EP2068103A2 - Measuring module for quick measuring of electrical, electronic and mechanical components at cryogenic temperatures and measuring device with such a measuring module - Google Patents

Measuring module for quick measuring of electrical, electronic and mechanical components at cryogenic temperatures and measuring device with such a measuring module Download PDF

Info

Publication number
EP2068103A2
EP2068103A2 EP08020788A EP08020788A EP2068103A2 EP 2068103 A2 EP2068103 A2 EP 2068103A2 EP 08020788 A EP08020788 A EP 08020788A EP 08020788 A EP08020788 A EP 08020788A EP 2068103 A2 EP2068103 A2 EP 2068103A2
Authority
EP
European Patent Office
Prior art keywords
measuring
contact element
cold head
measuring module
cryocooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08020788A
Other languages
German (de)
French (fr)
Other versions
EP2068103B1 (en
EP2068103A3 (en
Inventor
Olivier Zogmal
Daniel Guy Baumann
Frank Lehnert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Switzerland AG
Original Assignee
Bruker Biospin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin SAS filed Critical Bruker Biospin SAS
Publication of EP2068103A2 publication Critical patent/EP2068103A2/en
Publication of EP2068103A3 publication Critical patent/EP2068103A3/en
Application granted granted Critical
Publication of EP2068103B1 publication Critical patent/EP2068103B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/04Controlling heat transfer

Definitions

  • the invention relates to a measuring module for measuring and testing a measuring object with an evacuable measuring chamber for receiving the measured object and a contact element, wherein the measuring object is thermally connected during the measuring and / or testing process with a first contact surface of the contact element, and at least one cold head which can be thermally connected to a second contact surface of the contact element, wherein the cold head can be cooled down to cryogenic temperatures by means of a cryocooler consisting of at least one cold stage, and wherein the contact element consists of thermally highly conductive material, and the first and second Contact surface lie on opposite sides of the contact element, and wherein the cold head and the contact element during the measuring and / or testing process are in an evacuated environment and are thermally conductively connected to each other.
  • Such a measuring device is known from [2].
  • the thermal noise of electronic components can be reduced.
  • the thermal noise is caused by statistical movements of the charge carriers and by irregular, temperature-dependent lattice vibrations, which are transmitted to the charge carriers by collisions. It manifests itself by a noise voltage V R at the ends of electrical conductors.
  • suitable electronic and electrical components e.g., cables, resistors, transistors, etc.
  • quality inspection e.g., thermal cycling
  • test facilities are needed that allow individual electronic components and entire electronic circuits to be cooled to their use and test temperature, with the aim of identifying their properties and specifications and performing quality tests on them.
  • the simplest and most widely used method for cooling to cryogenic temperatures is with the aid of liquid nitrogen (LN2) or, more rarely, with liquid helium (LHe).
  • LN2 liquid nitrogen
  • LHe liquid helium
  • the components to be measured are immersed in a Dewar vessel filled with LN2 or LHe and cooled. Quality checks (eg temperature cycling tests) and / or the determination of electrical or mechanical properties of components can be carried out in this way.
  • the object to be cooled is attached to a thermally well-conductive contact element which is cooled by a cooling medium (e.g., LN2 or LHe) to the desired temperature.
  • a cooling medium e.g., LN2 or LHe
  • the whole assembly is housed in an evacuated chamber, which also prevents the formation of condensation and ice [2].
  • LN2 or LHe a cooling medium
  • such systems are efficient only at temperatures just above the boiling point of the cooling medium. If specimens need to be tested well above the boiling point (but far below room temperature), then this must be achieved by heating the contact element additionally, which in turn leads to increased loss of cooling medium and increased costs (especially if the cooling medium is LHe).
  • Another disadvantage here is that the user always has to rely on the cooling medium and must always ensure that there is sufficient reserve of it.
  • such a system has the disadvantage that the user must understand how to deal with cryogenic liquids.
  • measuring modules are known in which the cooling is not carried out by a cryogenic cooling medium, but by a cryocooler with a closed cooling circuit [2].
  • the disadvantage of this measuring module is that the cryocooler must first be switched off and then followed by a long wait until the cryocooler has warmed up sufficiently, and the chamber in which the specimen is located can be opened.
  • cryocooler including cold head is housed in a cooling chamber, which is spatially separated from the measuring chamber and independently of this is evacuated that the contact element thermally insulated from the outer wall of the measuring module attached part of a partition between the measuring chamber and the cooling chamber is and makes a local thermal connection from the measuring chamber to the cooling chamber, and that a contacting device is provided for changing the heat flow in the hermetically sealed state of the measuring module, with the help of the heat flow between the cold head and the contact element either made or greatly enlarged, or interrupted or greatly reduced.
  • the measuring module With the measuring module according to the invention, a cooling process without cryogenic liquids can be realized, wherein the test temperature of the measured objects within the given temperature range can be freely selected by the variably adjustable heat flow between the cold head and the contact element.
  • the cryocooler may remain cold during cooling or warming up of the measurement object.
  • the cooling rates for the measurement object can thus be shortened compared to the prior art by about the specified by the cryocooler manufacturer cooling time of the cryocooler, because the cryocooler does not need to be cooled again.
  • the typical cooling time of a cryocooler is between about 40 and 60 minutes. In addition, an unnecessary thermal load of the cryocooler is avoided.
  • the separate chambers for the measurement object and the cryocooler also allow optimal thermal isolation between the measuring chamber and the cooling head.
  • the cooling rate .DELTA.T K / .DELTA.t and the warm-up rate .DELTA.T W / .DELTA.t are freely adjustable with the measurement module according to the invention and can be chosen so that the measurement object is not damaged.
  • the desired cooling cycles can be carried out automatically, with their number being freely selectable.
  • the measuring module according to the invention is easy to use and allows easy mounting and changing of the measuring objects.
  • the contacting device comprises a pneumatic, hydraulic or electric drive, or a combination thereof, or a manual drive with which the cold head and the contact element can be mechanically moved towards or away from each other, wherein the cold head and the contact element either pressed against each other or spatially be separated so that the heat flow between them is increased or decreased.
  • the drive allows both the contacting of the measuring object with the cooling head over the two contact surfaces of the contact element as well as the separation of the same contact in a simple and fast manner.
  • the contacting device may comprise a connecting element which is arranged between the cold head and the contact element and permanently in close thermal communication with the cold head and the contact element, wherein the connecting element has at least one cavity which can be filled with a well-conducting fluid at cryogenic temperatures whereby the thermal conductivity of the connecting element and thereby also the heat flow between the cold head and the contact element can be changed.
  • This also shortened cooling times and warm-up times can be realized, which can be dispensed with movable mechanical components, resulting in a structurally very simple solution.
  • the contact element comprises a heat exchanger, which is operated with a cryogenic fluid, in particular liquid nitrogen or liquid helium, and serves for precooling of the contact element.
  • a cryogenic fluid in particular liquid nitrogen or liquid helium
  • This embodiment is a high cooling rate for measurement objects having a high heat capacity, so that the cooling time can be further shortened.
  • At least one temperature sensor and at least one heater are provided, which serve to regulate the temperature of the contact element.
  • Further temperature sensors can also be attached to the measurement object, so that its temperature can be measured and regulated directly.
  • the cryocooler has two stages, each with a cold head, wherein the cold head of the first stage is thermally connected to a heat exchanger, which serves for the liquefaction of nitrogen gas.
  • This embodiment has the advantage that the cryofluid required for the pre-cooling is generated autonomously, i. no longer needs to be purchased externally.
  • the invention also relates to a measuring device with a measuring module according to the invention described above, wherein the contact element is thermally insulated from the external environment of the measuring module.
  • the contact element may be fastened at one end of the bellows-shaped separating wall between the measuring chamber and the cooling chamber, whereby it is thermally insulated from the outer wall of the measuring module.
  • a measuring device which comprises a measuring module with a connecting element which is arranged between the cold head and contact element and permanently in close thermal communication with the cold head and the contact element, wherein the connecting element has at least one cavity, and wherein devices for supplying and pumping a are provided at cryogenic temperatures highly conductive fluid into and out of the cavity of the connecting element, whereby the heat flow between the cold head and the contact element can be increased or decreased.
  • a measuring device comprising a measuring module, in which the cryocooler has two stages, each with a cold head, wherein the cold head of the first stage with a heat exchanger, which is used for liquefaction of Nitrogen gas is used, is thermally connected, and wherein the first stage of the cryocooler is connected via the heat exchanger with a nitrogen separator, through which the nitrogen gas can be obtained directly from the air and fed to the heat exchanger.
  • Fig. 5a shows a measuring device according to the prior art.
  • a measuring module 10 ' is used for cooling, measuring and testing a measuring object 6.
  • the measuring object 6 to be cooled is fastened to a thermally highly conductive contact element 5' , which is cooled by a cooling medium (eg LN2 or LHe) to the desired temperature.
  • a cooling medium eg LN2 or LHe
  • the whole assembly is housed in an evacuated chamber 4 ' , whereby the formation of condensation and ice is avoided.
  • the desired measurement temperature can be controlled, for example, by means of a controller 36, a heater 7 and temperature sensors 35a, 35b .
  • the supply of the cooling medium via valves 12, 13 are regulated.
  • a measuring module 10 " comprises a cold head 1b and a contact element 5".
  • the cold head 1 b can be cooled down to cryogenic temperatures by means of the cryocooler 1 a comprising at least one cold stage.
  • the contact element 5 " is made of material with good thermal conductivity and is positioned between the measuring object 6 and the cold head 1 b.
  • the cold head 1 b which is cooled by the first cooling stage of the cryocooler 1 a with a specific cooling power, is fixedly connected to a contact element 5 "which ideally assumes the temperature of the cold head 1 b without thermal load then the test object 6 to be tested are mounted.
  • the temperature of the contact element 5 "or of the measurement object 6 can be controlled with the controller 36, heater 7 and temperature sensors 35a, 35b.
  • Fig. 1a, 1b show a first embodiment 10a of a measuring module according to the invention.
  • the measuring module 10a according to the invention comprises a two-chamber system with a cooling chamber 3 and a measuring chamber 4, which can be evacuated independently of one another.
  • the cooling chamber 3 is the cryocooler 1 a with its cold head 1 b and a closed cooling circuit.
  • a Stirling, a Gifford-McMahon or a Pulse-Tube cooling apparatus may be used.
  • the cooling chamber 3 is evacuated during the measuring operation and thereby isolated the cryocooler 1 a thermally from its surroundings.
  • the measuring object 6 to be measured are located in the likewise evacuated measuring chamber 4 and is fixedly connected to a contact element 5b on a first contact surface 9a .
  • the contact element 5b is formed as part of the partition wall between the two chambers 3, 4 and serves as a local thermal connection from the cooling chamber 3 to the measuring chamber 4.
  • the contact element 5b is fixed to a thermally insulated to the outer wall of the measuring module body.
  • the heat flow between the cold head 1 b and the contact element 5 b is changed by mechanically moving towards or away from one another by means of a pneumatic, hydraulic or electric drive 8, a combination thereof, or by manual drive, the cold head 1 b and the contact element 5 b and that thereby the cold head 1 b and the contact element 5 b are pressed against each other ( Fig. 1 b) or spatially separated ( Fig. 1a ), so that the heat flow between them large resp. gets small.
  • the cold head 1 b contacted the contact element 5 b at a second contact surface 9b and the contact element 5b is cooled together with the measurement object 6 by the cryocooler to the desired temperature.
  • the contact between the cold head 1b and the second contact surface 9b of the contact element 5b is disconnected, so that the contact element 5b together with the measurement object 6 are reheated without the cryocooler 1a having to be switched off beforehand.
  • the controller 36 with connected heater 7 and temperature sensor 35a allows control of the temperature of the contact element 5b and thus of the measurement object 6 to the desired value.
  • the drive 8 moves the contact element 5b away from the cold head 1b and thereby interrupts the heat flow between them ( Fig. 1 b) ,
  • the heater 7 then allows a rapid warming of the contact element 5b and the measuring object 6.
  • the cryocooler 1a continues running, and the cold head 1 b cools, since it is no longer thermally loaded, to the lowest possible temperature. The user is not dependent on cryogenic liquids in this embodiment.
  • FIG Fig.2a and Fig.2b An improved embodiment 10b of the measuring module according to the invention is shown in FIG Fig.2a and Fig.2b shown. It leads to a massive reduction of the cooling times and differs from the previous embodiment in that a contact element 5a is provided with a heat exchanger through which a cryogenic liquid (LN2 or LHe) flows, thereby allowing pre-cooling of the contact element 5a and of the measurement object 6 , The inlet valve 12 and the outlet valve 13 control the flow of the cooling medium. During the cooling process, the valves 12 and 13 are opened, and the existing in a Dewar vessel 11 cryogenic liquid is pressed, for example by generating an overpressure in the Dewar vessel 11 by insulated lines in the heat exchanger of the contact element 5a, whereby this is pre-cooled. The cooling times down to the boiling point of the cryogenic liquid are massively shortened in this way compared to a cooling with the cryocooler alone (eg a Gifford-McMahon cryo
  • the valves 12 and 13 are closed again.
  • the drive 8 then moves the Contact element 5a down and connects this thermally with the cold head 1 b (see 2b ).
  • the temperature of the contact element 5a is measured with the temperature sensor 35a and can then be controlled by the heater 7.
  • FIG 3a and 3b Another embodiment 10c of the measuring module according to the invention is shown in FIG 3a and 3b illustrated.
  • This embodiment differs from that in FIG Fig.2a and Fig.2b in that a two-stage cryocooler 2a is used, and that the first stage of this cryocooler 2a serves to liquefy N2 gas in order to produce the contact element 5a already in the variant of FIG 3a and 3b is shown to pre-cool.
  • An inlet valve 20 controls the inflow of air to a nitrogen separator 21. The nitrogen already present in the air is first separated from the remaining gases by means of the nitrogen separator 21, before it is led to a heat exchanger 22 and liquefied there.
  • the heat exchanger 22 is thermally connected to a cold head 2b of the first stage of the cryocooler 2a, whereby it is cooled down to the required temperature.
  • the liquefied nitrogen is then passed by means of a pump 23 through an outlet valve 24 , which serves to control the nitrogen liquefied in the heat exchanger 22, and conveyed into the dewar vessel 11.
  • the valves 20, 24 allow the switching on and off of nitrogen liquefaction. If the valves 12, 13 for pre-cooling of the contact element 5a are opened or closed, then the valves 20, 24 are closed or opened.
  • a cold head 2c of the second stage of the cryocooler 2a takes over the contacting of the contact element 5a analogous to the cold head 1 b in Fig. 2a, 2b ,
  • FIG. 4 shows a further variant of the measuring module according to the invention, in which no moving mechanical parts needed within the vacuum range become.
  • the heat flow between the cold head 1 b and the contact element 5 b is changed by the fact that between both elements, a connecting element 31 is installed, which is permanently in close thermal connection with the cold head 1 b and the contact element 5 b.
  • the connecting element 31 has at least one cavity into which a well-conducting at cryogenic temperatures gas is pressed or pumped out again, whereby the heat flow between the cold head and the contact element is large resp. gets small.
  • the well-conducting gas at cryogenic temperatures eg He
  • the thermal conductivity of the connecting element 31 increases or decreases.
  • the connecting element 31 is connected via an inlet valve 33 to a gas pressure cylinder 37 and via an outlet valve 34 to a vacuum pump 32 .
  • the inlet valve 33 is opened, the outlet valve 34 is closed, and the connecting element 31 is filled with gas via the gas pressure cylinder 37.
  • the thermal conductivity of the connecting element becomes large, and as a result, the contact element 5b and the measuring object 6 are cooled.
  • the measuring object 6 has reached the desired temperature, its temperature is controlled by the sensor 35 a and the heater 7.
  • the inlet valve 33 is closed and the outlet valve 34 is opened. Thereafter, the connecting element 31 is pumped empty with the vacuum pump 32, whereby the thermal conductivity of the connecting element 31 is again small, and the contact element 5 b can be reheated with the help of the heater 7 easily.
  • the inventive separation of the measuring chamber 4 and the cooling chamber 3 optimum isolation of the measuring chamber 4 from the cold head 1 b, 2c realized as soon as the cold head 1 b, 2c of the contact element 5a, 5b is moved away.
  • the invention Measuring module 10a, 10b, 10c with the two-chamber system according to the invention has the advantage that the cryocooler 1a, 2a always remains cold during the cooling or warming up of the measurement object 6. As a result, the cooling rates for the measurement object 6 become shorter, because the cryocooler 1 a, 2 a does not have to be cooled down anew, and, moreover, an unnecessary thermal load of the cryocooler 1 a, 2 a is avoided.
  • the measuring module according to the invention and thus also the measuring device according to the invention has a high flexibility, since the contact element 5a, 5b can be easily adapted or changed depending on the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The module (10a) has a contact element (5b) fastened to a part of a partition wall between a measuring chamber (4) and a cooling chamber (3) and thermally insulated from an outer wall of the module, where a local thermal connection is produced from the measuring chamber to the cooling chamber. A contacting device changes a heat flow in a hermetically closed condition of the module, where the heat flow between a cooling head (1b) of a single stage cryocooler and the contact element is either produced or strongly increased or interrupted or strongly reduced using the contacting device. An independent claim is also included for a measuring device comprising devices for supplying and pumping a fluid into/from a hollow space of a connecting element.

