EP2063201A2 - Method of operating a refrigeration system - Google Patents
Method of operating a refrigeration system Download PDFInfo
- Publication number
- EP2063201A2 EP2063201A2 EP09003503A EP09003503A EP2063201A2 EP 2063201 A2 EP2063201 A2 EP 2063201A2 EP 09003503 A EP09003503 A EP 09003503A EP 09003503 A EP09003503 A EP 09003503A EP 2063201 A2 EP2063201 A2 EP 2063201A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- measures
- operating
- refrigeration system
- temperature
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000007788 liquid Substances 0.000 claims abstract description 62
- 238000002347 injection Methods 0.000 claims abstract description 49
- 239000007924 injection Substances 0.000 claims abstract description 49
- 238000001704 evaporation Methods 0.000 claims abstract description 25
- 230000008020 evaporation Effects 0.000 claims abstract description 25
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 24
- 239000003507 refrigerant Substances 0.000 claims description 88
- 230000008569 process Effects 0.000 claims description 13
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 238000012423 maintenance Methods 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 239000002826 coolant Substances 0.000 abstract 1
- 238000013021 overheating Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2103—Temperatures near a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
Definitions
- the dry expansion operation in which the refrigerant undergoes a pressure reduction via an injection valve and the liquid state in a liquid / vapor mixture to completely evaporate in the evaporator, and then leave the evaporator with slightly superheated steam and so on Heat absorption a second medium cools down and secondly, the Thermosyphon ses in which the refrigerant is supplied via a balancing and separation vessel to the evaporator either by gravity or by means of a pump liquid and where at the evaporator outlet may still contain liquid fractions in the steam and so in the Usually there is no overheating of the refrigerant at the evaporator outlet.
- Dry expansion systems have the advantage of simple design and small refrigerant contents.
- the evaporator efficiency is essentially influenced by the smallest possible overheating of the evaporator.
- Our innovation relates first to the dry expansion system (6) (1), to the dry expansion system (6) (1) with downstream IWT (2) (internal heat exchanger, ie with a heat exchange between the refrigerant liquid line before the expansion valve on the one hand and the suction steam after the evaporator on the other hand), to the two-stage evaporation system (6) (1 + 2) (a combination of dry expansion system and thermosyphon system, evaporator with IWT) and other refrigerators constructed on this basis.
- IWT internal heat exchanger, ie with a heat exchange between the refrigerant liquid line before the expansion valve on the one hand and the suction steam after the evaporator on the other hand
- x value is the value which indicates the proportion of the already vaporized refrigerant at the beginning of the evaporation process) of the refrigerant state in the injection valve (6 ) and in the evaporator start (1), which has an impact on the injection valve (6) and evaporator performance (1) and the control behavior of the injection valve (6) and its performance, respectively, the delivered refrigerant mass flow and on the other hand the suction steam at the inlet to the compressor (5 ), where the changed temperature (B), because of the specific temperature associated with the respective temperature (and pressure), has an influence on the delivery volume of the compressor (5), ie in turn on the delivered mass flow.
- this temperature difference can be smaller than when the refrigerant leaves the evaporator (1) "overheated" (P8 / T22) during dry expansion operation.
- This constant can be achieved by various measures. For the sake of simplicity, we describe the constant maintenance by means of a heat exchanger (4) in the refrigerant liquid line in front of the injection valve, which keeps the outlet temperature of the liquid refrigerant constant by means of a second medium.
- the medium used for keeping the refrigerant liquid temperature constant can be arbitrary in nature (gaseous, liquid, etc.).
- One way of keeping constant the refrigerant liquid temperature before the injection valve (A) may be that the flow (D) of the medium to be cooled, for example water, brine, etc., is passed through a heat exchanger (4), in which on the second side the heat exchanger, the refrigerant is conducted either in cocurrent, cross or countercurrent, etc.
- the refrigerant liquid temperature upstream of the injection valve (A) can also be regulated by the IWT (2) by means of mass flow control of the refrigerant liquid (9) by the IWT (2) (depending on the conditions, in some cases only partial mass flows flow through the IWT (2)).
- New in the invention is that the refrigerant liquid temperature, especially in the two-stage evaporation process (1 + 2) in front of the injection valve (6) (A) at a very low value, near or on the left limit curve of the log (p), h diagram for refrigerant, (The refrigerant thus occurs liquid as in a thermosyphone system or with a minimum vapor content in the evaporator (1)) is kept constant.
- Measures may be appropriate, as in the constant maintenance of the refrigerant liquid before the injection valve (6) (A).
- heat exchangers or storage or inertial masses are used for keeping the suction steam temperature constant.
- Suction-plate temperature maintenance may also be performed by means such as external sub-coolers (3) which control the refrigerant liquid inlet temperature to the IWT (2) (8) and in this way control the suction vapor exit temperature from the IWT (2) (B).
- the Saugdampftemperaturkonstantaria can also be regulated by means of mass flow control of the refrigerant liquid (9) by the IWT (2) or the suction steam (12) by the IWT (2).
- Suction temperature maintenance can also be achieved by more or less "flooding" the IWT (2) (only in the two-stage evaporation process).
- the "flooding" of the IWT (2) can by means of a temperature control of the suction steam at the inlet of the compressor (two-stage evaporator control) (T23), level control (7) directly through the evaporator (1), IWT (2) individually or together or a reference variable For example, the collector or other or a pressure difference control (7) directly via the evaporator (1), IWT (2) individually or together.
- the invention is based on the fact that the refrigerant liquid temperature upstream of the injection valve (A) and the suction steam temperature upstream of the compressor (B) are at an arbitrary value by suitable measures (within the physically possible, however, as far as possible reaching the physical limits) is held.
- valves, heat exchangers, etc. can be used individually or in any possible combination. Further representations will be omitted and refer to the text!
- the invention is based on the fact that by means of suitable measures a stable operation of cooling systems is achieved with small temperature differences of the media to be cooled and thus higher efficiencies (and thereby highly efficient evaporation in refrigeration systems).
- the process of refrigeration is supplemented or changed to the effect that in addition to the controlled suction and high pressures in refrigeration systems, the temperature of the liquid refrigerant before the injector (A) and the suction steam in front of the compressor inlet (B) is controlled, controlled and kept constant.
- Controlling the refrigerant temperature upstream of the injection valve (A) results in defined states in the refrigerant mixture (liquid / vapor). These defined conditions in the refrigerant lead to stable conditions in the refrigeration cycle.
- the innovation is to control the two described refrigerant conditions (A + B), no matter which method this is used with, depending on the application, only one or the other measure (A or B or 7) must be taken. It is thus possible, only with the temperature control of the liquid refrigerant before the injection valve (A) or the temperature control of the suction steam before the compressor (B) or with the control of the liquid refrigerant before the injection valve and the temperature control of the suction steam (A + B) desired result to come.
- the temperature in front of the injection valve is kept constant by means of suitable measures (as described above).
- This temperature constant maintenance of the liquid refrigerant upstream of the injection valve can be done, for example, with a built-in between the liquid line and the medium flow heat exchanger (4).
- the medium can be passed through the exchanger at a regulated or uncontrolled temperature.
- the proportion of already evaporated refrigerant in the evaporator can be optimized and adjusted with a corresponding temperature of the liquid refrigerant upstream of the injection valve (A) to the Verdampferbauart (1) and thus the efficiency for starting the evaporation process.
