EP2064490B1 - Method for characterizing the exhaust gas burn-off quality in combustion systems - Google Patents

Method for characterizing the exhaust gas burn-off quality in combustion systems Download PDF

Info

Publication number
EP2064490B1
EP2064490B1 EP07801802.5A EP07801802A EP2064490B1 EP 2064490 B1 EP2064490 B1 EP 2064490B1 EP 07801802 A EP07801802 A EP 07801802A EP 2064490 B1 EP2064490 B1 EP 2064490B1
Authority
EP
European Patent Office
Prior art keywords
combustion
soot
segments
regions
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07801802.5A
Other languages
German (de)
French (fr)
Other versions
EP2064490A1 (en
Inventor
Jörg Matthes
Hubert Keller
Hans Hunsinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2064490A1 publication Critical patent/EP2064490A1/en
Application granted granted Critical
Publication of EP2064490B1 publication Critical patent/EP2064490B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • F23M11/045Means for supervising combustion, e.g. windows by observing the flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • F23N3/082Regulating air supply or draught by power-assisted systems using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55002Sensing exhaust gas opacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/11041Means for observing or monitoring flames using photoelectric devices, e.g. phototransistors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/04Flame sensors sensitive to the colour of flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Definitions

  • the invention relates to a method for characterizing the Abgasausbrand72 in incineration plants according to the first claim.
  • Efficient exhaust burnout is characterized by low levels of incomplete combustion products such as CO, hydrocarbons and particulate carbon (soot particles). Emission limit values for this are usually specified in relevant regulations. In Germany, for example, the 17th BImSchV (Federal Immission Control Ordinance) sets the limit values for carbon monoxide CO and hydrocarbons C n H m .
  • Fuels such as household waste, biomass or coal with fluctuating moisture contents are very inhomogeneous fuels. Due to their very heterogeneous composition, their calorific value varies greatly.
  • complex firing-power regulations with infrared detectors IR camera, infrared camera
  • the firing position of the solid fuel bed in grate firing is determined using the infrared radiation of the fuel bed with the help of an IR camera.
  • the wavelength detected here (for example, 3.9 ⁇ m) is in a range in which combustion gases themselves have no emissivity.
  • the control of the grate kinematics and / or the individual primary gas flows, which flow through the fixed bed. As a result, a nearly complete Feststoffausbrand the slag can be achieved.
  • An exhaust gas which emerges unevenly burned from a combustion chamber for example a fixed bed burnout zone, generally has locally high concentrations of incompletely burnt compounds, such as CO, hydrocarbons and soot.
  • the gas flow emerging from the combustion bed shows a pronounced formation of strands with enormous local and temporal fluctuations in concentration the aforementioned incompletely burned compounds as well as the oxygen concentration.
  • These strands extend through the Abgasausbrandzone in the first Strahlungszug.
  • An incomplete burnout of the exhaust gases is therefore encountered with an introduction of an oxygen-containing secondary gas in the Abgasausbrandzone.
  • the total amount of this secondary gas is chosen so that behind the Abgasausbrandzone always a defined excess of oxygen (minimum oxygen concentration) is maintained.
  • the minimum oxygen concentration is limited by the required minimum combustion temperatures after the exhaust gas burnout zone.
  • DE 10 347 340 A1 discloses an apparatus for optimizing exhaust burnout in incinerators having a fixed bed burnout zone and an exhaust burnout zone. It comprises a plurality of controllable nozzles for introducing oxygen-containing secondary gas into an effective region in the exhaust gas burnout zone.
  • the information thus obtained is converted into control commands for each of the controllable nozzles for the targeted introduction of secondary gas.
  • the device and the associated method are used for the non-selective detection of incompletely burned gaseous components in the exhaust gas.
  • incompletely burned gases and solid components eg soot
  • areas where no combustion activities take place at all due to a lack of combustion gases are also detected as incompletely burned waste gas areas (cross sensitivity emissivity of CO 2 to H 2 O). In the latter case, an injection of an oxygen-containing secondary gas would cause no afterburning, but only a dilution and cooling of the gases.
  • the object of the invention is to propose a method for the characterization of the flue gas combustion quality with respect to Rußausbrand in incinerators as the basis for optimizing Abgasausbrandes especially for a complete Rußausbrand even with transient combustion processes with a minimum of secondary gas.
  • a method for characterizing the exhaust gas burnout quality of a combustion in incinerators with a gas burn zone, wherein the soot particles, d. H. Solid particles in the exhaust gas can be selectively detected.
  • An essential basic idea of the method involves the relationship that in a flow cross-section of the gas burnout zone low-combustion regions (preferably without soot formation), regions without combustion and regions with soot formation in the visible wavelength range are optically detectable.
  • the soot-poor combustion areas always appear bright (high radiation intensity), while the areas without combustion (cold rust areas) and sooty areas always appear dark (low radiation intensity).
  • the combustion areas darken increasingly with increasing amounts of soot, i. the radiation intensity decreases continuously with the soot content.
  • the areas without combustion and the sooting areas characterized by a different dynamics in their temporal behavior, which can be detected by an evaluation, preferably an averaging or a comparison of several consecutive individual recordings.
  • a basic prerequisite for the method is at least one camera system with camera measuring in the visible wavelength range (about 400 to 1000 nm), for example a video camera, which is adapted to a gas burnout zone in such a way that it has a flow cross section as completely as possible.
  • camera systems are available as sophisticated standard systems for different applications, comparatively inexpensive and also available in high quality and high resolution on the market.
  • the camera system is used to record the combustion in the flow cross section with a sequence of individual shots.
  • the single shots are snapshots of the Abgasausbrands in the entire flow cross-section, with camera setting and image section between the individual shots are not changed.
  • the image detail preferably corresponds to the flow cross section in the region of the exhaust gas burnout zone.
  • This flow cross-section is subdivided into segments with a number of pixels for evaluation of the images (image processing).
  • the evaluation essentially comprises an assignment of the segments to one of the aforementioned areas or to transition areas between two areas by means of the method steps described below.
  • At least two of the successive individual images are averaged (preferably pixel-by-pixel) in order to generate an average image from them.
  • soot-poor combustion areas are recognized by their intensity value (radiation intensity) being above an adjustable intensity threshold value.
  • the intensity threshold value is determined manually or automatically relative to the maximum intensity in the acquired image (for example 50, 60 or 70% relative to the respective maximum value) or manually specified as the absolute value.
  • a manually specified intensity threshold can be composed of previous empirical values and remains in successive measurements in favor of improved comparability of these measurements, e.g. preferably unchanged for system monitoring.
  • transition regions are assigned to the transition segments.
  • each segment is evaluated as to whether it must be attributed to one or as a transition segment at least two of the aforementioned areas, ie to a transition area.
  • a transition region exists when the determined intensity corresponds to the intensity threshold value or a transition occurs between a value less than the threshold value and a value greater than the threshold value.
  • the mostly linear transition areas can be highlighted as lines, eg in color (eg false color representation).
  • a transitional segment is basically present if the intensity threshold is both exceeded and undershot.
  • the assignment of segments to transition segments is usually carried out using adjustable diligencenanteilsschwellagonist for the area proportions of the above individual areas.
  • transition segments are assigned to the participating areas.
  • a transition is indicated by a brightness difference. This can be determined, for example, by brightness gradients or segment by segment by determining a contrast that is calculated by means of a cooccurrence matrix (see www.weblearn.hs-bremen.de/risse/AWI/textur/merkmale.htm).
  • transitions from a low-carbon combustion region to a non-combustion region are characterized by lower dynamics of motion than soot transitions, i. Transitions from low-carbon combustion areas to sooting areas.
  • carbon black transitions are generally characterized by a low selectivity or a lower contrast, ie. they appear much more blurred than transitions from a low-carbon combustion area to an area without combustion (rust transitions), although this may not be the case with single shots.
  • An assignment of the transition segments to the fraction of carbon black transitions or rust transitions is preferably carried out by determining the contrast separately for each transitional segment. An assignment of the transition segments takes place with contrast values in comparison to a contrast threshold value. If the contrast value of a segment lies below the contrast threshold, if there is a soot transition segment, it lies above it, a rust transition.
  • the contrast values preferably relate to the light intensity (light dark contrast).
  • Other contrasts such as Color contrasts e.g. In connection with a color manipulation of the images are in principle also for the aforementioned classification, but may require a higher billing expenses and are therefore preferred for a timely characterization of Abgasausbrand21 only in special cases.
  • contiguous transition segments of a linear transition region are not uniformly evaluated, but mixed both in the fraction of carbon black transitions and in the roasting transitions, an optional weighting of the individual fractions takes place.
  • One possible method step involves the recognition of contiguous transition segments of a fraction and of individual transition segments of a fraction which are surrounded by the respective fraction. In this case, with a significant overweight of transition segments of one of the fractions all transition segments of this fraction can be assigned. Individual segments of a fraction can also be assigned to the fractions of the neighboring segments via a neighborhood analysis. On the other hand, contiguous transition segments of a fraction are only assigned to the other fraction if they are considered as Possible faulty measurements represent a single event (plausibility check).
  • an iterative assignment of all segments in which the intensity of more than half of the pixels lies below the intensity threshold takes place to the sooting area or to the area without combustion by evaluation of neighborhood relationships to transition segments and already assigned segments.
  • the assignment of these segments takes place individually in iterative method steps by assuming the affiliation of the respectively adjacent, already already identified segments or transition segments (neighborhood analysis).
  • the segment is assigned to the area to which most of the adjacent segments have already been assigned.
  • Each of the iteration steps is preferably carried out on the segments which adjoin, as far as possible, a fraction to the largest possible number of already assigned transition segments or already assigned segments.
  • control variables for measures to improve the quality of exhaust gas burnout such as a calculated, preferably a spatially differentiated (preferably segment-wise or segment-wise), adapted to the local combustion state input of oxygen-containing gases (for example, secondary gas, sooting areas) or additional fuels (in areas without combustion) calculated.
  • the method of generating control signals for a measure with the aim of continuously improving soot burnout (eg targeted injection of oxygen-containing gas), must be based on the individual recordings in the context of implementing the process in real time, the determination of the parameters.
  • soot burnout eg targeted injection of oxygen-containing gas
  • the Abgasausbrand a waste incineration was characterized with grate firing.
  • the image section of the camera according to Fig.1 to 4 detects from above against the gas flow direction the Strahlungszugquer bain the Abgasausbrandzone between the combustion grate and a downstream secondary combustion chamber with secondary gas input option.
  • a camera in the visible wavelength range measuring camera such as a CMOS camera is used.
  • Fig.1 shows a single shot of Abgasausbrands with bright low-combustion area 1 and one dark rust area 2 (area without combustion) and a strongly sooting combustion zone 3 (sooting area) with low radiation intensity.
  • the transition regions between these regions show similar brightness gradients on this single image, which do not permit a clear assignment of the respectively adjacent dark region to the region without combustion or to the sooty region.
  • the aim of the invention is to automatically identify and classify these regions with low radiation intensity on the basis of several individual images, and whether they are areas with a high proportion of soot (sooting area) or cold rust areas. Preferably, this should be done in order to initiate targeted actions such as additional gas injection in real time.
  • Fig.2 shows one from 20, within a second consecutive single shots accordingly Fig.1 average recording.
  • this mean value image in contrast to a single image (cf. Fig.1 ) the boundaries between combustion 1 (flame) and sooting area 3 very blurred, which is due to the high dynamics of soot particle movement in the flow field. Due to the low dynamics of the boundary between the cold rust area and the low-carbon combustion area compared to the soot, this is consequently still relatively sharp in the average image.
  • This difference in the characteristics of the transition areas between combustion and soot-free area is used in the further method to distinguish soot areas 3 from areas without combustion (cold grate areas 2) from one another.
  • a boundary between the high-intensity radiant low-carbon combustion region and the region without combustion or the sooting regions is determined on the basis of a relative threshold value of the radiation intensity and entered in the averaging image as transition line 4 (transition region) (cf. Figure 3 , gray line).
  • transition line 4 transition region
  • the mean value image is subdivided into segments, and those segments are determined which cover as transition segments 5 the transition line 4 between strongly and weakly radiating regions.
  • transition segments 5 For the mentioned transition segments 5 , a contrast analysis is then used to determine whether there is a segment with a boundary between the area without combustion (rust area) and low-carbon combustion area, a grate transition segment 6 ( FIG. Figure 3 , Black border segments) or a segment of a boundary between rußendem area and low-soot combustion area, a Rußschreibgangssegment 7 ( Figure 3 , White-edged segments) is.
  • each of the transition segments is preferably checked with the intensity threshold value at a later point in time, and the transition segments above the threshold value are assigned to the soot-poor combustion regions.
  • each transition segment may also be assigned to the low-carbon combustion region if the intensity of at least half of the pixels of this segment is above the intensity threshold.
  • these inhomogeneities in the exhaust gas or fuel gas preferably in the aforementioned real-time in the combustion chamber / Abgasausbrandzone by measurement, ie optically detected and compensated by controlled targeted local oxygen-containing gas supply and / or effective mixing so that at high temperatures and sufficient oxygen supply (above about 5 vol.% dry oxygen in the raw gas, T> 850 ° C, cf. Figure 5 ) a virtually complete oxidation of the incompletely burned exhaust gas components in a short time is possible.
  • the latter values correspond, for example, to the temperature of at least 850 ° C. prescribed for waste incineration in accordance with 17. BImSchV within a residence time of more than 2 seconds after the last oxygen-containing air addition. These conditions must be maintained at all times and throughout the entire cross section of the exhaust gas burnout zone.
  • soot particles deposit on the boiler surface together with chloride-containing fly ash or are separated during dedusting (eg electrostatic precipitators). In the temperature range> 200 ° C it comes through oxychlorination of these soot particles to form polychlorinated dibenzo-p-dioxins and -furans (PCDD / F) by the so-called de-novo synthesis.
  • PCDD / F polychlorinated dibenzo-p-dioxins and -furans
  • the particulate carbon (soot particles) is the dominant carbon source.
  • the PCDD / F education takes place even with short-term disturbances over a very long period of time.
  • the maximum PCDD / F formation depends on the amount of soot deposition rate. Even if the firing process is controlled again, the PCDD / F formation still takes place as long as carbon particles are present in the boiler deposits (memory effect).
  • Such disturbances can be detected by the aforementioned real-time measurements of the local soot concentration and deliberately reduced / avoided by a timely regulated air supply and intensive mixing in the region of the exhaust gas burnout zone.
  • the invention generally allows the particulate emissions (soot particles) of combustions, in particular of inhomogeneous fuels, to be detected and effectively reduced on the basis of control variables derived therefrom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Solid-Fuel Combustion (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Charakterisierung der Abgasausbrandqualität in Verbrennungsanlagen gemäß des ersten Patentanspruchs.The invention relates to a method for characterizing the Abgasausbrandqualität in incineration plants according to the first claim.