Description

Die Erfindung betrifft ein Messmodul zur Messung und Prüfung eines Messobjektes mit einer evakuierbaren Messkammer zur Aufnahme des Messobjekts und mit einem Kontaktelement, wobei das Messobjekt während des Mess- und/oder Prüfvorganges mit einer ersten Kontaktfläche des Kontaktelementes thermisch verbunden ist, und mit mindestens einem Kaltkopf, der mit einer zweiten Kontaktfläche des Kontaktelementes thermisch verbunden werden kann, wobei der Kaltkopf mit Hilfe eines aus mindestens einer Kältestufe bestehenden Kryokühlers bis hinunter auf kryogene Temperaturen gekühlt werden kann, und wobei das Kontaktelement aus thermisch gut leitendem Material besteht, und die erste und zweite Kontaktfläche auf gegenüber liegenden Seiten des Kontaktelementes liegen, und wobei sich der Kaltkopf und das Kontaktelement während des Mess- und/oder Prüfvorganges in einer evakuierbaren Umgebung befinden und miteinander thermisch leitend verbunden sind.The invention relates to a measuring module for measuring and testing a measuring object with an evacuable measuring chamber for receiving the measured object and a contact element, wherein the measuring object is thermally connected during the measuring and / or testing process with a first contact surface of the contact element, and at least one cold head which can be thermally connected to a second contact surface of the contact element, wherein the cold head can be cooled down to cryogenic temperatures by means of a cryocooler consisting of at least one cold stage, and wherein the contact element consists of thermally highly conductive material, and the first and second Contact surface lie on opposite sides of the contact element, and wherein the cold head and the contact element during the measuring and / or testing process are in an evacuated environment and are thermally conductively connected to each other.

Eine derartige Messeinrichtung ist bekannt aus [2].Such a measuring device is known from [2].

Durch Abkühlung kann das thermische Rauschen von elektronischen Baukomponenten reduziert werden. Das thermische Rauschen entsteht durch statistische Bewegungen der Ladungsträger und durch unregelmäßige, temperaturabhängige Gitterschwingungen, die durch Stöße auf die Ladungsträger übertragen werden. Es äußert sich durch eine Rauschspannung VR an den Enden von elektrischen Leitern. Bei einem ohmschen Widerstand R, der sich auf der Temperatur T befindet, ist die Rauschspannung im Frequenzbereich Δf gegeben durch [3], [4]: V R = 4 kRT Δ f wobei k = 1.38 10 - 23 Ws / K = Boltzmann - Konstante

Figure imgb0001

Durch Verkleinerung der Temperatur T von metallischen Leitern verkleinert sich auch dessen Widerstand R, so dass das Produkt R·T and damit die thermische Rauschspannung VR besonders stark reduziert wird. Deshalb wird dieses Kühlverfahren heute für empfindliche Messgeräte und Sensoren genutzt, wie sie z.B. in der NMR-Spektroskopie [1] vorkommen. Man erreicht dort eine markante Verbesserung der Messempfindlichkeit, d.h. des Signal-zu-Rausch-Verhältnisses (= SI-NO).By cooling, the thermal noise of electronic components can be reduced. The thermal noise is caused by statistical movements of the charge carriers and by irregular, temperature-dependent lattice vibrations, which are transmitted to the charge carriers by collisions. It manifests itself by a noise voltage V R at the ends of electrical conductors. In an ohmic resistance R which is at the temperature T, the noise voltage in the frequency range Δ f is given by [3], [4]: V R = 4 kRT Δ f in which k = 1:38 10 - 23 Ws / K = Boltzmann - constant
Figure imgb0001

By reducing the temperature T of metallic conductors and its resistance R decreases, so that the product R · T and thus the thermal noise voltage V R is particularly reduced. Therefore, this cooling method is used today for sensitive measuring devices and sensors, such as those found in NMR spectroscopy [1]. There is achieved a marked improvement in the measurement sensitivity, ie the signal-to-noise ratio (= SI-NO).

