EP2071368A1 - Retardation film - Google Patents

Retardation film Download PDF

Info

Publication number
EP2071368A1
EP2071368A1 EP07807421A EP07807421A EP2071368A1 EP 2071368 A1 EP2071368 A1 EP 2071368A1 EP 07807421 A EP07807421 A EP 07807421A EP 07807421 A EP07807421 A EP 07807421A EP 2071368 A1 EP2071368 A1 EP 2071368A1
Authority
EP
European Patent Office
Prior art keywords
film
retardation film
factor
retardation
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07807421A
Other languages
German (de)
French (fr)
Other versions
EP2071368A4 (en
Inventor
Kenji Kato
Katsushige Hayashi
Noriyuki Kato
Haruaki Eto
Syoichi Nito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
MGC Filsheet Co Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
MGC Filsheet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, MGC Filsheet Co Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Publication of EP2071368A1 publication Critical patent/EP2071368A1/en
Publication of EP2071368A4 publication Critical patent/EP2071368A4/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a polymer film preferably usable for an element of liquid crystal displays (LCDs) and for an element of optical pickup devices.
  • the present invention relates to a film suitable to improve the luminance, contrast and viewing angle characteristic of liquid crystal displays.
  • FPDs Flat panel displays
  • LCDs need to be improved in the contrast when seen in an oblique direction, the luminance uniformity, and the luminance itself
  • Polymer films are conventionally used for STN (super twisted nematic) or other types of liquid crystal displays for the purpose of compensating for a phase difference so as to realize color compensation, viewing angle enlargement and the like.
  • LCDs using thin film transistors (TFTs) have improved image quality as compared with the STN type LCDs, but still have the viewing angle problem that the image quality when seen in an oblique direction is different from the image quality when seen from the front. Therefore, for example, the retardation films are optimized to be used for such LCDs. Such retardation films are also used for reflection type LCDs in order to improve the contrast.
  • VA-LCDs vertical alignment nematic liquid crystal displays
  • IPS-LCDs IPS-LCDs
  • OCB-LCDs OCB-LCDs
  • These displays are realized as a result of development on the mode of the liquid crystal itself, which is made in order to enhance the contrast by enlarge the viewing angle of the display.
  • the function of a retardation film is indispensable. It is an important issue to obtain a large size of retardation film for a LCD, which has a uniform retardation value, a uniform delay axis direction, and good surface characteristics (durability against damage).
  • Japanese Laid-Open Patent Publication No. 2006-91246 proposes a retardation film which, when used in a liquid crystal display, does not change much the color tone of a displayed image and contributes to the enlargement of the viewing angle
  • Japanese Laid-Open Patent Publication No. 2004-117625 proposes a retardation film which, when stretched by a tensile force application, provides the following differential spectrum of infrared absorption before and after the stretching: the absorbance change ratio A of a carbonyl group stretched for 15 seconds to 1 hour, and the absorbance change ratio B of the carbonyl group stretched for 10 minutes to 1 hour, have the relationships of 1.2 ⁇ A ⁇ 2.0 and B ⁇ 1.1.
  • Japanese Laid-Open Patent Publication No. 2005-77963 proposes that polycarbonate having a high refractive index, a low Abbe value, a high glass transition temperature (Tg), and a photo-elastic constant equal to or lower than a specific value is promising to produce a retardation film which has a high size stability against time and temperature change and does not change much the optical properties thereof against external stress.
  • Nz factor (nx - nz)/(nx - ny) (in the expression, nx and ny are each the main in-plane refractive index, and nz is the main thickness-direction refractive index.)
  • Japanese Laid-Open Patent Publications Nos. 2005-62673 and 2005-62671 each propose a retardation film having an Nz factor of 0.5 to 2.0.
  • Japanese Laid-Open Patent Publication No. 2004-309617 proposes a retardation film having an Nz factor fulfilling 1.00 ⁇ Nz factor ⁇ 1.35.
  • Japanese Laid-Open Patent Publication No. 2006-58540 proposes a retardation film having an Nz factor fulfilling 0.1 ⁇ Nz factor ⁇ 0.9.
  • a diffusion film or a diffusion sheet is used as a polymer film.
  • the most important properties required of a diffusion film are to improve the luminance and to diffuse light or to conceal the nonuniformity pattern of the light source or behind the light source.
  • a surface light source called "edge light type backlight” is used.
  • an optical diffusion film for diffusing light emitted from the light source so as to make the image of the light source invisible is required.
  • optical diffusion films are desired to have an appropriate range of haze values and thus have a high optical diffuseness of diffusing light emitted from the light source uniformly on a liquid crystal panel, and also to have a high luminance, as well as a good light transmittance.
  • Examples of such an optical diffusion sheet include a sheet having an optical diffusion layer containing polymer beads or inorganic microparticles provided on at least one surface of the film (see Japanese Patent No. 2665301 ) and a sheet having a convex and concave pattern provided by embossing made on one surface or both surfaces of a transparent plastic film and also an optical diffusion layer containing microparticles on one surface or both surfaces thereof (see Japanese Laid-Open Patent Publication No. 11-337711 ).
