EP2065477B1 - Method and device for building up residual stress in a metal workpiece - Google Patents
Method and device for building up residual stress in a metal workpiece Download PDFInfo
- Publication number
- EP2065477B1 EP2065477B1 EP08019597.7A EP08019597A EP2065477B1 EP 2065477 B1 EP2065477 B1 EP 2065477B1 EP 08019597 A EP08019597 A EP 08019597A EP 2065477 B1 EP2065477 B1 EP 2065477B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser
- workpiece
- plasma
- pulse
- laser pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 35
- 239000002184 metal Substances 0.000 title claims description 9
- 230000035939 shock Effects 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims description 2
- 239000002250 absorbent Substances 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 210000002381 plasma Anatomy 0.000 description 48
- 239000010410 layer Substances 0.000 description 13
- 239000002344 surface layer Substances 0.000 description 9
- 230000001052 transient effect Effects 0.000 description 7
- 238000002679 ablation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
- C21D10/005—Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
Definitions
- the invention relates to a method and a device for building up residual stresses in a metallic workpiece by so-called laser shock peening (LSP).
- LSP laser shock peening
- LSP Laser Shock Peening
- the material to be treated is subjected to an ablative surface layer prior to laser shock peening.
- the surface layer is, for example, a metal coating, a metal foil or is formed of organic materials.
- the pulsed laser beam acts on this surface layer, it evaporates and is converted to the plasma state (state with ionization).
- a cover layer is produced over the treatment site, which is formed, for example, by running water. This covering layer contributes to the fact that the transient plasma formed by the action of the laser beam on the surface layer is spatially fixed over a period corresponding approximately to the pulse duration.
- the laser pulse with an energy of, for example, 5 to 50 J serves both the vaporization of the surface layer and the plasma formation.
- the laser beams used conventionally have a pulse width of 10 to 50 nanoseconds (nsec).
- such a laser pulse is spatially offset, simultaneously or offset in time applied to different locations on the workpiece by z.
- the workpiece and the laser generating device to each other are relatively moved and each act on identical identical laser pulses to different locations on the workpiece.
- a single laser pulse which is sufficiently energetic (by controlling the laser pulse energy as well as the pulse width), always leads to the generation and propagation of the plasma, and that the induced solid-state shock wave has a sufficiently high impact strength, so that the work piece in the workpiece plastic yield point is exceeded and thus the residual stresses in the metallic workpiece are built.
- the process is mainly used to build up residual compressive stresses on surface areas, that is to say in depths of up to 10 mm, for protection against stress crack corrosion or else for forming.
- LSP laser shock peening
- the invention is based on the idea of applying at least two temporally staggered laser pulses to one and the same treatment location of the workpiece, possibly with a short pause without laser pulse application between the staggered laser pulses.
- the energy introduced by the laser beam can be deliberately adjusted to the physical processes occurring in the surface layer, so that the evaporation or ablation of the absorbing layer is caused, for example, by the first pulse and a pre-plasma which is weakly ionized is formed.
- the second laser pulse may be energetically controlled to cause the formation of a fully-formed, quasi-static plasma which is a non-equilibrium state with high ionization, and also for expansion of the plasma by the cover layer and thus induction of residual stresses in the plasma Workpiece leads.
- the time-staggered laser pulses acting on the same treatment site are characterized by different energy.
- the first pulse evaporation for which a much lower energy is required than for the subsequent formation and expansion of a transient plasma with comparatively high enthalpy, a low-energy laser pulse can be used, while the relatively high energy of the second laser pulse for the subsequent conversion of the plasma energy into predominantly energetic flow enthalpy is required, very well exploited and predominantly for the conversion and
- Expansion process of the transient plasma is used without massive radiation losses or strong (unnecessary) temperature increases occur.
- the laser pulse intended for the formation and expansion of the transient plasma should be relatively high-energy.
- the evaporation and plasma heating process is decoupled in time, so that the energy utilization of the laser pulses better and the impact on the workpiece is more targeted.
- the weakly ionized primary plasma is additionally generated by an initially relatively moderate use of energy.
- this primary plasma state has a high absorption capacity for the radiation of the secondary laser pulse, so that a much higher proportion of the incident laser radiation can be effectively converted into plasma enthalpy than is possible with conventional single-pulse excitation.
- the resulting losses due to reflection, the passage of the laser pulse unused to the metal surface via an initially optically thin plasma as well as by convection and radiation can thus be minimized.
- the laser pulses have a time interval of 5 to 100 nsec.
- the laser pulses it is also possible for the laser pulses to follow one another directly, that is to say without a time offset. However, it is clearly preferred to provide a period of 5 to 100 nsec between the laser pulses, since then by appropriate tuning of the laser pulses, the time interval and the number of laser pulses targeted acted on the individual in the formation of the plasma and plasma processes and each laser pulse can be tuned to a particular state of the plasma.
- the pulse shapes of the time-staggered laser pulses are also different.