- the refrigerant liquid inlet temperature in the second evaporator stage (IWT) (2) (F), for example by means of an external Subcooler (3) are limited at high condensation temperatures.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Greenhouses (AREA)
Abstract
Description
Kälteerzeugungsanlagen in Kühl- und Tiefkühlanlagen, Kältetechnik, Kältemaschine für Kühl- und Heizbetrieb, Kälteanlagen, Kältesätze, Wärmepumpen, Klimaanlagen und weitere.Refrigeration systems in refrigeration and freezing systems, refrigeration, chiller for cooling and heating operation, refrigeration systems, refrigeration units, heat pumps, air conditioners and others.
Bekannt in der Kältetechnik ist erstens der Trockenexpansionsbetrieb, bei dem das Kältemittel über ein Einspritzventil eine Druckreduktion erfährt und vom flüssigen Zustand in ein Flüssig/Dampfgemisch übergeht, um im Verdampfer vollständig zu verdampfen, um dann mit leicht überhitztem Dampf den Verdampfer zu verlassen und so durch Wärmeaufnahme ein zweites Medium herunterkühlt und zweitens, der Thermosyphonbetrieb, bei dem das Kältemittel über ein Ausgleichs- und Abscheidegefäss dem Verdampfer entweder mittels Schwerkraft oder mit Hilfe einer Pumpe flüssig zugeführt wird und wo beim Verdampferaustritt durchaus noch Flüssigkeitsanteile im Dampf enthalten sein können und so in der Regel keine Überhitzung des Kältemittels am Verdampferaustritt entsteht.Known in refrigeration, first, the dry expansion operation, in which the refrigerant undergoes a pressure reduction via an injection valve and the liquid state in a liquid / vapor mixture to completely evaporate in the evaporator, and then leave the evaporator with slightly superheated steam and so on Heat absorption a second medium cools down and secondly, the Thermosyphonbetrieb in which the refrigerant is supplied via a balancing and separation vessel to the evaporator either by gravity or by means of a pump liquid and where at the evaporator outlet may still contain liquid fractions in the steam and so in the Usually there is no overheating of the refrigerant at the evaporator outlet.
Allen diesen Systemen haften unter Praxisbedingungen mehr oder weniger grosse Nachteile an, welche wir durch unsere Erfindung eliminieren und somit beträchtlich Energie- und Kosteneinsparungen erzielen.All of these systems, under practical conditions, adhere to more or less serious disadvantages, which we eliminate by our invention and thus achieve considerable energy and cost savings.
Trockenexpansionssysteme haben den Vorteil einfacher Bauart und kleinen Kältemittelinhalten.Dry expansion systems have the advantage of simple design and small refrigerant contents.
Der Verdampferwirkungsgrad wird im Wesentlichen beeinflusst durch eine möglichst kleine Verdampferüberhitzung.The evaporator efficiency is essentially influenced by the smallest possible overheating of the evaporator.
Für den Verdichter ist dies aber von Nachteil und er verlangt eine entsprechend hohe Überhitzung (Liefergradverbesserung, Schmierung, etc.).But this is disadvantageous for the compressor and it requires a correspondingly high overheating (improved delivery, lubrication, etc.).
Der Schnittpunkt dieser beiden Forderungen (optimale Überhitzung für den Verdampfer und Verdichter, welche gegensätzlich optimal sind) gibt die maximale Anlagenkennlinie (wirtschaftlichster Betrieb).The intersection of these two requirements (optimal overheating for the evaporator and compressor, which are optimally opposite) gives the maximum system characteristic (most economical operation).
Durch unsere Erfindung gelingt es erstmals, diese Abhängigkeit zwischen kleinster Überhitzung für den Verdampfer und grosser Überhitzung für den Verdichter zu durchbrechen.Through our invention it is possible for the first time to break this dependency between the smallest overheating for the evaporator and a great overheating for the compressor.
Dabei wird erreicht, den Prozess für eine gegebene Kälteleistung Qo mit dem dafür benötigten kleinsten physikalisch möglichen Massenstrom zu fahren, was zu erheblichen wirtschaftlichen und energetischen Vorteilen führt.It is achieved to drive the process for a given cooling capacity Qo with the required smallest physically possible mass flow, which leads to significant economic and energy advantages.
Unsere Innovation bezieht sich erstens auf das Trockenexpansionssystem (6) (1), auf das Trockenexpansionssystem (6) (1) mit nachgeschaltetem IWT (2) (Interner Wärmeaustauscher, also mit einem Wärmeaustausch zwischen Kältemittelflüssigkeitsleitung vor dem Expansionsventil einerseits und dem Saugdampf nach dem Verdampfer andererseits), auf das Zweistufenverdampfungssystem (6) (1 + 2) (einer Kombination von Trockenexpansionsystem und Thermosyphonsystem, Verdampfer mit IWT) und weitere auf dieser Basis aufgebauter Kälteanlagen.Our innovation relates first to the dry expansion system (6) (1), to the dry expansion system (6) (1) with downstream IWT (2) (internal heat exchanger, ie with a heat exchange between the refrigerant liquid line before the expansion valve on the one hand and the suction steam after the evaporator on the other hand), to the two-stage evaporation system (6) (1 + 2) (a combination of dry expansion system and thermosyphon system, evaporator with IWT) and other refrigerators constructed on this basis.
Allen diesen Systemen sind je nach Betriebsbedingungen relativ grosse Temperaturschwankungen kältemittelseitig vor dem Einspritzventil (6) (A) und vor dem Verdichter (5) (B) eigen.Depending on the operating conditions, all of these systems are subject to relatively large temperature fluctuations upstream of the injection valve (6) (A) and upstream of the compressor (5) (B).
Diese Temperaturen des Kältemittels (vor dem Einspritzventil (A) und vor dem Verdichter (B)) werden heute nicht konstant gehalten oder exakt geregelt.These temperatures of the refrigerant (before the injection valve (A) and before the compressor (B)) are not kept constant today or precisely regulated.
Oft wird, wenn überhaupt, nur der Hoch- oder Saugdruck (Pc/Po) geregelt und/oder konstant gehalten.Often, if any, only the high or suction pressure (Pc / Po) is regulated and / or kept constant.
Dies führt zu mehr oder weniger grossen Schwankungen und Rückkoppelungen (Aufschaukeln) des Kältesystems und somit zu Verlusten im Wirkungsgrad und unstabilen Regelkreisen.This leads to more or less large fluctuations and feedback (rocking) of the refrigeration system and thus to losses in efficiency and unstable control loops.
Die hauptsächlichen Faktoren für diese Schwankungen sind einerseits der sich mit der veränderten Temperatur des Kältemittels (A) veränderte x-Wert (x-Wert ist der Wert, welcher den Anteil des bereits verdampften Kältemittels am Anfang des Verdampfungsprozesses angibt) des Kältemittelzustandes im Einspritzventil (6) und im Verdampferanfang (1), was Auswirkungen auf die Einspritzventil- (6) und Verdampferleistung (1) sowie das Regelverhalten des Einspritzventils (6) und dessen Leistung, respektive den geförderten Kältemittelmassenstrom hat und andererseits beim Saugdampf am Eintritt in den Verdichter (5), wo die veränderte Temperatur (B), wegen dem der jeweiligen Temperatur (und Druck) zugeordneten spezifischen Volumen, einen Einfluss auf das Fördervolumen des Verdichters (5), also wiederum des geförderten Massenstroms, hat.The main factors for these fluctuations are, on the one hand, the x value changed with the changed temperature of the refrigerant (x) (x value is the value which indicates the proportion of the already vaporized refrigerant at the beginning of the evaporation process) of the refrigerant state in the injection valve (6 ) and in the evaporator start (1), which has an impact on the injection valve (6) and evaporator performance (1) and the control behavior of the injection valve (6) and its performance, respectively, the delivered refrigerant mass flow and on the other hand the suction steam at the inlet to the compressor (5 ), where the changed temperature (B), because of the specific temperature associated with the respective temperature (and pressure), has an influence on the delivery volume of the compressor (5), ie in turn on the delivered mass flow.