  • a retardation film especially a retardation film having controlled refractive indices in three dimensions.
  • a film having a defined Nz factor needs to be used.
  • the present inventor found that unlike the retardation film currently used for LCDs, a film which is controlled such that the optical anisotropy is remarkably different between in the film plane and in the direction normal thereto has an Nz factor of 10 or larger. The present inventor also found that the viewing angle is enlarged by use of a film having such a large Nz factor.
  • the present inventor obtained the knowledge that a film having an Nz factor of 10 or larger has a higher performance of enlarging the viewing angle than the conventional films and so is suitable as a retardation film of vertical alignment (VA) LCDs or optical compensated bend (OCB) LCDs, and completed the present invention based on the knowledge.
  • VA vertical alignment
  • OBC optical compensated bend
  • a larger Nz factor means that the anisotropy of the molecular alignment is larger between in the film plane and in the direction normal thereto, and specifically means that the molecular alignment is highly controlled.
  • the present inventor also found that it is possible to provide an optical diffusion capability while maintaining this optical characteristic regarding the anisotropy. As a result, a film having a retardation film function and an optical diffusion function can be produced. Conventionally, the retardation film function and the optical diffusion function are provided by a plurality of films, but now can be provided by one film according to the present invention.
  • the present invention relates to a retardation film described below.
  • One embodiment of the present invention is directed to a retardation film having a thickness of 30 to 500 ⁇ m, a light transmittance of 85% or higher, and an Nz factor of 10 or larger.
  • Nz factor nx - nz / nx - ny (in the expression, nx and ny are each a main in-plane refractive index, and nz is a main thickness-direction refractive index.)
  • a preferable embodiment of the present invention is directed to the above-described retardation film having the optical diffusion function, wherein the film has a haze of 50% or higher.
  • Another preferable embodiment of the present invention is directed to the above-described retardation film, wherein the film is formed of polycarbonate.
  • Still another preferable embodiment of the present invention is directed to the above-described retardation film, wherein the film is produced by a melt extrusion method.
  • a retardation film according to a preferable embodiment of the present invention has a higher performance of enlarging the viewing angle than the conventional films, is capable of improving the contrast and allowing the thickness thereof to be decreased, and is especially preferable for mobile electronic devices or the like.
  • the retardation film according to the present invention can be provided with an optical diffusion function without spoiling the retardation film function thereof
  • the retardation film function and the optical diffusion function which are conventionally provided by a plurality of films, can be provided by one film according to the present invention.
  • any film having a high light transmittance is usable with no specific limitation.
  • a film having a light transmittance of 85% or higher and little alignment nonuniformity is preferably usable.
  • Materials usable for such a film include, for example, polyesters such as polycarbonate, polyarylate, polysulfone, PET, polyethylene naphthalate and the like; polyolefins such as polyether sulfone, polyvinyl alcohol, polyethylene, polypropylene and the like; cellulose-based polymers; polystyrene; polymethyl methacrylate; polyvinyl chloride; polyvinylidene chloride; polyamide; norbornene-based polylmers; and the like.
  • polycarbonate is especially preferably usable.
  • Polycarbonate can be produced by a known method used for producing polycarbonate from a bisphenol and a carbonic acid ester forming compound.
  • Polycarbonate can be produced by, for example, direct reaction of a bisphenol and a phosgene (phosgene method), transesterification reaction of a bisphenol and a bisarylcarbonate (transesterification method), or the like.
  • the bisphenols include, for example, 2,2-bis(4-hydroxyphenyl)propane (generally called "bisphenol A") , bis(4-hydroxyphenyl)methane; 1,1-bis(4-hydroxyphenyl)ethane; 2,2-bis(4-hydroxyphenyl)butane; 2,2-bis(4-hydroxyphenyl)octane; 2,2-bis(4-hydroxyphenyl)phenylmethane; bis(hydroxyaryl)alkanes such as 2,2-bis(4-hydroxy-1-methylphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)naphtylmethane, 1,1-bis(4-hydroxy-t-butylphenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3,5
  • 2,2-bis(4-hydroxyphenyl)propane (generally called “bisphenol A”) is especially preferable.
  • the carbonic acid ester forming compounds include, for example, bisarylcarbonates such as phosgene, triphosgene, diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, dinaphthyl carbonate, and the like. These compounds may be used in a combination of two or more.
  • any of the following is usable together with any of the bisphenols mentioned above: tricyclo[5.2.1,02,6]decanedimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornanedimethanol, pentacyclopentadecanedimethanol, cyclopentane-1,3-dimethanol, 1,4-butanediol, 1,6-hexanediol, spiroglycol, isosorbide, isomannide, and the like.
  • a retardation film according to the present invention preferably has an Nz factor of 10 or larger, and especially preferably of 15 to 45.