- the laser pulses have different rising edge shapes.
- the control of the energy of the laser pulses by means of their width (time) and energy, which may be different or the same, are also acted upon by selective selection of a suitable rising edge on the energetic processes.
- the different energetic states of the staggered laser pulses are generated by their time width and / or energy.
- more than two temporally staggered laser pulses are applied to the same treatment site and act there. In this case, the energetic control is even cheaper.
- the staggered laser pulses can be provided by a single laser or by different laser for each laser pulse. Especially in the preferred use of multiple processing lasers for generating the staggered laser pulses, it is easily possible to represent different pulse shapes, different energies of the pulses, etc. Even if several processing lasers are used, however, they have a staggered effect on the same processing location on the workpiece.
- the method which preferably further includes the step of applying the surface layer to be evaporated prior to application of the first laser pulse, which is generated by, for example, metal plating, metal foil deposition, or organic material deposition, may include internal stresses as needed and depending on the workpiece are to be introduced or at which the deformation is to be generated, repeated at several locations of the workpiece to z. B. to achieve a larger area solidification, but then acts at each site a double or multiple pulse.
- the first laser pulse which is generated by, for example, metal plating, metal foil deposition, or organic material deposition
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laser Beam Processing (AREA)
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Aufbau von Eigenspannungen in einem metallischen Werkstück durch sogenanntes Laser Shock Peening (LSP).The invention relates to a method and a device for building up residual stresses in a metallic workpiece by so-called laser shock peening (LSP).
Laser Shock Peening (LSP) ist ein Verfahren, bei dem mittels Einwirkung eines gepulsten Laserstrahls in einem metallischen Werkstück Eigenspannungen aufgebaut werden können. Die Eigenspannungen im metallischen Werkstück sind oftmals erwünscht, da sie Ermüdungserscheinungen oder Rissausbreitung bei Belastung des Werkstücks vorbeugen können.Laser Shock Peening (LSP) is a process in which internal stresses can be built up by the action of a pulsed laser beam in a metallic workpiece. The residual stresses in the metallic workpiece are often desirable because they can prevent fatigue or crack propagation when loaded on the workpiece.
Herkömmlicherweise wird dabei das zu behandelnde Material vor dem Laser Shock Peening mit einer ablativen Oberflächenschicht beaufschlagt. Die Oberflächenschicht ist zum Beispiel eine Metallbeschichtung, eine Metallfolie oder ist aus organischen Materialien gebildet. Wenn der gepulste Laserstrahl auf diese Oberflächenschicht einwirkt, verdampft diese und wird in den Plasmazustand (Zustand mit Ionisation) überführt. Gleichzeitig mit dem Aufbringen des Laserpulses wird über dem Behandlungsort eine Deckschicht erzeugt, die beispielsweise durch fließendes Wasser gebildet wird. Diese Deckschicht trägt dazu bei, dass das transiente, durch die Einwirkung des Laserstrahls auf die Oberflächenschicht gebildete Plasma über einen Zeitraum, der in etwa der Pulsdauer entspricht, räumlich fixiert wird. Dieser quasi Gleichgewichtszustand wird jedoch durch den Plasmadruck durchbrochen, so dass die Deckschicht dem Plasmadruck nicht mehr standhalten kann und das Plasma frei expandiert. Dabei werden dynamische Impulse auf die Oberfläche des Werkstücks übertragen, die Stoßwellen hervorrufen, welche ihrerseits zur Induktion von Eigenspannungen im Werkstück führen.Conventionally, the material to be treated is subjected to an ablative surface layer prior to laser shock peening. The surface layer is, for example, a metal coating, a metal foil or is formed of organic materials. When the pulsed laser beam acts on this surface layer, it evaporates and is converted to the plasma state (state with ionization). Simultaneously with the application of the laser pulse, a cover layer is produced over the treatment site, which is formed, for example, by running water. This covering layer contributes to the fact that the transient plasma formed by the action of the laser beam on the surface layer is spatially fixed over a period corresponding approximately to the pulse duration. However, this quasi-equilibrium state is broken by the plasma pressure, so that the cover layer can no longer withstand the plasma pressure and the plasma expands freely. This dynamic impulses are transmitted to the surface of the workpiece, which cause shock waves, which in turn lead to the induction of residual stresses in the workpiece.
Der Laserpuls mit einer Energie von beispielsweise 5 bis 50 J dient dabei sowohl der Verdampfung der Oberflächenschicht als auch der Plasmaausbildung. Die verwendeten Laserstrahlen haben herkömmlicherweise eine Pulsbreite von 10 bis 50 Nanosekunden (nsec).The laser pulse with an energy of, for example, 5 to 50 J serves both the vaporization of the surface layer and the plasma formation. The laser beams used conventionally have a pulse width of 10 to 50 nanoseconds (nsec).