Ein Ziel von technischen Verbrennungsprozessen ist die Erzielung eines möglichst vollständigen effizienten Abgasausbrands. Ein effizienter Abgasausbrand wird durch niedrige Konzentrationen an Produkten unvollständiger Verbrennung wie CO, Kohlenwasserstoffe und partikulärer Kohlenstoff (Rußpartikel) charakterisiert. Emissionsgrenzwerte hierzu sind meist in einschlägigen Verordnungen festgelegt. In Deutschland sind beispielsweise in der 17. BImSchV (Bundesimmissionsschutzverordnung) die Grenzwerte für Kohlenmonoxid CO und Kohlenwasserstoffe CnHm festgeschrieben.One goal of technical combustion processes is to achieve as complete as possible an efficient exhaust gas burn-out. Efficient exhaust burnout is characterized by low levels of incomplete combustion products such as CO, hydrocarbons and particulate carbon (soot particles). Emission limit values for this are usually specified in relevant regulations. In Germany, for example, the 17th BImSchV (Federal Immission Control Ordinance) sets the limit values for carbon monoxide CO and hydrocarbons C n H m .

Brennstoffe wie Hausmüll, Biomasse oder Kohle mit schwankenden Feuchtegehalten, sind sehr inhomogene Brennstoffe. Infolge deren sehr heterogenen Zusammensetzung schwankt deren Heizwert sehr stark. Bei der Verbrennung in technischen Feuerungen werden daher heute im Brennraum aufwendige Feuerleistungsregelungen mit Infrarotdetektoren (IR-Kamera, Infrarotkamera) eingesetzt. Die Feuerlage des festen Brennbetts in Rostfeuerungen wird dabei anhand der Infrarot-Strahlung des Brennstoffbettes mit Hilfe einer IR-Kamera ermittelt. Die hierbei erfasste Wellenlänge (z.B. 3,9 µm) liegt in einem Bereich, in dem Verbrennungsgase selbst keine Emissivität aufweisen. Mit Hilfe dieser Informationen erfolgt die Regelung der Rostkinematik und/oder der einzelnen Primärgasströme, die das Festbett durchströmen. Dadurch ist ein nahezu vollständiger Feststoffausbrand der Schlacke erreichbar.Fuels such as household waste, biomass or coal with fluctuating moisture contents are very inhomogeneous fuels. Due to their very heterogeneous composition, their calorific value varies greatly. When incinerating in technical firing systems, complex firing-power regulations with infrared detectors (IR camera, infrared camera) are therefore used today in the combustion chamber. The firing position of the solid fuel bed in grate firing is determined using the infrared radiation of the fuel bed with the help of an IR camera. The wavelength detected here (for example, 3.9 μm) is in a range in which combustion gases themselves have no emissivity. With the help of this information, the control of the grate kinematics and / or the individual primary gas flows, which flow through the fixed bed. As a result, a nearly complete Feststoffausbrand the slag can be achieved.

