EP2067359A2 - Verfahren zur datenkompression in einer videosequenz - Google Patents

Verfahren zur datenkompression in einer videosequenz

Info

Publication number
EP2067359A2
EP2067359A2 EP07820023A EP07820023A EP2067359A2 EP 2067359 A2 EP2067359 A2 EP 2067359A2 EP 07820023 A EP07820023 A EP 07820023A EP 07820023 A EP07820023 A EP 07820023A EP 2067359 A2 EP2067359 A2 EP 2067359A2
Authority
EP
European Patent Office
Prior art keywords
motion
vector
computer program
candidate
video sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07820023A
Other languages
German (de)
English (en)
French (fr)
Inventor
Ulrich-Lorenz Benzler
Steffen Kamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2067359A2 publication Critical patent/EP2067359A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/567Motion estimation based on rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/31Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the temporal domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the invention relates to a method for data compression in a video sequence, a
  • motion compensation is a significant factor in the compression performance.
  • motion estimation performed in motion compensation i. determining the motion parameters of a video sequence is very computationally intensive and most of the time in the encoding process
  • Video coding standards such as MPEG-1/2/4 and H.264 / AVC, use so-called block-based motion compensation in which individual images are divided into rectangularly partitioned pixel areas and an offset one
  • Block from a reference image is used as a prediction or prediction for each partition.
  • the coder encodes only the displacement, namely a former an. Motion vector, for each area and a structural deviation that represents the difference between the actual coded area and the prediction.
  • SVC scalable video coding
  • B slices hierarchical bi-directionally predicted pictures
  • Fast motion estimation algorithms can significantly reduce the number of computational steps, though minimizing compression efficiency. Compared to motion picture vector search, such algorithms reduce the set of motion vectors to be tested to save search patterns. A search pattern centered around the best vector candidate can be used.
  • MVP Motion Vector Predictor
  • a correlation between temporally adjacent vectors can also be estimated due to a slowly varying content within individual scenes.
  • Many methods of beam estimation use a motion vector predictor as the initial vector around which the search algorithm is centered.
  • Another approach is to use only a set of candidates consisting of motion vector predictors and vectors derived therefrom.
  • the invention relates to a method for data compression in a video sequence in which results of a motion estimation of a preceding temporal decomposition stage are used for motion compensation.
  • the results are used to predict vector candidates for the next decomposition stage, since the computational effort of motion estimation algorithms, especially when the time interval between pictures is large, is very high, which is the case, for example, with scalable video coding. It is thus envisaged to use a predictive motion estimation algorithm that includes a
  • Movement correlation is used, which is particularly in a scalable video coding, based on motion-compensated temporal filtering or the use of so-called open hierarchical bidirectionally predicted images.
  • the proposed algorithm significantly reduces the amount of computation
  • Motion estimation stage The objective and visual quality largely corresponds to that of known, comprehensive complete search algorithms.
  • the algorithm comprises a candidate set of (exact) full-pixel motion vectors for forward and backward prediction and
  • Prediction of each (sub) partition of a macroblock Prediction of each (sub) partition of a macroblock. Computation of the motion vector candidates requires access to vectors from either the current image or previously estimated image vector fields.
  • the individual candidates of the full pixel candidate set S are selected as follows:
  • Vector vector predictors are also included, as far as they are available. If the neighbor on the top right does not exist, the neighbor on the top left is used instead.
  • the temporal vector candidates for forward and backward estimation are derived in various ways because of the availability of previously determined motion vectors.
  • Backward motion vector candidates are inverted forward
  • Derived motion vectors of the current image Therefore, only motion vectors from above or to the left of the current macroblock are used due to causality constraints.
  • Two previously stored motion vectors of the left and right macroblocks relative to the current macroblock are selected as temporal vector candidates.