Für die Entwicklung von solchen Messgeräten oder Sensoren mit gekühlten elektrischen und elektronischen Komponenten müssen deshalb im Vorfeld geeignete elektronische und elektrische Bauteile (z.B. Kabel, Widerstände, Transistoren usw.) beurteilt und einer Qualitätsprüfung (z.B. thermisches Zyklieren) unterzogen werden. Zu diesem Zweck werden Prüfanlagen benötigt, die es erlauben, einzelne elektronische Komponenten und ganze elektronische Schaltungen auf ihre Einsatz- und Prüftemperatur zu kühlen, mit dem Ziel, deren Eigenschaften und Spezifikationen zu ermitteln und an ihnen Qualitätstests durchzuführen.For the development of such meters or sensors with cooled electrical and electronic components, therefore, suitable electronic and electrical components (e.g., cables, resistors, transistors, etc.) must be previously assessed and subjected to quality inspection (e.g., thermal cycling). For this purpose, test facilities are needed that allow individual electronic components and entire electronic circuits to be cooled to their use and test temperature, with the aim of identifying their properties and specifications and performing quality tests on them.

Die einfachste und am weitesten verbreitete Methode zur Kühlung auf kryogene Temperaturen erfolgt mit Hilfe von flüssigem Stickstoff (LN2), oder in selteneren Fällen mit flüssigem Helium (LHe). Die zu messenden Komponenten (elektronische Bauteile oder Schaltungen, mechanische Bauteile oder Kombinationen davon) werden in ein mit LN2 oder mit LHe gefülltes Dewar-Gefäß eingetaucht und abgekühlt. Qualitätsprüfungen (z.B. Temperaturzykliertests) und/oder die Ermittlung von elektrischen oder mechanischen Eigenschaften an Komponenten können so durchgeführt werden.The simplest and most widely used method for cooling to cryogenic temperatures is with the aid of liquid nitrogen (LN2) or, more rarely, with liquid helium (LHe). The components to be measured (electronic components or circuits, mechanical components or combinations thereof) are immersed in a Dewar vessel filled with LN2 or LHe and cooled. Quality checks (eg temperature cycling tests) and / or the determination of electrical or mechanical properties of components can be carried out in this way.

Die Nachteile dieser Methode sind, dass die tiefste kryogene Temperatur durch die Siedetemperatur des Flüssiggases 77K bei LN2 und 4.2K bei LHe) gegeben ist, und die Prüflinge wegen den hohen Abkühlraten extremen thermischen Belastungen ausgesetzt sind. Zudem können sich auf den Prüflingen Kondenswasser und Eis bilden.The disadvantages of this method are that the lowest cryogenic temperature is given by the boiling point of the liquid gas 77K at LN2 and 4.2K at LHe), and the specimens are exposed to extreme thermal stresses due to the high cooling rates. In addition, condensate and ice may form on the test specimens.

Bei einer etwas fortgeschrittenere Abkühlmethode ist das zu kühlende Messobjekt an einem thermisch gut leitenden Kontaktelement befestigt, das durch ein Kühlmedium (z.B. LN2 oder LHe) auf die gewünschte Temperatur abgekühlt wird. Um die thermischen Verluste klein zu halten, ist die ganze Anordnung in einer evakuierten Kammer untergebracht, wodurch auch die Bildung von Kondenswasser und Eis vermieden wird [2]. Solche Anlagen sind aber nur bei Temperaturen knapp über dem Siedepunkt des Kühlmediums effizient. Wenn Prüflinge weit über dem Siedepunkt (aber weit unter Raumtemperatur) getestet werden müssen, dann muss dies durch zusätzliches Heizen des Kontaktelementes erreicht werden, was wiederum zu erhöhtem Verlust an Kühlmedium und zu erhöhten Kosten führt (insbesondere wenn das Kühlmedium LHe ist). Nachteilig ist auch hier, dass der Anwender immer auf das Kühlmedium angewiesen ist und immer dafür sorgen muss, dass genügend Reserve davon vorhanden ist. Zudem hat eine solche Anlage den Nachteil, dass der Anwendender verstehen muss, mit kryogenen Flüssigkeiten umzugehen.In a more advanced cooling method, the object to be cooled is attached to a thermally well-conductive contact element which is cooled by a cooling medium (e.g., LN2 or LHe) to the desired temperature. To keep the thermal losses small, the whole assembly is housed in an evacuated chamber, which also prevents the formation of condensation and ice [2]. However, such systems are efficient only at temperatures just above the boiling point of the cooling medium. If specimens need to be tested well above the boiling point (but far below room temperature), then this must be achieved by heating the contact element additionally, which in turn leads to increased loss of cooling medium and increased costs (especially if the cooling medium is LHe). Another disadvantage here is that the user always has to rely on the cooling medium and must always ensure that there is sufficient reserve of it. In addition, such a system has the disadvantage that the user must understand how to deal with cryogenic liquids.

Darüber hinaus sind Messmodule bekannt, bei denen die Kühlung nicht durch ein kryogenes Kühlmedium, sondern durch einen Kryokühler mit geschlossenem Kühlkreis erfolgt [2]. Der Nachteil dieses Messmoduls ist, dass der Kryokühler zuerst ausgeschaltet werden muss und anschließend eine lange Wartezeit folgt, bis der Kryokühler sich genügend aufgewärmt hat, und die Kammer, in der sich der Prüfling befindet, geöffnet werden kann.In addition, measuring modules are known in which the cooling is not carried out by a cryogenic cooling medium, but by a cryocooler with a closed cooling circuit [2]. The disadvantage of this measuring module is that the cryocooler must first be switched off and then followed by a long wait until the cryocooler has warmed up sufficiently, and the chamber in which the specimen is located can be opened.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, ein Messenmodul und eine Messeinrichtung vorzuschlagen, mit denen derartige lange Wartezeiten vermieden werden können, um das Kühlen von Messobjekten anwendungsfreundlicher zu gestalten.Based on this prior art, it is the object of the invention to propose a measuring module and a measuring device with which such long waiting times can be avoided in order to make the cooling of the measuring objects more user-friendly.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Kryokühler samt Kaltkopf in einer Kühlkammer untergebracht ist, welche von der Messkammer räumlich getrennt und unabhängig von dieser evakuierbar ist, dass das Kontaktelement thermisch isoliert von der Außenwand des Messmoduls befestigt, Teil einer Trennwand zwischen der Messkammer und der Kühlkammer ist und eine lokale thermische Verbindung von der Messkammer zur Kühlkammer herstellt, und dass eine Kontaktierungseinrichtung zur Änderung des Wärmeflusses im hermetisch geschlossenen Zustand des Messmoduls vorgesehen ist, mit deren Hilfe der Wärmefluss zwischen dem Kaltkopf und dem Kontaktelement entweder hergestellt oder stark vergrößert, oder unterbrochen oder stark verkleinert werden kann.This object is achieved in that the cryocooler including cold head is housed in a cooling chamber, which is spatially separated from the measuring chamber and independently of this is evacuated that the contact element thermally insulated from the outer wall of the measuring module attached part of a partition between the measuring chamber and the cooling chamber is and makes a local thermal connection from the measuring chamber to the cooling chamber, and that a contacting device is provided for changing the heat flow in the hermetically sealed state of the measuring module, with the help of the heat flow between the cold head and the contact element either made or greatly enlarged, or interrupted or greatly reduced.

Mit dem erfindungsgemäßen Messmodul kann ein Kühlvorgang ohne Kryoflüssigkeiten realisiert werden, wobei durch den variabel einstellbaren Wärmefluss zwischen Kaltkopf und Kontaktelement die Prüftemperatur der Messobjekte innerhalb des gegebenen Temperaturbereichs frei wählbar ist.With the measuring module according to the invention, a cooling process without cryogenic liquids can be realized, wherein the test temperature of the measured objects within the given temperature range can be freely selected by the variably adjustable heat flow between the cold head and the contact element.

Der Kryokühler kann während des Kühlens oder Aufwärmens des Messobjektes kalt bleiben. Die Abkühlraten für das Messobjekt können somit gegenüber dem Stand der Technik um etwa die vom Kryokühler-Hersteller spezifizierte Abkühlzeit des Kryokühlers verkürzt werden, weil der Kryokühler nicht von neuem abgekühlt werden muss. Die typische Abkühlzeit eines Kryokühlers liegt etwa zwischen 40 und 60 Minuten. Zudem wird eine unnötige thermische Belastung des Kryokühlers vermieden.The cryocooler may remain cold during cooling or warming up of the measurement object. The cooling rates for the measurement object can thus be shortened compared to the prior art by about the specified by the cryocooler manufacturer cooling time of the cryocooler, because the cryocooler does not need to be cooled again. The typical cooling time of a cryocooler is between about 40 and 60 minutes. In addition, an unnecessary thermal load of the cryocooler is avoided.

Die getrennten Kammern für das Messobjekt und den Kryokühler ermöglichen zudem eine optimale thermische Isolation zwischen der Messkammer und dem Kühlkopf.The separate chambers for the measurement object and the cryocooler also allow optimal thermal isolation between the measuring chamber and the cooling head.

Die Abkühlrate ΔTK/Δt und die Aufwärmrate ΔTW/Δt sind mit dem erfindungsgemäßen Messmodul frei einstellbar und können so gewählt werden, dass das Messobjekt nicht beschädigt wird.The cooling rate .DELTA.T K / .DELTA.t and the warm-up rate .DELTA.T W / .DELTA.t are freely adjustable with the measurement module according to the invention and can be chosen so that the measurement object is not damaged.

Darüber hinaus können die gewünschten Abkühlzyklen automatisch ausgeführt werden, wobei deren Anzahl frei wählbar ist.In addition, the desired cooling cycles can be carried out automatically, with their number being freely selectable.

Das erfindungsgemäße Messmodul ist einfach bedienbar und erlaubt ein einfaches Montieren und Wechseln der Messobjekte.The measuring module according to the invention is easy to use and allows easy mounting and changing of the measuring objects.