Ein Abgas welches aus einem Brennraum, beispielsweise einer Festbettausbrandzone ungleichmäßig verbrannt austritt, weist in der Regel lokal hohe Konzentrationen an unvollständig verbrannten Verbindungen, wie z.B. CO, Kohlenwasserstoffe und Ruß auf. Dabei zeigt die aus dem Brennbett austretende Gasströmung eine ausgeprägte Bildung von Strähnen mit enormen örtlichen und zeitlichen Konzentrationsschwankungen der vorgenannten unvollständig verbrannten Verbindungen wie auch der Sauerstoffkonzentration. Diese Strähnen ziehen sich bis durch die Abgasausbrandzone im ersten Strahlungszug. Für eine homogene Vermischung und damit einen vollständigen Ausbrand des Abgases reicht oftmals die zur Verfügung stehende Vermischungszeit oder auch die Vermischungsturbulenz nicht aus. Einem unvollständigen Ausbrand der Abgase begegnet man daher mit einer Einleitung eines sauerstoffhaltigen Sekundärgases in der Abgasausbrandzone. Die Gesamtmenge dieses Sekundärgases wird dabei so gewählt, dass hinter der Abgasausbrandzone stets ein definierter Sauerstoffüberschuss (Mindestsauerstoffkonzentration) eingehalten wird. Die Mindestsauerstoffkonzentration wird von den erforderlichen Mindestverbrennungstemperaturen nach der Abgasausbrandzone begrenzt.An exhaust gas which emerges unevenly burned from a combustion chamber, for example a fixed bed burnout zone, generally has locally high concentrations of incompletely burnt compounds, such as CO, hydrocarbons and soot. The gas flow emerging from the combustion bed shows a pronounced formation of strands with enormous local and temporal fluctuations in concentration the aforementioned incompletely burned compounds as well as the oxygen concentration. These strands extend through the Abgasausbrandzone in the first Strahlungszug. For a homogeneous mixing and thus a complete combustion of the exhaust gas, the available mixing time or even the mixing turbulence is often insufficient. An incomplete burnout of the exhaust gases is therefore encountered with an introduction of an oxygen-containing secondary gas in the Abgasausbrandzone. The total amount of this secondary gas is chosen so that behind the Abgasausbrandzone always a defined excess of oxygen (minimum oxygen concentration) is maintained. The minimum oxygen concentration is limited by the required minimum combustion temperatures after the exhaust gas burnout zone.

In DE 10 347 340 A1 wird eine Vorrichtung zur Optimierung des Abgasausbrands in Verbrennungsanlagen mit einer Festbettausbrandzone und einer Abgasausbrandzone offenbart. Sie umfasst mehrere regelbare Düsen zur Einleitung von sauerstoffhaltigem Sekundärgas in einen Wirkbereich in der Abgasausbrandzone. Die Erfassung der einzelnen unvollständig verbrannten Gaskomponenten (CO und Kohlenwasserstoffe) im Wirkbereich erfolgt über eine Erfassung der Strahlungsintensität mittels Infrarotkamera oder einer anderen spektral messenden Einrichtung. Die dabei ermittelten Informationen werden in Steuerbefehle für jede der regelbaren Düsen zur gezielten Einleitung von Sekundärgas umgesetzt.In DE 10 347 340 A1 discloses an apparatus for optimizing exhaust burnout in incinerators having a fixed bed burnout zone and an exhaust burnout zone. It comprises a plurality of controllable nozzles for introducing oxygen-containing secondary gas into an effective region in the exhaust gas burnout zone. The detection of the individual incompletely burned gas components (CO and hydrocarbons) in the effective range via a detection of the radiation intensity by means of infrared camera or other spectrally measuring device. The information thus obtained is converted into control commands for each of the controllable nozzles for the targeted introduction of secondary gas.

Die Vorrichtung und das damit einhergehende Verfahren dienen jedoch der nicht selektiven Erkennung von unvollständig verbrannten gasförmigen Komponenten im Abgas. Es werden sowohl unvollständig verbrannte Gase wie auch Feststoffanteile (z.B. Ruß) als Summensignal erfasst, wobei eine Wichtung zwischen einzelnen Komponenten nicht möglich ist. Außerdem kann es vorkommen, dass Bereiche, in denen mangels Brenngase überhaupt keine Verbrennungsaktivitäten stattfinden, auch als unvollständig verbrannte Abgasbereiche erkannt werden (Querempfindlichkeiten Emissivität von CO2 zu H2O). Im zuletzt genannten Fall würde eine Eindüsung eines sauerstoffhaltigen Sekundärgases keine Nachverbrennung, sondern lediglich eine Verdünnung und Kühlung der Gase hervorrufen.However, the device and the associated method are used for the non-selective detection of incompletely burned gaseous components in the exhaust gas. Both incompletely burned gases and solid components (eg soot) are recorded as a sum signal, whereby a weighting between individual components is not possible. In addition, it may happen that areas where no combustion activities take place at all due to a lack of combustion gases are also detected as incompletely burned waste gas areas (cross sensitivity emissivity of CO 2 to H 2 O). In the latter case, an injection of an oxygen-containing secondary gas would cause no afterburning, but only a dilution and cooling of the gases.

Ausgehend davon liegt die Aufgabe der Erfindung darin, ein Verfahren zur Charakterisierung der Abgasausbrandqualität hinsichtlich Rußausbrand in Verbrennungsanlagen als Basis für eine Optimierung des Abgasausbrandes insbesondere für eine vollständigen Rußausbrand auch bei instationären Verbrennungsvorgängen mit einem Minimum an Sekundärgas vorzuschlagen.Proceeding from this, the object of the invention is to propose a method for the characterization of the flue gas combustion quality with respect to Rußausbrand in incinerators as the basis for optimizing Abgasausbrandes especially for a complete Rußausbrand even with transient combustion processes with a minimum of secondary gas.

Die Aufgabe wird durch ein Verfahren mit den Merkmalen von Anspruch 1 gelöst. Rückbezogene Unteransprüche geben vorteilhafte Ausgestaltungen des Verfahrens an.The object is achieved by a method having the features of claim 1. Returned dependent claims indicate advantageous embodiments of the method.

Zur Lösung der Aufgabe wird ein Verfahren zur Charakterisierung des Abgasausbrandqualität einer Verbrennung in Verbrennungsanlagen mit einer Gasausbrandzone vorgeschlagen, bei dem Rußsträhnen, d. h. Feststoffpartikel im Abgas selektiv erfassbar sind.To achieve the object, a method is proposed for characterizing the exhaust gas burnout quality of a combustion in incinerators with a gas burn zone, wherein the soot particles, d. H. Solid particles in the exhaust gas can be selectively detected.

Ein wesentlicher Grundgedanke des Verfahrens beinhaltet den Zusammenhang, dass in einem Strömungsquerschnitt der Gasausbrandzone rußarme Verbrennungsbereiche (vorzugsweise ohne Rußbildung), Bereiche ohne Verbrennung und Bereiche mit Rußbildung im sichtbaren Wellenlängenbereich optisch erfassbar sind. Die rußarmen Verbrennungsbereiche erscheinen dabei grundsätzlich hell (hohe Strahlungsintensität), während die Bereiche ohne Verbrennung (kalte Rostbereiche) und rußende Bereiche grundsätzlich dunkel erscheinen (niedrige Strahlungsintensität). Die Verbrennungsbereiche dunkeln sich mit zunehmenden Rußanteilen zunehmend ein, d.h. die Strahlungsintensität'nimmt kontinuierlich mit dem Rußanteil ab. Dabei kennzeichnen sich die Bereiche ohne Verbrennung und die rußenden Bereiche durch eine unterschiedliche Dynamik in ihrem zeitlichen Verhalten aus, welche durch eine Bewertung, vorzugsweise eine Mittelung oder einen Vergleich mehrerer aufeinander folgender Einzelaufnahmen detektierbar sind.An essential basic idea of the method involves the relationship that in a flow cross-section of the gas burnout zone low-combustion regions (preferably without soot formation), regions without combustion and regions with soot formation in the visible wavelength range are optically detectable. The soot-poor combustion areas always appear bright (high radiation intensity), while the areas without combustion (cold rust areas) and sooty areas always appear dark (low radiation intensity). The combustion areas darken increasingly with increasing amounts of soot, i. the radiation intensity decreases continuously with the soot content. In this case, the areas without combustion and the sooting areas characterized by a different dynamics in their temporal behavior, which can be detected by an evaluation, preferably an averaging or a comparison of several consecutive individual recordings.

Grundvoraussetzung für das Verfahren ist mindestens ein im sichtbaren Wellenlängenbereich (ca. 400 bis 1000 nm) messendes Kamerasystem mit Kamera, beispielsweise eine Videokamera, welches so an eine Gasausbrandzone adaptiert ist, dass sie einen Strömungsquerschnitt in dieser möglichst vollständig erfasst. Im Gegensatz zu Detektionssystemen für den Infrarotbereich oder anderen nicht sichtbare Wellenlängenbereiche sind derartige Kamerasysteme als ausgereifte Standardsysteme für unterschiedliche Anwendungen vergleichsweise preiswert und auch in hoher Qualität und hohem Auflösungsvermögen auf dem Markt erhältlich.A basic prerequisite for the method is at least one camera system with camera measuring in the visible wavelength range (about 400 to 1000 nm), for example a video camera, which is adapted to a gas burnout zone in such a way that it has a flow cross section as completely as possible. In contrast to detection systems for the infrared range or other non-visible wavelength ranges, such camera systems are available as sophisticated standard systems for different applications, comparatively inexpensive and also available in high quality and high resolution on the market.

