EP2066831B1 - Electrolysis cell and method for operating the same - Google Patents
Electrolysis cell and method for operating the same Download PDFInfo
- Publication number
- EP2066831B1 EP2066831B1 EP07808629A EP07808629A EP2066831B1 EP 2066831 B1 EP2066831 B1 EP 2066831B1 EP 07808629 A EP07808629 A EP 07808629A EP 07808629 A EP07808629 A EP 07808629A EP 2066831 B1 EP2066831 B1 EP 2066831B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cathode
- current
- accordance
- cell
- electrolysis cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 9
- 239000004020 conductor Substances 0.000 claims abstract description 6
- 239000003792 electrolyte Substances 0.000 claims description 10
- 239000010406 cathode material Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 15
- 210000002445 nipple Anatomy 0.000 description 9
- 239000004411 aluminium Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001610 cryolite Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/16—Electric current supply devices, e.g. bus bars
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/65—Means for supplying current; Electrode connections; Electric inter-cell connections
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/08—Cell construction, e.g. bottoms, walls, cathodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
- C25C7/025—Electrodes; Connections thereof used in cells for the electrolysis of melts
Definitions
- the present invention relates to an electrolysis cell and a method for operating the same.
- the invention relates to electrical current distribution in a cell of the Hall-Héroult type for production of aluminium.
- Each cell is constituted by an insulated parallelepiped steel container supporting a cathode containing prebaked carbon blocks in which there are sealed some steel rods known as cathode current collector bars, which conduct the current out of the cell, traditionally approximately 50% from each of the long sides of the cell.
- the cathode current collector bars are connected to the busbar system, which serve to conduct the current from the cathodes towards the anodes of the following cell.
- the anode system composed of carbon, steel and aluminium, is fixed on a so-called “anode frame", with anode rods adjustable in height and electrically connected to the cathode rods of the preceding cell.
- the electrolyte that is the solution of alumina in a molten cryolite mixture at 940-980 °C, is located between the anode system and the cathode.
- the aluminium produced is deposited on the cathode surface.
- a layer of liquid aluminium is kept permanently on the bottom of the cathode crucible.
- the crucible is rectangular, the anode frame supporting the anodes is generally parallel to its large sides, whereas the cathode rods are parallel to its small sides known as cell heads.
- the main magnetic field in the cell is cremated by the current flow in the anode and the cathode system. All other current flows will give perturbations to this created main field.
- the cells are arranged in rows and can be disposed transversely in a side-by-side orientation; their short side is parallel to the axis of the potline. Alternatively, disposed longitudinally in an end-to-end orientation, their long side is parallel to the axis of the potline.
- one potline is represented by two rows of cells. The current has opposite directions in the two rows.
- the cells are connected electrically in series, the ends of the series being connected to the positive and negative outputs of an electric rectification and control substation.
- the current distribution through the anode system is mainly affected by the arrangement of the anodes in the cell, as well as the design of the stub configuration of the anode hanger and their interface with the individual anode.
- collector bars When it comes to the cathode system, it is normally designed in a manner where collector bars are embedded in individual cathode blocks in a horizontal manner. This technological solution has shown to be very reliable regarding problems with leakages of melt or bath through the cathode system. Further, the collector bars will be protected by the surrounding cathode material (carbon based material) that is highly resistant against high temperatures and corrosive attacks. Commonly, bus bars collect the current outside the cathode shell.
- One shortcoming by this prior art is that the current distribution in the cathode system will be more intensive in the periphery of the cathode blocks than elsewhere.
- the current should advantageously be distributed in a predefined manner, and at more appropriate areas of the cathode system, to obtain an even current distribution.
- the designer should have several degrees of freedom in the process of developing an optimum cathode system, using skill to select a configuration (topology), which can result in an optimum current distribution.
- NO-B-165203 discloses in its Fig. 1 an electrolysis cell with cathodic current outlet both in its sides and bottom.
- D1 discloses an aluminium reduction cell with a potlining which may be of alumina, with cathode current collectors embedded therein.
- the cell floor has an array of depressions with at least one collector at the bottom of each depression.
- the depressions are filled with metal wettable bodies such as 5-20 mm diameter balls of titanium diboride, sized to prevent the entry of electrolyte or sludge.
- the depressions may be elongate in a direction perpendicular to the horizontal magnetic field in the cell and further have an elliptical shape.