  • a film having an Nz factor of 10 or larger has a higher performance of enlarging the viewing angle than the conventional films and so is especially suitable as a retardation film of vertical alignment (VA) LCDs or optical compensated bend (OCB) LCDs.
  • VA vertical alignment
  • OCB optical compensated bend
  • the stretching ratio in the x direction is made larger than the stretching ratio in the z direction.
  • the difference between nx and nz is increased and so the Nz factor can be made sufficiently large.
  • the retardation film according to the present invention can have a haze of 50% or higher by having a convex and concave pattern on at least one surface thereof
  • the surface pattern is preferably an emboss pattern, a V-groove pattern, a ridge pattern or the like which have a high optical diffuseness.
  • An emboss pattern is especially preferable.
  • the light transmittance is preferably 85% or higher, and especially preferably 87% or higher.
  • the haze is preferably 50% or higher, and especially preferably 65% or higher.
  • the resin film according to the present invention can be produced using a normal melt extrusion molding apparatus.
  • a melted resin film melted by an extruder and discharged from the T-die is nipped by a first cooling roll having a rubber elasticity and a metallic second cooling roll having an embossed surface to form a convex and concave pattern on a surface of the film.
  • the film is taken up by a metallic third cooling roll and a take-up roll provided downstream with respect to the first and second cooling rolls.
  • the thickness of the film is preferably 30 to 400 ⁇ m, and more preferably 50 to 300 ⁇ m.
  • a pellet of a polycarbonate resin (Iupilon E-2000 produced by Mitsubishi Engineering-Plastics Corporation) was dried at 120°C for 3 hours by a hot air drier.
  • the resultant pellet was melt-extruded at 270°C by a 90 mm monoaxial extruder and a T-die.
  • the extruded melted film was nipped by a silicone rubber first cooling roll having a diameter of 220 mm and a metallic second cooling roll having a diameter of 450 mm and having an embossed surface to form an emboss pattern on a surface of the film.
  • the film was cooled, and then passed through a metallic third cooling roll having a mirror surface.
  • a film having a thickness of 130 ⁇ m with one surface being embossed was produced while being taken up by a take-up roll.
  • the temperature of the first cooling roll was set to 50°C
  • the temperature of the second cooling roll was set to 130°C
  • the temperature of the third cooling roll was set to 130°C.
  • the rate of the cooling rolls was set to 9.5 m/min.
  • Table 1 By attaching the polycarbonate resin film according to this example, the viewing angle characteristic was improved and the optical diffuseness was sufficient.
  • a pellet of a polycarbonate resin (Iupilon E-2000 produced by Mitsubishi Engineering-Plastics Corporation) was dried at 120°C for 3 hours by a hot air drier.
  • the resultant pellet was melt-extruded at 270°C by a 90 mm monoaxial extruder and a T-die.
  • the extruded melted film was nipped by a silicone rubber first cooling roll having a diameter of 220 mm and a metallic second cooling roll having a diameter of 450 mm and having an embossed surface to form an emboss pattern on a surface of the film.
  • the film was cooled, and then passed through a metallic third cooling roll having a mirror surface.
  • a film having a thickness of 75 ⁇ m with one surface being embossed was produced while being taken up by a take-up roll.
  • the temperature of the first cooling roll was set to 60°C
  • the temperature of the second cooling roll was set to 135°C
  • the temperature of the third cooling roll was set to 135°C.
  • the rate of the cooling rolls was set to 16.0 m/min.
  • Table 1 By attaching the polycarbonate resin film according to this example, the viewing angle characteristic was improved and the optical diffuseness was sufficient.
  • a pellet of a polycarbonate resin (Iupilon E-2000 produced by Mitsubishi Engineering-Plastics Corporation) was dried at 120°C for 3 hours by a hot air drier.
  • the resultant pellet was melt-extruded at 270°C by a 90 mm monoaxial extruder and a T-die.
  • the extruded melted film was nipped by a silicone rubber first cooling roll having a diameter of 220 mm and a metallic second cooling roll having a diameter of 450 mm and having an embossed surface to form an emboss pattern on a surface of the film.
  • the film was cooled, and then passed through a metallic third cooling roll having a mirror surface.
  • a film having a thickness of 500 ⁇ m with one surface being embossed was produced while being taken up by a take-up roll.
  • the temperature of the first cooling roll was set to 40°C
  • the temperature of the second cooling roll was set to 125°C
  • the temperature of the third cooling roll was set to 125°C.
  • the rate of the cooling rolls was set to 2.5 m/min.
  • Table 1 By attaching the polycarbonate resin film according to this example, the viewing angle characteristic was improved and the optical diffuseness was sufficient.
  • a retardation film according to the present invention is preferably usable as an element of liquid crystal displays (LCDs) or as an element of optical pickup devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention has an object of providing a film suitable to improve the luminance, contrast and viewing angle characteristic of a liquid crystal display. The present invention can provide a retardation film having a thickness of 30 to 500 µm, a light transmittance of 85% or higher, and an Nz factor of 10 or larger.