Nach Bedarf und je nach Werkstückkonfiguration wird ein solcher Laserimpuls räumlich versetzt, gleichzeitig oder zeitlich versetzt an verschiedenen Orten am Werkstück aufgebracht, indem z. B. das Werkstück und die Lasererzeugungseinrichtung zueinander relativ bewegt werden und jeweils identische Laserimpulse auf verschiedene Orte am Werkstück einwirken.As required and depending on the workpiece configuration such a laser pulse is spatially offset, simultaneously or offset in time applied to different locations on the workpiece by z. B. the workpiece and the laser generating device to each other are relatively moved and each act on identical identical laser pulses to different locations on the workpiece.
Somit wirkt an einem Ort stets ein einziger Laserpuls ein, der ausreichend energetisch ist (durch Steuerung der Laserpulsenergie sowie der Pulsbreite), dass er zum Erzeugen und Ausbreiten des Plasmas führt und dass die induzierte Festkörperstoßwelle eine ausreichend hohe Stoßstärke hat, so dass im Werkstück die plastische Fließgrenze überschritten wird und damit die Eigenspannungen im metallischen Werkstück aufgebaut werden. Hauptsächlich wird das Verfahren zum Aufbau von Druckeigenspannungen an Oberflächenbereichen, das heißt in Tiefen bis zu 10 mm, zum Schutz vor Spannungs-Riss-Korrosion oder aber auch zur Umformung verwendet.Thus, a single laser pulse, which is sufficiently energetic (by controlling the laser pulse energy as well as the pulse width), always leads to the generation and propagation of the plasma, and that the induced solid-state shock wave has a sufficiently high impact strength, so that the work piece in the workpiece plastic yield point is exceeded and thus the residual stresses in the metallic workpiece are built. The process is mainly used to build up residual compressive stresses on surface areas, that is to say in depths of up to 10 mm, for protection against stress crack corrosion or else for forming.
Davon ausgehend ist es Aufgabe der Erfindung, ein Verfahren zum Aufbau von Eigenspannungen in einem metallischen Werkstück unter Verwendung von Laser Shock Peening (LSP) bereit zu stellen, das die Energie des Laserstrahls besser ausnützt und somit zu gezielteren und stärkeren Stoßwellen im Werkstück, die wiederum die Induktion von Eigenspannungen hervorrufen, führt.On this basis, it is an object of the invention to provide a method for building up residual stresses in a metallic workpiece using laser shock peening (LSP), which makes better use of the energy of the laser beam and thus more targeted and stronger shock waves in the workpiece, which in turn induce the induction of residual stresses leads.
Diese Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen angegeben. Eine Vorrichtung ist in Anspruch 13 angegeben.This object is achieved by a method having the features of claim 1. Preferred embodiments are given in the dependent claims. A device is specified in claim 13.
Der Erfindung liegt der Gedanke zugrunde, an ein und demselben Behandlungsort des Werkstücks mindestens zwei zeitlich gestaffelte Laserpulse, ggf. mit einer kurzen Pause ohne Laserpulsbeaufschlagung zwischen den gestaffelten Laserpulsen, aufzubringen. Dadurch kann die durch den Laserstrahl eingebrachte Energie auf die in der Oberflächenschicht auftretenden physikalischen Vorgänge gezielt eingestellt werden, so dass beispielsweise durch den ersten Puls die Verdampfung bzw. Ablation der absorbierenden Schicht hervorgerufen wird und ein Vorplasma, das schwach ionisiert ist, ausgebildet wird. In diesem Beispiel kann der zweite Laserpuls so energetisch gesteuert sein, dass er die Ausbildung eines voll ausgebildeten, quasi statischen Plasmas, das ein nicht Gleichgewichtszustand mit hoher Ionisation ist, hervorruft und auch zur Expansion des Plasmas durch die Deckschicht und damit zur Induktion der Eigenspannungen im Werkstück führt.The invention is based on the idea of applying at least two temporally staggered laser pulses to one and the same treatment location of the workpiece, possibly with a short pause without laser pulse application between the staggered laser pulses. As a result, the energy introduced by the laser beam can be deliberately adjusted to the physical processes occurring in the surface layer, so that the evaporation or ablation of the absorbing layer is caused, for example, by the first pulse and a pre-plasma which is weakly ionized is formed. In this example, the second laser pulse may be energetically controlled to cause the formation of a fully-formed, quasi-static plasma which is a non-equilibrium state with high ionization, and also for expansion of the plasma by the cover layer and thus induction of residual stresses in the plasma Workpiece leads.