Das Kamerasystem dient zur Aufnahme der Verbrennung im Strömungsquerschnitt mit einer Abfolge von Einzelaufnahmen. Die Einzelaufnahmen sind Momentaufnahmen des Abgasausbrands im gesamten Strömungsquerschnitt, wobei Kameraeinstellung und Bildausschnitt zwischen den Einzelaufnahmen nicht verändert werden. Der Bildausschnitt entspricht vorzugsweise dem Strömungsquerschnitt im Bereich der Abgasausbrandzone. Dieser Strömungsquerschnitt wird für eine Bewertung der Aufnahmen (Bildverarbeitung) in Segmente mit einer Anzahl von Bildpunkten (Pixel) unterteilt. Die Bewertung umfasst im Wesentlichen eine Zuordnung der Segmente zu einem der vorgenannten Bereiche oder zu Übergangsbereichen zwischen zwei Bereichen mittels im Folgenden beschriebener Verfahrensschritten.The camera system is used to record the combustion in the flow cross section with a sequence of individual shots. The single shots are snapshots of the Abgasausbrands in the entire flow cross-section, with camera setting and image section between the individual shots are not changed. The image detail preferably corresponds to the flow cross section in the region of the exhaust gas burnout zone. This flow cross-section is subdivided into segments with a number of pixels for evaluation of the images (image processing). The evaluation essentially comprises an assignment of the segments to one of the aforementioned areas or to transition areas between two areas by means of the method steps described below.

Mindestens zwei der aufeinander folgenden Einzelaufnahmen werden (vorzugsweise pixelweise) gemittelt, um daraus ein Mittelwertbild zu generieren. In diesem Mittelwertbild werden rußarme Verbrennungsbereiche dadurch erkannt, dass ihr Intensitätswert (Strahlungsintensität) oberhalb eines einstellbaren Intensitätsschwellwerts liegt. Der Intensitätsschwellwert wird dabei relativ zur maximalen Intensität im erfassten Bild (z.B. 50, 60 oder 70% bezogen auf den jeweiligen Maximalwert) manuell oder automatisch ermittelt oder als absolute Größe manuell vorgegeben. Ein manuell vorgegebener Intensitätsschwellwert kann sich aus bisherigen Erfahrungswerten zusammensetzen und verbleibt bei aufeinander folgenden Messungen zugunsten einer verbesserten Vergleichbarkeit dieser Messungen z.B. für eine Systemüberwachung bevorzugt unverändert.At least two of the successive individual images are averaged (preferably pixel-by-pixel) in order to generate an average image from them. In this average image, soot-poor combustion areas are recognized by their intensity value (radiation intensity) being above an adjustable intensity threshold value. The intensity threshold value is determined manually or automatically relative to the maximum intensity in the acquired image (for example 50, 60 or 70% relative to the respective maximum value) or manually specified as the absolute value. A manually specified intensity threshold can be composed of previous empirical values and remains in successive measurements in favor of improved comparability of these measurements, e.g. preferably unchanged for system monitoring.

Nachfolgend erfolgt die Lokalisierung der Übergangsbereiche als die Bildpunkte, die zum russarmen Verbrennungsbereich zugeordnet wurden, jedoch mindestens einen angrenzenden Bildpunkt aufweisen, der nicht zum russarmen Verbrennungsbereich gehört. Danach werden diese Übergangsbereiche den Übergangssegmenten zugeordnet. Dabei wird jedes Segment dahingehend bewertet, ob es zu einem oder als Übergangssegment mindestens zwei der vorgenannten Bereiche, also zu einem Übergangsbereich zugerechnet werden muss. Ein Übergangsbereich liegt dann vor, wenn in diesem die ermittelte Intensität dem Intensitätsschwellwert entspricht oder ein Übergang zwischen einem Wert kleiner als dem Schwellwert zu einem Wert größer als dem Schwellwert auftritt. In einer Einzelaufnahme oder einem Mittelwertbild lassen sich die meist linienförmigen Übergangsbereiche als Linien z.B. farblich hervorheben (z.B. Falschfarbendarstellung). Ein Übergangssegment liegt grundsätzlich dann vor, wenn in diesem der Intensitätsschwellwert sowohl über- als auch unterschritten wird. Die Zuordnung von Segmenten zu Übergangssegmenten erfolgt üblicherweise anhand einstellbarer Flächenanteilsschwellwerte für die Flächenanteile der vorgenannten einzelnen Bereiche.Subsequently, the localization of the transition regions takes place as the pixels which have been assigned to the russar-combustion region but which have at least one adjacent pixel which is not belongs to the russarmmen combustion area. Thereafter, these transition areas are assigned to the transition segments. In this case, each segment is evaluated as to whether it must be attributed to one or as a transition segment at least two of the aforementioned areas, ie to a transition area. A transition region exists when the determined intensity corresponds to the intensity threshold value or a transition occurs between a value less than the threshold value and a value greater than the threshold value. In a single image or an averaged image, the mostly linear transition areas can be highlighted as lines, eg in color (eg false color representation). A transitional segment is basically present if the intensity threshold is both exceeded and undershot. The assignment of segments to transition segments is usually carried out using adjustable Flächenanteilsschwellwerte for the area proportions of the above individual areas.

Anschließend erfolgt eine Zuordnung der Übergangssegmente zu den beteiligten Bereichen. Ein Übergang zeigt sich durch einen Helligkeitsunterschied. Dieser ist beispielsweise durch Helligkeitsgradienten oder segmentweise durch eine Ermittlung eines Kontrastes, der mittels einer Cooccurrence-Matrix (vgl. www.weblearn.hs-bremen.de/risse/AWI/textur/merkmale.htm) berechnet wird, bestimmbar.Subsequently, the transition segments are assigned to the participating areas. A transition is indicated by a brightness difference. This can be determined, for example, by brightness gradients or segment by segment by determining a contrast that is calculated by means of a cooccurrence matrix (see www.weblearn.hs-bremen.de/risse/AWI/textur/merkmale.htm).

Grundsätzlich kennzeichnen sich Übergänge von einem rußarmen Verbrennungsbereich zu einem Bereich ohne Verbrennung durch eine geringere Bewegungsdynamik als Rußübergänge, d.h. Übergängen von rußarmen Verbrennungsbereichen zu rußenden Bereichen. Bei aus mehreren Einzelaufnahmen gebildeten Mittelwertbildern zeichnen sich Rußübergänge grundsätzlich durch eine geringe Trennschärfe oder einen geringeren Kontrast aus, d.h. sie erscheinen wesentlich verschwommener als Übergänge von einem rußarmen Verbrennungsbereich zu einem Bereich ohne Verbrennung (Rostübergänge), auch wenn dies bei Einzelaufnahmen nicht der Fall sein muss.Basically, transitions from a low-carbon combustion region to a non-combustion region are characterized by lower dynamics of motion than soot transitions, i. Transitions from low-carbon combustion areas to sooting areas. In the case of averaged images formed from a plurality of individual images, carbon black transitions are generally characterized by a low selectivity or a lower contrast, ie. they appear much more blurred than transitions from a low-carbon combustion area to an area without combustion (rust transitions), although this may not be the case with single shots.

Eine Zuordnung der Übergangssegmente zu der Fraktion der Rußübergänge oder Rostübergänge erfolgt vorzugsweise über die Ermittlung des Kontrastes für jedes Übergangssegment separat. Eine Zuordnung der Übergangssegmente erfolgt mit Kontrastwerten im Vergleich zu einem Kontrastschwellwert. Liegt der Kontrastwert eines Segments unterhalb des Kontrastschwellwertes, liegt ein Rußübergangssegment vor, liegt er darüber, ein Rostübergang.An assignment of the transition segments to the fraction of carbon black transitions or rust transitions is preferably carried out by determining the contrast separately for each transitional segment. An assignment of the transition segments takes place with contrast values in comparison to a contrast threshold value. If the contrast value of a segment lies below the contrast threshold, if there is a soot transition segment, it lies above it, a rust transition.

Die Kontrastwerte beziehen sich vorzugsweise auf die Lichtintensität (Hell Dunkel-Kontrast). Andere Kontraste, wie z.B. Farbkontraste z.B. in Verbindung einer Farbmanipulation der Aufnahmen eignen sich zwar grundsätzlich auch für vorgenannte Klassifizierung, erfordern aber möglicherweise einen höheren Rechnungsaufwand und sind aus diesem Grunde für eine zeitnahe Charakterisierung der Abgasausbrandqualität nur in Sonderfällen zu bevorzugen.The contrast values preferably relate to the light intensity (light dark contrast). Other contrasts, such as Color contrasts e.g. In connection with a color manipulation of the images are in principle also for the aforementioned classification, but may require a higher billing expenses and are therefore preferred for a timely characterization of Abgasausbrandqualität only in special cases.

Alternativ ist im Rahmen einer Bewertung eine Unterscheidung von Rußübergängen und Rostübergängen über einen Vergleich einzelner Übergangssegmente oder einer anderen Gruppe von Bildpunkten der Übergangsbereiche aus aufeinander folgenden Einzelaufnahmen denkbar. Größere und schnellere Änderungen der Intensitätswerte eines Segmentes oder einer Pixelgruppe aus mehreren aufeinander folgenden Einzelaufnahmen deuten auf eine erhöhte Dynamik im Übergangsbereich und damit auf Rußübergänge hin.Alternatively, as part of an assessment, it is conceivable to distinguish between carbon black transitions and rust transitions by comparing individual transition segments or another group of pixels of the transition regions from successive individual images. Larger and faster changes in the intensity values of a segment or a group of pixels from a plurality of consecutive individual images indicate increased dynamics in the transition region and thus in soot transitions.