Vorzugsweise umfasst die erfindungsgemäße Kontaktierungseinrichtung einen pneumatischen, hydraulischen oder elektrischen Antrieb, oder eine Kombination davon, oder einen Handantrieb, mit dem der Kaltkopf und das Kontaktelement mechanisch aufeinander zu oder voneinander weg bewegt werden können, wobei der Kaltkopf und das Kontaktelement entweder gegeneinander gedrückt oder räumlich getrennt werden, so dass der Wärmefluss zwischen ihnen vergrößert bzw. verkleinert wird. Der Antrieb ermöglicht sowohl das Kontaktieren des Messobjekts mit dem Kühlkopf über die beiden Kontaktflächen des Kontaktelements als auch die Trennung desselben Kontakts auf einfache und schnelle Art und Weise.Preferably, the contacting device according to the invention comprises a pneumatic, hydraulic or electric drive, or a combination thereof, or a manual drive with which the cold head and the contact element can be mechanically moved towards or away from each other, wherein the cold head and the contact element either pressed against each other or spatially be separated so that the heat flow between them is increased or decreased. The drive allows both the contacting of the measuring object with the cooling head over the two contact surfaces of the contact element as well as the separation of the same contact in a simple and fast manner.

Alternativ hierzu kann die Kontaktierungseinrichtung ein Verbindungselement umfassen, das zwischen Kaltkopf und Kontaktelement angeordnet ist und permanent in enger thermischer Verbindung mit dem Kaltkopf und dem Kontaktelement steht, wobei das Verbindungselement mindestens einen Hohlraum aufweist, der mit einem bei kryogenen Temperaturen gut leitendem Fluid gefüllt werden kann, wodurch die thermische Leitfähigkeit des Verbindungselementes und dadurch auch der Wärmefluss zwischen dem Kaltkopf und dem Kontaktelement geändert werden kann. Auch hierdurch können verkürzte Abkühlzeiten und Aufwärmzeiten realisiert werden, wobei auf bewegliche mechanische Komponenten verzichtet werden kann, was zu einer konstruktiv sehr einfachen Lösung führt.Alternatively, the contacting device may comprise a connecting element which is arranged between the cold head and the contact element and permanently in close thermal communication with the cold head and the contact element, wherein the connecting element has at least one cavity which can be filled with a well-conducting fluid at cryogenic temperatures whereby the thermal conductivity of the connecting element and thereby also the heat flow between the cold head and the contact element can be changed. This also shortened cooling times and warm-up times can be realized, which can be dispensed with movable mechanical components, resulting in a structurally very simple solution.

Vorzugsweise umfasst das Kontaktelement einen Wärmetauscher, der mit einem kryogenen Fluid, insbesondere flüssigem Stickstoff oder flüssigem Helium, betrieben wird und zur Vorkühlung des Kontaktelementes dient. Der wesentliche Vorteil dieser Ausführungsform ist eine hohe Abkühlrate für Messobjekte, die eine hohe Wärmekapazität besitzen, so dass die Abkühlzeit weiter verkürzt werden kann.Preferably, the contact element comprises a heat exchanger, which is operated with a cryogenic fluid, in particular liquid nitrogen or liquid helium, and serves for precooling of the contact element. The main advantage This embodiment is a high cooling rate for measurement objects having a high heat capacity, so that the cooling time can be further shortened.

Bei einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Messmoduls sind mindestens ein Temperatursensor und mindestens ein Heizer vorgesehen, die zur Regelung der Temperatur des Kontaktelementes dienen. Weitere Temperatur-Sensoren können auch am Messobjekt befestigt sein, damit dessen Temperatur direkt gemessen und geregelt werden kann.In a particularly preferred embodiment of the measuring module according to the invention, at least one temperature sensor and at least one heater are provided, which serve to regulate the temperature of the contact element. Further temperature sensors can also be attached to the measurement object, so that its temperature can be measured and regulated directly.

Darüber hinaus ist es vorteilhaft, wenn der Kryokühler zwei Stufen mit jeweils einem Kaltkopf aufweist, wobei der Kaltkopf der ersten Stufe mit einem Wärmetauscher, der zur Verflüssigung von Stickstoff-Gas dient, thermisch verbunden ist. Diese Ausführungsform hat den Vorteil, dass die für die Vorkühlung benötigte Kryoflüssigkeit autonom erzeugt, d.h. nicht mehr extern angeschafft werden muss.Moreover, it is advantageous if the cryocooler has two stages, each with a cold head, wherein the cold head of the first stage is thermally connected to a heat exchanger, which serves for the liquefaction of nitrogen gas. This embodiment has the advantage that the cryofluid required for the pre-cooling is generated autonomously, i. no longer needs to be purchased externally.

Die Erfindung betrifft auch eine Messeinrichtung mit einem oben beschriebenen erfindungsgemäßen Messmodul, wobei das Kontaktelement thermisch isoliert von der äußeren Umgebung des Messmoduls befestigt ist. Beispielsweise kann das Kontaktelement am einen Ende der balgenförmigen Trennwand zwischen Mess- und Kühlkammer befestigt sein, wodurch es von der Außenwand des Messmoduls thermisch isoliert ist.The invention also relates to a measuring device with a measuring module according to the invention described above, wherein the contact element is thermally insulated from the external environment of the measuring module. For example, the contact element may be fastened at one end of the bellows-shaped separating wall between the measuring chamber and the cooling chamber, whereby it is thermally insulated from the outer wall of the measuring module.

Vorteilhaft ist eine Messeinrichtung, die ein Messmodul mit einem Verbindungselement umfasst, das zwischen Kaltkopf und Kontaktelement angeordnet ist und permanent in enger thermischer Verbindung mit dem Kaltkopf und dem Kontaktelement steht, wobei das Verbindungselement mindestens einen Hohlraum aufweist, und wobei Vorrichtungen zum Zuführen und Abpumpen eines bei kryogenen Temperaturen gut leitenden Fluids in den bzw. aus dem Hohlraum des Verbindungselements vorgesehen sind, wodurch der Wärmefluss zwischen dem Kaltkopf und dem Kontaktelement vergrößert bzw. verkleinert werden kann.Advantageous is a measuring device which comprises a measuring module with a connecting element which is arranged between the cold head and contact element and permanently in close thermal communication with the cold head and the contact element, wherein the connecting element has at least one cavity, and wherein devices for supplying and pumping a are provided at cryogenic temperatures highly conductive fluid into and out of the cavity of the connecting element, whereby the heat flow between the cold head and the contact element can be increased or decreased.

Besonders vorteilhaft ist eine Messeinrichtung, die ein Messmodul umfasst, bei dem der Kryokühler zwei Stufen mit jeweils einem Kaltkopf aufweist, wobei der Kaltkopf der ersten Stufe mit einem Wärmetauscher, der zur Verflüssigung von Stickstoff-Gas dient, thermisch verbunden ist, und wobei die erste Stufe des Kryokühlers über den Wärmetauscher mit einem Stickstoffseparator verbunden ist, durch den das Stickstoff -Gas direkt aus der Luft gewonnen und dem Wärmetauscher zugeführt werden kann.Particularly advantageous is a measuring device comprising a measuring module, in which the cryocooler has two stages, each with a cold head, wherein the cold head of the first stage with a heat exchanger, which is used for liquefaction of Nitrogen gas is used, is thermally connected, and wherein the first stage of the cryocooler is connected via the heat exchanger with a nitrogen separator, through which the nitrogen gas can be obtained directly from the air and fed to the heat exchanger.

Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.Further advantages of the invention will become apparent from the description and the drawings. Likewise, the features mentioned above and those listed further can be used individually or in any combination. The embodiments shown and described are not to be understood as exhaustive enumeration, but rather have exemplary character for the description of the invention.

Es zeigen:

Fig. 1a
eine erfindungsgemäße Messeinrichtung mit einem einstufigen Kryokühler im nicht kontaktierten Zustand;
Fig. 1b
eine erfindungsgemäße Messeinrichtung mit einem einstufigen Kryokühler im kontaktierten Zustand;
Fig. 2a
eine erfindungsgemäße Messeinrichtung mit einem einstufigen Kryokühler und einem Wärmetauscher im nicht kontaktierten Zustand;
Fig. 2b
eine erfindungsgemäße Messeinrichtung mit einem einstufigen Kryokühler und einem Wärmetauscher im kontaktierten Zustand;
Fig. 3a
eine erfindungsgemäße Messeinrichtung mit einem zweistufigen Kryokühler und einem Wärmetauscher im nicht kontaktierten Zustand;
Fig. 3b
eine erfindungsgemäße Messeinrichtung mit einem zweistufigen Kryokühler und einem Wärmetauscher im kontaktierten Zustand;
Fig. 4
eine erfindungsgemäße Messeinrichtung mit einem einstufigen Kryokühler und einem Verbindungselement mit variabler thermischer Leitfähigkeit;
Fig. 5a
eine Messeinrichtung nach dem Stand der Technik, bei der die Abkühlung des Kontaktelementes mittels einer Kryoflüssigkeit erfolgt; und
Fig. 5b
eine Messeinrichtung nach dem Stand der Technik, bei der die Abkühlung des Kontaktelementes mittels eines Kryokühlers erfolgt.
Show it:
Fig. 1a
a measuring device according to the invention with a single-stage cryocooler in the non-contacted state;
Fig. 1b
a measuring device according to the invention with a single-stage cryocooler in the contacted state;
Fig. 2a
a measuring device according to the invention with a single-stage cryocooler and a heat exchanger in the non-contacted state;
Fig. 2b
a measuring device according to the invention with a single-stage cryocooler and a heat exchanger in the contacted state;
Fig. 3a
a measuring device according to the invention with a two-stage cryocooler and a heat exchanger in the non-contacted state;
Fig. 3b
a measuring device according to the invention with a two-stage cryocooler and a heat exchanger in the contacted state;
Fig. 4
a measuring device according to the invention with a single-stage cryocooler and a connecting element with variable thermal conductivity;
Fig. 5a
a measuring device according to the prior art, in which the cooling of the contact element is effected by means of a cryogenic liquid; and
Fig. 5b
a measuring device according to the prior art, in which the cooling of the contact element is effected by means of a cryocooler.