Dabei sind die zeitlich gestaffelten und auf denselben Behandlungsort einwirkenden Laserpulse durch unterschiedliche Energie gekennzeichnet. Bei Verwendung von zwei gestaffelten Pulsen ist dabei der zweite Puls wesentlich höher energetisch als der erste Puls. Dadurch kann der erste Puls die Verdampfung, für die eine wesentlich geringere Energie benötigt wird als für die daran anschließende Ausbildung und Expansion eines instationären Plasmas mit vergleichsweise hoher Enthalpie, ein niedrig energetischer Laserpuls eingesetzt werden, während die verhältnismäßig hohe Energie des zweiten Laserpulses, die für die spätere Umwandlung der Plasmaenergie in überwiegend energetische Strömungsenthalpie erforderlich ist, sehr gut ausgenützt und vorwiegend für den Umwandlungs- undThe time-staggered laser pulses acting on the same treatment site are characterized by different energy. When using two staggered pulses while the second pulse is much higher energy than the first pulse. Thus, the first pulse evaporation, for which a much lower energy is required than for the subsequent formation and expansion of a transient plasma with comparatively high enthalpy, a low-energy laser pulse can be used, while the relatively high energy of the second laser pulse for the subsequent conversion of the plasma energy into predominantly energetic flow enthalpy is required, very well exploited and predominantly for the conversion and
Expansionsvorgang des instationären Plasmas verwendet wird, ohne dass massive Strahlungsverluste oder starke (unnötige) Temperaturerhöhungen auftreten. Auch bei Verwendung von mehr als zwei Laserpulsen sollte in jedem Fall der Laserpuls, der für die Ausbildung und Expansion des instationären Plasmas bestimmt ist, verhältnismäßig hochenergetisch sein. Damit wird der Verdampfungs- und Plasmaheizungsprozess zeitlich entkoppelt, so dass die energetische Ausnutzung der Laserimpulse besser und die Einwirkung auf das Werkstück gezielter ist.Expansion process of the transient plasma is used without massive radiation losses or strong (unnecessary) temperature increases occur. In any case, even if more than two laser pulses are used, the laser pulse intended for the formation and expansion of the transient plasma should be relatively high-energy. Thus, the evaporation and plasma heating process is decoupled in time, so that the energy utilization of the laser pulses better and the impact on the workpiece is more targeted.
Durch die Doppel- bzw. Mehrfachpulsanregung wird zudem durch einen zunächst verhältnismäßig moderaten Energieeinsatz das schwach ionisierte Primärplasma erzeugt. Dieser primäre Plasmazustand hat jedoch ein hohes Absorptionsvermögen für die Strahlung des sekundären Laserpulses, so dass ein weitaus höherer Anteil der einfallenden Laserstrahlung effektiv in Plasmaenthalpie umgesetzt werden kann, als es bei einer herkömmlichen Einzelpulsanregung möglich ist. Die entstehenden Verluste durch Reflexion, der Durchgang des Laserpulses unausgenutzt zur Metalloberfläche über ein anfänglich optisch dünnes Plasma sowie durch Konvektion und auch Strahlung können somit minimiert werden.Due to the double or multiple pulse excitation, the weakly ionized primary plasma is additionally generated by an initially relatively moderate use of energy. However, this primary plasma state has a high absorption capacity for the radiation of the secondary laser pulse, so that a much higher proportion of the incident laser radiation can be effectively converted into plasma enthalpy than is possible with conventional single-pulse excitation. The resulting losses due to reflection, the passage of the laser pulse unused to the metal surface via an initially optically thin plasma as well as by convection and radiation can thus be minimized.
Die Laserpulse haben einen zeitlichen Abstand von 5 bis 100 nsec.The laser pulses have a time interval of 5 to 100 nsec.
Grundsätzlich ist es auch möglich, die Laserpulse unmittelbar aufeinander, das heißt ohne zeitlichen Versatz, folgen zu lassen. Allerdings ist es deutlich bevorzugt, einen Zeitraum von 5 bis 100 nsec zwischen den Laserpulsen vorzusehen, da dann durch entsprechende Abstimmung der Laserpulse, des zeitlichen Abstands und der Anzahl der Laserpulse gezielt auf die einzelnen bei der Ausbildung des Plasmas und im Plasma ablaufenden Vorgänge eingewirkt und jeder Laserpuls auf einem bestimmten Zustand des Plasmas abgestimmt werden kann.In principle, it is also possible for the laser pulses to follow one another directly, that is to say without a time offset. However, it is clearly preferred to provide a period of 5 to 100 nsec between the laser pulses, since then by appropriate tuning of the laser pulses, the time interval and the number of laser pulses targeted acted on the individual in the formation of the plasma and plasma processes and each laser pulse can be tuned to a particular state of the plasma.
Vorzugsweise sind die Pulsformen der zeitlich gestaffelten Laserpulse ebenfalls unterschiedlich. Insbesondere ist es bevorzugt, dass die Laserpulse unterschiedliche Anstiegsflankenformen haben. Damit kann neben der Steuerung der Energie der Laserpulse mittels ihrer Breite (zeitlich) und Energie, die jeweils unterschiedlich oder gleich sein können, auch durch Wahl einer geeigneten Anstiegsflanke gezielt auf die energetischen Prozesse eingewirkt werden.Preferably, the pulse shapes of the time-staggered laser pulses are also different. In particular, it is preferred that the laser pulses have different rising edge shapes. Thus, in addition to the control of the energy of the laser pulses by means of their width (time) and energy, which may be different or the same, are also acted upon by selective selection of a suitable rising edge on the energetic processes.
