des fréquences comprises entre 2,1.F2 et 3,9.F2.The figure 8 represents for an exemplary embodiment of an absorbent structure according to the invention, the absorption coefficient CA as a function of the frequency F. In this particular case the base frequencies F1 and F2 = 2.F1, as well as the frequencies 3.F1, 5.F1 and 3.F2 are attenuated to 100%. Other harmonics, also attenuated to 100%, are not shown for reasons of clarity. A wide frequency band of about +/- 30% of the above frequencies is also attenuated to at least 80%. At least 80% noise attenuation is thus obtained for frequencies between 2.1.F2 and 3.9.F2.

Claims (12)

  1. Absorbent structure for reducing the propagation of sound waves transmitted by noisy devices of the rotor or motor type, comprising a rigid partition (1), at least one porous wall (4) and separation means (2) for arranging the porous wall (4) at a predetermined distance from the rigid partition (1), delimiting cavities (3) having a height h1 between the porous wall (4) and the rigid partition (1), the height h1 being determined in order to obtain maximum absorption of the sound waves transmitted at a given basic frequency F1, the structure comprising complementary absorption means in order to obtain maximum absorption of the sound waves transmitted at least at one additional basic frequency Fi, i being a whole number greater than or equal to 2,
    the porous wall (4, 5) comprising at least a first layer (4a, 5a) and at least a second layer (4b, 5b) of fibre felt,
    characterised in that the first layer (4a, 5a) is formed as a grid with fine mesh and in that the first layer (4a, 5a) is positioned on the second layer (4b, 5b) of fibre felt in order to constitute an assembly of two layers,
    the second layer (4b, 5b) of fibre felt being positioned on the separation means (2).
  2. Absorbent structure according to claim 1,
    characterised in that the grid and/or the felt are produced from metal or composite materials.
  3. Absorbent structure according to claim 1 or 2,
    characterised in that the first layer (4a, 5a) and the second layer (4b, 5b) are assembled by means of adhesive bonding or by means of welding.
  4. Absorbent structure according to any one of claims 1 to 3,
    characterised in that the complementary absorption means comprise at least one complementary porous wall (5) which is arranged in the cavities (3) at an intermediate height h2 in order to obtain maximum absorption for a basic frequency F2.
  5. Absorbent structure according to either claim 1 or 4,
    characterised in that the complementary absorption means are produced by an inclination of the rigid partition (1) relative to the porous wall (4) in order to modify in at least one direction the height h1 from one specific cavity (8) to the following one.
  6. Absorbent structure according to any one of claims 1 to 5,
    characterised in that the complementary absorption means comprise, in a manner alternating with cavities (3) having a height h1, additional cavities (7) having a height h3, the height h3 being less than the height h1.
  7. Absorbent structure according to claim 6,
    characterised in that the additional cavities (7) are produced with a deposit of an absorbent material (7a) on the rigid partition (1) in specific cavities (3) having a height h1.
  8. Absorbent structure according to any one of claims 1 to 7,
    characterised in that the cavities (3, 7) are delimited with rising partitions (2) which extend substantially orthogonally from the rigid partition (1) as far as a porous wall (4, 5).
  9. Absorbent structure according to any one of claims 1 to 8,
    characterised in that the rigid partition (1) is at least partially made of glass fibres.
  10. Anti-torque rotor duct (13) for a helicopter,
    characterised in that it is constituted, at least partially, by an absorbent structure according to any one of claims 1 to 9.
  11. Ducted anti-torque rotor for a helicopter,
    characterised in that it comprises a fairing (15) which is constituted at least partially by an absorbent structure according to any one of claims 1 to 9.
  12. Fairing (15) for helicopter components,
    characterised in that it comprises an absorbent structure according to any one of claims 1 to 9.
EP08020965.3A 2007-12-14 2008-12-03 Absorbent structure for reducing the noise generated in particular by a rotor and fairing comprising such a structure Active EP2071561B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0708699A FR2925208B1 (en) 2007-12-14 2007-12-14 ABSORBENT STRUCTURE FOR ATTENUATING NOISE GENERATED IN PARTICULAR BY A ROTOR AND FAIRING COMPRISING SUCH A STRUCTURE

Publications (3)

Publication Number Publication Date
EP2071561A2 EP2071561A2 (en) 2009-06-17
EP2071561A3 EP2071561A3 (en) 2017-05-17
EP2071561B1 true EP2071561B1 (en) 2021-02-03

Family

ID=39691154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08020965.3A Active EP2071561B1 (en) 2007-12-14 2008-12-03 Absorbent structure for reducing the noise generated in particular by a rotor and fairing comprising such a structure

Country Status (6)