Diese sich infolge von Temperaturänderungen ständig verändernden Massenströme bringen mehr oder weniger grosse Störfaktoren in den Regelkreis der Kälteanlage ein, was zu Schwankungen im Prozess und somit zu Leistungsverminderungen führt.These mass flows, which constantly change as a result of temperature changes, introduce more or less large disturbing factors into the control circuit of the refrigeration system, which leads to fluctuations in the process and thus to power reductions.
Ziel der Erfindung ist es, bei Kühl-/Tiefkühlanlagen, Kältemaschinen für Kühl- und Heizbetrieb, Kälteanlagen, Kältesätzen, Wärmepumpen und allen Anlagen mit Einsatz von Kältemitteln und Kälteträgem folgendes zu erreichen:
- Einen stabilen Betrieb der Anlage dadurch, dass:
- "Erstens, die Temperatur des Kältemittels vor dem Einspritzventil (6) (A) auf einen definierten Temperaturwert (A) konstant gehalten wird."
- "Zweitens, die Temperatur des Kältemittels vor dem Verdichter (5) (B) auf einen definierten Temperaturwert (B) konstant gehalten wird."
- "Drittens, diese beiden Massnahmen für sich alleine oder in Kombination miteinander eingesetzt werden."
- "Viertens, diese drei Massnahmen mit einer Trockenexpansionsventilsteuerung (6) herkömmlich nach MSS (minimalstem stabilem Signal) (P8/T22) mit oder ohne IWT (Interner Wärmeaustauscher) (2) nach dem Verdampfer (1) (T22/P8) oder nach dem IWT (2) (T23/P9) gemessen oder mit der Temperatur (Druckdifferenzmessung) zwischen Flüssigkeitsleitung vor dem Einspritzventil (6) (T20) und Druck- oder Temperaturmessung nach dem Einspritzventil (6) (P7) (T21) dem Verdampfer (1) (P8) (T22) oder dem IWT (2) (P9) (T23), der sogenannten Zweistufenverdampferregelung (T20/P7) (T20/P8) oder (T20/P9) oder mit neuen Expansionsventilregelungen nach Druckdifferenz (7) über den Verdampfer (1), den IWT (2), den Verdampfer und den IWT (1 + 2) oder über eine Niveauregelung (7) über den Verdampfer (1), den IWT (2), den Verdampfer und den IWT (1 + 2) oder eine entsprechende Referenzgrösse (z.B. Sammler) kombiniert oder einzeln zum Ziel führen.
- A stable operation of the plant in that:
- "First, the temperature of the refrigerant upstream of the injection valve (6) (A) is kept constant at a defined temperature value (A)."
- "Second, the temperature of the refrigerant upstream of the compressor (5) (B) is kept constant at a defined temperature (B)."
- "Third, these two measures can be used on their own or in combination."
- Fourth, these three measures with a dry expansion valve control (6) conventional MSS (minimum stable signal) (P8 / T22) with or without IWT (internal heat exchanger) (2) after the evaporator (1) (T22 / P8) or after IWT (2) (T23 / P9) measured or with the temperature (pressure difference measurement) between liquid line before the injection valve (6) (T20) and pressure or temperature measurement after the injection valve (6) (P7) (T21) the evaporator (1) (P8) (T22) or the IWT (2) (P9) (T23), the so-called two-stage evaporator control (T20 / P7) (T20 / P8) or (T20 / P9) or with new expansion valve controls according to pressure difference (7) via the evaporator (1), the IWT (2), the evaporator and the IWT (1 + 2) or via a level control (7) via the evaporator (1), the IWT (2), the evaporator and the IWT (1 + 2) or a corresponding reference variable (eg collector) combined or lead individually to the goal.
Diese Massnahmen wie Kältemittelflüssigkeitstemperaturkonstanthaltung vor dem Einspritzventil, Saugdampftemperaturkonstanthaltung vor dem Verdichter, Zweistufenverdampferprozess (mit entsprechender Regelung) und/oder Druckdifferenz/Niveauregelung des Einspritzventils führen alleine oder in beliebiger Kombination zu einem stabilen Betrieb der Kälteanlagen (auch mit grossen Leistungsänderungen).These measures such as refrigerant liquid temperature maintenance in front of the injection valve, Saugdampftemperaturkonstanthaltung before the compressor, two-stage evaporator process (with appropriate control) and / or pressure difference / level control of the injector lead alone or in any combination to a stable operation of the refrigeration systems (even with large changes in performance).
Kommt dabei ein Zweistufenverdampfer (1 + 2) zum Einsatz, können zusätzlich kleinste Temperaturdifferenzen zwischen dem zu kühlenden Medium einerseits (C/D) und der Verdampfungstemperatur to (Saugdruck) andererseits erzielt werden.If a two-stage evaporator (1 + 2) is used, even the smallest temperature differences between the medium to be cooled (C / D) and the evaporation temperature to (suction pressure) can be achieved.
Diese Temperaturdifferenz kann in jedem Fall kleiner sein als wenn das Kältemittel bei Trockenexpansionsbetrieb den Verdampfer (1) "überhitzt" (P8/T22) verlässt.In any case, this temperature difference can be smaller than when the refrigerant leaves the evaporator (1) "overheated" (P8 / T22) during dry expansion operation.
Neu an unserer Erfindung ist, dass die Temperatur des flüssigen Kältemittels vor dem Einspritzventil auf einen vorgegebenen Wert (A) konstant gehalten wird.What is new about our invention is that the temperature of the liquid refrigerant in front of the injection valve is kept constant at a predetermined value (A).
Dieses Konstanthalten kann durch verschiedene Massnahmen erreicht werden. Der Einfachheithalber beschreiben wir die Konstanthaltung mittels eines Wärmeaustauschers (4) in der Kältemittelflüssigkeitsleitung vor dem Einspritzventil, welcher durch ein zweites Medium die Austrittstemperatur des flüssigen Kältemittels konstant hält. Das zur Konstanthaltung der Kältemittelflüssigkeitstemperatur eingesetzte Medium kann dabei in seiner Art beliebig sein (gasförmig, flüssig, etc.).This constant can be achieved by various measures. For the sake of simplicity, we describe the constant maintenance by means of a heat exchanger (4) in the refrigerant liquid line in front of the injection valve, which keeps the outlet temperature of the liquid refrigerant constant by means of a second medium. The medium used for keeping the refrigerant liquid temperature constant can be arbitrary in nature (gaseous, liquid, etc.).
Eine Möglichkeit zur Konstanthaltung der Kältemittelflüssigkeitstemperatur vor dem Einspritzventil (A) kann sein, dass der Vorlauf (D) des zu kühlenden Mediums, zum Beispiel Wasser, Sole, etc., durch einen Wärmeaustauscher (4) geleitet wird, bei dem auf der zweiten Seite des Wärmetauschers das Kältemittel entweder im Gleich-, Kreuz- oder Gegenstrom, etc. geführt wird.One way of keeping constant the refrigerant liquid temperature before the injection valve (A) may be that the flow (D) of the medium to be cooled, for example water, brine, etc., is passed through a heat exchanger (4), in which on the second side the heat exchanger, the refrigerant is conducted either in cocurrent, cross or countercurrent, etc.