Description

    TECHNICAL FIELD
  • The present invention relates to a polymer film preferably usable for an element of liquid crystal displays (LCDs) and for an element of optical pickup devices. In more detail, the present invention relates to a film suitable to improve the luminance, contrast and viewing angle characteristic of liquid crystal displays.
  • BACKGROUND ART
  • Flat panel displays (FPDs) ranging from small displays to large displays are widely used today. Still now, it is pointed out that LCDs need to be improved in the contrast when seen in an oblique direction, the luminance uniformity, and the luminance itself
  • Polymer films are conventionally used for STN (super twisted nematic) or other types of liquid crystal displays for the purpose of compensating for a phase difference so as to realize color compensation, viewing angle enlargement and the like. LCDs using thin film transistors (TFTs) have improved image quality as compared with the STN type LCDs, but still have the viewing angle problem that the image quality when seen in an oblique direction is different from the image quality when seen from the front. Therefore, for example, the retardation films are optimized to be used for such LCDs. Such retardation films are also used for reflection type LCDs in order to improve the contrast.
  • In accordance with the recent increase in the screen size, it is now indispensable to enlarge the viewing angle of LCDs. In addition to a demand to enlarge the viewing angle through technological development on LCD panels, there is a very strong demand to enlarge the viewing angle by use of a retardation film. Thus, a retardation film of a higher level of performance is desired.
  • One cause which declines the viewing angle characteristic of an LCD is an influence of the birefringence of the liquid crystal itself, which is exhibited when light passes through a LCD cell. When linear polarization provided by a polarization plate passes through the LCD cell, the polarization performance is not maintained and a part of the light leaks. Due to this, phenomena such as contrast decline, color tone change and the like, which are not favorable to display occur. What is required of a retardation film is to compensate for this variance in birefringence, which is caused depending on the viewing angle of the LCD.
  • Recently, vertical alignment nematic liquid crystal displays (VA-LCDs), IPS-LCDs, OCB-LCDs and the like have been developed in order to improve the viewing angle characteristic. These displays are realized as a result of development on the mode of the liquid crystal itself, which is made in order to enhance the contrast by enlarge the viewing angle of the display. However, in order to fulfill a recent need for a higher image quality with a wider viewing angle in a larger liquid crystal display, the function of a retardation film is indispensable. It is an important issue to obtain a large size of retardation film for a LCD, which has a uniform retardation value, a uniform delay axis direction, and good surface characteristics (durability against damage).
  • For realizing this, many retardation films have been proposed. For example, Japanese Laid-Open Patent Publication No. 2006-91246 proposes a retardation film which, when used in a liquid crystal display, does not change much the color tone of a displayed image and contributes to the enlargement of the viewing angle Japanese Laid-Open Patent Publication No. 2004-117625 proposes a retardation film which, when stretched by a tensile force application, provides the following differential spectrum of infrared absorption before and after the stretching: the absorbance change ratio A of a carbonyl group stretched for 15 seconds to 1 hour, and the absorbance change ratio B of the carbonyl group stretched for 10 minutes to 1 hour, have the relationships of 1.2 ≤ A ≤ 2.0 and B≥1.1.
  • Japanese Laid-Open Patent Publication No. 2005-77963 proposes that polycarbonate having a high refractive index, a low Abbe value, a high glass transition temperature (Tg), and a photo-elastic constant equal to or lower than a specific value is promising to produce a retardation film which has a high size stability against time and temperature change and does not change much the optical properties thereof against external stress.
  • However, these proposals do not clearly define the optical characteristics of the film and so are limited in applications. Especially, these proposals do not fulfill the recent demand for a display device providing a high image quality. Especially in order to fulfill the recent demand for a high level display, a retardation film having controlled refractive indices in three dimensions is important. Such refractive indices are appropriately defined by Nz factor. Nz factor = (nx - nz)/(nx - ny) (in the expression, nx and ny are each the main in-plane refractive index, and nz is the main thickness-direction refractive index.)
  • Several such retardation films having a controlled Nz factor have been proposed. For example, Japanese Laid-Open Patent Publications Nos. 2005-62673 and 2005-62671 each propose a retardation film having an Nz factor of 0.5 to 2.0. Japanese Laid-Open Patent Publication No. 2004-309617 proposes a retardation film having an Nz factor fulfilling 1.00 ≤ Nz factor < 1.35. Japanese Laid-Open Patent Publication No. 2006-58540 proposes a retardation film having an Nz factor fulfilling 0.1 ≤ Nz factor ≤ 0.9.
  • All these retardation films have an Nz factor no more than 2. No retardation film having a larger Nz factor with more controlled molecular alignment has been proposed.
  • In the meantime, in order to improve the image quality of LCDs, it is necessary to improve the luminance and decrease the luminance nonuniformity. As a polymer film, a diffusion film or a diffusion sheet is used. The most important properties required of a diffusion film are to improve the luminance and to diffuse light or to conceal the nonuniformity pattern of the light source or behind the light source.
  • Conventionally for liquid crystal displays or the like, a surface light source called "edge light type backlight" is used. For a liquid crystal display using such a light source, an optical diffusion film for diffusing light emitted from the light source so as to make the image of the light source invisible is required.
  • Recently, optical diffusion films are desired to have an appropriate range of haze values and thus have a high optical diffuseness of diffusing light emitted from the light source uniformly on a liquid crystal panel, and also to have a high luminance, as well as a good light transmittance.
  • Examples of such an optical diffusion sheet include a sheet having an optical diffusion layer containing polymer beads or inorganic microparticles provided on at least one surface of the film (see Japanese Patent No. 2665301 ) and a sheet having a convex and concave pattern provided by embossing made on one surface or both surfaces of a transparent plastic film and also an optical diffusion layer containing microparticles on one surface or both surfaces thereof (see Japanese Laid-Open Patent Publication No. 11-337711 ).
  • DISCLOSURE OF THE INVENTION
  • As described above, in order to enlarge the viewing angle, it is preferable to use a retardation film, especially a retardation film having controlled refractive indices in three dimensions. For this purpose, a film having a defined Nz factor needs to be used. Conventionally, only retardation films having an Nz factor no more than 2 have been proposed, and no retardation film having a larger Nz factor with more controlled molecular alignment has been proposed.