- the collectors are embedded in the cathode without being wetted by the metal in the cell. Further, the vertical collector part is provided with a horizontal part that is embedded in the cathode material and that picks up current via the cathode material.
- the present invention includes the application of vertical current leads of an optimised design. Further, the current leads (current outlets) can advantageously be electrically connected to horizontal collector bar elements that may extend partly or wholly through the cathode block. In the latter, its outermost end(-s) can be connected to the bus bar system for the cell.
- the preferred, tapered (wedge shaped or conical) design of the current leads has shown to be optimal with regard to expansion and bending of the collector bar elements, which normally is of a current leading metal.
- the angle of the tapered outlet is chosen based on considerations of mechanical strength, voltage drop and heat loss, and is preferably in the range of 5-15° relative to the vertical plane.
- the preferred cathodic current distribution will depend on characteristic of the busbar system. It can be quite different for retrofitting the invention to existing busbar systems on one hand, or for a new busbar system design on the other hand. Hence, the preferred amount of current conducted out of the vertical outlets can be within the range 20-100 %, with 100 % representing a design with only vertical outlets.
- the amount of current leads can be relatively low, for instance in an embodiment applying a commonly used amount of horizontal collector bars.
- the MHD effects in an electrolysis cell can be improved, and it is possible to simplify the bus bar design of said cell by reducing its weight. As a consequence the investment costs can be reduced.
- an optimised cathode current distribution system can be achieved that overcomes main shortcomings of prior art designs. Further, the accompanying claims define a method to operate a cell with improved cathode current distribution.
- the purpose of the described designs is to obtain a low cathode voltage drop and an even or flat current distribution at the cathode block surface.
- the corresponding collector bar design will also give possibility for a simplified busbar system (less weight and thereby cheaper) compared to a conventional collector bar design.
- a key factor for success is the details around the vertical current outlets. During operation the cathode block will bend and heave upwards. The vertical collector bars must then also be allowed to slide upwards, otherwise the vertical outlets will be tom off the horizontal collector bars.
- FIG. 1 there is shown a collector bar design of an electrolysis cell 1 with anode arrangements 2, 3 and a cathode block 4.
- the Figure discloses current outlets in the bottom part of the cell.
- the cell may have both horizontal 5, 5' and vertical 6, 6' current outlets.
- the outlet has one vertical outlet 25 to be connected with the cell's bus bar system (not shown).
- the vertical outlet 25 is connected to one horizontal collector part 23 that is embedded in one cathode block 4.
- the vertical and the horizontal parts can be made out of one piece for instance by casting, or it can be produced out of two separate parts interconnected by welding or similar joining methods that ensure good electrical conducting properties.
- the parts can consist of steel or any other appropriate material.
- the vertical outlet is penetrating the bottom part of the cathode structure.
- the cathode structure comprises (from above) one cathode block 4, two or more layers of bricks 20-21 having the appropriate thermal and chemical properties, and the pot shell 22, normally made out of steel plates.
- the pot shell may have a lowered section in the region of the outlet (not shown).
- the vertical outlet penetrates the various layers through one hole or channel.
- Outside the vertical outlet which may have a tapered shape, there is arranged a protective layer of a carbonaceous material 27 with good resistance to electrolyte and electrolyte reactant products.
- the space between the protected vertical outlet and the cathode structure can be filled with a castable material 26 with good resistance to chemical attack by electrolyte and electrolyte reactant products.
- One important feature relating to the vertical outlet design is that the current outlet is enclosed by the carbonaceous layer 27 that aids the vertical sliding of the outlet inside the hole or channel filled with castable material.
- FIG. 3a one cathode block 4 is shown schematically. There are disclosed three collector bars 30, 31 and 32 embedded in the cathode block 4. There are two horizontal outlets 30', 31'and one vertical outlet 33.
- collector bars 35, 36 embedded in a cathode block 4.
- the collector bars have horizontal outlets 35' and 36'.
- collector bar 36 has one vertical outlet 37.
- collector bars 40, 41, 43 and 45 embedded in a carbon block 4.
- Collector bar 45 and 40 have one horizontal outlet 45' and 40' respectively.
- Collector bars 41 and 43 have vertical outlets 42 and 44 respectively.
- Fig. 3d there are shown just one collector bar 50 embedded in one carbon block 4.
- the collector bar have one horizontal outlet 50' and one vertical outlet 51.