Vorzugsweise werden die unterschiedlichen energetischen Zustände der gestaffelt einwirkenden Laserpulse durch deren zeitliche Breite und/oder Energie erzeugt.Preferably, the different energetic states of the staggered laser pulses are generated by their time width and / or energy.
Nach einer bevorzugten Ausführungsform werden mehr als zwei zeitlich gestaffelte Laserpulse auf denselben Behandlungsort aufgebracht und wirken dort ein. In diesem Fall ist die energetische Steuerung noch günstiger.According to a preferred embodiment, more than two temporally staggered laser pulses are applied to the same treatment site and act there. In this case, the energetic control is even cheaper.
Wie beim herkömmlichen Einzelpulsverfahren kann auch bei Doppel- bzw. Mehrfachpulsverfahren gemäß der Erfindung umspülendes fließendes Wasser als Deckschicht verwendet werden. Dies ist eine verhältnismäßig kostengünstig zu erzeugende und einfach zu entsorgende Deckschicht.As in the case of the conventional single-pulse method, it is also possible to use flushing running water as cover layer in double or multiple-pulse methods according to the invention. This is a relatively inexpensive to produce and easy to dispose of cover layer.
Die zeitlich gestaffelten Laserpulse können durch einen einzigen Laser oder aber durch für jeden Laserpuls unterschiedlichen Laser vorgesehen werden. Gerade bei der bevorzugten Verwendung von mehreren Bearbeitungslasern zur Erzeugung der gestaffelten Laserpulse ist es einfach möglich, unterschiedliche Pulsformen, unterschiedliche Energien der Pulse usw. darzustellen. Auch bei Verwendung mehrerer Bearbeitungslaser wirken diese jedoch zeitlich gestaffelt auf den gleichen Bearbeitungsort am Werkstück ein.The staggered laser pulses can be provided by a single laser or by different laser for each laser pulse. Especially in the preferred use of multiple processing lasers for generating the staggered laser pulses, it is easily possible to represent different pulse shapes, different energies of the pulses, etc. Even if several processing lasers are used, however, they have a staggered effect on the same processing location on the workpiece.
Das Verfahren, das vorzugsweise weiter den Schritt des Aufbringens der zu verdampfenden Oberflächenschicht vor dem Aufbringen des ersten Laserpulses enthält, die beispielsweise durch Metallbeschichtung, Aufbringen einer Metallfolie oder Aufbringen von organischem Material erzeugt wird, kann nach Bedarf und je nach Werkstück, in das die Eigenspannungen einzubringen sind bzw. an dem die Umformung zu erzeugen ist, an mehren Orten des Werkstücks wiederholt werden, um z. B. eine großflächigere Verfestigung zu erzielen, wobei jedoch dann an jedem Ort ein Doppel- oder Mehrfachpuls einwirkt.The method, which preferably further includes the step of applying the surface layer to be evaporated prior to application of the first laser pulse, which is generated by, for example, metal plating, metal foil deposition, or organic material deposition, may include internal stresses as needed and depending on the workpiece are to be introduced or at which the deformation is to be generated, repeated at several locations of the workpiece to z. B. to achieve a larger area solidification, but then acts at each site a double or multiple pulse.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft eine Vorrichtung enthaltend eine Werkstückspanneinrichtung, mindestens einen Laser und eine Steuereinrichtung zum Steuern der Relativbewegung zwischen eingespanntem Werkstück und Laser, wobei die Steuereinrichtung angepasst ist, ein Verfahren zum Aufbau von Eigenspannungen in einem metallischen Werkstück durch Laser-Shock-Peening zu steuern, dass Verfahren enthaltend die Schritte:
- Aufbringen eines ersten Laserpulses an einem Behandlungsort des mit einer Oberflächenschicht bedeckten Werkstücks, welcher zur Verdampfung oder Ablation der Oberflächenschicht ein schwach ionisiertes Vorplasma erzeugt mit einem hohen Absorptionsvermögen für die Strahlung eines zweiten Laserpulses;
- Aufbringen eines zweiten Laserpulses an demselben Behandlungsort des Werkstücks, welcher ein voll ausgebildetes quasi statisches Plasma ausbildet; wobei der zweite Laserpuls zeitlich zu dem ersten Laserpuls gestaffelt ist mit einem Zeitraum von 5 bis 100 nsec zwischen den Laserpulsen;
- wobei der zweite Laserpuls wesentlich höher energetisch ausbildet ist als der erste Laserpuls; und
- Vorsehen einer Deckschicht über dem Behandlungsort während des Aufbringens der Laserpulse.