Werden zusammenhängende Übergangssegmente eines linienförmigen Übergangsbereichs nicht einheitlich bewertet, sondern gemischt sowohl der Fraktion der Rußübergänge als der der Röstübergänge, erfolgt optional eine Gewichtung der einzelnen Fraktionen. Ein möglicher Verfahrensschritt umfasst dabei die Erkennung von zusammenhängenden Übergangssegmenten einer Fraktion und von einzelnen Übergangssegmenten einer Fraktion, die von der jeweiligen Fraktion umgeben sind. Dabei kann bei einem deutlichen Übergewicht von Übergangssegmenten einer der Fraktionen alle Übergangssegmente dieser Fraktion zugeordnet werden. Auch einzelne Segmente einer Fraktion können über eine Nachbarschaftsanalyse den Fraktionen der Nachbarsegmente zugeordnet werden. Zusammenhängende Übergangssegmente einer Fraktion dagegen werden ausschließlich nur dann der anderen Fraktion zugeordnet, wenn diese als mögliche Fehlmessungen ein Einzelereignis darstellen (Plausibilitätsüberprüfung).If contiguous transition segments of a linear transition region are not uniformly evaluated, but mixed both in the fraction of carbon black transitions and in the roasting transitions, an optional weighting of the individual fractions takes place. One possible method step involves the recognition of contiguous transition segments of a fraction and of individual transition segments of a fraction which are surrounded by the respective fraction. In this case, with a significant overweight of transition segments of one of the fractions all transition segments of this fraction can be assigned. Individual segments of a fraction can also be assigned to the fractions of the neighboring segments via a neighborhood analysis. On the other hand, contiguous transition segments of a fraction are only assigned to the other fraction if they are considered as Possible faulty measurements represent a single event (plausibility check).

Im Anschluss der vorgenannten Zuordnung der Übergangssegmente erfolgt eine iterative Zuordnung aller Segmente, bei denen die Intensität von mehr als der Hälfte der Bildpunkte unterhalb des Intensitätsschwellwerts liegt, zum rußenden Bereich oder zum Bereich ohne Verbrennung durch Auswertung von Nachbarschaftsbeziehungen zu Übergangssegmenten und bereits zugeordneten Segmenten. Die Zuordnung dieser Segmente erfolgt jeweils einzeln in iterativen Verfahrensschritten durch Übernahme der Zugehörigkeit der jeweils angrenzenden, bereits schon identifizierten Segmente oder Übergangssegmente (Nachbarschaftsanalyse). Bei einer nicht einheitlichen Zugehörigkeit der bereits zugeordneten benachbarten Segmente wird das Segment dem Bereich zugeordnet, zu dem die meisten benachbarten Segmente bereits zugeordnet wurden. Jeder der Iterationsschritte erfolgt vorzugsweise an den Segmenten, die an eine möglichst große Zahl bereits zugeordneter Übergangssegmente oder bereits zugeordneter Segmente möglichst einer Fraktion angrenzen.Following the abovementioned assignment of the transition segments, an iterative assignment of all segments in which the intensity of more than half of the pixels lies below the intensity threshold takes place to the sooting area or to the area without combustion by evaluation of neighborhood relationships to transition segments and already assigned segments. The assignment of these segments takes place individually in iterative method steps by assuming the affiliation of the respectively adjacent, already already identified segments or transition segments (neighborhood analysis). In case of a non-uniform affiliation of the already assigned adjacent segments, the segment is assigned to the area to which most of the adjacent segments have already been assigned. Each of the iteration steps is preferably carried out on the segments which adjoin, as far as possible, a fraction to the largest possible number of already assigned transition segments or already assigned segments.

Schließlich werden im Rahmen der Charakterisierung der Abgasqualität die einzelnen Lagen, die Flächenausdehnungen und die Intensitätsverteilungen aller identifizierten Bereiche ermittelt. Aus diesen Kenngrößen lassen sich Steuergrößen für Maßnahmen zur Verbesserung der Abgasausbrandqualität, wie z.B. eine gezielte, vorzugsweise eine örtlich differenzierte (vorzugsweise segmentweise oder segmentgruppenweise), an den lokalen Verbrennungszustand angepasste Eingabe von sauerstoffhaltigen Gasen (z.B. Sekundärgas, bei rußenden Bereichen) oder auch von zusätzlichen Brennstoffen (bei Bereichen ohne Verbrennung) rechnerisch ermitteln.Finally, as part of the characterization of the exhaust gas quality, the individual layers, the surface expansions and the intensity distributions of all identified regions are determined. From these parameters, control variables for measures to improve the quality of exhaust gas burnout, such as a calculated, preferably a spatially differentiated (preferably segment-wise or segment-wise), adapted to the local combustion state input of oxygen-containing gases (for example, secondary gas, sooting areas) or additional fuels (in areas without combustion) calculated.

Dient das Verfahren der Generierung von Steuersignalen für eine Maßnahme, mit dem Ziel, den Rußausbrand laufend zu verbessern (z.B. gezielte Eindüsung von sauerstoffhaltigem Gas), muss die Ermittlung der Kenngrößen basierend auf den Einzelaufnahmen im Rahmen der Verfahrensdurchführung in Echtzeit erfolgen. Durch eine Vielzahl von Gasdüsen lässt sich auch eine Nachverbrennung in jedem Segment individuell durch eine Zufuhr eines sauerstoffhaltigen Gases beeinflussen.If the method of generating control signals for a measure, with the aim of continuously improving soot burnout (eg targeted injection of oxygen-containing gas), must be based on the individual recordings in the context of implementing the process in real time, the determination of the parameters. Through a multiplicity of gas nozzles, afterburning in each segment can also be influenced individually by supplying an oxygen-containing gas.

Die Erfindung wird mit Beispielen anhand von Figuren näher erläutert. Es zeigen

  • Fig.1 eine mittels einer CMOS-Kamera aufgenommenen Einzelaufnahme eines Querschnitts einer Gasausbrandzone,
  • Fig.2 eine aus 20 aufeinander folgenden, innerhalb einer Sekunde erfassten Einzelaufnahmen wie Fig.1 gemittelte Aufnahme,
  • Fig.3 den Ausschnitt gemäß Fig.2 , jedoch mit Übergangssegmenten zwischen rußarmen Verbrennungsbereich und rußenden Bereich (helle Umrandung) sowie zwischen rußarmen Verbrennungsbereich und Bereich ohne Verbrennung (dunkle Umrandung),
  • Fig.4 den Ausschnitt gemäß Fig.2 und 3 nach über Nachbarschaftsbeziehung erfolgter iterativer Zuordnung der dunklen Segmente in kalte Rostbereiche (Bereich ohne Verbrennung, dunkle Umrandung) und rußende Bereiche (helle Umrandung) sowie
  • Fig.5 ein Kennfeld mit Bereichen mit effizientem Abgasausbrand am Beispiel von Kohlenmonoxid CO als Funktion von Verbrennungstemperatur und Sauerstoffgehalt. Die Charakteristik der Rußkonzentrationen verhält sich ähnlich wie die von CO.
The invention will be explained in more detail with examples with reference to figures. Show it
  • Fig.1 a single shot of a cross section of a gas burnout zone recorded by means of a CMOS camera,
  • Fig.2 one of 20 consecutive, within a second captured individual shots like Fig.1 averaged recording,
  • Figure 3 the clipping according to Fig.2 But without combustion transition segments between low-soot combustion area and sooting region (bright border) and between the low-soot combustion area and region (dark border),
  • Figure 4 the clipping according to Fig.2 and 3 after iterative assignment of the dark segments into cold rust areas (area without combustion, dark border) and sooting areas (bright border) as well as through neighborhood relations
  • Figure 5 a map with areas with efficient Abgasausbrand the example of carbon monoxide CO as a function of combustion temperature and oxygen content. The characteristic of the soot concentrations behaves similar to that of CO.

Im Rahmen des folgenden Versuchsbeispiels wurde der Abgasausbrand einer Müllverbrennung mit Rostfeuerung charakterisiert. Der Bildausschnitt der Kamera gemäß Fig.1 bis 4 erfasst dabei von oben entgegen der Gasströmungsrichtung den Strahlungszugquerschnitt der Abgasausbrandzone zwischen Verbrennungsrost und einer nachgeschalteten Nachbrennkammer mit Sekundärgaseingabemöglichkeit. Als Kamera kommt eine im sichtbaren Wellenlängenbereich messende Kamera, beispielsweise eine CMOS-Kamera zum Einsatz.As part of the following experimental example, the Abgasausbrand a waste incineration was characterized with grate firing. The image section of the camera according to Fig.1 to 4 detects from above against the gas flow direction the Strahlungszugquerschnitt the Abgasausbrandzone between the combustion grate and a downstream secondary combustion chamber with secondary gas input option. As a camera in the visible wavelength range measuring camera, such as a CMOS camera is used.