Fig. 5a zeigt eine Messeinrichtung nach dem Stand der Technik. Ein Messmodul 10' dient zur Kühlung, Messung und Prüfung eines Messobjektes 6. Das zu kühlende Messobjekt 6 ist an einem thermisch gut leitenden Kontaktelement 5' befestigt, das durch ein Kühlmedium (z.B. LN2 oder LHe) auf die gewünschte Temperatur abgekühlt wird. Um die thermischen Verluste klein zu halten, ist die ganze Anordnung in einer evakuierten Kammer 4' untergebracht, wodurch auch die Bildung von Kondenswasser und Eis vermieden wird. Die gewünschte Messtemperatur kann z.B. mittels eines Controllers 36, eines Heizers 7 und Temperatur-Sensoren 35a, 35b geregelt werden. Um die Effizienz zu steigern bzw. den Verlust an Kühlmedium zu minimieren, kann zusätzlich noch die Zufuhr des Kühlmediums über Ventile 12, 13 geregelt werden. Fig. 5a shows a measuring device according to the prior art. A measuring module 10 'is used for cooling, measuring and testing a measuring object 6. The measuring object 6 to be cooled is fastened to a thermally highly conductive contact element 5' , which is cooled by a cooling medium (eg LN2 or LHe) to the desired temperature. In order to keep the thermal losses small, the whole assembly is housed in an evacuated chamber 4 ' , whereby the formation of condensation and ice is avoided. The desired measurement temperature can be controlled, for example, by means of a controller 36, a heater 7 and temperature sensors 35a, 35b . In order to increase the efficiency or to minimize the loss of cooling medium, in addition, the supply of the cooling medium via valves 12, 13 are regulated.

Fig.5b zeigt eine weitere aus dem Stand der Technik bekannte Messeinrichtung, die sich von der in Fig.5a darin unterscheidet, dass die Kühlung nicht durch ein kryogenes Kühlmedium, sondern durch einen Kryokühler 1a mit geschlossenem Kühlkreis erfolgt. Ein Messmodul 10" umfasst einen Kaltkopf 1b und ein Kontaktelement 5". Der Kaltkopf 1 b kann mit Hilfe des mindestens eine Kältestufe umfassenden Kryokühlers 1 a bis hinunter auf kryogene Temperaturen gekühlt werden. Das Kontaktelement 5" besteht aus thermisch gut leitendem Material und ist zwischen dem Messobjekt 6 und dem Kaltkopf 1 b positioniert. Diese Komponenten befinden sich während des Mess- und/oder Prüfvorganges in einer evakuierten Umgebung und sind miteinander thermisch leitend verbunden. 5 b shows a further known from the prior art measuring device, which differs from the in 5a differs in that the cooling is not carried out by a cryogenic cooling medium, but by a cryocooler 1a with a closed cooling circuit. A measuring module 10 " comprises a cold head 1b and a contact element 5". The cold head 1 b can be cooled down to cryogenic temperatures by means of the cryocooler 1 a comprising at least one cold stage. The contact element 5 "is made of material with good thermal conductivity and is positioned between the measuring object 6 and the cold head 1 b. These components are located in an evacuated environment during the measuring and / or testing process and are connected to one another in a thermally conductive manner.

Der Kaltkopf 1 b, der von der ersten Kühlstufe des Kryokühlers 1 a mit einer bestimmten Kühlleistung gekühlt wird, ist fix mit einem Kontaktelement 5" verbunden, welches ohne thermische Last im Idealfall die Temperatur des Kaltkopfes 1 b annimmt. Auf das Kontaktelement 5" kann dann das zu prüfende Messobjekt 6 montiert werden. Die Temperatur des Kontaktelementes 5" bzw. des Messobjektes 6 kann mit dem Controller 36, Heizer 7 und Temperatur-Sensoren 35a, 35b geregelt werden.The cold head 1 b, which is cooled by the first cooling stage of the cryocooler 1 a with a specific cooling power, is fixedly connected to a contact element 5 "which ideally assumes the temperature of the cold head 1 b without thermal load then the test object 6 to be tested are mounted. The temperature of the contact element 5 "or of the measurement object 6 can be controlled with the controller 36, heater 7 and temperature sensors 35a, 35b.

Fig. 1a, 1b zeigen eine erste Ausführungsform 10a eines erfindungsgemäßen Messmoduls. Im Gegensatz zu den bekannten Vorrichtungen umfasst das erfindungsgemäße Messmodul 10a ein Zweikammersystem mit einer Kühlkammer 3 und einer Messkammer 4, die unabhängig voneinander evakuierbar sind. In der Kühlkammer 3 befindet sich der Kryokühler 1 a mit seinem Kaltkopf 1 b und einem geschlossenem Kühlkreis. Als Kryokühler 1a kann eine Stirling-, eine Gifford-McMahon- oder eine Pulse-Tube-Kühlapparatur benutzt werden. Die Kühlkammer 3 ist während des Messbetriebs evakuiert und isoliert dadurch den Kryokühler 1 a thermisch von seiner Umgebung. Fig. 1a, 1b show a first embodiment 10a of a measuring module according to the invention. In contrast to the known devices, the measuring module 10a according to the invention comprises a two-chamber system with a cooling chamber 3 and a measuring chamber 4, which can be evacuated independently of one another. In the cooling chamber 3 is the cryocooler 1 a with its cold head 1 b and a closed cooling circuit. As the cryocooler 1a, a Stirling, a Gifford-McMahon or a Pulse-Tube cooling apparatus may be used. The cooling chamber 3 is evacuated during the measuring operation and thereby isolated the cryocooler 1 a thermally from its surroundings.

Das zu messende Messobjekt 6 befinden sich in der ebenfalls evakuierten Messkammer 4 und ist auf einer ersten Kontaktfläche 9a mit einem Kontaktelement 5b fest verbunden. Das Kontaktelement 5b ist als Teil der Trennwand zwischen den beiden Kammern 3, 4 ausgebildet und dient als lokale thermische Verbindung von der Kühlkammer 3 zur Messkammer 4. Das Kontaktelement 5b ist an einer zur Außenwand des Messmoduls thermisch isolierten Stelle befestigt.The measuring object 6 to be measured are located in the likewise evacuated measuring chamber 4 and is fixedly connected to a contact element 5b on a first contact surface 9a . The contact element 5b is formed as part of the partition wall between the two chambers 3, 4 and serves as a local thermal connection from the cooling chamber 3 to the measuring chamber 4. The contact element 5b is fixed to a thermally insulated to the outer wall of the measuring module body.

Der Wärmefluss zwischen dem Kaltkopf 1 b und dem Kontaktelement 5b wird dadurch geändert, dass mit Hilfe eines pneumatischen, hydraulischen oder elektrischen Antriebes 8, einer Kombination davon, oder per Handantrieb, der Kaltkopf 1 b und das Kontaktelement 5b mechanisch aufeinander zu oder voneinander weg bewegt werden, und dass dadurch der Kaltkopf 1 b und das Kontaktelement 5b entweder gegeneinander gedrückt (Fig. 1 b) oder räumlich getrennt werden (Fig. 1a), so dass der Wärmefluss zwischen ihnen groß resp. klein wird. Im ersten Fall kontaktiert der Kaltkopf 1 b das Kontaktelement 5b an einer zweiten Kontaktfläche 9b und das Kontaktelement 5b wird samt Messobjekt 6 durch den Kryokühler auf die gewünschte Temperatur abgekühlt. Im zweiten Fall wird der Kontakt zwischen dem Kaltkopf 1 b und der zweiten Kontaktfläche 9b des Kontaktelementes 5b getrennt, so dass das Kontaktelement 5b samt Messobjekt 6 wieder aufgewärmt werden, ohne dass der Kryokühler 1 a vorher abgeschaltet werden muss.The heat flow between the cold head 1 b and the contact element 5 b is changed by mechanically moving towards or away from one another by means of a pneumatic, hydraulic or electric drive 8, a combination thereof, or by manual drive, the cold head 1 b and the contact element 5 b and that thereby the cold head 1 b and the contact element 5 b are pressed against each other ( Fig. 1 b) or spatially separated ( Fig. 1a ), so that the heat flow between them large resp. gets small. In the first case, the cold head 1 b contacted the contact element 5 b at a second contact surface 9b and the contact element 5b is cooled together with the measurement object 6 by the cryocooler to the desired temperature. In the second case, the contact between the cold head 1b and the second contact surface 9b of the contact element 5b is disconnected, so that the contact element 5b together with the measurement object 6 are reheated without the cryocooler 1a having to be switched off beforehand.

Der Controller 36 mit angeschlossenem Heizer 7 und Temperatur-Sensor 35a ermöglicht eine Regelung der Temperatur des Kontaktelementes 5b und damit des Messobjektes 6 auf den gewünschten Wert. Zum Aufwärmen bewegt der Antrieb 8 das Kontaktelement 5b vom Kaltkopf 1 b weg und unterbricht dadurch den Wärmefluss zwischen ihnen (Fig. 1 b). Der Heizer 7 ermöglicht dann eine rasche Aufwärmung des Kontaktelementes 5b und des Messobjektes 6. Der Kryokühler 1a läuft weiter, und der Kaltkopf 1 b kühlt sich, da er thermisch nicht mehr belastet ist, auf die tiefstmögliche Temperatur ab. Der Anwender ist bei dieser Ausführungsform nicht auf kryogene Flüssigkeiten angewiesen.The controller 36 with connected heater 7 and temperature sensor 35a allows control of the temperature of the contact element 5b and thus of the measurement object 6 to the desired value. For warming up, the drive 8 moves the contact element 5b away from the cold head 1b and thereby interrupts the heat flow between them ( Fig. 1 b) , The heater 7 then allows a rapid warming of the contact element 5b and the measuring object 6. The cryocooler 1a continues running, and the cold head 1 b cools, since it is no longer thermally loaded, to the lowest possible temperature. The user is not dependent on cryogenic liquids in this embodiment.

Eine verbesserte Ausführungsform 10b des erfindungsgemäßen Messmoduls ist in Fig.2a und Fig.2b dargestellt. Sie führt zu einer massiven Reduktion der Abkühlzeiten und unterscheidet sich von der vorhergehenden Ausführungsform darin, dass ein Kontaktelement 5a mit einem Wärmetauscher vorgesehen ist, der von einer Kryoflüssigkeit (LN2 oder LHe) durchflossen wird und dadurch eine Vorkühlung des Kontaktelementes 5a sowie des Messobjektes 6 erlaubt. Das Einlassventil 12 und das Auslassventil 13 steuern den Fluss des Kühlmediums. Während des Abkühlvorganges sind die Ventile 12 und 13 geöffnet, und die in einem Dewar-Gefäß 11 vorhandene Kryoflüssigkeit wird z.B. durch Erzeugung eines Überdruckes im Dewar-Gefäß 11 durch isolierten Leitungen in den Wärmetauscher des Kontaktelementes 5a gedrückt, wodurch dieses vorgekühlt wird. Die Abkühlzeiten bis hinunter zum Siedepunkt der Kryoflüssigkeit werden im Vergleich zu einer Abkühlung mit dem Kryokühler alleine (z.B. einem Gifford-McMahon-Kryokühler) auf diese Weise massiv verkürzt.An improved embodiment 10b of the measuring module according to the invention is shown in FIG Fig.2a and Fig.2b shown. It leads to a massive reduction of the cooling times and differs from the previous embodiment in that a contact element 5a is provided with a heat exchanger through which a cryogenic liquid (LN2 or LHe) flows, thereby allowing pre-cooling of the contact element 5a and of the measurement object 6 , The inlet valve 12 and the outlet valve 13 control the flow of the cooling medium. During the cooling process, the valves 12 and 13 are opened, and the existing in a Dewar vessel 11 cryogenic liquid is pressed, for example by generating an overpressure in the Dewar vessel 11 by insulated lines in the heat exchanger of the contact element 5a, whereby this is pre-cooled. The cooling times down to the boiling point of the cryogenic liquid are massively shortened in this way compared to a cooling with the cryocooler alone (eg a Gifford-McMahon cryocooler).