- Applying a first laser pulse to a treatment site of the surface layer covered workpiece which for evaporation or ablation of the surface layer generates a weakly ionized pre-plasma having a high absorbance for the radiation of a second laser pulse;
- Applying a second laser pulse at the same treatment location of the workpiece, which forms a fully formed quasi-static plasma; wherein the second laser pulse is staggered in time to the first laser pulse with a period of 5 to 100 nsec between the laser pulses;
- wherein the second laser pulse is energetically formed much higher than the first laser pulse; and
- Providing a cover over the treatment site during the application of the laser pulses.
Nachfolgend wird die Wirkweise des Verfahrens beschrieben.The mode of action of the method will be described below.
Beim Laser Shock Peening ist es erforderlich, eine möglichst hohe primäre Plasmaenthalpie zu erreichen, für einen Zeitraum, in dem das Plasma durch die Deckschicht, beispielsweise fließendes Wasser, weitgehend stabilisiert wird. Wird ein einziger Laserpuls zur Verdampfung des Ablationsmaterials und zum Erzeugen eines transienten Hochdruckplasmas (mit Spitzendrücken, die bis zu über 10 bar reichen) verwendet, so ist dies energetisch nicht optimal, da für die Verdampfung und primäre Plasmaerzeugung eine geringere Energie benötigt wird als für die darauf folgende Ausbildung eines instationären Plasmas mit vergleichsweise hoher Enthalpie.With laser shock peening, it is necessary to achieve the highest possible plasma enthalpy for a period during which the plasma is largely stabilized by the covering layer, for example running water. Using a single laser pulse to vaporize the ablation material and generate a high pressure transient plasma (with peak pressures up to over 10 bar) is not energetically optimal, since less energy is needed for evaporation and primary plasma generation than for the plasma following training of a transient plasma with a comparatively high enthalpy.
In der primären Plasmaphase erfolgt nämlich bereits eine gewisse Impulsübertragung auf das Werkstück über einen instationären Druckradienten. Dies kann bereits primäre Verdichtungsstöße induzieren. Allerdings ist dieser Prozess kaum steuerbar und nicht besonders effektiv und somit nicht geeignet, signifikante und gezielte Druckeigenspannungen auszubilden. Die eigentliche Phase der Induktion von Druckeigenspannungen beginnt mit der Expansion des Plasmas (dem strömenden Plasma) nach der quasi statischen Anfangsphase, in der die Deckschicht die Expansion begrenzt. Beim Durchbrechen der Deckschicht wird eine Überschallplasmaströmung erzeugt, deren rückwirkender dynamischer Impuls die Stoßwelle auslöst, die das Werkstück, insbesondere dessen metallisches Material, über die plastische Fließgrenze hinaus deformiert und somit auch nach Abfall des Plasmas und Relaxion Druckeigenspannungen hinterlässt.In fact, in the primary plasma phase, there is already some momentum transfer to the workpiece via a transient pressure gradient. This can already induce primary compaction shocks. However, this process is hardly controllable and not very effective and therefore not suitable to form significant and targeted residual compressive stresses. The actual phase of the induction of residual compressive stresses begins with the expansion of the plasma (the flowing plasma) after the quasi-static initial phase, in the outer layer limits the expansion. When breaking the cover layer, a supersonic plasma flow is generated whose retroactive dynamic impulse triggers the shock wave, which deforms the workpiece, in particular its metallic material, beyond the plastic yield point and thus leaves compressive stresses even after the plasma has dropped and relaxed.
Es hat sich gezeigt, dass dieser Prozess umso effektiver ist, je höher die ursprüngliche Enthalpie (definiert über Druck und Temperatur) des primären Plasmas ist, und wie diese in kinetische Strömungsenthalpie überführt werden kann, was in der Phase des expandierenden und schnell strömenden, die Deckschicht durchbrechenden Plasmas geschieht.It has been found that this process is the more effective, the higher the original enthalpy (defined by pressure and temperature) of the primary plasma, and how it can be converted into kinetic flow enthalpy, which in the phase of expanding and fast flowing, the Cover layer breaking plasma happens.
Somit lassen sich die ablaufenden Einzelprozesse beim Laser Shock Peening wie folgt einteilen:
- Primäre Verdampfung (Ablation) der absorbierenden Schicht;
- Ausbildung eines Vorplasmas, das schwach ionisiert ist;
- Ausbildung eines voll ausgebildeten, quasi statischen Plasmas, das ein Nichtgleichgewichtszustand mit hoher Ionisation ist; und
- Expansion des Plasmas durch die Deckschicht.
- Primary evaporation (ablation) of the absorbent layer;
- Forming a pre-plasma that is weakly ionized;
- Forming a fully formed, quasi-static plasma that is a high ionization non-equilibrium state; and
- Expansion of the plasma through the cover layer.