Fig.1 zeigt eine Einzelaufnahme des Abgasausbrands mit hellem rußarmen Verbrennungsbereich 1 sowie je einem dunklen Rostbereich 2 (Bereich ohne Verbrennung) sowie einem stark rußenden Verbrennungsbereich 3 (rußender Bereich) mit geringer Strahlungsintensität. Die Übergangsbereiche zwischen diesen Bereichen zeigen auf dieser Einzelaufnahme ähnliche Helligkeitsgradienten, die eine eindeutige Zuordnung des jeweils angrenzenden dunklen Bereichs zum Bereich ohne Verbrennung oder zum rußenden Bereich nicht zulassen. Fig.1 shows a single shot of Abgasausbrands with bright low-combustion area 1 and one dark rust area 2 (area without combustion) and a strongly sooting combustion zone 3 (sooting area) with low radiation intensity. The transition regions between these regions show similar brightness gradients on this single image, which do not permit a clear assignment of the respectively adjacent dark region to the region without combustion or to the sooty region.

Ziel der Erfindung ist es, zum einen diese Bereiche mit geringer Strahlungsintensität automatisch auf Basis von mehreren Einzelaufnahmen zu identifizieren und zu klassifizieren, ob es sich um Bereiche mit starkem Rußanteil (rußender Bereich) oder um kalte Rostbereiche handelt. Vorzugweise sollte dies zwecks Einleitung gezielter Maßnahmen wie einer zusätzlichen Gaseindüsung in Echtzeit erfolgen.The aim of the invention is to automatically identify and classify these regions with low radiation intensity on the basis of several individual images, and whether they are areas with a high proportion of soot (sooting area) or cold rust areas. Preferably, this should be done in order to initiate targeted actions such as additional gas injection in real time.

Fig.2 zeigt eine aus 20, innerhalb einer Sekunde aufeinander folgenden Einzelaufnahmen entsprechend Fig.1 gemittelte Aufnahme. In diesem Mittelwertbild sind im Gegensatz zu einem Einzelbild (vgl. Fig.1 ) die Grenzen zwischen Verbrennung 1 (Flamme) und rußendem Bereich 3 sehr unscharf, was auf die hohe Dynamik der Rußpartikelbewegung im Strömungsfeld zurückzuführen ist. Aufgrund der im Vergleich zum Ruß geringen Dynamik der Grenze zwischen kaltem Rostbereich und rußarmen Verbrennungsbereich ist diese folglich auch im Mittelwertbild noch relativ scharf ausgeprägt. Fig.2 shows one from 20, within a second consecutive single shots accordingly Fig.1 average recording. In this mean value image, in contrast to a single image (cf. Fig.1 ) the boundaries between combustion 1 (flame) and sooting area 3 very blurred, which is due to the high dynamics of soot particle movement in the flow field. Due to the low dynamics of the boundary between the cold rust area and the low-carbon combustion area compared to the soot, this is consequently still relatively sharp in the average image.

Dieser Unterschied in der Ausprägung der Übergansgebereiche zwischen Verbrennung und rußendem Bereich bzw. Bereich ohne Verbrennung wird im weiteren Verfahren dazu genutzt, rußende Bereiche 3 von Bereichen ohne Verbrennung (kalte Rostbereiche 2) voneinander zu unterscheiden. Dazu wird zunächst eine Grenze zwischen dem mit hoher Intensität strahlenden rußarmen Verbrennungsbereich und Bereich ohne Verbrennung oder den rußenden Bereichen auf der Basis eines relativen Schwellwertes der Strahlungsintensität bestimmt und im Mittelwertbild als Übergangslinie 4 (Übergangsbereich) eingegeben (vgl. Fig.3 , graue Linie). Das Mittelwertbild wird in Segmente unterteilt, und es werden diejenigen Segmente bestimmt, die als Übergangssegmente 5 die Übergangslinie 4 zwischen stark und schwach strahlenden Bereichen abdecken.This difference in the characteristics of the transition areas between combustion and soot-free area is used in the further method to distinguish soot areas 3 from areas without combustion (cold grate areas 2) from one another. For this purpose, first a boundary between the high-intensity radiant low-carbon combustion region and the region without combustion or the sooting regions is determined on the basis of a relative threshold value of the radiation intensity and entered in the averaging image as transition line 4 (transition region) (cf. Figure 3 , gray line). The mean value image is subdivided into segments, and those segments are determined which cover as transition segments 5 the transition line 4 between strongly and weakly radiating regions.

Für die genannten Übergangssegmente 5 wird nun durch eine Kontrastanalyse ermittelt, ob es sich jeweils um ein Segment mit einer Grenze zwischen Bereich ohne Verbrennung (Rostbereich) und rußarmen Verbrennungsbereich, einem Rostübergangssegment 6 ( Fig.3 , schwarz umrandete Segmente) oder um ein Segment mit einer Grenze zwischen rußendem Bereich und rußarmen Verbrennungsbereich, einem Rußübergangssegment 7 ( Fig.3 , weiß umrandete Segmente) handelt.For the mentioned transition segments 5 , a contrast analysis is then used to determine whether there is a segment with a boundary between the area without combustion (rust area) and low-carbon combustion area, a grate transition segment 6 ( FIG. Figure 3 , Black border segments) or a segment of a boundary between rußendem area and low-soot combustion area, a Rußübergangssegment 7 ( Figure 3 , White-edged segments) is.

Vorzugsweise wird zu einem späteren Zeitpunkt zudem die integrale Intensität jedes der Übergangssegmente mit dem Intensitätsschwellwert überprüft und die Übergangssegmente über dem Schwellwert den rußarmen Verbrennungsbereichen zugeordnet. Alternativ kann auch jedes Übergangssegment dem rußarmen Verbrennungsbereich zugeordnet werden, wenn die Intensität von mindestens der Hälfte der Bildpunkte dieses Segments über dem Intensitätsschwellwert liegt.In addition, the integral intensity of each of the transition segments is preferably checked with the intensity threshold value at a later point in time, and the transition segments above the threshold value are assigned to the soot-poor combustion regions. Alternatively, each transition segment may also be assigned to the low-carbon combustion region if the intensity of at least half of the pixels of this segment is above the intensity threshold.

Darauf folgend wird iterativ für alle weiteren Segmente außerhalb der Übergangssegmente, die die Bereiche mit schwacher Strahlungsintensität überspannen, durch Auswertung der jeweiligen Nachbarschaftsbeziehungen zu den Übergangssegmenten ermittelt, ob sie zu einem kalten Rostbereich oder zu einem stark rußenden Bereich gehören (vgl. Fig.4 ). Die dunklen Bereiche des Bildausschnitts des Mittelwertbildes werden somit in Rostsegmente 8 (inkl. den Rostübergangssegmenten 6) und Rußsegmente 9 (inkl. den Rußübergangssegmenten 7) unterteilt. Im vorliegenden Ausführungsbeispiel wurden die Bereiche in eindeutiger Weise identifiziert. Eine Plausibilitätsüberprüfung war hier nicht erforderlich.Subsequently, it is iteratively determined for all other segments outside the transition segments, which span the areas with weak radiation intensity, by evaluating the respective neighborhood relationships to the transition segments, whether they belong to a cold rust area or to a strongly sooting area (cf. Figure 4 ). The dark areas of the image section of the mean value image are thus subdivided into grate segments 8 (including the grate transition segments 6) and soot segments 9 (including the soot transition segments 7). In the present embodiment, the areas were uniquely identified. A plausibility check was not required here.

Grundsätzlich sind Hausmüll, aber auch Biomasse mit schwankenden Feuchtegehalten, sehr inhomogene Brennstoffe (und dadurch bedingten starken Schwankungen im Heizwert), die nicht nur die verbrennungsarmen kalten Rostbereiche (Bereiche ohne Verbrennung), sondern auch unvollständige Verbrennung (rußende Bereiche) begünstigen. Diese Brennstoffeigenschaften führen zu einem unterschiedlichen Zünd- und Abbrandverhalten. In technischen Feuerungen (z.B. Rostfeuerungen, Wirbelschicht, Drehrohr) kommt es, bedingt durch diese Brennstoffcharakteristik, zu örtlichen Inhomogenitäten beim Feststoffausbrand und der Abgaszusammensetzung (Abgassträhnen) innerhalb der Brennkammer und im Bereich der Abgasausbrandzone. Lage und Intensität dieser Abgassträhnen weisen zusätzlich ausgeprägte zeitliche und örtliche Fluktuationen auf, wobei die rußende Bereiche grundsätzlich eine erheblich höhere Dynamik aufweisen. ,Basically, household waste, but also biomass with fluctuating moisture contents, very inhomogeneous fuels (and consequent large fluctuations in the calorific value), which favor not only the low-combustion cold grate areas (areas without combustion), but also incomplete combustion (sooting areas). These fuel properties lead to a different igniting and burning behavior. In technical furnaces (eg grate firing, fluidized bed, Rotary tube), it comes, due to this fuel characteristic, to local inhomogeneities in solid burnout and the exhaust gas composition (exhaust strands) within the combustion chamber and in the field of Abgasausbrandzone. The position and intensity of these exhaust strands also have pronounced temporal and local fluctuations, wherein the sooty regions in principle have a considerably higher dynamics. .