  • For forward motion vectors the situation is different because each of the forward motion vectors from the already estimated motion vector field of the previous frame can be used as a candidate.
  • the selected forward candidates are the inverted motion vectors of the stored motion field and are obtained from the neighbors to the right and left of the co-located macroblock.
  • the temporal interlayer vector candidates are intended to improve vector prediction. This is the case in particular in connection with a motion-compensated temporal filter or with open hierarchical bidirectionally predicted images. At each temporal decomposition stage, the time interval between doubles motion-compensated images. This would actually require an increased motion vector search range for the motion estimation. However, it is possible to combine motion vectors from earlier stages to predict movement at later stages.
  • a candidate for the temporal shift 1 is based on a pair with a forward and a backward
  • Vector set S is provided by adding each vector from the set S to a randomly selected vector T 1 , resulting in a final vector set S fma i:
  • the best candidate for the motion vector is determined by minimizing a cost function for all unique vectors of the final vector set. Subsequent full-pixel refinement of a pattern search for the best motion vector candidates may also be performed.
  • sub-pixel refinement is finally performed by evaluating the eight surrounding half-pixel locations and then by testing the eight quarter-pixel locations for the best half-pixel candidate.
  • the data rate-to-image distortion ratio cost can be compared from the two unidirectional modes and the bidirectional mode, using the two best unidirectional motion vectors without further bidirectional refinement.
  • the invention further relates to a computer program with program code means in order to perform all the steps of a method according to the invention when the computer program is executed on a computer or a corresponding arithmetic unit.
  • the invention also relates to a computer program product with program code means which are stored on a computer-readable data carrier in order to carry out all the steps of a method according to the invention when the computer program is executed on a computer or a corresponding computer unit.
  • FIG. 1 shows two different candidate assignment schemes to illustrate the method according to the invention.
  • FIG. 2 shows the generation of a motion vector set on the basis of various information sources for a motion estimation.
  • Figure 3 shows an embodiment of the arrangement according to the invention in a schematic representation.
  • FIG. 1 shows various assignment schemes for candidates for the temporal intermediate layer.
  • a first frame 10 for the vector set s 14 2t - 2 a second frame 12 for the vector set S 14 2M and a third
  • Frame 4 for the vector set s 14 2t shown.
  • a fourth frame 16 for the vector set SVI and a fifth frame 18 for the vector set s' t are illustrated.
  • a candidate for a vector is determined for a block 20 with vector 21 V f Wd from the frame 10 and vector 22 Vbwd from the frame 14.
  • a candidate for the temporal layer 1 is thus determined based on a stored pair of forward and backward motion vectors from the previous temporal decomposition stage 1-1.
  • Figure 2 shows the generation of a motion vector candidate set 30 from various sources of information for fast and efficient
  • Motion estimation The various sources of information are a present frame 32 with a lower resolution, a previously encoded frame 34 possibly taken from a different temporal slice, and a current frame 36 with a higher spatial resolution.
  • a first dashed line 38 illustrates the inclusion of a vector 40 scaled to a higher spatial resolution in the list 30.
  • a block 42 provided in the current frame 36 shows the current macroblock 42.
  • FIG. 3 an embodiment of the arrangement according to the invention is shown as a whole with the reference numeral 50.
  • This arrangement 50 comprises a computing unit 52, a memory device 54 and an input / output unit 56, which are connected to one another via data lines 58.
  • the method for data compression is performed, wherein to be compressed data or video sequences can be received via the input / output unit 56 and also forwarded again after the compression.
  • the arithmetic unit 52 may also be provided for decompressing compressed data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Color Television Systems (AREA)
EP07820023A 2006-09-18 2007-09-04 Verfahren zur datenkompression in einer videosequenz Withdrawn EP2067359A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006043707A DE102006043707A1 (de) 2006-09-18 2006-09-18 Verfahren zur Datenkompression in einer Videosequenz
PCT/EP2007/059209 WO2008034715A2 (de) 2006-09-18 2007-09-04 Verfahren zur datenkompression in einer videosequenz