Weitere Möglichkeiten zur Stabilisierung der Kältemittelflüssigkeitstemperatur vor dem Einspritzventil (A) können beispielsweise auch über Speicher, Latentspeicher, Trägheits- oder Speichermassen (13) oder weitere Massnahmen erfolgen.Further possibilities for stabilizing the refrigerant liquid temperature upstream of the injection valve (A) can also take place, for example, via memory, latent storage, inertial or storage masses (13) or further measures.
Die Kältemittelflüssigkeitstemperatur vor dem Einspritzventil (A) kann auch mittels Massenstromregelung der Kältemittelflüssigkeit (9) durch den IWT (2) oder des Saugdampfes (12) durch den IWT (2) geregelt werden (es fliessen je nach Bedingungen zum Teil nur Teilmassenströme durch den IWT (2)).The refrigerant liquid temperature upstream of the injection valve (A) can also be regulated by the IWT (2) by means of mass flow control of the refrigerant liquid (9) by the IWT (2) (depending on the conditions, in some cases only partial mass flows flow through the IWT (2)).
Neu bei der Erfindung ist, dass die Kältemittelflüssigkeitstemperatur vor dem Einspritzventil (6) (A) konstant gehalten wird.What is new about the invention is that the refrigerant liquid temperature before the injection valve (6) (A) is kept constant.
Neu bei der Erfindung ist, dass die Kältemittelflüssigkeitstemperatur speziell beim Zweistufenverdampfungsprozess (1 + 2) vor dem Einspritzventil (6) (A) auf einem sehr tiefen Wert, nahe oder auf der linken Grenzkurve des log (p), h-Diagramms für Kältemittel, (das Kältemittel tritt also flüssig wie bei einem Thermosyphonsystem oder mit minimalem Dampfgehalt in den Verdampfer (1)) konstant gehalten wird.New in the invention is that the refrigerant liquid temperature, especially in the two-stage evaporation process (1 + 2) in front of the injection valve (6) (A) at a very low value, near or on the left limit curve of the log (p), h diagram for refrigerant, (The refrigerant thus occurs liquid as in a thermosyphone system or with a minimum vapor content in the evaporator (1)) is kept constant.
Neu bei der Erfindung ist, dass der Kältemittelsaugdampf am Eintritt in den Verdichter (5) (B) konstant gehalten wird.What is new about the invention is that the refrigerant suction steam is kept constant at the inlet to the compressor (5) (B).
Massnahmen dazu können sinngemäss sein, wie bei der Konstanthaltung der Kältemittelflüssigkeit vor dem Einspritzventil (6) (A):.Measures may be appropriate, as in the constant maintenance of the refrigerant liquid before the injection valve (6) (A).
Man verwendet also Wärmetauscher oder Speicher- respektive Trägheitsmassen zur Konstanthaltung der Saugdampftemperatur.Thus, heat exchangers or storage or inertial masses are used for keeping the suction steam temperature constant.
Weiter gibt es Kältesysteme mit eingesetzten IWT's (2) (Zweistufenverdampfer, semigeflutete Systeme), welche das flüssige Kältemittel vor dem Einspritzventil (A) (und den Temperaturkonstanthaltungsmassnahmen) unterkühlen und den Saugdampf nach dem Verdampfer (1) (2) überhitzen (B).Furthermore, there are refrigeration systems with inserted IWT's (2) (two-stage evaporator, semi-flooded systems), which subcool the liquid refrigerant before the injection valve (A) (and the temperature maintenance measures) and overheat the suction steam after the evaporator (1) (2) (B).
Die Saugdampftemperaturkonstanthaltung kann auch mittels Massnahmen wie externen Unterkühlern (3), welche die Kältemittelflüssigkeitseintrittstemperatur in den IWT (2) (8) und auf diesem Weg die Saugdampfaustrittstemperatur aus dem IWT (2) (B) regelt, vorgenommen werden.Suction-plate temperature maintenance may also be performed by means such as external sub-coolers (3) which control the refrigerant liquid inlet temperature to the IWT (2) (8) and in this way control the suction vapor exit temperature from the IWT (2) (B).
Die Saugdampftemperaturkonstanthaltung kann auch mittels Massenstromregelung der Kältemittelflüssigkeit (9) durch den IWT (2) oder des Saugdampfes (12) durch den IWT (2) geregelt werden.The Saugdampftemperaturkonstanthaltung can also be regulated by means of mass flow control of the refrigerant liquid (9) by the IWT (2) or the suction steam (12) by the IWT (2).
Die Saugdampftemperaturkonstanthaltung kann auch mittels mehr oder weniger "Überfluten" des IWT's (2) (nur beim Zweistufenverdampfungsprozess) erreicht werden.Suction temperature maintenance can also be achieved by more or less "flooding" the IWT (2) (only in the two-stage evaporation process).
Das "Überfluten" des IWT's (2) kann dabei mittels einer Temperaturregelung des Saugdampfes am Eintritt des Verdichters (Zweistufenverdampferregelung) (T23), Niveauregelung (7) direkt über den Verdampfer (1), IWT (2) einzeln oder zusammen oder einer Referenzgrösse wie zum Beispiel den Sammler oder andere oder einer Druckdifferenzregelung (7) direkt über den Verdampfer (1), IWT (2) einzeln oder zusammen erfolgen.The "flooding" of the IWT (2) can by means of a temperature control of the suction steam at the inlet of the compressor (two-stage evaporator control) (T23), level control (7) directly through the evaporator (1), IWT (2) individually or together or a reference variable For example, the collector or other or a pressure difference control (7) directly via the evaporator (1), IWT (2) individually or together.
Alle diese beschriebenen Massnahmen können einzeln oder beliebig kombiniert zum Einsatz kommen.All of these measures described can be used individually or in any combination.
Die Erfindung beruht im Wesentlichen darauf, dass durch geeignete Massnahmen die Kältemittelflüssigkeitstemperatur vor dem Einspritzventil (A) und die Saugdampftemperatur vor dem Verdichter (B) auf einem beliebigen Wert, (innerhalb des physikalisch Möglichen aber bei Bedarf bis an die physikalischen Grenzen gehend), konstant gehalten wird.Essentially, the invention is based on the fact that the refrigerant liquid temperature upstream of the injection valve (A) and the suction steam temperature upstream of the compressor (B) are at an arbitrary value by suitable measures (within the physically possible, however, as far as possible reaching the physical limits) is held.
Durch die konstante Temperatur des Kältemittels an diesen beiden Punkten im Kältesystem (Kältemittelflüssigkeit vor dem Einspritzventil (A), Saugdampf vor dem Verdichter (B)) wird ein stabiler Betrieb und wenn gewünscht, kleinste Temperaturdifferenzen zwischen den zu kühlenden Medien (Ein-/ Austrittstemperatur (C/D) einerseits und Eintritts- und/oder Austrittstemperatur zur Verdampfungstemperatur (C/D zu to) andererseits) erreicht.Due to the constant temperature of the refrigerant at these two points in the refrigeration system (refrigerant liquid in front of the injection valve (A), suction steam in front of the compressor (B)) a stable operation and, if desired, smallest temperature differences between the media to be cooled (inlet / outlet temperature ( C / D) on the one hand and inlet and / or outlet temperature to the evaporation temperature (C / D to to on the other hand) reached.