  • As a result of active studies for solving the above problems, the present inventor found that unlike the retardation film currently used for LCDs, a film which is controlled such that the optical anisotropy is remarkably different between in the film plane and in the direction normal thereto has an Nz factor of 10 or larger. The present inventor also found that the viewing angle is enlarged by use of a film having such a large Nz factor.
  • The present inventor obtained the knowledge that a film having an Nz factor of 10 or larger has a higher performance of enlarging the viewing angle than the conventional films and so is suitable as a retardation film of vertical alignment (VA) LCDs or optical compensated bend (OCB) LCDs, and completed the present invention based on the knowledge.
  • A larger Nz factor means that the anisotropy of the molecular alignment is larger between in the film plane and in the direction normal thereto, and specifically means that the molecular alignment is highly controlled.
  • The present inventor also found that it is possible to provide an optical diffusion capability while maintaining this optical characteristic regarding the anisotropy. As a result, a film having a retardation film function and an optical diffusion function can be produced. Conventionally, the retardation film function and the optical diffusion function are provided by a plurality of films, but now can be provided by one film according to the present invention.
  • The present invention relates to a retardation film described below.
  • One embodiment of the present invention is directed to a retardation film having a thickness of 30 to 500 µm, a light transmittance of 85% or higher, and an Nz factor of 10 or larger. Nz factor = nx - nz / nx - ny
    Figure imgb0001
    (in the expression, nx and ny are each a main in-plane refractive index, and nz is a main thickness-direction refractive index.)
  • A preferable embodiment of the present invention is directed to the above-described retardation film having the optical diffusion function, wherein the film has a haze of 50% or higher. Another preferable embodiment of the present invention is directed to the above-described retardation film, wherein the film is formed of polycarbonate. Still another preferable embodiment of the present invention is directed to the above-described retardation film, wherein the film is produced by a melt extrusion method.
  • A retardation film according to a preferable embodiment of the present invention has a higher performance of enlarging the viewing angle than the conventional films, is capable of improving the contrast and allowing the thickness thereof to be decreased, and is especially preferable for mobile electronic devices or the like.
  • Moreover, the retardation film according to the present invention can be provided with an optical diffusion function without spoiling the retardation film function thereof The retardation film function and the optical diffusion function, which are conventionally provided by a plurality of films, can be provided by one film according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, the present invention will be described in more detail.
  • As a retardation film, any film having a high light transmittance is usable with no specific limitation. A film having a light transmittance of 85% or higher and little alignment nonuniformity is preferably usable. Materials usable for such a film include, for example, polyesters such as polycarbonate, polyarylate, polysulfone, PET, polyethylene naphthalate and the like; polyolefins such as polyether sulfone, polyvinyl alcohol, polyethylene, polypropylene and the like; cellulose-based polymers; polystyrene; polymethyl methacrylate; polyvinyl chloride; polyvinylidene chloride; polyamide; norbornene-based polylmers; and the like. Among these, polycarbonate is especially preferably usable.
  • Polycarbonate can be produced by a known method used for producing polycarbonate from a bisphenol and a carbonic acid ester forming compound. Polycarbonate can be produced by, for example, direct reaction of a bisphenol and a phosgene (phosgene method), transesterification reaction of a bisphenol and a bisarylcarbonate (transesterification method), or the like.
  • The bisphenols include, for example, 2,2-bis(4-hydroxyphenyl)propane (generally called "bisphenol A") , bis(4-hydroxyphenyl)methane; 1,1-bis(4-hydroxyphenyl)ethane; 2,2-bis(4-hydroxyphenyl)butane; 2,2-bis(4-hydroxyphenyl)octane; 2,2-bis(4-hydroxyphenyl)phenylmethane; bis(hydroxyaryl)alkanes such as 2,2-bis(4-hydroxy-1-methylphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)naphtylmethane, 1,1-bis(4-hydroxy-t-butylphenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3,5-tetramethylphenyl)propane, 2,2-bis(4-hydroxy-3-chlorophenyl)propane, 2,2-bis(4-hydroxy-3,5-tetrachlorophenyl)propane, 2,2-bis(4-hydroxy-3,5-tetrabromophenyl)propane and the like; bis(hydroxyaryl)cycloalkanes such as 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)cyclohexane (generally called "bisphenol Z), 1,1-bis(4-hydroxyphenyl)-3,5,5-trimethylcyclohexane, and the like; bis(hydroxyaryl)sulfides such as bis(4-hydroxyphenyl)sulfide, and the like; and bis(hydroxyaryl)sulfones such as bis(4-hydroxyphenyl)sulfone, and the like.
  • 2,2-bis(4-hydroxyphenyl)propane (generally called "bisphenol A") is especially preferable.
  • The carbonic acid ester forming compounds include, for example, bisarylcarbonates such as phosgene, triphosgene, diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, dinaphthyl carbonate, and the like. These compounds may be used in a combination of two or more.
  • Within the range of the object of the present invention, any of the following is usable together with any of the bisphenols mentioned above: tricyclo[5.2.1,02,6]decanedimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornanedimethanol, pentacyclopentadecanedimethanol, cyclopentane-1,3-dimethanol, 1,4-butanediol, 1,6-hexanediol, spiroglycol, isosorbide, isomannide, and the like.
  • A retardation film according to the present invention preferably has an Nz factor of 10 or larger, and especially preferably of 15 to 45. A film having an Nz factor of 10 or larger has a higher performance of enlarging the viewing angle than the conventional films and so is especially suitable as a retardation film of vertical alignment (VA) LCDs or optical compensated bend (OCB) LCDs. In order to provide a film with an Nz factor of 10 or greater, for example, the stretching ratio in the x direction is made larger than the stretching ratio in the z direction. Thus, the difference between nx and nz is increased and so the Nz factor can be made sufficiently large.
  • The retardation film according to the present invention can have a haze of 50% or higher by having a convex and concave pattern on at least one surface thereof The surface pattern is preferably an emboss pattern, a V-groove pattern, a ridge pattern or the like which have a high optical diffuseness. An emboss pattern is especially preferable. By forming a convex and concave pattern on a surface of the film, the light transmittance and the haze can be adjusted to an arbitrary value, and so a desired optical diffusion performance can be provided.