- Fig. 3e discloses a collector bar design where a collector bar 60 is embedded in a cathode block 4.
- the collector bar 60 have two horizontal outlets 61', 61" and one centrally arranged vertical outlet 62.
- the amount of current that is distributed through the individual outlets can be pre-calculated and optimized assisted by design software and verification trials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Inert Electrodes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20064165A NO332480B1 (no) | 2006-09-14 | 2006-09-14 | Elektrolysecelle samt fremgangsmate for drift av samme |
PCT/NO2007/000323 WO2008033034A1 (en) | 2006-09-14 | 2007-09-12 | Electrolysis cell and method for operating the same |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2066831A1 EP2066831A1 (en) | 2009-06-10 |
EP2066831A4 EP2066831A4 (en) | 2009-11-04 |
EP2066831B1 true EP2066831B1 (en) | 2011-04-27 |
Family
ID=39184004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07808629A Active EP2066831B1 (en) | 2006-09-14 | 2007-09-12 | Electrolysis cell and method for operating the same |
Country Status (12)
Country | Link |
---|---|
EP (1) | EP2066831B1 (ru) |
CN (1) | CN101680102B (ru) |
AT (1) | ATE507325T1 (ru) |
AU (1) | AU2007295188B2 (ru) |
BR (1) | BRPI0716951B1 (ru) |
CA (1) | CA2660998C (ru) |
DE (1) | DE602007014229D1 (ru) |
EA (1) | EA014744B1 (ru) |
NO (1) | NO332480B1 (ru) |
NZ (1) | NZ575484A (ru) |
WO (1) | WO2008033034A1 (ru) |
ZA (1) | ZA200901822B (ru) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO331318B1 (no) * | 2007-04-02 | 2011-11-21 | Norsk Hydro As | Fremgangsmate for drift av elektrolyseceller koblet i serie samt samleskinnesystem for samme |
EP2732076A2 (fr) | 2011-07-12 | 2014-05-21 | Rio Tinto Alcan International Limited | Aluminerie comprenant des conducteurs electriques en materiau supraconducteur |
FR2977898A1 (fr) * | 2011-07-12 | 2013-01-18 | Rio Tinto Alcan Int Ltd | Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves |
CN102925926A (zh) * | 2011-08-10 | 2013-02-13 | 贵阳铝镁设计研究院有限公司 | 阶梯式扎糊阴极结构 |
US9340887B2 (en) * | 2013-03-13 | 2016-05-17 | Alcoa, Inc. | Systems and methods of protecting electrolysis cells |
CN103981540B (zh) * | 2014-05-28 | 2016-07-06 | 中南大学 | 一种含高导电骨架网络的铝电解槽复合阴极结构 |
NO20180369A1 (en) * | 2018-03-14 | 2019-09-16 | Norsk Hydro As | Cathode elements for a Hall-Héroult cell for aluminium production and a cell of this type having such elements installed |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB816587A (en) * | 1957-01-17 | 1959-07-15 | Ind De L Aluminium Sa | Improvements relating to electrolytic cells for the production of aluminium |
DE1187809B (de) * | 1963-11-22 | 1965-02-25 | Vaw Ver Aluminium Werke Ag | Elektrolysezelle zur schmelzflusselektrolytischen Herstellung von Aluminium |
DE2833381A1 (de) * | 1978-07-29 | 1980-02-14 | Sigri Elektrographit Gmbh | Elektrolysezelle zum gewinnen von aluminium |
AU541218B2 (en) * | 1979-11-07 | 1984-12-20 | Aluminium Pechiney | Process and device for suppressing magnetic disturbances in electrolytic cells |
DE3004071A1 (de) * | 1979-12-21 | 1981-07-02 | Schweizerische Aluminium AG, 3965 Chippis | Schienenanordnung |
DE3373115D1 (en) * | 1982-05-28 | 1987-09-24 | Alcan Int Ltd | Improvements in electrolytic reduction cells for aluminium production |
GB8331769D0 (en) * | 1983-11-29 | 1984-01-04 | Alcan Int Ltd | Aluminium reduction cells |
SU1444402A1 (ru) * | 1986-12-29 | 1988-12-15 | Иркутский Филиал Всесоюзного Научно-Исследовательского И Проектного Института Алюминиевой,Магниевой И Электродной Промышленности | Электролизер дл получени алюмини |
NO164721C (no) * | 1988-06-06 | 1990-11-07 | Norsk Hydro As | Anordning av skinnesystem paa store tverrstilte elektrolyseovner. |
-
2006
- 2006-09-14 NO NO20064165A patent/NO332480B1/no unknown
-
2007
- 2007-09-12 EP EP07808629A patent/EP2066831B1/en active Active
- 2007-09-12 AU AU2007295188A patent/AU2007295188B2/en active Active
- 2007-09-12 NZ NZ575484A patent/NZ575484A/en unknown
- 2007-09-12 DE DE602007014229T patent/DE602007014229D1/de active Active