-
Fig. 1 : Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter.Fig. 1 : Possible solutions to control the refrigerant temperatures upstream of the injector and compressor. -
Fig. 2 : Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter ohne Hilfspumpen im Sekundärkreislauf.Fig. 2 Possible solutions for checking the refrigerant temperatures upstream of the injection valve and compressor without auxiliary pumps in the secondary circuit. -
Fig. 3 : Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter bei Trockenexpansionsbetrieb ohne IWTFig. 3 : Possible solutions for controlling the refrigerant temperatures upstream of the injection valve and compressor in dry expansion operation without IWT -
Fig. 4 : Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter bei Trockenexpansionsbetrieb mit IWT und oder Zweistufenverdampfung.Fig. 4 : Possible solutions to control the refrigerant temperatures upstream of the injector and compressor in dry expansion mode with IWT and or two-stage evaporation. -
Fig. 5 : Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter bei Trockenexpansionsbetrieb mit IWT und oder Zweistufenverdampfung mit externem Unterkühler.Fig. 5 : Possible solutions for controlling the refrigerant temperatures upstream of the injection valve and compressor in dry expansion mode with IWT and or two-stage evaporation with external subcooler. -
Fig. 6 : Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter bei Trockenexpansionsbetrieb mit IWT und oder Zweistufenverdampfung mit externem Unterkühler und Speicher- oder Trägheitsmasse zur Temperaturkonstanthaltung des Kältemittels vor dem Einspritzventil anstelle des Wärmetauschers.Fig. 6 : Possible solutions for controlling the refrigerant temperatures upstream of the injection valve and compressor in dry expansion mode with IWT and or two-stage evaporation with external subcooler and storage or inertial mass to maintain the refrigerant temperature in front of the injection valve instead of the heat exchanger. -
Fig. 7 : log (p), h-DiagrammFig. 7 : log (p), h-diagram
Die Zeichnungen erläutern den Sinn und erheben keinen Anspruch auf Vollständigkeit. Die Ventile, Wärmetauscher, etc. können einzeln oder in jeder möglichen Form kombiniert zum Einsatz kommen. Auf weiter Darstellungen wird verzichtet und auf den Text verwiesen!The drawings explain the meaning and make no claim to completeness. The valves, heat exchangers, etc. can be used individually or in any possible combination. Further representations will be omitted and refer to the text!
Die Erfindung beruht darauf, dass mittels geeigneter Massnahmen ein stabiler Betrieb von Kühlanlagen bei kleinen Temperaturdifferenzen der zu kühlenden Medien und somit höheren Wirkungsgraden (und dadurch hocheffiziente Verdampfung in Kälteanlagen) erzielt wird.The invention is based on the fact that by means of suitable measures a stable operation of cooling systems is achieved with small temperature differences of the media to be cooled and thus higher efficiencies (and thereby highly efficient evaporation in refrigeration systems).
Das Verfahren der Kälteerzeugung wird dahingehend ergänzt oder geändert, dass neben den kontrollierten Saug- und Hochdrücken in Kältesystemen neu die Temperatur des flüssigen Kältemittels vor dem Einspritzventil (A) und des Saugdampfes vor dem Verdichtereingang (B) kontrolliert, geregelt und konstant gehalten wird.The process of refrigeration is supplemented or changed to the effect that in addition to the controlled suction and high pressures in refrigeration systems, the temperature of the liquid refrigerant before the injector (A) and the suction steam in front of the compressor inlet (B) is controlled, controlled and kept constant.
Durch das Kontrollieren der Kältemitteltemperatur vor dem Einspritzventil (A) ergeben sich definierte Zustände im Kältemittelgemisch (Flüssig/Dampf). Diese definierten Zustände im Kältemittel führen zu stabilen Verhältnissen im Kältekreislauf.Controlling the refrigerant temperature upstream of the injection valve (A) results in defined states in the refrigerant mixture (liquid / vapor). These defined conditions in the refrigerant lead to stable conditions in the refrigeration cycle.
Den gleichen Effekt erhalten wir mit der Temperaturkontrolle und dem Konstanthalten der Saugdampftemperatur am Verdichtereintritt (B).The same effect is obtained with the temperature control and keeping the suction steam temperature constant at the compressor inlet (B).
Durch das Stabilisieren dieser beiden Temperaturen und der damit Verbundenen jeweiligen Zustände des jeweiligen Kältemittels an diesen zwei Punkten im Kältekreislauf erzielen wir stabile Verhältnisse und verhindern Rückkoppelungen in der Regeltechnik und ein Aufschaukeln des Systems und somit weniger Störgrössen was zu einem stabilen Regelkreis und somit zu einem stabilen Betrieb der Kälteanlagen und somit zu einer hocheffizienten Verdampfung führt.By stabilizing these two temperatures and the associated respective states of the respective refrigerant at these two points in the refrigeration cycle, we achieve stable conditions and prevent feedback in the control technology and a rocking of the system and thus fewer disturbances resulting in a stable control loop and thus a stable Operation of the refrigeration systems and thus leads to a highly efficient evaporation.
Durch den gewonnenen stabileren Betrieb ergeben sich Energie- und Kostenersparnisse und es wird möglich, speziell in Kombination mit der Zweistufenverdampfungstechnik (1 + 2) Prozesse mit wesentlich kleineren Temperaturdifferenzen der zu kühlenden Medien zu den jeweiligen Verdampfungstemperaturen, zu fahren.The obtained more stable operation results in energy and cost savings and it is possible, especially in combination with the two-stage evaporation technology (1 + 2) to drive processes with significantly smaller temperature differences of the media to be cooled to the respective evaporation temperatures.
Dadurch können Prozesse auf einfache und kostengünstige Weise gefahren werden, welche heute in dieser Art nicht möglich sind.As a result, processes can be run in a simple and cost-effective manner, which are not possible in this way today.
Diese beiden Temperaturen (A + B) und die dazugehörenden Kältemittelzustände können auf viele mögliche Arten kontrolliert und stabilisiert werden.These two temperatures (A + B) and the associated refrigerant states can be controlled and stabilized in many possible ways.
Die Aufzählung der Möglichkeiten beschränkt sich in dieser Patentschrift sinngemäss auf einige wenige.The list of possibilities is limited to a few in this patent.
Die Innovation ist das Kontrollieren der beiden beschriebenen Kältemittelzustände (A + B), egal mit welcher Methode dies erreicht wird, wobei je nach Anwendungsfall nur die eine oder die andere Massnahme (A oder B oder 7) ergriffen werden muss. Es ist somit möglich, nur mit der Temperaturkontrolle des flüssigen Kältemittels vor dem Einspritzventil (A) oder der Temperaturkontrolle des Saugdampfes vor dem Verdichter (B) oder mit der Kontrolle des flüssigen Kältemittels vor dem Einspritzventil und der Temperaturkontrolle des Saugdampfes (A + B) zum gewünschten Ergebnis zu kommen.The innovation is to control the two described refrigerant conditions (A + B), no matter which method this is used with, depending on the application, only one or the other measure (A or B or 7) must be taken. It is thus possible, only with the temperature control of the liquid refrigerant before the injection valve (A) or the temperature control of the suction steam before the compressor (B) or with the control of the liquid refrigerant before the injection valve and the temperature control of the suction steam (A + B) desired result to come.
Geeignete Massnahmen für die Temperaturkontrolle des Kältemittels vor dem Einspritzventil sind:
- 1. Die Temperatur des flüssigen Kältemittels vor dem Einspritzventil mit einem Sekundärmedium über einen Wärmeaustausch (4) konstant halten.
- 2. Die Temperatur des flüssigen Kältemittels vor dem Einspritzventil mit einer Masse (13) (flüssig, fest, gasförmig oder gemischt zwischen diesen Aggregatszuständen) konstant (träge) zu halten.