Publications (1)

Publication Number Publication Date
EP2067359A2 true EP2067359A2 (de) 2009-06-10

Family

ID=39031129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07820023A Withdrawn EP2067359A2 (de) 2006-09-18 2007-09-04 Verfahren zur datenkompression in einer videosequenz

Country Status (7)

Country Link
US (1) US20100284465A1 (ja)
EP (1) EP2067359A2 (ja)
JP (1) JP2010504010A (ja)
KR (1) KR101383612B1 (ja)
CN (1) CN101518084B (ja)
DE (1) DE102006043707A1 (ja)
WO (1) WO2008034715A2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971209A (zh) * 2008-01-11 2011-02-09 卓然(法国) 超高分辨率视频处理的稀疏几何结构
JP5141633B2 (ja) * 2009-04-24 2013-02-13 ソニー株式会社 画像処理方法及びそれを用いた画像情報符号化装置
KR101671460B1 (ko) 2009-09-10 2016-11-02 에스케이 텔레콤주식회사 움직임 벡터 부호화/복호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
FR2959376A1 (fr) * 2010-04-22 2011-10-28 France Telecom Procede de traitement d'une information de mouvement, procedes de codage et de decodage, dispositifs, signal et programme d'ordinateur correspondants
GB2487200A (en) 2011-01-12 2012-07-18 Canon Kk Video encoding and decoding with improved error resilience
WO2012140821A1 (ja) 2011-04-12 2012-10-18 パナソニック株式会社 動画像符号化方法、動画像符号化装置、動画像復号化方法、動画像復号化装置、および動画像符号化復号化装置
EP3337172B1 (en) 2011-05-24 2020-09-09 Velos Media International Limited Image encoding method, image encoding apparatus
EP2717575B1 (en) 2011-05-27 2018-10-10 Sun Patent Trust Image decoding method and image decoding device
US9485518B2 (en) 2011-05-27 2016-11-01 Sun Patent Trust Decoding method and apparatus with candidate motion vectors
ES2779226T3 (es) 2011-05-31 2020-08-14 Sun Patent Trust Procedimiento de descodificación de vídeo y dispositivo de descodificación de vídeo
SG194746A1 (en) 2011-05-31 2013-12-30 Kaba Gmbh Image encoding method, image encoding device, image decoding method, image decoding device, and image encoding/decoding device
WO2013001818A1 (ja) 2011-06-30 2013-01-03 パナソニック株式会社 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置、および、画像符号化復号装置
IN2014CN00729A (ja) 2011-08-03 2015-04-03 Panasonic Corp
CN108881903B (zh) 2011-10-19 2022-01-04 太阳专利托管公司 图像编码方法及装置、图像解码方法及装置、编解码装置
TWI580259B (zh) * 2012-01-18 2017-04-21 Jvc Kenwood Corp Dynamic image decoding device, dynamic image decoding method, and dynamic image decoding program

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US699730A (en) * 1899-02-20 1902-05-13 John Werner Syrup-cooler.
US6510177B1 (en) * 2000-03-24 2003-01-21 Microsoft Corporation System and method for layered video coding enhancement
KR100727910B1 (ko) * 2000-10-11 2007-06-13 삼성전자주식회사 하이브리드형 고속 움직임 추정 방법 및 그 장치
KR100441509B1 (ko) * 2002-02-25 2004-07-23 삼성전자주식회사 주사포맷변환장치 및 방법
US7616692B2 (en) * 2003-09-07 2009-11-10 Microsoft Corporation Hybrid motion vector prediction for interlaced forward-predicted fields
US7620106B2 (en) * 2003-09-07 2009-11-17 Microsoft Corporation Joint coding and decoding of a reference field selection and differential motion vector information
US8064520B2 (en) * 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
US7606308B2 (en) * 2003-09-07 2009-10-20 Microsoft Corporation Signaling macroblock mode information for macroblocks of interlaced forward-predicted fields
US7567617B2 (en) * 2003-09-07 2009-07-28 Microsoft Corporation Predicting motion vectors for fields of forward-predicted interlaced video frames
US7599438B2 (en) * 2003-09-07 2009-10-06 Microsoft Corporation Motion vector block pattern coding and decoding
US7623574B2 (en) * 2003-09-07 2009-11-24 Microsoft Corporation Selecting between dominant and non-dominant motion vector predictor polarities
EP1741297A1 (en) * 2004-04-08 2007-01-10 Samsung Electronics Co., Ltd. Method and apparatus for implementing motion scalability
US7782951B2 (en) * 2004-05-13 2010-08-24 Ittiam Systems (P) Ltd. Fast motion-estimation scheme
US7623682B2 (en) * 2004-08-13 2009-11-24 Samsung Electronics Co., Ltd. Method and device for motion estimation and compensation for panorama image
DE102004059978B4 (de) * 2004-10-15 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Erzeugen einer codierten Videosequenz und zum Decodieren einer codierten Videosequenz unter Verwendung einer Zwischen-Schicht-Restwerte-Prädiktion sowie ein Computerprogramm und ein computerlesbares Medium
WO2006080662A1 (en) * 2004-10-21 2006-08-03 Samsung Electronics Co., Ltd. Method and apparatus for effectively compressing motion vectors in video coder based on multi-layer
KR100703740B1 (ko) * 2004-10-21 2007-04-05 삼성전자주식회사 다 계층 기반의 모션 벡터를 효율적으로 부호화하는 방법및 장치
US20060153300A1 (en) * 2005-01-12 2006-07-13 Nokia Corporation Method and system for motion vector prediction in scalable video coding
US8406303B2 (en) * 2005-12-15 2013-03-26 Analog Devices, Inc. Motion estimation using prediction guided decimated search
US8494052B2 (en) * 2006-04-07 2013-07-23 Microsoft Corporation Dynamic selection of motion estimation search ranges and extended motion vector ranges
JP2008109632A (ja) * 2006-09-28 2008-05-08 Toshiba Corp 動きベクトル検出装置及びその方法
US8451897B2 (en) * 2006-12-04 2013-05-28 Atmel Corporation Highly parallel pipelined hardware architecture for integer and sub-pixel motion estimation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008034715A2 *