  • The light transmittance is preferably 85% or higher, and especially preferably 87% or higher.
  • The haze is preferably 50% or higher, and especially preferably 65% or higher.
  • The resin film according to the present invention can be produced using a normal melt extrusion molding apparatus. A melted resin film melted by an extruder and discharged from the T-die is nipped by a first cooling roll having a rubber elasticity and a metallic second cooling roll having an embossed surface to form a convex and concave pattern on a surface of the film. The film is taken up by a metallic third cooling roll and a take-up roll provided downstream with respect to the first and second cooling rolls. The thickness of the film is preferably 30 to 400 µm, and more preferably 50 to 300 µm.
  • Examples
  • Hereinafter, the present invention will be described by way of examples. The present invention is not limited to the following examples in any way. The characteristics were evaluated as follows.
    1. (1) Nz coefficient
      Retardation was measured by ellipsometer M220 produced by JASCO Corporation at a wavelength of 633 nm. The in-plane retardation Re was measured in the state where the film surface and the incident light were vertical to each other. Then, the thickness-direction retardation Rth was measured with a different angle between the film surface and the incident light. Thus; refractive indices in three dimensions nx, ny and nz were calculated. The Nz factor was calculated by the following expression. Nz factor = nx - nz / nx - ny
      Figure imgb0002
    2. (2) Total light transmittance and haze
      These were measured by haze meter HM-150 produced by Murakami Color Research Laboratory Co., Ltd.
    3. (3) Viewing angle characteristic
      A commercially available backlight, an iodine-based polarization plate, a retardation film, a liquid crystal cell, and a polarization light were located in this order from the bottom. The polarization plates were located such that the transmission axes thereof would cross each other at a right angle. The light from the backlight was visually observed at angle of incidence of 0 degrees and 45 degrees, and the viewing angle characteristic was determined as good or poor based on the presence/absence of light leakage.
    4. (4) Optical diffuseness
      A point light source was observed through the film, and the diffuseness was determined based on how much the profile of the light source blurred. (Or, when the light source was observed through a light-guide plate and the film, it was confirmed that the dots of the light-guide plate were concealed.)
    [Example 1]
  • A pellet of a polycarbonate resin (Iupilon E-2000 produced by Mitsubishi Engineering-Plastics Corporation) was dried at 120°C for 3 hours by a hot air drier. The resultant pellet was melt-extruded at 270°C by a 90 mm monoaxial extruder and a T-die. The extruded melted film was nipped by a silicone rubber first cooling roll having a diameter of 220 mm and a metallic second cooling roll having a diameter of 450 mm and having an embossed surface to form an emboss pattern on a surface of the film. The film was cooled, and then passed through a metallic third cooling roll having a mirror surface. Thus, a film having a thickness of 130 µm with one surface being embossed was produced while being taken up by a take-up roll. In this procedure, the temperature of the first cooling roll was set to 50°C, the temperature of the second cooling roll was set to 130°C, and the temperature of the third cooling roll was set to 130°C. The rate of the cooling rolls was set to 9.5 m/min. The evaluation results on the characteristics of the obtained film are shown in Table 1. By attaching the polycarbonate resin film according to this example, the viewing angle characteristic was improved and the optical diffuseness was sufficient.
  • [Example 2]
  • A pellet of a polycarbonate resin (Iupilon E-2000 produced by Mitsubishi Engineering-Plastics Corporation) was dried at 120°C for 3 hours by a hot air drier. The resultant pellet was melt-extruded at 270°C by a 90 mm monoaxial extruder and a T-die. The extruded melted film was nipped by a silicone rubber first cooling roll having a diameter of 220 mm and a metallic second cooling roll having a diameter of 450 mm and having an embossed surface to form an emboss pattern on a surface of the film. The film was cooled, and then passed through a metallic third cooling roll having a mirror surface. Thus, a film having a thickness of 75 µm with one surface being embossed was produced while being taken up by a take-up roll. In this procedure, the temperature of the first cooling roll was set to 60°C, the temperature of the second cooling roll was set to 135°C, and the temperature of the third cooling roll was set to 135°C. The rate of the cooling rolls was set to 16.0 m/min. The evaluation results on the characteristics of the obtained film are shown in Table 1. By attaching the polycarbonate resin film according to this example, the viewing angle characteristic was improved and the optical diffuseness was sufficient.
  • [Example 3]
  • A pellet of a polycarbonate resin (Iupilon E-2000 produced by Mitsubishi Engineering-Plastics Corporation) was dried at 120°C for 3 hours by a hot air drier. The resultant pellet was melt-extruded at 270°C by a 90 mm monoaxial extruder and a T-die. The extruded melted film was nipped by a silicone rubber first cooling roll having a diameter of 220 mm and a metallic second cooling roll having a diameter of 450 mm and having an embossed surface to form an emboss pattern on a surface of the film. The film was cooled, and then passed through a metallic third cooling roll having a mirror surface. Thus, a film having a thickness of 500 µm with one surface being embossed was produced while being taken up by a take-up roll. In this procedure, the temperature of the first cooling roll was set to 40°C, the temperature of the second cooling roll was set to 125°C, and the temperature of the third cooling roll was set to 125°C. The rate of the cooling rolls was set to 2.5 m/min. The evaluation results on the characteristics of the obtained film are shown in Table 1. By attaching the polycarbonate resin film according to this example, the viewing angle characteristic was improved and the optical diffuseness was sufficient.
  • [Comparative example 1]
  • The film characteristics were evaluated in the same manner as in Example 1 on Lexan matt film 8A13 produced by GE.
  • [Comparative example 2]
  • The film characteristics were evaluated in the same manner as in Example 1 on Lexan matt film 8B35 produced by GE.
  • [Comparative example 3]
  • The film characteristics were evaluated in the same manner as in Example 1 on Panlite Film PC3555 produced by Teijin Chemicals, Ltd. Table 1
    Ex. 1 Ex. 2 Ex. 3 Comparative ex. 1 Comparative ex. 2 Comparatives ex. 3
    Film thickness (µ m) 130 75 500 180 130 180
    Re (nm) 5 9 14 28 45 50
    Nz factor 28 11 35 8 4 3
    Rth(nm) 139 97 346 210 160 130
    Haze (%) 78 71 55 86 93 90
    Total light transmittance (%) 88 88 88 89 88 89
    Viewing angle characteristic Good Good Good Poor Poor Poor
    Optical diffusibility Good Good Good Good Good Good
  • INDUSTRIAL APPLICABILITY
  • A retardation film according to the present invention is preferably usable as an element of liquid crystal displays (LCDs) or as an element of optical pickup devices.