Sobald das Kontaktelement 5a die Temperatur der Kryoflüssigkeit erreicht hat, werden die Ventile 12 und 13 wieder geschlossen. Der Antrieb 8 bewegt dann das Kontaktelement 5a nach unten und verbindet dieses thermisch mit dem Kaltkopf 1 b (siehe Fig.2b). Die Temperatur des Kontaktelementes 5a wird mit dem Temperatursensor 35a gemessen und kann dann mit dem Heizer 7 geregelt werden.As soon as the contact element 5a has reached the temperature of the cryogenic liquid, the valves 12 and 13 are closed again. The drive 8 then moves the Contact element 5a down and connects this thermally with the cold head 1 b (see 2b ). The temperature of the contact element 5a is measured with the temperature sensor 35a and can then be controlled by the heater 7.

Zum Aufwärmen wird das Kontaktelement 5a mit Hilfe des Antriebes 8 nach oben bewegt, wodurch dessen thermischer Kontakt zum Kaltkopf 1 b wieder unterbrochen wird (siehe Fig.2a). Anschließend ermöglicht der Heizer 7 eine beschleunigte Aufwärmung des Kontaktelementes 5a und damit auch des Messobjektes 6. Bei dieser Abkühlmethode sollte jedoch stets darauf geachtet werden, dass im Dewar-Gefäß 11 immer genügend Kryoflüssigkeit vorhanden ist.To warm up the contact element 5a is moved by means of the drive 8 upwards, whereby its thermal contact with the cold head 1 b is interrupted again (see 2a ). Subsequently, the heater 7 allows an accelerated warming of the contact element 5a and thus also of the measurement object 6. In this cooling method, however, care should always be taken to ensure that there is always sufficient cryogenic fluid in the dewar vessel 11.

Eine weitere Ausführungsform 10c des erfindungsgemäßen Messmoduls ist in Fig.3a und Fig.3b illustriert. Diese Ausführungsform unterscheidet sich von der in Fig.2a und Fig.2b darin, dass ein zweistufiger Kryokühler 2a verwendet wird, und dass die erste Stufe dieses Kryokühlers 2a dazu dient, N2-Gas zu verflüssigen, um damit das Kontaktelement 5a, das bereits in der Variante von Fig.3a und Fig.3b gezeigt ist, vorzukühlen. Ein Einlassventil 20 steuert den Zufluss der Luft zu einem Stickstoffseparator 21. Der in der Luft bereits vorhandene Stickstoff wird mittels des Stickstoffseparators 21 zuerst von den übrigen Gasen getrennt, bevor er zu einem Wärmetauscher 22 geführt und dort verflüssigt wird. Der Wärmetauscher 22 ist thermisch mit einem Kaltkopf 2b der ersten Stufe des Kryokühlers 2a verbunden, wodurch er auf die erforderliche Temperatur hinunter gekühlt wird. Der verflüssigte Stickstoff wird dann mit Hilfe einer Pumpe 23 durch ein Auslassventil 24 geleitet, das zur Steuerung des im Wärmetauscher 22 verflüssigten Stickstoffs dient, und in das Dewar-Gefäß 11 gefördert. Die Ventile 20, 24 ermöglichen das Ein- bzw. Ausschalten der Stickstoffverflüssigung. Sind die Ventile 12, 13 zum Vorkühlen des Kontaktelementes 5a geöffnet bzw. geschlossen, dann sind die Ventile 20, 24 geschlossen bzw. geöffnet. Ein Kaltkopf 2c der zweiten Stufe des Kryokühlers 2a übernimmt die Kontaktierung des Kontaktelements 5a analog zu dem Kaltkopf 1 b in Fig. 2a, 2b.Another embodiment 10c of the measuring module according to the invention is shown in FIG 3a and 3b illustrated. This embodiment differs from that in FIG Fig.2a and Fig.2b in that a two-stage cryocooler 2a is used, and that the first stage of this cryocooler 2a serves to liquefy N2 gas in order to produce the contact element 5a already in the variant of FIG 3a and 3b is shown to pre-cool. An inlet valve 20 controls the inflow of air to a nitrogen separator 21. The nitrogen already present in the air is first separated from the remaining gases by means of the nitrogen separator 21, before it is led to a heat exchanger 22 and liquefied there. The heat exchanger 22 is thermally connected to a cold head 2b of the first stage of the cryocooler 2a, whereby it is cooled down to the required temperature. The liquefied nitrogen is then passed by means of a pump 23 through an outlet valve 24 , which serves to control the nitrogen liquefied in the heat exchanger 22, and conveyed into the dewar vessel 11. The valves 20, 24 allow the switching on and off of nitrogen liquefaction. If the valves 12, 13 for pre-cooling of the contact element 5a are opened or closed, then the valves 20, 24 are closed or opened. A cold head 2c of the second stage of the cryocooler 2a takes over the contacting of the contact element 5a analogous to the cold head 1 b in Fig. 2a, 2b ,

Fig.4 zeigt eine weitere Variante des erfindungsgemäßen Messmoduls, bei dem keine bewegten mechanischen Teile innerhalb des Vakuumbereiches benötigt werden. Der Wärmefluss zwischen dem Kaltkopf 1 b und dem Kontaktelement 5b wird dadurch geändert, dass zwischen beiden Elementen ein Verbindungselement 31 eingebaut ist, das permanent in enger thermischer Verbindung mit dem Kaltkopf 1b und dem Kontaktelement 5b steht. Das Verbindungselement 31 weist mindestens einen Hohlraum auf, in den ein bei kryogenen Temperaturen gut leitendes Gas hinein gepresst oder wieder herausgepumpt wird, wodurch der Wärmefluss zwischen dem Kaltkopf und dem Kontaktelement groß resp. klein wird. Figure 4 shows a further variant of the measuring module according to the invention, in which no moving mechanical parts needed within the vacuum range become. The heat flow between the cold head 1 b and the contact element 5 b is changed by the fact that between both elements, a connecting element 31 is installed, which is permanently in close thermal connection with the cold head 1 b and the contact element 5 b. The connecting element 31 has at least one cavity into which a well-conducting at cryogenic temperatures gas is pressed or pumped out again, whereby the heat flow between the cold head and the contact element is large resp. gets small.

Wird nun das bei kryogenen Temperaturen gut leitende Gas (z.B. He) in das Verbindungselement 31 oder von diesem weg geleitet, so vergrößert bzw. verkleinert sich die thermische Leitfähigkeit des Verbindungselementes 31. Beim Hineinpressen des Gases erreicht man auf diese Weise eine Vergrößerung des Wärmeflusses zwischen dem Kontaktelement 5b und dem Kaltkopf 1 b, so dass das Kontaktelement 5b und mit ihm auch das Messobjekt 6 abgekühlt werden.If now the well-conducting gas at cryogenic temperatures (eg He) in the connecting element 31 or away, then increases or decreases, the thermal conductivity of the connecting element 31. When pressing in the gas is achieved in this way an increase in the heat flow between the contact element 5b and the cold head 1 b, so that the contact element 5b and with it also the measurement object 6 are cooled.

Das Verbindungselement 31 ist über ein Einlassventil 33 mit einer Gasdruckflasche 37 und über ein Auslassventil 34 mit einer Vakuum-Pumpe 32 verbunden. Zum Abkühlen des Messobjektes 6 wird das Einlassventil 33 geöffnet, das Auslassventil 34 geschlossen, und das Verbindungselement 31 über die Gasdruckflasche 37 mit Gas gefüllt. Dadurch wird die thermische Leitfähigkeit des Verbindungselementes groß, und als Folge davon das Kontaktelement 5b sowie das Messobjekt 6 abgekühlt. Wenn das Messobjekt 6 die gewünschte Temperatur erreicht hat, wird seine Temperatur mit dem Sensor 35a und dem Heizer 7 geregelt.The connecting element 31 is connected via an inlet valve 33 to a gas pressure cylinder 37 and via an outlet valve 34 to a vacuum pump 32 . To cool the measuring object 6, the inlet valve 33 is opened, the outlet valve 34 is closed, and the connecting element 31 is filled with gas via the gas pressure cylinder 37. As a result, the thermal conductivity of the connecting element becomes large, and as a result, the contact element 5b and the measuring object 6 are cooled. When the measuring object 6 has reached the desired temperature, its temperature is controlled by the sensor 35 a and the heater 7.

Zum Aufwärmen des Messobjektes 6 wird das Einlassventil 33 geschlossen und das Auslassventil 34 geöffnet. Danach wird das Verbindungselement 31 mit der Vakuum-Pumpe 32 leer gepumpt, wodurch die thermische Leitfähigkeit des Verbindungselementes 31 wieder klein wird, und das Kontaktelement 5b mit Hilfe des Heizers 7 problemlos wieder aufgewärmt werden kann.For warming up the measurement object 6, the inlet valve 33 is closed and the outlet valve 34 is opened. Thereafter, the connecting element 31 is pumped empty with the vacuum pump 32, whereby the thermal conductivity of the connecting element 31 is again small, and the contact element 5 b can be reheated with the help of the heater 7 easily.