- 2007-09-12 CA CA2660998A patent/CA2660998C/en active Active
- 2007-09-12 CN CN200780033956XA patent/CN101680102B/zh active Active
- 2007-09-12 EA EA200900443A patent/EA014744B1/ru not_active IP Right Cessation
- 2007-09-12 WO PCT/NO2007/000323 patent/WO2008033034A1/en active Application Filing
- 2007-09-12 BR BRPI0716951-5A patent/BRPI0716951B1/pt active IP Right Grant
- 2007-09-12 AT AT07808629T patent/ATE507325T1/de not_active IP Right Cessation
-
2009
- 2009-03-13 ZA ZA200901822A patent/ZA200901822B/xx unknown
Also Published As
Publication number | Publication date |
---|---|
AU2007295188B2 (en) | 2011-07-28 |
CN101680102B (zh) | 2011-11-09 |
NO20064165L (no) | 2008-03-17 |
EA014744B1 (ru) | 2011-02-28 |
BRPI0716951B1 (pt) | 2018-06-05 |
NZ575484A (en) | 2011-01-28 |
WO2008033034A8 (en) | 2009-04-16 |
ATE507325T1 (de) | 2011-05-15 |
BRPI0716951A2 (pt) | 2013-10-29 |
DE602007014229D1 (de) | 2011-06-09 |
CA2660998A1 (en) | 2008-03-20 |
NO332480B1 (no) | 2012-09-24 |
CA2660998C (en) | 2013-11-12 |
AU2007295188A1 (en) | 2008-03-20 |
EA200900443A1 (ru) | 2009-08-28 |
ZA200901822B (en) | 2010-04-28 |
EP2066831A1 (en) | 2009-06-10 |
EP2066831A4 (en) | 2009-11-04 |
WO2008033034A1 (en) | 2008-03-20 |
CN101680102A (zh) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2066831B1 (en) | Electrolysis cell and method for operating the same | |
EP1927679B1 (en) | Electrolysis cell for the production of aluminium comprising means to reduce the voltage drop | |
EP3221496B1 (en) | Cathode current collector for a hall-heroult cell | |
CA1216254A (en) | Electrolytic reduction cells for aluminium production | |
US6113756A (en) | Cathode construction | |
EP2215288A1 (en) | Composite collector bar | |
GB2027056A (en) | Electrolytic reduction cell with compensating components in its magnetic field | |
EP2150639B1 (en) | Electrolysis cells connected in series and a method for operation of same | |
US20020088718A1 (en) | Aluminium Electrowinning cells having a V-shaped cathode bottom | |
EP4158084A1 (en) | Cathode assembly with metallic collector bar systems for electrolytic cell suitable for the hall-héroult process | |
WO2017168310A1 (en) | Cathode block with copper-aluminium insert for electrolytic cell suitable for the hall-héroult process | |
US20040084324A1 (en) | Aluminium electrowinning cells having a V-shaped cathode bottom | |
WO2001031087A1 (en) | Aluminum electrowinning cell with sidewalls resistant to molten electrolyte | |
CN114182303A (zh) | 电解槽、特别是用于生产铝的电解槽 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090414 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20091001 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25C 3/06 20060101ALI20100618BHEP Ipc: C25C 3/16 20060101AFI20100618BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602007014229 Country of ref document: DE Date of ref document: 20110609 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007014229 Country of ref document: DE Effective date: 20110609 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110427 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110427 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 9828 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110807 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110912 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007014229 Country of ref document: DE Effective date: 20120130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110912 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602007014229 Country of ref document: DE Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT MBB PATENT-, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602007014229 Country of ref document: DE Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602007014229 Country of ref document: DE Representative=s name: DR. RALF KOTITSCHKE, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20230904 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IS Payment date: 20240910 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240918 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 18 |