Durch das Aufbringen von mindestens zwei zeitlich gestaffelten Pulsen auf den gleichen Werkstückort kann vermieden werden, dass Laserenergie in den Plasmazustand in der Expansionsphase übertragen wird. Dies ist nämlich ineffektiv, da die Prozesse unterschiedliche zeitliche Entwicklungsstufen besitzen und die in der Expansionsphase in den Plasmazustand eingebrachte Energie nicht in kinetische Energie (zur Ausbildung des voll ausgebildeten quasi statischen Plasmas) sondern beispielsweise in Temperatur oder Strahlungsenergie umgesetzt wird und somit einen Energieverlust darstellt.By applying at least two staggered pulses to the same workpiece location, it can be avoided that laser energy is transferred into the plasma state in the expansion phase. This is in fact ineffective, since the processes have different temporal development stages and introduced in the expansion phase in the plasma state energy is not converted into kinetic energy (to form the fully formed quasi static plasma) but for example in temperature or radiant energy and thus represents an energy loss.
Daher bietet es sich an, einen Abstand von 5 bis 100 nsec zwischen den einzelnen Laserpulsen vorzusehen, so dass die zeitliche Überführung des sich ausbildenden Plasmas in die einzelnen Stufen ohne Energie zu Zeitpunkten einzubringen, zu denen sie nicht umgesetzt werden kann, möglich ist, und zudem die Energien der Laserpulse angepasst an den gerade ablaufenden Teilprozess festgesetzt werden können.Therefore, it is advisable to provide a distance of 5 to 100 nsec between the individual laser pulses, so that the time transfer of the forming plasma in the individual stages without energy at times to introduce, to which it can not be implemented, is possible, and In addition, the energies of the laser pulses can be adjusted to the currently running partial process.
Claims (13)
- Method for building up residual stresses in a metal workpiece by means of laser shock peening, comprising the steps of:- applying a first laser pulse to a treatment location of the workpiece covered with a surface coating which, for the purpose of vaporizing or ablating the surface coating, generates a weakly ionized pre-plasma with high absorptivity for the radiation of a second laser pulse;- applying a second laser pulse to the same treatment location of the workpiece, which forms a fully formed, quasi-static plasma;- wherein the second laser pulse is temporally staggered with respect to the first laser pulse, with a time interval of 5 to 100 ns between the laser pulses;- wherein the second laser pulse is of substantially higher energy than the first laser pulse; and- providing a cover layer over the treatment location during application of the laser pulses.
- Method according to the preceding claim, characterized in that the laser pulses have different pulse forms.
- Method according to Claim 2, characterized in that the temporally staggered laser pulses have different leading edge forms.
- Method according to one of the preceding claims, characterized in that the temporally staggered laser pulses have different temporal widths.
- Method according to one of the preceding claims, characterized in that more than two temporally staggered laser pulses are applied to the treatment location.
- Method according to one of the preceding claims, characterized in that the cover layer is provided by rinsing the workpiece.
- Method according to Claim 6, characterized in that flowing water is used for rinsing the workpiece.
- Method according to one of the preceding claims, characterized in that there is provided a single laser which emits the laser pulses.
- Method according to one of Claims 1 to 7, characterized in that a separate laser is provided for generating each of the temporally staggered laser pulses.
- Method according to one of the preceding claims, further comprising the step of applying the surface coating, prior to application of the first laser pulse, by means of metal coating, applying a metal foil or applying an organic material.
- Method according to one of the preceding claims, characterized in that the energy of the first laser pulse is adapted such that it vaporizes the absorbent surface coating and forms a weakly ionized pre-plasma.
- Method according to one of the preceding claims, characterized in that the method is repeated at various treatment locations on the workpiece.
- Apparatus containing a workpiece clamping device, at least one laser and a control device for controlling the relative movement between a clamped workpiece and the laser, wherein the control device is designed to control the method according to one of the preceding claims.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200710056502 DE102007056502B4 (en) | 2007-11-22 | 2007-11-22 | Method and device for building up residual stresses in a metallic workpiece |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2065477A1 EP2065477A1 (en) | 2009-06-03 |
EP2065477B1 true EP2065477B1 (en) | 2016-01-27 |
Family
ID=40364337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08019597.7A Active EP2065477B1 (en) | 2007-11-22 | 2008-11-10 | Method and device for building up residual stress in a metal workpiece |
Country Status (3)
Country | Link |
---|---|
US (1) | US9096913B2 (en) |
EP (1) | EP2065477B1 (en) |
DE (1) | DE102007056502B4 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9046058B2 (en) | 2009-09-23 | 2015-06-02 | Aerojet Rocketdyne Of De, Inc. | System and method of combustion for sustaining a continuous detonation wave with transient plasma |