Country Link
US (1) US7779965B2 (en)
EP (1) EP2071561B1 (en)
JP (1) JP2009145891A (en)
CN (1) CN101458926B (en)
CA (1) CA2646933C (en)
FR (1) FR2925208B1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7913813B1 (en) * 2009-10-21 2011-03-29 The Boeing Company Noise shield for a launch vehicle
US8770343B2 (en) * 2011-11-23 2014-07-08 The Boeing Company Noise reduction system for composite structures
GB201209658D0 (en) * 2012-05-31 2012-07-11 Rolls Royce Plc Acoustic panel
EP2706009B1 (en) 2012-09-07 2016-04-27 AIRBUS HELICOPTERS DEUTSCHLAND GmbH An empennage of a helicopter
JP5787947B2 (en) * 2013-08-09 2015-09-30 三菱電機株式会社 Soundproofing device, elevator hoisting machine and elevator
US8997923B2 (en) * 2013-08-12 2015-04-07 Hexcel Corporation Sound wave guide for use in acoustic structures
EP2878433B1 (en) 2013-11-29 2016-04-20 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Shrouded rotary assembly from segmented composite for aircraft and method for its manufacture
EP2913270B1 (en) * 2014-02-28 2016-02-24 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotorcraft with at least one main rotor and at least one counter-torque rotor
EP2913269B1 (en) * 2014-02-28 2019-01-16 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotorcraft with at least one main rotor and at least one counter-torque rotor
EP2913271A1 (en) * 2014-02-28 2015-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotorcraft with at least one main rotor and at least one counter-torque rotor
AU2016267963B2 (en) * 2015-05-25 2020-08-13 Dotterel Technologies Limited A shroud for an aircraft
CN105620716A (en) * 2016-03-07 2016-06-01 刘海涛 Sound insulation method for manned multi-rotor air vehicle
FR3054608B1 (en) * 2016-07-29 2020-06-26 Safran ACOUSTIC PANEL FOR A TURBOMACHINE AND ITS MANUFACTURING METHOD
JP7006083B2 (en) * 2017-09-26 2022-01-24 富士フイルムビジネスイノベーション株式会社 Noise reduction structure and image forming equipment
CN108791868A (en) * 2018-07-31 2018-11-13 刘浩然 A kind of new transport unmanned plane of safety and stability
JP7398742B2 (en) 2020-06-09 2023-12-15 戸田建設株式会社 Propagated sound suppression structure and pipe propagated sound suppression structure
CN113674727A (en) * 2021-08-05 2021-11-19 北京市劳动保护科学研究所 Deep sub-wavelength low-frequency sound absorption structure and sound absorption unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2059341A (en) * 1979-09-17 1981-04-23 Rohr Industries Inc Double layer attenuation panel

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE22595E (en) * 1945-01-23 Aircraft
US3191851A (en) * 1963-12-31 1965-06-29 Westinghouse Electric Corp Centrifugal fans
US4384634A (en) * 1979-12-18 1983-05-24 United Technologies Corporation Sound absorbing structure
GB2076049B (en) * 1980-05-17 1983-10-26 Rolls Royce Variable acoustic impedance lining
JPS57196708A (en) * 1981-05-26 1982-12-02 Mitsubishi Heavy Ind Ltd Reducing apparatus for so2
JPS63116197A (en) * 1986-11-04 1988-05-20 川口 寛 Porous structural body and manufacture thereof
US5175401A (en) * 1991-03-18 1992-12-29 Grumman Aerospace Corporation Segmented resistance acoustic attenuating liner
JP2785687B2 (en) * 1994-05-02 1998-08-13 ヤマハ株式会社 Sound absorbing structure
FR2719551B1 (en) * 1994-05-04 1996-07-12 Eurocopter France Anti-torque device with faired rotor and stator rectifier and inclined rectifier vanes.
DE29512787U1 (en) * 1995-08-09 1995-10-12 Dürr Metalltechnik, 72116 Mössingen Noise protection device, especially for roadsides and tunnels
US5782082A (en) * 1996-06-13 1998-07-21 The Boeing Company Aircraft engine acoustic liner
US6144652A (en) * 1996-11-08 2000-11-07 Lucent Technologies Inc. TDM-based fixed wireless loop system
DE19804718C2 (en) * 1998-02-06 2001-09-13 Eurocopter Deutschland Sound absorbing sandwich wall
US5997985A (en) * 1998-09-10 1999-12-07 Northrop Grumman Corporation Method of forming acoustic attenuation chambers using laser processing of multi-layered polymer films
FR2803077B1 (en) * 1999-12-24 2002-07-26 Aerospatiale Matra Airbus METHOD FOR PRODUCING AN ACOUSTICALLY RESISTIVE LAYER, RESISTIVE LAYER OBTAINED AND WALL USING SUCH A LAYER
CN2440872Y (en) * 2000-08-30 2001-08-01 彭奇琨 Inorganic glass steel sandwich board
FR2815603B1 (en) * 2000-10-20 2003-02-21 Eurocopter France SOUNDPROOFING PANEL, IN PARTICULAR STRUCTURAL OR TRIM PANEL OF A TURNED AIRCRAFT
FR2817994B1 (en) * 2000-12-08 2003-02-28 Eads Airbus Sa SANDWICH ACOUSTIC PANEL
SE525812C2 (en) * 2002-06-12 2005-05-03 Saab Ab Acoustic lining, use of a lining and ways of producing an acoustic lining
JP2005313835A (en) * 2004-04-30 2005-11-10 Toyoda Gosei Co Ltd Shock absorber for vehicle
JP2008506582A (en) * 2004-07-16 2008-03-06 ベル ヘリコプター テクストロン インコーポレイテッド Helicopter reverse torque device
JP4747589B2 (en) * 2005-01-31 2011-08-17 トヨタ自動車株式会社 Sound absorber
US7434659B2 (en) * 2005-04-04 2008-10-14 Hexcel Corporation Acoustic septum cap honeycomb