Durch die erfindungsgemäße Abtrennung von Messkammer 4 und Kühlkammer 3 wird eine optimale Isolation der Messkammer 4 vom Kaltkopf 1 b, 2c realisiert, sobald der Kaltkopf 1 b, 2c vom Kontaktelement 5a, 5b wegbewegt wird. Das erfindungsgemäße Messmodul 10a, 10b, 10c mit dem erfindungsgemäßen Zweikammer-System hat den Vorteil, dass der Kryokühler 1 a, 2a während des Kühlens oder Aufwärmens des Messobjektes 6 immer kalt bleibt. Dadurch werden die Abkühlraten für das Messobjekt 6 kürzer, weil der Kryokühler 1 a, 2a nicht von neuem abgekühlt werden muss, und zudem wird eine unnötige thermische Belastung des Kryokühlers 1 a, 2a vermieden. Das erfindungsgemäße Messmodul und damit auch die erfindungsgemäße Messeinrichtung besitzt eine hohe Flexibilität, da das Kontaktelement 5a, 5b je nach Anwendung leicht angepasst oder gewechselt werden kann.The inventive separation of the measuring chamber 4 and the cooling chamber 3 optimum isolation of the measuring chamber 4 from the cold head 1 b, 2c realized as soon as the cold head 1 b, 2c of the contact element 5a, 5b is moved away. The invention Measuring module 10a, 10b, 10c with the two-chamber system according to the invention has the advantage that the cryocooler 1a, 2a always remains cold during the cooling or warming up of the measurement object 6. As a result, the cooling rates for the measurement object 6 become shorter, because the cryocooler 1 a, 2 a does not have to be cooled down anew, and, moreover, an unnecessary thermal load of the cryocooler 1 a, 2 a is avoided. The measuring module according to the invention and thus also the measuring device according to the invention has a high flexibility, since the contact element 5a, 5b can be easily adapted or changed depending on the application.

ReferenzlisteReferences

  1. [1] Patent EP 0 878 718 A1 : NMR-Messvorrichtung mit gekühltem Messkopf[1] Patent EP 0 878 718 A1 : NMR measuring device with cooled measuring head
  2. [2] http://www.lakeshore.com/desertcryo/custom/index.html[2] http://www.lakeshore.com/desertcryo/custom/index.html
  3. [3] J.B Johnson, Thermal agitation of electricity in conductors, Phys. Rev., vol.32, pp.97-109, 1928 [3] JB Johnson, Thermal agitation of electricity in conductors, Phys. Rev., vol.32, pp. 97-109, 1928
  4. [4] H. Nyquist, Thermal agitation of electricity in conductors, Phys. Rev., vol.32, pp.110-113, 1928 [4] H. Nyquist, Thermal agitation of electricity in conductors, Phys. Rev., vol.32, pp.110-113, 1928
BezugszeichenlisteLIST OF REFERENCE NUMBERS

1a1a
einstufiger Kryokühlersingle-stage cryocooler
1b1b
Kaltkopf des einstufigen KryokühlersCold head of the single-stage cryocooler
2a2a
Zweistufiger KryokühlerTwo-stage cryocooler
2b2 B
Kaltkopf der ersten Stufe des zweistufigen KryokühlersCold head of the first stage of the two-stage cryocooler
2c2c
Kaltkopf der zweiten Stufe des zweistufigen KryokühlersCold stage of the second stage of the two-stage cryocooler
33
Kühlkammercooling chamber
44
Messkammermeasuring chamber
4'4 '
Kammer (Stand der Technik)Chamber (prior art)
5a5a
Kontaktelement mit WärmetauscherContact element with heat exchanger
5b5b
Kontaktelementcontact element
5'5 '
Kontaktelement (Stand der Technik)Contact element (prior art)
5"5 '
Kontaktelement (Stand der Technik)Contact element (prior art)
66
Messobjektmeasurement object
77
Heizerstoker
88th
Antriebdrive
9a9a
erste Kontaktfläche des Kontaktelementsfirst contact surface of the contact element
9b9b
zweite Kontaktfläche des Kontaktelementssecond contact surface of the contact element
10a10a
Messmodulmeasurement module
10b10b
Messmodulmeasurement module
10c10c
Messmodulmeasurement module
10d10d
Messmodulmeasurement module
10'10 '
Messmodul (Stand der Technik)Measuring module (prior art)
10"10 "
Messmodul (Stand der Technik)Measuring module (prior art)
1111
Dewar-GefäßDewar
1212
Einlassventil für VorkühlungInlet valve for pre-cooling
1313
Auslassventil für VorkühlungExhaust valve for pre-cooling
2020
Einlassventil für StickstoffverflüssigungInlet valve for nitrogen liquefaction
2121
Stickstoffseparatornitrogen separator
2222
Wärmetauscher für die StickstoffverflüssigungHeat exchanger for nitrogen liquefaction
2323
Pumpepump
2424
Auslassventil für das flüssige StickstoffExhaust valve for the liquid nitrogen
3131
Verbindungselementconnecting element
3232
Vakuum-PumpeVacuum pump
3333
Einlassventilintake valve
3434
Auslassventil.Exhaust valve.
35a35a
Temperatur-SensorTemperature Sensor
3636
Controllercontroller
3737
GasdruckflascheGas bottle

Claims (8)

Messmodul zur Messung und Prüfung eines Messobjektes (6) mit einer evakuierbaren Messkammer (4) zur Aufnahme des Messobjekts (6), mit einem Kontaktelement (5a, 5b), wobei das Messobjekt (6) während des Mess- und/oder Prüfvorganges mit einer ersten Kontaktfläche (9a) des Kontaktelementes (5a, 5b) thermisch verbunden ist, und mit mindestens einem Kaltkopf (1b, 2b, 2c), der mit einer zweiten Kontaktfläche (9b) des Kontaktelementes (5a, 5b) thermisch verbunden werden kann,
wobei der Kaltkopf (1b, 2b, 2c) mit Hilfe eines aus mindestens einer Kältestufe bestehenden Kryokühlers (1a, 2a) bis hinunter auf kryogene Temperaturen gekühlt werden kann,
wobei das Kontaktelement (5a, 5b) aus thermisch gut leitendem Material besteht, und die erste und zweite Kontaktfläche (9a,9b) auf gegenüber liegenden Seiten des Kontaktelementes (5a, 5b) liegen, und
wobei sich der Kaltkopf und das Kontaktelement (5a, 5b) während des Mess- und/oder Prüfvorganges in einer evakuierbaren Umgebung befinden und miteinander thermisch leitend verbunden sind,
dadurch gegenzeichnet,
dass der Kryokühler (1a, 2a) samt Kaltkopf in einer Kühlkammer (3) untergebracht ist, welche von der Messkammer (4) räumlich getrennt und unabhängig von dieser evakuierbar ist,
dass das Kontaktelement (5a, 5b) thermisch isoliert von der Außenwand des Messmoduls befestigt, Teil einer Trennwand zwischen der Messkammer (4) und der Kühlkammer (3) ist und eine lokale thermische Verbindung von der Messkammer (4) zur Kühlkammer (3) herstellt, und
dass eine Kontaktierungseinrichtung zur Änderung des Wärmeflusses im hermetisch geschlossenen Zustand des Messmoduls vorgesehen ist, mit deren Hilfe der Wärmefluss zwischen dem Kaltkopf (1b, 2b, 2c) und dem Kontaktelement (5a, 5b) entweder hergestellt oder stark vergrößert, oder unterbrochen oder stark verkleinert werden kann.
Measuring module for measuring and testing a measuring object (6) with an evacuable measuring chamber (4) for receiving the measuring object (6), with a contact element (5a, 5b), wherein the measuring object (6) during the measuring and / or testing process with a first contact surface (9a) of the contact element (5a, 5b) is thermally connected, and having at least one cold head (1b, 2b, 2c) which can be thermally connected to a second contact surface (9b) of the contact element (5a, 5b),
wherein the cold head (1b, 2b, 2c) can be cooled down to cryogenic temperatures by means of a cryocooler (1a, 2a) consisting of at least one cold stage,
wherein the contact element (5a, 5b) consists of thermally highly conductive material, and the first and second contact surface (9a, 9b) lie on opposite sides of the contact element (5a, 5b), and
wherein the cold head and the contact element (5a, 5b) are in an evacuable environment during the measuring and / or testing process and are connected to one another in a thermally conductive manner,
thereby countersigned,
that the cryocooler (1a, 2a) together with the cold head is accommodated in a cooling chamber (3), which is spatially separated from the measuring chamber (4) and can be evacuated independently of it,
the contact element (5a, 5b) is thermally insulated from the outer wall of the measuring module, is part of a partition wall between the measuring chamber (4) and the cooling chamber (3) and establishes a local thermal connection from the measuring chamber (4) to the cooling chamber (3) , and
a contacting device is provided for changing the heat flow in the hermetically closed state of the measuring module, with the aid of which the heat flow between the cold head (1b, 2b, 2c) and the contact element (5a, 5b) is either produced or greatly enlarged, or interrupted or greatly reduced can be.
Messmodul nach Anspruch 1, dadurch gekennzeichnet, dass die Kontaktierungseinrichtung einen pneumatischen, hydraulischen oder elektrischen Antrieb (8), oder eine Kombination davon, oder einen Handantrieb umfasst, mit dem der Kaltkopf (1b, 2b, 2c) und das Kontaktelement (5a, 5b) mechanisch aufeinander zu oder voneinander weg bewegt werden können, wobei der Kaltkopf (1b, 2b, 2c) und das Kontaktelement (5a, 5b) entweder gegeneinander gedrückt oder räumlich getrennt werden, so dass der Wärmefluss zwischen ihnen vergrößert bzw. verkleinert wird.Measuring module according to claim 1, characterized in that the contacting device comprises a pneumatic, hydraulic or electric drive (8), or a combination thereof, or a manual drive, with which the cold head (1b, 2b, 2c) and the contact element (5a, 5b ) can be moved towards or away from each other mechanically, wherein the cold head (1b, 2b, 2c) and the contact element (5a, 5b) either pressed against each other or spatially separated, so that the heat flow between them is increased or decreased. Messmodul nach Anspruch 1, dadurch gekennzeichnet,
dass die Kontaktierungseinrichtung ein Verbindungselement (31) umfasst, das zwischen Kaltkopf (1b) und Kontaktelement (5b) angeordnet ist und permanent in enger thermischer Verbindung mit dem Kaltkopf (1b) und dem Kontaktelement (5b) steht, und
dass das Verbindungselement (31) mindestens einen Hohlraum aufweist, der mit einem bei kryogenen Temperaturen gut leitendem Fluid gefüllt werden kann, wodurch die thermische Leitfähigkeit des Verbindungselementes (31) und dadurch auch der Wärmefluss zwischen dem Kaltkopf (1b) und dem Kontaktelement (5b) geändert werden kann.
Measuring module according to claim 1, characterized
that the contacting device comprises a connecting element (31) which is arranged between cold head (1b) and contact element (5b) and is permanently in close thermal connection with the cold head (1b) and the contact element (5b), and
in that the connecting element (31) has at least one cavity which can be filled with a fluid which conducts well at cryogenic temperatures, whereby the thermal conductivity of the connecting element (31) and thereby also the heat flow between the cold head (1b) and the contact element (5b) can be changed.
Messmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kontaktelement (5a) einen Wärmetauscher umfasst, der mit einem kryogenen Fluid, insbesondere flüssigem Stickstoff oder flüssigem Helium, betrieben wird und zur Vorkühlung des Kontaktelementes dient.Measuring module according to one of the preceding claims, characterized in that the contact element (5a) comprises a heat exchanger, which is operated with a cryogenic fluid, in particular liquid nitrogen or liquid helium, and serves for precooling of the contact element. Messmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Temperatursensor (35) und mindestens ein Heizer (7) vorgesehen ist, die zur Regelung der Temperatur des Kontaktelementes (5a, 5b) dienen.Measuring module according to one of the preceding claims, characterized in that at least one temperature sensor (35) and at least one heater (7) is provided, which serve to regulate the temperature of the contact element (5a, 5b). Messmodul nach einem den vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kryokühler (2a) zwei Stufen mit jeweils einem Kaltkopf (2b, 2c) aufweist, wobei der Kaltkopf (2b) der ersten Stufe mit einem Wärmetauscher (22), der zur Verflüssigung von Stickstoff-Gas dient, thermisch verbunden ist.Measuring module according to one of the preceding claims, characterized in that the cryocooler (2a) has two stages, each with a cold head (2b, 2c), wherein the cold head (2b) of the first stage with a heat exchanger (22) for the liquefaction of nitrogen -Gas serves, is thermally connected. Messeinrichtung mit einem Messmodul nach Anspruch 3, dadurch
gekennzeichnet, dass Vorrichtungen (23, 37) zum Zuführen und Abpumpen eines bei kryogenen Temperaturen gut leitendem Fluid in den bzw. aus dem Hohlraum des Verbindungselements (31) vorgesehen sind, wodurch der Wärmefluss zwischen dem Kaltkopf (1b) und dem Kontaktelement (5b) vergrößert bzw. verkleinert werden kann.
Measuring device with a measuring module according to claim 3, characterized
in that devices (23, 37) for supplying and pumping out a fluid which conducts well at cryogenic temperatures are provided in or out of the cavity of the connecting element (31), whereby the heat flow between the cold head (1b) and the contact element (5b) can be increased or decreased.
Messeinrichtung mit einem Messmodul nach Anspruch 6 und 3, dadurch gekennzeichnet, dass die erste Stufe des Kryokühlers (2a) über den Wärmetauscher (22) mit einem Stickstoffseparator (21) verbunden ist, durch den das Stickstoff -Gas direkt aus der Luft gewonnen und dem Wärmetauscher (22) zugeführt werden kann.Measuring device with a measuring module according to claim 6 and 3, characterized in that the first stage of the cryocooler (2a) via the heat exchanger (22) is connected to a nitrogen separator (21) through which the nitrogen gas obtained directly from the air and the Heat exchanger (22) can be supplied.
EP08020788.9A 2007-12-05 2008-11-29 Measuring module for quick measuring of electrical, electronic and mechanical components at cryogenic temperatures and measuring device with such a measuring module Active EP2068103B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007055712A DE102007055712A1 (en) 2007-12-05 2007-12-05 Measuring module for rapid measurement of electrical, electronic and mechanical components at cryogenic temperatures and measuring device with such a measuring module