- 3. Die Temperatur des flüssigen Kältemittels vor dem Einspritzventil, speziell bei Verwendung eines IWT's oder der Anwendung des Zweistufenverdampfungsprozesses, mittels Einsatz eines Regelventils (9) konstant zu halten. Diese Regelung leitet nur einen bestimmten Massenstrom durch den IWT oder die zweite Stufe des Zweistufenverdampfers und den restlichen Massenstrom (E) direkt oder indirekt zum Einspritzventil, wobei der am IWT oder der zweiten Stufe des Zweistufenverdampfers vorbeigeleitete Massenstrom (E) gekühlt, erwärmt oder gleich gehalten werden kann.
- 1. Keep the temperature of the liquid refrigerant in front of the injection valve constant with a secondary medium via a heat exchange (4).
- 2. The temperature of the liquid refrigerant in front of the injection valve with a mass (13) (liquid, solid, gaseous or mixed between these states of aggregation) to keep constant (sluggish).
- 3. To keep constant the temperature of the liquid refrigerant upstream of the injection valve, especially when using an IWT or the application of the two-stage evaporation process, by use of a control valve (9). This control directs only a certain mass flow through the IWT or the second stage of the two-stage evaporator and the rest of the mass flow (E) directly or indirectly to the injection valve, the mass flow (E) bypassing the IWT or the second stage of the two-stage evaporator being cooled, heated or maintained equal can be.
Geeignete Massnahmen für die Temperaturkontrolle des Kältemittels vor dem Verdichter sind:
- 4. Die Temperatur des Saugdampfes vor dem Verdichter (B) mit einem Sekundärmedium über einen Wärmeaustausch konstant zu halten.
- 5. Die Temperatur des Saugdampfes vor dem Verdichter mit einer Masse (flüssig, fest, gasförmig oder gemischt zwischen diesen Aggregatszuständen) konstant (träge) zu halten.
- 6. Die Temperatur des Saugdampfes vor dem Verdichter, speziell bei Verwendung eines IWT's oder der Anwendung des Zweistufenverdampfungsprozesses, mittels Einsatz eines Regelventils (8), (12) und/oder (9) konstant zu halten. Diese Regelung (12) (9) leitet nur einen bestimmten Massenstrom durch den IWT (2) oder die zweite Stufe des Zweistufenverdampfers und den restlichen Massenstrom (9) direkt oder indirekt zum Einspritzventil (6) resp. Verdichter (5).
- 7. Mittels einer kontrollierten Eintrittstemperatur (8) (F) des flüssigen Kältemittels in den IWT (2) oder die zweite Stufe des Zweistufenverdampfers, zum Beispiel unter Verwendung eines externen Kältemittelflüssigkeitsunterkühlers (3) oder ähnlichem.
- 8. Mittels kontrolliertem Füllstand des zu verflüssigenden Kältemittels im Verdampfer resp. im IWT resp. in der zweiten Stufe des Zweistufenverdampfers, zum Beispiel mittels Niveauregelung (7) oder Druckdifferenzmessung (7) oder Saugdampftemperaturregelung (T23) vor dem Verdichter, wobei die Niveauregelung über den Verdampfer, den IWT oder die zweite Stufe des Zweistufenverdampfers einzeln und/oder der Verdampfer alleine oder in Kombination mit dem IWT oder der zweiten Stufe des Zweistufenverdampfers oder eines Referenzobjektes, z. B. Sammlers, erfolgen kann.
- 9. Speziell bei einem Kältesystem mit Zweistufenverdampfung (1 + 2) kann die Regelung und Einbindung wie folgt ausgeführt werden (Kombinationen und Varianten davon sind auch möglich): Einspritzventilregelung mittels Erfassen der Temperatur des Kältemittels vor dem Einspritzventil (T20) und Druck/Temperatur nach dem Einspritzventil (T21/P7), zwischen der ersten und der zweiten Verdampferstufe P8/T22) oder nach der zweiten Verdampferstufe (P9/T23) oder Kombinationen davon. Die Temperatur-/Druckdifferenz (T20/ P7, P8, P9) dient als Regelgrösse für das Einspritzventil (6). Eine Saugdampftemperaturerfassung (T23) vor dem Verdichter (5) übersteuert die Temperaturdifferenz/Druckregelung (T20/ P7, P8, P9) bei Bedarf. Alternativ zur Temperaturdifferenz/Druckregelung kann eine Niveau- oder Druckdifferenzregelung (7) für das Einspritzventil eingesetzt werden.
- 4. Keep the temperature of the suction steam in front of the compressor (B) constant with a secondary medium via a heat exchange.
- 5. Keep the temperature of the suction steam in front of the compressor constant (inert) with a mass (liquid, solid, gaseous or mixed between these states of aggregation).
- 6. Keep the temperature of the suction steam upstream of the compressor, especially when using an IWT or the application of the two-stage evaporation process, by using a control valve (8), (12) and / or (9) constant. This control (12) (9) passes only a certain mass flow through the IWT (2) or the second stage of the two-stage evaporator and the remaining mass flow (9) directly or indirectly to the injection valve (6). Compressor (5).
- 7. By means of a controlled inlet temperature (8) (F) of the liquid refrigerant in the IWT (2) or the second stage of the two-stage evaporator, for example using an external refrigerant liquid subcooler (3) or the like.
- 8. By means of controlled level of the liquefied refrigerant in the evaporator resp. in the IWT resp. in the second stage of the two-stage evaporator, for example by means of level control (7) or pressure difference measurement (7) or suction steam temperature control (T23) in front of the compressor, wherein the level control via the evaporator, the IWT or the second stage of the two-stage evaporator individually and / or the evaporator alone or in combination with the IWT or the second stage of the two-stage evaporator or a reference object, e.g. B. collector, can take place.
- 9. Especially in a refrigeration system with two-stage evaporation (1 + 2), the control and integration can be carried out as follows (combinations and variants thereof are also possible): Injector control by detecting the temperature of the refrigerant before the injection valve (T20) and pressure / temperature after the injection valve (T21 / P7), between the first and the second evaporator stage P8 / T22) or after the second evaporator stage (P9 / T23) or combinations thereof. The temperature / pressure difference (T20 / P7, P8, P9) serves as a controlled variable for the injection valve (6). A suction steam temperature detection (T23) in front of the compressor (5) overrides the temperature difference / pressure control (T20 / P7, P8, P9) if required. As an alternative to the temperature difference / pressure control, a level or pressure difference control (7) can be used for the injection valve.
Die Temperatur vor dem Einspritzventil wird mittels geeigneten Massnahmen (wie oben beschrieben) konstant gehalten. Diese Temperaturkonstanthaltung des flüssigen Kältemittels vor dem Einspritzventil kann zum Beispiel mit einem zwischen der Flüssigkeitsleitung und dem Mediumvorlauf eingebauten Wärmeaustauscher (4) erfolgen.The temperature in front of the injection valve is kept constant by means of suitable measures (as described above). This temperature constant maintenance of the liquid refrigerant upstream of the injection valve can be done, for example, with a built-in between the liquid line and the medium flow heat exchanger (4).
Durch den Wärmetauscher (4) wird ein Teil- oder der ganze Massenstrom des gekühlten Mediums im Gleich-, Gegen- oder Kreuzstrom, etc. zur Kältemittelflüssigkeit geführt (10/11).Through the heat exchanger (4) is a partial or the entire mass flow of the cooled medium in cocurrent, countercurrent or cross flow, etc. to the refrigerant liquid out (10/11).
Das Medium kann dabei mit einer geregelten oder ungeregelten Temperatur durch den Tauscher geführt werden.The medium can be passed through the exchanger at a regulated or uncontrolled temperature.