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2059341A (en) * 1979-09-17 1981-04-23 Rohr Industries Inc Double layer attenuation panel

Also Published As

Publication number Publication date
EP2071561A2 (en) 2009-06-17
FR2925208A1 (en) 2009-06-19
JP2009145891A (en) 2009-07-02
CN101458926A (en) 2009-06-17
US7779965B2 (en) 2010-08-24
FR2925208B1 (en) 2016-07-01
CA2646933A1 (en) 2009-06-14
CN101458926B (en) 2012-07-04
CA2646933C (en) 2013-05-21
EP2071561A3 (en) 2017-05-17
US20090152395A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
EP2071561B1 (en) Absorbent structure for reducing the noise generated in particular by a rotor and fairing comprising such a structure
EP3489487B1 (en) Acoustic attenuation panel for aircraft
EP1533787B1 (en) Sound insulation panel containing balls and method for producing it
EP2142779B1 (en) Acoustic panel having a variable acoustic characteristic
CA2425364C (en) Acoustically resistive multi-component layer for a sound attenuation panel and panel so obtained
EP1398473B1 (en) Acoustic attenuation layer for an acoustic attenuation panel, and a panel with such a layer
EP1950383B1 (en) Noise attenuation features for the casing of a turbo fan engine
CA2602179C (en) Gas turbine helicopter engine soundproofing device and the resulting engine
FR2482663A1 (en) MULTI-LAYER ACOUSTIC INSULATION COATING
CA2292821C (en) Acoustically adjusted multi-channel turbine engine exhaust device
FR2817994A1 (en) SANDWICH ACOUSTIC PANEL
WO2002084642A1 (en) Sound attenuation panel comprising a resistive layer with reinforced structural component
EP3103115B1 (en) Soundproof panel
EP3491228B1 (en) Acoustic attenuation panel for an aircraft propulsion unit and propulsion unit comprising such a panel
WO2022129778A1 (en) Reduced bulk acoustic treatment panel for a turbojet engine
FR3078431A1 (en) SOUNDPROOFING COATING COMPRISING AN ALVEOLAR STRUCTURE WITH CURVED CELLS SHAPED ON EITHER OF THE SAME INTERNAL WALL
WO2009133009A1 (en) Improved acoustic panel
WO2022234228A2 (en) Acoustic metamaterial and method for the additive manufacturing thereof
FR3100917A1 (en) ACOUSTIC PANEL FOR AN AIRCRAFT PROPELLER ASSEMBLY, AND ITS MANUFACTURING PROCESS
WO2023198999A1 (en) Sound absorber and method for producing same
CA3117015A1 (en) Acoustic metamaterial and its additive manufacturing method
WO2022258921A1 (en) Acoustic treatment device for an aircraft propulsion assembly, and its method of manufacture
EP3395517B1 (en) Device for perforating an acoustic annular panel for a turbine engine
EP4244844A1 (en) Acoustic treatment coating comprising a folded ordered metaporous material
FR2778780A1 (en) Sound absorbing lining, such as sound absorbent panels for vehicles making method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS HELICOPTERS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: G10K 11/172 20060101AFI20170411BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170727

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: RS

Extension state: MK

Extension state: AL

Extension state: BA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180912

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1360214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008063691

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210203

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1360214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008063691

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008063691

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221222

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221213

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 16

Ref country code: FR

Payment date: 20231221

Year of fee payment: 16