Claims (4)

  1. A retardation film having a thickness of 30 to 500 µm, a light transmittance of 85% or higher, and an Nz factor of 10 or larger; Nz factor = nx - nz / nx - ny
    Figure imgb0003

    wherein nx and ny are each a main in-plane refractive index, and nz is a main thickness-direction refractive index.
  2. The retardation film according to claim 1, wherein the film has a haze of 50% or higher.
  3. The retardation film according to claim 1 or 2, wherein the film is formed of polycarbonate.
  4. The retardation film according to any one of claims 1 through 3, wherein the film is produced by a melt extrusion method.
EP07807421A 2006-09-15 2007-09-11 Retardation film Ceased EP2071368A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006251717 2006-09-15
PCT/JP2007/068017 WO2008032848A1 (en) 2006-09-15 2007-09-11 Retardation film

Publications (2)

Publication Number Publication Date
EP2071368A1 true EP2071368A1 (en) 2009-06-17
EP2071368A4 EP2071368A4 (en) 2012-03-28

Family

ID=39183896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07807421A Ceased EP2071368A4 (en) 2006-09-15 2007-09-11 Retardation film

Country Status (7)

Country Link
US (1) US8451540B2 (en)
EP (1) EP2071368A4 (en)
JP (1) JPWO2008032848A1 (en)
KR (1) KR20090087868A (en)
CN (1) CN101529284B (en)
TW (1) TWI416225B (en)
WO (1) WO2008032848A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890618B (en) 2011-10-24 2016-11-16 三菱瓦斯化学株式会社 Light-diffusing films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694904A (en) * 1992-09-09 1994-04-08 Keiwa Shoko Kk Light diffusing sheet material
JP2001272538A (en) * 2000-03-27 2001-10-05 Nitto Denko Corp Phase difference plate, optical compensating polarizing plate and liquid crystal display device
EP1469328A1 (en) * 2002-01-23 2004-10-20 Nitto Denko Corporation Optical film, multilayer polarization plate, liquid crystal display comprising them, and spontaneous emission display
WO2006090617A1 (en) * 2005-02-25 2006-08-31 Nitto Denko Corporation Polarizing element, liquid crystal panel, liquid crystal television and liquid crystal display device