Also Published As

Publication number Publication date
WO2008034715A2 (de) 2008-03-27
CN101518084A (zh) 2009-08-26
DE102006043707A1 (de) 2008-03-27
KR101383612B1 (ko) 2014-04-14
JP2010504010A (ja) 2010-02-04
KR20090074162A (ko) 2009-07-06
CN101518084B (zh) 2014-09-10
US20100284465A1 (en) 2010-11-11
WO2008034715A3 (de) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2008034715A2 (de) Verfahren zur datenkompression in einer videosequenz
DE69232993T2 (de) Prädiktives Videokodierungssystem
DE19825042C2 (de) Verfahren zur Bewegungsvektorcodierung bei MPEG-4
DE102010046508B4 (de) Verfahren und Vorrichtung, um einen Suchbereich für die Bewegungsabschätzung adaptiv auszuwählen
DE19734882C2 (de) Verfahren zum Kodieren von Bewegungsvektoren bei Filmaufnahmen
DE69632232T2 (de) Verfahren und Vorrichtung zur Komprimierung von Videoinformationen mit bewegungsabhängiger Prädiktion
DE10362106B3 (de) Direktmodus-Bewegungsvektor-Berechnungsverfahren für B-Bilder
DE69629137T2 (de) Bildkodierungsgerät und Bilddekodierungsgerät
DE69530336T2 (de) Bewegungskompensation für digitale Videosignale mit Zeilensprung
DE19704439C2 (de) Verfahren und Vorrichtung zur Bewegungsschätzung in einem digitalen Videocodierer unter Verwendung von Trajektorien
DE10362152B4 (de) Berechnungsverfahren für einen Vorhersage-Bewegungsvektor
DE19506372B4 (de) Bi-Direktionales Bewegungsschätzverfahren und ein dafür vorgesehenes Gerät
DE69635369T2 (de) Videokodierungsvorrichtung
DE102016125117A1 (de) Bewegungsvektorkodierung mit dynamischen Referenzbewegungsvektoren
DE102010025816A1 (de) Verfahren und Systeme zum Abschätzen von Bewegung basierend auf rekonstruierten Referenzframes bei einem Videodecoder
DE202017007520U1 (de) Bewegungskompensation durch maschinelles Lernen
DE602004001993T2 (de) Transformations basiertes restbewegungsrahmen kodierungsverfahren mit übervollständiger basis und zugehörige vorrichtung zur videokompression
EP1665805B1 (de) Verfahren zur transcodierung eines datenstroms, der ein oder mehrere codierte digitalisierte bilder umfasst mit intra-prädiktionsmodi
DE102016125604A1 (de) Intelligente Sortierung der rekursiven Blockaufteilung für die erweiterte Intra-Prädiktion bei der Videocodierung
DE602005000425T2 (de) Verfahren und Anordnung zur Erzeugung von Kandidatenvektoren für Bildinterpolierungssysteme, die Bewegungsabschätzung und -kompensation verwenden
DE4405803C2 (de) Verfahren zur Quellcodierung
EP0941613B1 (de) Verfahren zur bildcodierung eines digitalisierten bildes
DE10392466T5 (de) Verfahren zur Abschätzung von Rückwertsbewegungs-Vektoren innerhalb einer Videosequenz
DE19548451C1 (de) Verfahren zur rechnergestützten Bewegungsschätzung für Bildpunkte zeitlich aufeinander folgender Bilder einer Videosequenz
EP1110407B1 (de) Verfahren und anordnung zur codierung und decodierung eines digitalisierten bildes mit anwendung eines gesamtbewegungsvektors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090420

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20091123

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160401