Durch die richtige Dimensionierung des Wärmetauschers (4) findet eine Unterkühlung respektive Konstanthaltung der Kältemittelflüssigkeit vor dem Einspritzventil (A) auf einem beliebigen aber auf Wunsch auch auf einem sehr tiefen Temperaturniveau statt, was bedeutet, dass der Verdampfer (1) mit flüssigem oder nur geringem Anteil von bereits verdampftem Kältemittel gespiesen wird.Due to the correct dimensioning of the heat exchanger (4) is a supercooling respectively keeping constant the refrigerant liquid before the injection valve (A) on any but also on request at a very low temperature level, which means that the evaporator (1) with liquid or low Share of already evaporated refrigerant is fed.
Der Anteil an bereits verdampftem Kältemittel in den Verdampfer kann mit einer entsprechenden Temperatur des flüssigen Kältemittels vor dem Einspritzventil (A) auf die Verdampferbauart (1) und somit den Wirkungsgrad zum Starten des Verdampfungsprozesses optimiert und eingestellt werden.The proportion of already evaporated refrigerant in the evaporator can be optimized and adjusted with a corresponding temperature of the liquid refrigerant upstream of the injection valve (A) to the Verdampferbauart (1) and thus the efficiency for starting the evaporation process.
Alternativ zur Übersteuerung der Einspritzventilregelung durch die Sauggastemperatur durch Überfluten der zweiten Stufe des Zweistufenverdampfers bei zu hohen Saugdampftemperaturen vor dem Verdichter (T23) kann die Kältemittelflüssigkeitseintrittstemperatur in die zweite Verdampferstufe (IWT) (2) (F) zum Beispiel mittels eines externen Unterkühlers (3) bei hohen Kondensationstemperaturen begrenzt werden.As an alternative to overriding the injection valve control by the suction gas temperature by flooding the second stage of the two-stage evaporator at high Saugdampftemperaturen before the compressor (T23), the refrigerant liquid inlet temperature in the second evaporator stage (IWT) (2) (F), for example by means of an external Subcooler (3) are limited at high condensation temperatures.
Alternativ oder in Kombination zu dieser Begrenzung kann ein Teil des Kältemittelflüssigkeitsmassenstroms (E), in Abhängigkeit der Saugdampftemperatur (B), an der zweiten Verdichterstufe (IWT) (2) vorbei geleitet werden.Alternatively or in combination with this limitation, a portion of the refrigerant liquid mass flow (E), depending on the Saugdampftemperatur (B), at the second compressor stage (IWT) (2) are passed over.
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04705750A EP1709372B1 (en) | 2004-01-28 | 2004-01-28 | Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature |
PCT/CH2004/000046 WO2005073645A1 (en) | 2004-01-28 | 2004-01-28 | Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04705750.0 Division | 2004-01-28 | ||
EP04705750A Division EP1709372B1 (en) | 2004-01-28 | 2004-01-28 | Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2063201A2 true EP2063201A2 (en) | 2009-05-27 |
EP2063201A3 EP2063201A3 (en) | 2009-10-14 |
EP2063201B1 EP2063201B1 (en) | 2013-02-27 |
Family
ID=34812843
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04705750A Expired - Lifetime EP1709372B1 (en) | 2004-01-28 | 2004-01-28 | Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature |
EP09003503A Expired - Lifetime EP2063201B1 (en) | 2004-01-28 | 2004-01-28 | Method of operating a refrigeration system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04705750A Expired - Lifetime EP1709372B1 (en) | 2004-01-28 | 2004-01-28 | Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature |
Country Status (6)
Country | Link |
---|---|
US (1) | US9010136B2 (en) |
EP (2) | EP1709372B1 (en) |
AT (1) | ATE426785T1 (en) |
DE (1) | DE502004009247D1 (en) |
ES (2) | ES2322152T3 (en) |
WO (1) | WO2005073645A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005073645A1 (en) | 2004-01-28 | 2005-08-11 | Bms-Energietechnik Ag | Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature |
EP2215412A1 (en) * | 2007-11-21 | 2010-08-11 | Remo Meister | System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems |
DE102008043823B4 (en) * | 2008-11-18 | 2011-05-12 | WESKA Kälteanlagen GmbH | heat pump system |
DE102012002593A1 (en) * | 2012-02-13 | 2013-08-14 | Eppendorf Ag | Centrifuge with compressor cooling device and method for controlling a compressor cooling device of a centrifuge |
WO2021035945A1 (en) * | 2019-08-23 | 2021-03-04 | 广东美芝制冷设备有限公司 | Rotary compressor and refrigeration cycle device |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3640086A (en) * | 1970-02-27 | 1972-02-08 | American Standard Inc | Refrigerant flow control employing plural valves |
DE2451361A1 (en) * | 1974-10-29 | 1976-05-06 | Jakob | Coolant circulation in refrigerator of cold-storage plant - controlled drive-motor speeds maintain constant temperature at expansion valve |
US4493193A (en) * | 1982-03-05 | 1985-01-15 | Rutherford C. Lake, Jr. | Reversible cycle heating and cooling system |
EP0325163A1 (en) * | 1988-01-21 | 1989-07-26 | Linde Aktiengesellschaft | Operating method for a refrigeration system and refrigeration system for carrying out the method |
US5150584A (en) * | 1991-09-26 | 1992-09-29 | General Motors Corporation | Method and apparatus for detecting low refrigerant charge |
US5533352A (en) * | 1994-06-14 | 1996-07-09 | Copeland Corporation | Forced air heat exchanging system with variable fan speed control |
DE29800048U1 (en) * | 1998-01-03 | 1998-04-23 | König, Harald, 04934 Hohenleipisch | Heat pump with arrangement of a heat exchanger to improve the coefficient of performance |
EP1043550A1 (en) * | 1997-12-26 | 2000-10-11 | Zexel Corporation | Refrigerating cycle |
US6164086A (en) * | 1996-08-14 | 2000-12-26 | Daikin Industries, Ltd. | Air conditioner |
US6293123B1 (en) * | 1999-07-30 | 2001-09-25 | Denso Corporation | Refrigeration cycle device |
US6330802B1 (en) * | 2000-02-22 | 2001-12-18 | Behr Climate Systems, Inc. | Refrigerant loss detection |
US6438978B1 (en) * | 1998-01-07 | 2002-08-27 | General Electric Company | Refrigeration system |
US6446450B1 (en) * | 1999-10-01 | 2002-09-10 | Firstenergy Facilities Services, Group, Llc | Refrigeration system with liquid temperature control |
WO2003051657A1 (en) * | 2001-12-19 | 2003-06-26 | Sinvent As | Vapor compression system for heating and cooling of vehicles |
WO2004053406A1 (en) * | 2002-12-11 | 2004-06-24 | Bms-Energietechnik Ag | Evaporation process control for use in refrigeration technology |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3952533A (en) * | 1974-09-03 | 1976-04-27 | Kysor Industrial Corporation | Multiple valve refrigeration system |
JP3598604B2 (en) * | 1995-09-08 | 2004-12-08 | ダイキン工業株式会社 | Heat transfer device |
US5970732A (en) * | 1997-04-23 | 1999-10-26 | Menin; Boris | Beverage cooling system |
US5921092A (en) * | 1998-03-16 | 1999-07-13 | Hussmann Corporation | Fluid defrost system and method for secondary refrigeration systems |
FR2779994B1 (en) * | 1998-06-23 | 2000-08-11 | Valeo Climatisation | VEHICLE AIR CONDITIONING CIRCUIT EQUIPPED WITH A PREDETENT DEVICE |
US6170270B1 (en) * | 1999-01-29 | 2001-01-09 | Delaware Capital Formation, Inc. | Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost |
US6216481B1 (en) * | 1999-09-15 | 2001-04-17 | Jordan Kantchev | Refrigeration system with heat reclaim and with floating condensing pressure |
NO318864B1 (en) * | 2002-12-23 | 2005-05-18 | Sinvent As | Improved heat pump system |
WO2005073645A1 (en) | 2004-01-28 | 2005-08-11 | Bms-Energietechnik Ag | Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature |
-
2004