CN105935769B (en) * | 2016-07-07 | 2017-11-28 | 四川三阳激光增材制造技术有限公司 | A kind of laser melting coating for 3D printing drip molding etches preparation method |
CN110361121B (en) * | 2018-04-09 | 2020-12-25 | 中国科学院沈阳自动化研究所 | Accurate prediction method for laser shock peening induced residual stress field |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995025821A1 (en) * | 1994-03-22 | 1995-09-28 | Battelle Memorial Institute | Reducing edge effects of laser shock peening |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2075435T3 (en) * | 1990-01-11 | 1995-10-01 | Battelle Memorial Institute | IMPROVING THE PROPERTIES OF MATERIALS. |
US5911891A (en) * | 1997-09-11 | 1999-06-15 | Lsp Technologies, Inc. | Laser shock peening with tailored multiple laser beams |
US5932120A (en) * | 1997-12-18 | 1999-08-03 | General Electric Company | Laser shock peening using low energy laser |
US6479790B1 (en) * | 2000-01-31 | 2002-11-12 | General Electric Company | Dual laser shock peening |
US6677037B1 (en) * | 2000-09-13 | 2004-01-13 | General Electric Company | Laser shock peening tape, method and article |
US20040224179A1 (en) * | 2003-05-09 | 2004-11-11 | Lsp Technologies, Inc. | Laser peening method and apparatus using tailored laser beam spot sizes |
US7491909B2 (en) * | 2004-03-31 | 2009-02-17 | Imra America, Inc. | Pulsed laser processing with controlled thermal and physical alterations |
US7304266B2 (en) * | 2004-12-09 | 2007-12-04 | General Electric Company | Laser shock peening coating with entrapped confinement medium |
US7897895B2 (en) * | 2006-05-01 | 2011-03-01 | General Electric Company | System and method for controlling the power level of a laser apparatus in a laser shock peening process |
-
2007
- 2007-11-22 DE DE200710056502 patent/DE102007056502B4/en active Active
-
2008
- 2008-11-10 EP EP08019597.7A patent/EP2065477B1/en active Active
- 2008-11-21 US US12/275,668 patent/US9096913B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995025821A1 (en) * | 1994-03-22 | 1995-09-28 | Battelle Memorial Institute | Reducing edge effects of laser shock peening |
Also Published As
Publication number | Publication date |
---|---|
EP2065477A1 (en) | 2009-06-03 |
US9096913B2 (en) | 2015-08-04 |
US20090134130A1 (en) | 2009-05-28 |
DE102007056502A1 (en) | 2009-06-04 |
DE102007056502B4 (en) | 2010-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102013223637B4 (en) | A method of treating a laser transparent substrate for subsequently separating the substrate | |
DE69805946T2 (en) | Metallic component and a method for laser shock irradiation of a metallic component | |
DE69805272T2 (en) | Laser shock processing with low energy laser | |
EP2964416A2 (en) | Method and device for separating a substrate | |
EP4061101A1 (en) | Method for creating at least one recess or opening in a plate-shaped workpiece | |
DE3126953C2 (en) | Process for the thermal treatment of the surface of workpieces by means of a linearly polarized laser beam | |
EP2065477B1 (en) | Method and device for building up residual stress in a metal workpiece | |
DE102014113339A1 (en) | Method for producing recesses in a material | |
DE102015200264A1 (en) | A method for selectively patterning a fibrous coating material for interior elements of a motor vehicle and interior element of such a coating material | |
DE2814044A1 (en) | METHOD OF MAKING A HOLE IN A WORKPIECE USING LASER RADIATION | |
DE4022817C1 (en) | ||
Schille et al. | Micro structuring with highly repetitive ultra short laser pulses | |
EP0860019B1 (en) | Pulsed electron beam source and use thereof | |
DE102020207553A1 (en) | Method for material removal and device for material removal | |
DE3875087T2 (en) | LASER SHOCK TREATMENT METHOD OF MATERIALS. | |
DE4123577C2 (en) | Process for laser hardening of components | |
EP2032275A1 (en) | Method for removing a protective coating from a component | |
EP3854515A1 (en) | Method for processing brittle materials | |
WO2012004012A1 (en) | Method for introducing an invisible weak point into a decorative layer and method for producing an airbag cover having a decorative layer weakened in such a manner | |
DE60306174T2 (en) | SURFACE TREATMENT OF CONCRETE | |
DE102009034472A1 (en) | Surface-layer strengthening of bore walls of bores in a component, comprises arranging radiation source to generate pulsed laser beams and deflection medium to deflect laser beams to the bore, so that laser beam impinges onto the bore wall | |
WO2007118463A1 (en) | Method and device for depositing diamond-like carbon coatings with a predetermined hardness progression on substrates | |
DE102023101453B3 (en) | METHOD AND DEVICE FOR GENERATING SECONDARY RADIATION, IN PARTICULAR EUV RADIATION, USING AT LEAST ONE LASER | |
DE10303063A1 (en) | Method of laser metal removal involves covering metal surface with fluid prior to heating to prevent spatter | |
DE102020007017B4 (en) | Method for removing dirt deposits on at least one geometric structure produced by means of microtechnology and/or nanotechnology of at least one body and using an ultra-short pulsed laser with pulses in burst mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20091015 |
|
17Q | First examination report despatched |
Effective date: 20091204 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AIRBUS DEFENCE AND SPACE GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150608 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008013772 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008013772 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161028 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008013772 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231120 Year of fee payment: 16 |