Durch die Erfindung werden diese Inhomogenitäten im Abgas oder Brenngas vorzugsweise in vorgenannter Echtzeit im Bereich der Brennkammer-/ Abgasausbrandzone messtechnisch, d.h. optisch erfasst und durch geregelte gezielt örtliche sauerstoffhaltige Gaszufuhr und / oder effektive Vermischung so kompensiert, sodass bei hohen Temperaturen und ausreichendem Sauerstoffangebot (oberhalb ca. 5 Vol.% trocken Sauerstoff im Rohgas, T > 850°C, vgl. Fig.5 ) eine praktisch vollständige Oxidation der unvollständig verbrannten Abgaskomponenten in kurzer Zeit möglich ist.By the invention, these inhomogeneities in the exhaust gas or fuel gas preferably in the aforementioned real-time in the combustion chamber / Abgasausbrandzone by measurement, ie optically detected and compensated by controlled targeted local oxygen-containing gas supply and / or effective mixing so that at high temperatures and sufficient oxygen supply (above about 5 vol.% dry oxygen in the raw gas, T> 850 ° C, cf. Figure 5 ) a virtually complete oxidation of the incompletely burned exhaust gas components in a short time is possible.

Die in Fig.5 offenbarten Konzentration von Kohlenmonoxid CO im Brenngas sind wie die Rußkonzentration ein Indikator für den Ausbrand. Die Charakteristik für den Rußausbrand ist ähnlich. Ein guter Aüsbrand kennzeichnet sich durch geringe Konzentrationen an CO, CnHm und Ruß aus. Sie sind im Wesentlichen von dem lokalen Sauerstoffangebot und von der Temperatur in der im Bereich der Abgasausbrandzone abhängig. Die Messwerte in Fig.5 zeigen jeweils signifikante Anstiege der Kohlenmonoxid- und Kohlenwasserstoff bei Temperaturen unter 800°C (in Fig.5 linke Messwerte) und bei Sauerstoffanteilen unter 5 Vol.% (in Fig.5 rechte Messwerte), während die in der Mitte dargestellten Messwerte einen zufrieden stellenden Ausbrand signalisieren (ideal: T > 850°C und O2> 5 Vol.%). Die letztgenannten Werte entsprechen z.B. der für die Abfallverbrennung gemäß 17. BImSchV vorgeschriebenen Temperatur von mindestens 850°C innerhalb einer Verweilzeit von über 2 Sekunden nach der letzten sauerstoffhaltigen Luftzugabe. Diese Bedingungen müssen an jedem Ort und zu jeder Zeit über den gesamten Querschnitt der Abgasausbrandzone aufrechterhalten werden.In the Figure 5 revealed concentration of carbon monoxide CO in the fuel gas are like the soot concentration an indicator of the burn-out. The characteristic of soot burnout is similar. A good Aüsbrand is characterized by low concentrations of CO, C n H m and soot. They are essentially dependent on the local oxygen supply and on the temperature in the region of the exhaust gas burnout zone. The measured values in Figure 5 each show significant increases in carbon monoxide and hydrocarbon at temperatures below 800 ° C (in Figure 5 left measured values) and with oxygen contents below 5 vol.% (in Figure 5 right measured values), while the measured values shown in the middle signal a satisfactory burnout (ideal: T> 850 ° C and O 2 > 5 Vol.%). The latter values correspond, for example, to the temperature of at least 850 ° C. prescribed for waste incineration in accordance with 17. BImSchV within a residence time of more than 2 seconds after the last oxygen-containing air addition. These conditions must be maintained at all times and throughout the entire cross section of the exhaust gas burnout zone.

Insbesondere die Minimierung der Konzentration von Rußpartikeln durch einen effizienten Ausbrand hat in der Abfallverbrennung eine sehr wichtige Bedeutung. Rußpartikel lagern sich zusammen mit chloridhaltigen Flugaschen auf der Kesseloberfläche ab oder werden bei der Entstaubung (z. B. Elektrofilter) abgeschieden. Im Temperaturbereich >200°C kommt es dann durch Oxychlorierungsreaktionen dieser Rußpartikel zur Bildung von polychlorierten Dibenzo-p-dioxinen und -furanen (PCDD/F) durch die so genannte de-novo Synthese. Der partikuläre Kohlenstoff (Rußpartikel) ist hierbei die dominierende Kohlenstoffquelle. Die PCDD/F Bildung erfolgt selbst bei kurzzeitigen Störungen über einen sehr langen Zeitraum. Die maximale PCDD/F-Bildung hängt von der Höhe der Rußablagerungrate ab. Auch wenn die Feuerung wieder kontrolliert verläuft erfolgt die PCDD/F Bildung noch so lange wie Kohlenstoffpartikel in den Kesselablagerungen vorhanden sind (Memory-Effekt).In particular, minimizing the concentration of soot particles by efficient burnout has a very important importance in waste incineration. Soot particles deposit on the boiler surface together with chloride-containing fly ash or are separated during dedusting (eg electrostatic precipitators). In the temperature range> 200 ° C it comes through oxychlorination of these soot particles to form polychlorinated dibenzo-p-dioxins and -furans (PCDD / F) by the so-called de-novo synthesis. The particulate carbon (soot particles) is the dominant carbon source. The PCDD / F education takes place even with short-term disturbances over a very long period of time. The maximum PCDD / F formation depends on the amount of soot deposition rate. Even if the firing process is controlled again, the PCDD / F formation still takes place as long as carbon particles are present in the boiler deposits (memory effect).

Derartige Störungen können durch die vorgenannten Echtzeitmessungen der lokalen Rußkonzentration erkannt und gezielt durch eine zeitnahe geregelte Luftzufuhr und intensive Vermischung im Bereich der Abgasausbrandzone vermindert/vermieden werden.Such disturbances can be detected by the aforementioned real-time measurements of the local soot concentration and deliberately reduced / avoided by a timely regulated air supply and intensive mixing in the region of the exhaust gas burnout zone.

Ferner lassen sich durch die Erfindung generell die Feinstaubemissionen (Rußpartikel) von Verbrennungen, insbesondere von inhomogenen Brennstoffen detektieren und anhand daraus abgeleiteter Steuergrößen wirksam reduzieren.Furthermore, the invention generally allows the particulate emissions (soot particles) of combustions, in particular of inhomogeneous fuels, to be detected and effectively reduced on the basis of control variables derived therefrom.

Literatur:Literature:

  1. [1] DE 103 47 340 A1 [1] DE 103 47 340 A1
  2. [2] http://www.weblearn.hs-bremen.de/risse/AWI/TEXTUR/merkmale.htm, Stand 13.09.2006[2] http://www.weblearn.hs-bremen.de/risse/AWI/TEXTUR/merkmale.htm, as of 13.09.2006
Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Rußarmer VerbrennungsbereichLow-carbon combustion area
22
Rostbereichgrate area
33
Rußender BereichSooty area
44
ÜbergangslinieTransition line
55
ÜbergangssegmentTransition segment
66
RostübergangssegmentStainless transition segment
77
RußübergangssegmentRußübergangssegment
88th
Rostsegmentstainless segment
99
RußsegmentRußsegment

Claims (3)

  1. Method for characterising the exhaust gas burn-off quality of a combustion process in combustion systems having a gas burn-off zone,
    characterised in that
    in a flow cross-section of the gas burn-off zone, low-soot combustion regions, regions without combustion, and regions of soot in the visible wavelength range are optically sensed, wherein the regions without combustion and the regions of soot are distinguished by different dynamics, and, by evaluation of a plurality of successive individual recordings can be differentiated in their junction regions with the low-soot combustion regions.
  2. Method according to claim 1, comprising the following method steps:
    a) provision of a camera carrying out assessment of the flow cross-section in the gas burn-off zone against the flow, for a visible wavelength range,
    b) subdivision of the flow cross-section into segments with in each case a number of image points or pixels,
    c) recording of the combustion in the flow cross-section by the camera, with at least two individual image recordings following one another in temporal succession,
    d) localisation of the low-soot combustion regions in the flow cross-section, in that an intensity value arises above an adjustable intensity threshold value, which is automatically or manually adjusted relative to the maximum intensity in the flow cross-section,
    e) localisation of the junction areas as the image points or pixels which were allocated to the low-soot combustion region, but which comprise at least one adjacent image point or pixel which does not belong to the low-soot combustion region,
    f) allocation of the junction areas to junction segments,
    g) determination of a contrast value for each junction segment,
    h) allocation of the junction segments with contrast values above a contrast threshold value to a junction between a low soot combustion region and a region without combustion, and below the contrast threshold value to a junction between a low soot combustion region and a region of soot,
    i) iterative allocation of all segments in which the intensity of more than half the image points or pixels lies below the intensity threshold value, to the region of soot or to the region without combustion, by evaluation of neighbourhood relationships to junction segments and already allocated segments,
    j) determination and localization of the regions of soot by the proportions and allocation of the segments allocated to the region of soot.
  3. Method according to claim 2, characterised in that determination and localization of the regions of soot are converted into control signals for a location-differentiated introduction, adjusted to the local combustion state, of a gas containing oxygen into the exhaust gas burn-off zone.
EP07801802.5A 2006-09-20 2007-08-22 Method for characterizing the exhaust gas burn-off quality in combustion systems Not-in-force EP2064490B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006044114A DE102006044114A1 (en) 2006-09-20 2006-09-20 Method for characterizing the exhaust gas burnout quality in incinerators
PCT/EP2007/007370 WO2008034508A1 (en) 2006-09-20 2007-08-22 Method for characterizing the exhaust gas burn-off quality in combustion systems