Publications (3)

Publication Number Publication Date
EP2068103A2 true EP2068103A2 (en) 2009-06-10
EP2068103A3 EP2068103A3 (en) 2018-03-21
EP2068103B1 EP2068103B1 (en) 2020-08-19

Family

ID=40404249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08020788.9A Active EP2068103B1 (en) 2007-12-05 2008-11-29 Measuring module for quick measuring of electrical, electronic and mechanical components at cryogenic temperatures and measuring device with such a measuring module

Country Status (3)

Country Link
US (1) US7667476B2 (en)
EP (1) EP2068103B1 (en)
DE (1) DE102007055712A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513151A (en) * 2013-04-17 2014-10-22 Siemens Plc Improved thermal contact between cryogenic refrigerators and cooled components
NL1040379C2 (en) * 2013-09-06 2015-03-09 Janssen Prec Engineering Actuated thermal switch.
CN112986730A (en) * 2021-02-08 2021-06-18 国网内蒙古东部电力有限公司呼伦贝尔供电公司 Distribution transformer handover test movable detection device suitable for extremely cold environment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715444B2 (en) * 2011-02-28 2015-05-07 東京エレクトロン株式会社 Mounting device
JP5947023B2 (en) * 2011-11-14 2016-07-06 東京エレクトロン株式会社 Temperature control apparatus, plasma processing apparatus, processing apparatus, and temperature control method
US10041894B1 (en) * 2015-09-09 2018-08-07 Amazon Technologies, Inc. Thermal conductivity measurement of anisotropic substrates
US10126359B2 (en) * 2017-01-12 2018-11-13 Sensata Technologies Free piston stirling cooler temperature control system for semiconductor test
JP6770758B2 (en) * 2019-01-15 2020-10-21 株式会社 Synax Contactor and handler
US11619691B2 (en) * 2019-05-02 2023-04-04 General Electric Company Integrated cooling circuit for use with a superconducting magnet
CN117387816A (en) * 2023-10-18 2024-01-12 中国原子能科学研究院 Temperature adjusting device and neutron diffraction residual stress measuring system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878718A1 (en) 1997-05-16 1998-11-18 Spectrospin Ag MNR measuring device with cooled probe head

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1375434A (en) * 1971-01-28 1974-11-27
US4115736A (en) * 1977-03-09 1978-09-19 The United States Of America As Represented By The Secretary Of The Air Force Probe station
US4438632A (en) * 1982-07-06 1984-03-27 Helix Technology Corporation Means for periodic desorption of a cryopump
JP2960677B2 (en) * 1996-02-27 1999-10-12 長瀬産業株式会社 Testing equipment using a refrigerator
US6191599B1 (en) * 1998-10-09 2001-02-20 International Business Machines Corporation IC device under test temperature control fixture
US6184504B1 (en) * 1999-04-13 2001-02-06 Silicon Thermal, Inc. Temperature control system for electronic devices
JP2002043381A (en) * 2000-07-19 2002-02-08 Tokyo Electron Ltd Water temperature controller
US6628131B1 (en) * 2000-11-06 2003-09-30 Intel Corporation Test unit and enclosure for testing integrated circuits
JP4749661B2 (en) * 2003-10-15 2011-08-17 住友重機械工業株式会社 Refrigerator mounting structure and maintenance method of superconducting magnet device for single crystal pulling device
US7397258B2 (en) * 2005-09-15 2008-07-08 Advantest Corporation Burn-in system with heating blocks accommodated in cooling blocks
US8307665B2 (en) * 2006-04-06 2012-11-13 National Institute Of Advanced Industrial Science And Technology Sample cooling apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878718A1 (en) 1997-05-16 1998-11-18 Spectrospin Ag MNR measuring device with cooled probe head

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. NYQUIST: "Thermal agitation of electricity in conductors", PHYS. REV., vol. 32, 1928, pages 110 - 113
J.B JOHNSON: "Thermal agitation of electricity in conductors", PHYS. REV., vol. 32, 1928, pages 97 - 109, XP055331476, DOI: doi:10.1103/PhysRev.32.97

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513151A (en) * 2013-04-17 2014-10-22 Siemens Plc Improved thermal contact between cryogenic refrigerators and cooled components
GB2513151B (en) * 2013-04-17 2015-05-20 Siemens Plc Improved thermal contact between cryogenic refrigerators and cooled components
NL1040379C2 (en) * 2013-09-06 2015-03-09 Janssen Prec Engineering Actuated thermal switch.
CN112986730A (en) * 2021-02-08 2021-06-18 国网内蒙古东部电力有限公司呼伦贝尔供电公司 Distribution transformer handover test movable detection device suitable for extremely cold environment

Also Published As

Publication number Publication date
EP2068103B1 (en) 2020-08-19
EP2068103A3 (en) 2018-03-21
DE102007055712A1 (en) 2009-06-18
US7667476B2 (en) 2010-02-23
US20090146676A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
EP2068103B1 (en) Measuring module for quick measuring of electrical, electronic and mechanical components at cryogenic temperatures and measuring device with such a measuring module
EP1736723B1 (en) Cryostatic device with cryocooler
EP1655616B1 (en) Refrigerator-cooled NMR spectrometer
EP0878718B1 (en) MNR measuring device with cooled probe head
EP1628109B1 (en) Cryostat arrangement
EP1617157A2 (en) Cryostatic device with cryocooler and gas slit heat exchanger
EP3282270B1 (en) Nmr apparatus with superconducting magnet assembly and cooled sample head components
DE19548273A1 (en) NMR measuring device with pulse tube cooler
DE112011100875T5 (en) Method and apparatus for controlling the temperature in a cryostat cooled to cryogenic temperatures using stagnant and moving gas
DE102015215919B4 (en) Method and device for precooling a cryostat
EP3282269B1 (en) Nmr apparatus with cooled sample head components which can be inserted through a vacuum lock into the cryostat of a superconducting magnet arrangement and method for its assembly and disassembly
DE102007013350B4 (en) Power supply with high-temperature superconductors for superconducting magnets in a cryostat
DE3642683A1 (en) CRYSTATURE FOR COOLING A DETECTOR
EP2320244A1 (en) Cooling device for cryogenic cooling of an NMR detection system with the help of a container filled with cryogenic fluid
DE4242642C2 (en) Heat pumping process and heat pump, in particular for generating cryogenic temperatures
DE102009027429A1 (en) Method for cooling a cryostat arrangement during transport and cryostat arrangement with transport refrigeration unit
AT412910B (en) COOLING DEVICE FOR CELLS CONTAINING MORE OR LESS VISCOSE LIQUID SAMPLES
DE102019126793A1 (en) TEMPERATURE CONTROL AND / OR CONTROL DEVICE AND TEMPERATURE CONTROL AND / OR CONTROL METHOD
DE102010038713B4 (en) High-field NMR with excess cooling power and integrated helium re-liquefaction
DE3435229C2 (en)
DE202005008751U1 (en) Refrigeration dryer for a gas
WO2001035034A1 (en) Cryogenic cooling device
EP2662647A2 (en) Refrigeration and/or freezer device
WO2019121936A1 (en) Device for examining an atmosphere and use of the device
DE202017103071U1 (en) fluid cooler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 19/00 20060101AFI20180215BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180927

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: RS

Extension state: MK

Extension state: AL

Extension state: BA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191002

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRUKER SWITZERLAND AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008017127

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1304398

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008017127

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

26N No opposition filed

Effective date: 20210520

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201129

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201129

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1304398

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211122

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20211123

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201219

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008017127

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601