- 2004-01-28 WO PCT/CH2004/000046 patent/WO2005073645A1/en not_active Application Discontinuation
- 2004-01-28 ES ES04705750T patent/ES2322152T3/en not_active Expired - Lifetime
- 2004-01-28 EP EP04705750A patent/EP1709372B1/en not_active Expired - Lifetime
- 2004-01-28 US US10/587,741 patent/US9010136B2/en active Active
- 2004-01-28 AT AT04705750T patent/ATE426785T1/en active
- 2004-01-28 EP EP09003503A patent/EP2063201B1/en not_active Expired - Lifetime
- 2004-01-28 ES ES09003503T patent/ES2401946T3/en not_active Expired - Lifetime
- 2004-01-28 DE DE502004009247T patent/DE502004009247D1/en not_active Expired - Lifetime
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3640086A (en) * | 1970-02-27 | 1972-02-08 | American Standard Inc | Refrigerant flow control employing plural valves |
DE2451361A1 (en) * | 1974-10-29 | 1976-05-06 | Jakob | Coolant circulation in refrigerator of cold-storage plant - controlled drive-motor speeds maintain constant temperature at expansion valve |
US4493193A (en) * | 1982-03-05 | 1985-01-15 | Rutherford C. Lake, Jr. | Reversible cycle heating and cooling system |
EP0325163A1 (en) * | 1988-01-21 | 1989-07-26 | Linde Aktiengesellschaft | Operating method for a refrigeration system and refrigeration system for carrying out the method |
US5150584A (en) * | 1991-09-26 | 1992-09-29 | General Motors Corporation | Method and apparatus for detecting low refrigerant charge |
US5533352A (en) * | 1994-06-14 | 1996-07-09 | Copeland Corporation | Forced air heat exchanging system with variable fan speed control |
US6164086A (en) * | 1996-08-14 | 2000-12-26 | Daikin Industries, Ltd. | Air conditioner |
EP1043550A1 (en) * | 1997-12-26 | 2000-10-11 | Zexel Corporation | Refrigerating cycle |
DE29800048U1 (en) * | 1998-01-03 | 1998-04-23 | König, Harald, 04934 Hohenleipisch | Heat pump with arrangement of a heat exchanger to improve the coefficient of performance |
US6438978B1 (en) * | 1998-01-07 | 2002-08-27 | General Electric Company | Refrigeration system |
US6293123B1 (en) * | 1999-07-30 | 2001-09-25 | Denso Corporation | Refrigeration cycle device |
US6446450B1 (en) * | 1999-10-01 | 2002-09-10 | Firstenergy Facilities Services, Group, Llc | Refrigeration system with liquid temperature control |
US6330802B1 (en) * | 2000-02-22 | 2001-12-18 | Behr Climate Systems, Inc. | Refrigerant loss detection |
WO2003051657A1 (en) * | 2001-12-19 | 2003-06-26 | Sinvent As | Vapor compression system for heating and cooling of vehicles |
WO2004053406A1 (en) * | 2002-12-11 | 2004-06-24 | Bms-Energietechnik Ag | Evaporation process control for use in refrigeration technology |
Also Published As
Publication number | Publication date |
---|---|
EP1709372A1 (en) | 2006-10-11 |
ES2401946T3 (en) | 2013-04-25 |
US9010136B2 (en) | 2015-04-21 |
EP2063201B1 (en) | 2013-02-27 |
EP1709372B1 (en) | 2009-03-25 |
WO2005073645A1 (en) | 2005-08-11 |
ES2322152T3 (en) | 2009-06-17 |
EP2063201A3 (en) | 2009-10-14 |
US20070137229A1 (en) | 2007-06-21 |
ATE426785T1 (en) | 2009-04-15 |
DE502004009247D1 (en) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2545606C2 (en) | Method for operating a cooling system and cooling system for carrying out the method | |
DE60035409T2 (en) | STEAM COMPRESSION SYSTEM AND METHOD | |
EP3329190B1 (en) | Refrigeration system | |
WO2021104864A1 (en) | Refrigeration appliance with compartment which can be used in a variable manner | |
DE69513765T2 (en) | Refrigeration system | |
DE69928386T2 (en) | HEAT PUMP OR AIR CONDITIONER WITH SEVERAL COMPRESSORS | |
DE102004031701A1 (en) | Steam compression cooling circuit for transporting heat has high and low pressure heat exchangers, decompression device and gas-liquid separation device | |
DE202007017723U1 (en) | Plant for refrigeration, heating or air conditioning, in particular refrigeration system | |
EP2063201A2 (en) | Method of operating a refrigeration system | |
EP3816543B1 (en) | Method for controlling an expansion valve | |
EP1570215B1 (en) | Evaporation process control for use in refrigeration technology | |
EP3922925A1 (en) | Compression cooling system and method for operating a compression cooling system | |
DE112021007291T5 (en) | Heat source machine of a cooling device and cooling device including the same | |
DE19832682C2 (en) | Defrosting device for an evaporator of a heat pump or an air conditioner | |
EP2028429A2 (en) | Heat pump assembly | |
DE102020115270A1 (en) | Method and device for regulating a refrigeration cycle | |
DE2438418A1 (en) | Rotating vane gas compressor for refrigerating plant - has means for injecting the gas in liquid state into the compression chamber | |
EP3922931B1 (en) | Compression cooling system and method for operating the same | |
EP3922930B1 (en) | Compression cooling system and method for operating a compression cooling system | |
EP3922924B1 (en) | Compression cooling system and method for operating a compression cooling system | |
DE102020123960B4 (en) | Method for operating a heat pump and heat pump | |
EP3922932B1 (en) | Compression cooling system and method for operating a compression cooling system | |
EP2360440A1 (en) | Heat pump | |
DE102020115267A1 (en) | Method for regulating a compression refrigeration system and a compression refrigeration system | |
DE10303782B4 (en) | Injection control on the refrigerant evaporator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1709372 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20091114 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20111013 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MEISTER, REMO |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MEISTER, REMO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1709372 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 598715 Country of ref document: AT Kind code of ref document: T Effective date: 20130315 Ref country code: CH Ref legal event code: NV Representative=s name: RENTSCH PARTNER AG, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004014047 Country of ref document: DE Effective date: 20130425 Ref country code: ES Ref legal event code: FG2A Ref document number: 2401946 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130425 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130527 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130528 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20131128 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014047 Country of ref document: DE Effective date: 20131128 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20140121 Year of fee payment: 11 Ref country code: IE Payment date: 20140128 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140128 Year of fee payment: 11 Ref country code: FR Payment date: 20140123 Year of fee payment: 11 Ref country code: TR Payment date: 20140106 Year of fee payment: 11 Ref country code: ES Payment date: 20140129 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140121 Year of fee payment: 11 |
|
BERE | Be: lapsed |
Owner name: MEISTER, REMO Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130227 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150128 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150202 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040128 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150128 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230124 Year of fee payment: 20 Ref country code: AT Payment date: 20230120 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230123 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004014047 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 598715 Country of ref document: AT Kind code of ref document: T Effective date: 20240128 |