Publications (2)

Publication Number Publication Date
EP2064490A1 EP2064490A1 (en) 2009-06-03
EP2064490B1 true EP2064490B1 (en) 2016-08-17

Family

ID=38669447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07801802.5A Not-in-force EP2064490B1 (en) 2006-09-20 2007-08-22 Method for characterizing the exhaust gas burn-off quality in combustion systems

Country Status (7)

Country Link
US (1) US8447068B2 (en)
EP (1) EP2064490B1 (en)
JP (1) JP4976496B2 (en)
KR (1) KR20090057173A (en)
DE (1) DE102006044114A1 (en)
ES (1) ES2593103T3 (en)
WO (1) WO2008034508A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008027336B4 (en) 2008-06-07 2010-07-08 Karlsruher Institut für Technologie Apparatus and method for determining a particle conversion intensity
JP2014234981A (en) * 2013-06-05 2014-12-15 株式会社タクマ Combustion management system in combustion furnace and combustion control system of combustion furnace
US10991087B2 (en) * 2017-01-16 2021-04-27 Praxair Technology, Inc. Flame image analysis for furnace combustion control
US11248963B2 (en) 2017-01-23 2022-02-15 Honeywell International, Inc. Equipment and method for three-dimensional radiance and gas species field estimation in an open combustion environment
RU2751829C1 (en) * 2018-03-02 2021-07-19 Праксайр Текнолоджи, Инк. Flame image analysis for controlling burning process in furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737844A (en) * 1986-01-27 1988-04-12 Oy Nokia Ab Method for the generation of real-time control parameters for smoke-generating combustion processes by means of a video camera
JP3223994B2 (en) * 1994-02-09 2001-10-29 東京瓦斯株式会社 Incinerator and its flame control method

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622922A (en) * 1984-06-11 1986-11-18 Hitachi, Ltd. Combustion control method
JP2569303B2 (en) * 1985-07-05 1997-01-08 日本電装株式会社 Image processing apparatus for performing cumulative addition of image data
FI79623C (en) * 1986-10-16 1990-01-10 Imatran Voima Oy DETAILED DESCRIPTION OF THE AID.
US5091963A (en) * 1988-05-02 1992-02-25 The Standard Oil Company Method and apparatus for inspecting surfaces for contrast variations
JP2797054B2 (en) * 1993-01-27 1998-09-17 住友重機械工業株式会社 Combustion control method and device for refuse incinerator
US6419638B1 (en) * 1993-07-20 2002-07-16 Sam H. Hay Optical recognition methods for locating eyes
NL9400192A (en) * 1994-02-07 1995-09-01 Nivec B V Method and apparatus for controlling a combustion process
JPH07217844A (en) * 1994-02-09 1995-08-18 Kubota Corp Method of controlling incinerator
JP3123587B2 (en) * 1994-03-09 2001-01-15 日本電信電話株式会社 Moving object region extraction method using background subtraction
US5993194A (en) * 1996-06-21 1999-11-30 Lemelson; Jerome H. Automatically optimized combustion control
DE19710206A1 (en) * 1997-03-12 1998-09-17 Siemens Ag Method and device for combustion analysis and flame monitoring in a combustion chamber
FI102521B2 (en) * 1997-05-19 2004-05-25 Andritz Patentverwaltung Method and apparatus for reducing wood losses in a barking process
DE19735139C1 (en) * 1997-08-13 1999-02-25 Martin Umwelt & Energietech Method for determining the average radiation from a combustion bed in incineration plants and controlling the combustion process
DE19841877A1 (en) * 1998-09-11 2000-04-20 Siemens Ag Method and device for determining the soot loading of a combustion chamber
US6463163B1 (en) * 1999-01-11 2002-10-08 Hewlett-Packard Company System and method for face detection using candidate image region selection
EP1360833A1 (en) * 2000-08-31 2003-11-12 Rytec Corporation Sensor and imaging system
FR2814265B1 (en) * 2000-09-21 2003-01-17 Air Liquide METHOD AND DEVICE FOR CHARACTERIZING OR MONITORING ZONES OF TEMPORAL FLUCTUATIONS OF A SCENE
US6670963B2 (en) * 2001-01-17 2003-12-30 Tektronix, Inc. Visual attention model
GB2378340A (en) * 2001-07-31 2003-02-05 Hewlett Packard Co Generation of an image bounded by a frame or of overlapping images
US7596250B2 (en) * 2002-02-22 2009-09-29 Humanitas Mirasole S.P.S. Method and apparatus for analyzing biological tissue specimens
DE10347340A1 (en) * 2003-10-11 2005-05-19 Forschungszentrum Karlsruhe Gmbh Apparatus and method for optimizing exhaust burnout in incinerators
US7536048B2 (en) * 2004-01-15 2009-05-19 Xerox Corporation Method and apparatus for automatically determining image foreground color
TWI264684B (en) * 2004-11-16 2006-10-21 Univ Nat Kaohsiung Applied Sci Fire detection method and system applying with image acquisition
FR2904882B1 (en) * 2006-08-11 2008-11-14 Gen Electric METHOD OF PROCESSING RADIOLOGICAL IMAGES FOR DETECTION OF OPACITIES
US8138927B2 (en) * 2007-03-22 2012-03-20 Honeywell International Inc. Flare characterization and control system
US8144927B2 (en) * 2008-01-31 2012-03-27 Max-Viz, Inc. Video image processing and fusion
KR101035768B1 (en) * 2009-01-02 2011-05-20 전남대학교산학협력단 Method for setting lip region for lip reading and apparatus for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737844A (en) * 1986-01-27 1988-04-12 Oy Nokia Ab Method for the generation of real-time control parameters for smoke-generating combustion processes by means of a video camera
JP3223994B2 (en) * 1994-02-09 2001-10-29 東京瓦斯株式会社 Incinerator and its flame control method

Also Published As

Publication number Publication date
KR20090057173A (en) 2009-06-04
JP2010504494A (en) 2010-02-12
US20090190799A1 (en) 2009-07-30
WO2008034508A1 (en) 2008-03-27
JP4976496B2 (en) 2012-07-18
ES2593103T3 (en) 2016-12-05
US8447068B2 (en) 2013-05-21
DE102006044114A1 (en) 2008-03-27
EP2064490A1 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
DE19735139C1 (en) Method for determining the average radiation from a combustion bed in incineration plants and controlling the combustion process
EP2064490B1 (en) Method for characterizing the exhaust gas burn-off quality in combustion systems
DE4344906C2 (en) Process for controlling individual or all factors influencing the combustion on a grate
EP1698827B1 (en) Process for burning fuels and more particularly wastes
EP0612961B1 (en) Method for determining characteristic properties of processes producing radicals
DE2836895C2 (en) Circuit arrangement for monitoring a gas flare
EP2920515B1 (en) Cfd simulation of a combustion chamber with a plurality of burners with separate consideration of the fuel and air components originating from each burner
EP1048900A1 (en) Method and device for controlling the combustion of fuel with a variable calorific value
DE102005008893B4 (en) Method for increasing the throughput of through-put in rotary kilns
DE3823494C2 (en) Method and device for furnace diagnosis and furnace control using the results thereof
EP0802372A1 (en) Method and device for controlling the combustion process of a boiler
EP3403027B1 (en) Analysis and regulating method for multi-fuel burners
EP1529182A1 (en) Method for monitoring a thermodynamic process
DE19605287C2 (en) Method and device for controlling the travel time of a boiler
WO2005038345A2 (en) Device and method for optimizing the exhaust gas burn-out rate in incinerating plants
DE102009006319B3 (en) Corrosion potential determining method for e.g. coal in fossil-fueled power station, involves analyzing measured process parameters and filling probe, and timely-resolved evaluating corrosion potential of fuel based on analysis
EP3865771A2 (en) Method for operating a combustion plant
DE102009014931A1 (en) Method for dioxin reduction in incinerators
EP2784392B1 (en) Flame sensor
DE19637726A1 (en) Fuel combustion monitoring apparatus from formation of exhaust gas esp. for gas turbine
DE10302175B4 (en) Method for identifying and identifying firing zones
WO1991000978A1 (en) Furnace control device
DE202008002789U1 (en) Control circuit for controlling a combustion process
EP2286150B1 (en) Apparatus and method for determining a particle conversion intensity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151211

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 821479

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015035

Country of ref document: DE

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2593103

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161205

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015035

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

26N No opposition filed

Effective date: 20170518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160822

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 821479

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170825

Year of fee payment: 11

Ref country code: GB

Payment date: 20170824

Year of fee payment: 11

Ref country code: IT

Payment date: 20170824

Year of fee payment: 11

Ref country code: FR

Payment date: 20170823

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070822

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180823

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007015035

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302