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2099067C (en) * 1993-06-23 2001-02-13 Makoto Oe Plane light source unit
ATE159193T1 (en) * 1993-10-08 1997-11-15 Elpatronic Ag METHOD FOR REMOVING REUSABLE BOTTLES FROM THE REUSABLE CIRCULATION
JP3206713B2 (en) * 1995-10-27 2001-09-10 株式会社巴川製紙所 Anti-glare material and polarizing film using the same
DE69740010D1 (en) * 1996-02-01 2010-11-11 Mitsubishi Rayon Co SURFACE LIGHT SOURCE AND LIQUID CRYSTAL DEVICE, SIGNAL DEVICE AND THEREOF USE SIGNALING DEVICE
US6261665B1 (en) * 1997-09-16 2001-07-17 Tomoegawa Paper Co., Ltd. Anti-reflection material and method for producing the same
JP3288318B2 (en) * 1998-12-14 2002-06-04 日本電気株式会社 Liquid crystal display
JPH11337711A (en) 1999-04-21 1999-12-10 Tsujiden:Kk Highly light diffusive film
JP2000352607A (en) 1999-06-11 2000-12-19 Dainippon Printing Co Ltd Light diffusing film, its production, surface light source and display device
JP2001042127A (en) * 1999-08-04 2001-02-16 Nitto Denko Corp Composite phase difference plate, optical compensation polarizing plate and liquid crystal display device
US6579946B2 (en) * 2001-02-02 2003-06-17 Dow Global Technologies Inc. Low-gloss biaxially oriented films comprising vinyl aromatic polymers and substantially non-spherical rubber particles
JP2002296734A (en) * 2001-03-29 2002-10-09 Fuji Photo Film Co Ltd Silver halide photographic sensitive material and image forming method using the same
JP3762751B2 (en) * 2002-01-23 2006-04-05 日東電工株式会社 Manufacturing method of optical film
US7128952B2 (en) * 2002-05-24 2006-10-31 Nitto Denko Corporation Optical film
JP2004053998A (en) 2002-07-22 2004-02-19 Teijin Chem Ltd Light diffusing film made of polycarbonate resin
JP2004117625A (en) 2002-09-25 2004-04-15 Konica Minolta Holdings Inc Phase difference film, polarizing plate, optical compensating film, and liquid crystal display device
JP2004309617A (en) 2003-04-03 2004-11-04 Teijin Ltd Roll-like phase difference film
JP2005062671A (en) 2003-08-19 2005-03-10 Fuji Photo Film Co Ltd Optical anisotropic layer, retardation plate using the same, elliptic polarization plate and liquid crystal display device
US7364670B2 (en) * 2003-07-17 2008-04-29 Fujifilm Corporation Liquid crystalline compound, liquid crystalline composition and retardation film
JP2005062673A (en) 2003-08-19 2005-03-10 Fuji Photo Film Co Ltd Optically anisotropic layer, method for manufacturing the same, retardation plate using the same, elliptically polarizing plate and liquid crystal display
JP2005077963A (en) 2003-09-03 2005-03-24 Teijin Ltd Retardation film
JP3746050B2 (en) * 2003-10-03 2006-02-15 日東電工株式会社 Optical compensation film, polarizing plate with optical compensation layer using the same, and liquid crystal display device using the same
JP4116577B2 (en) * 2004-02-05 2008-07-09 日東電工株式会社 Birefringent film, optical film, polarizing plate, and liquid crystal display device
JP2006058540A (en) 2004-08-19 2006-03-02 Jsr Corp Optical film, polarizer plate and liquid crystal display
JP4546196B2 (en) 2004-09-22 2010-09-15 富士フイルム株式会社 Retardation plate
JP4686317B2 (en) * 2004-09-27 2011-05-25 富士フイルム株式会社 Liquid crystalline composition, retardation plate, and elliptically polarizing plate
JP4640929B2 (en) * 2004-11-09 2011-03-02 日東電工株式会社 Liquid crystal display device
CN1946776B (en) * 2004-11-15 2011-08-03 Lg化学株式会社 Biaxial-optical polynorbornene-based film and method of manufacturing the same, integrated optical compensation polarizer having the film and method of manufacturing the polarizer, and liquid crystal
CN1815324A (en) * 2005-02-02 2006-08-09 力特光电科技股份有限公司 Optical compensating film, optical compensating polarized light plate and liquid crystal display device
TWI383003B (en) * 2005-02-02 2013-01-21 Mitsubishi Gas Chemical Co Polyester film, the process thereof, and the use thereof
JP4586553B2 (en) 2005-02-04 2010-11-24 日本ゼオン株式会社 Retardation film and method for producing retardation film
JP2007206661A (en) * 2005-04-25 2007-08-16 Nitto Denko Corp Liquid crystal panel and liquid crystal display apparatus
KR101021141B1 (en) * 2007-08-22 2011-03-14 한국세라믹기술원 Transparent Conductive F-dopped tin oxide glass for defogging and fabrication of it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694904A (en) * 1992-09-09 1994-04-08 Keiwa Shoko Kk Light diffusing sheet material
JP2001272538A (en) * 2000-03-27 2001-10-05 Nitto Denko Corp Phase difference plate, optical compensating polarizing plate and liquid crystal display device
EP1469328A1 (en) * 2002-01-23 2004-10-20 Nitto Denko Corporation Optical film, multilayer polarization plate, liquid crystal display comprising them, and spontaneous emission display
WO2006090617A1 (en) * 2005-02-25 2006-08-31 Nitto Denko Corporation Polarizing element, liquid crystal panel, liquid crystal television and liquid crystal display device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Deng-Ke Yang & Shin-Tson Wu: "Fundamentals of Liquid Crystal Devices", 2006, John Wiley & sons, England, XP002669392, ISBN: 9780470015421 pages 208-209, * table 8.1 * *
See also references of WO2008032848A1 *

Also Published As

Publication number Publication date
CN101529284B (en) 2012-05-30
CN101529284A (en) 2009-09-09
TW200813572A (en) 2008-03-16
JPWO2008032848A1 (en) 2010-01-28
US8451540B2 (en) 2013-05-28
KR20090087868A (en) 2009-08-18
TWI416225B (en) 2013-11-21
EP2071368A4 (en) 2012-03-28
US20100033825A1 (en) 2010-02-11
WO2008032848A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
KR100417674B1 (en) Oriented Film with Blank Holes
US8197916B2 (en) Cellulose ester film, light diffusing film, polarizing plate, and liquid crystal display
EP2098357B1 (en) Polymer film
US8031296B2 (en) Liquid crystal panel and liquid crystal display apparatus
CN101285958A (en) Laminated optical film and production method thereof
JP2009251017A (en) Elliptical polarizing plate, and liquid crystal display using same
US8730434B2 (en) Optical compensation film
KR102418663B1 (en) Film for compensating viewing angle, polarizing plate comprising the same and display device comprising the same
US8493527B2 (en) Liquid crystal panel and liquid crystal display apparatus
US8743319B2 (en) Liquid crystal panel having several polarizing plates with related light transmittance and liquid crystal display apparatus
US8451540B2 (en) Retardation film
JPH10333133A (en) Reflection type liquid crystal display device
JP3699549B2 (en) Manufacturing method of transmitted light scattering control film
JPH10332911A (en) Reflection film
KR20150112631A (en) Composition for Light Diffused Anti-Glare Film and Light Diffused Anti-Glare Film Using the Same
US9417480B2 (en) Liquid crystal display device
KR102530188B1 (en) Polarizing plate and display device comprising the same
EP4024099B1 (en) Polarizing plate laminate and display device comprising same
KR102530187B1 (en) Polarizing plate and display device comprising the same
JPH10206836A (en) Liquid crystal display device
KR20210024814A (en) Polarizing plate and display device comprising the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: G02B 5/02 20060101ALI20120216BHEP

Ipc: G02B 5/30 20060101AFI20120216BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20120228

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20140320