EP2055927A1 - Aktuatoranordnung und Einspritzventil - Google Patents
Aktuatoranordnung und Einspritzventil Download PDFInfo
- Publication number
- EP2055927A1 EP2055927A1 EP07021324A EP07021324A EP2055927A1 EP 2055927 A1 EP2055927 A1 EP 2055927A1 EP 07021324 A EP07021324 A EP 07021324A EP 07021324 A EP07021324 A EP 07021324A EP 2055927 A1 EP2055927 A1 EP 2055927A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solid state
- actuator unit
- state actuator
- recess
- actuator arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 title claims description 20
- 239000007924 injection Substances 0.000 title claims description 20
- 239000007787 solid Substances 0.000 claims abstract description 60
- 238000013016 damping Methods 0.000 claims abstract description 30
- 239000012530 fluid Substances 0.000 claims description 23
- 229920000426 Microplastic Polymers 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000006260 foam Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 239000000945 filler Substances 0.000 claims description 4
- 239000000446 fuel Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/0603—Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/26—Fuel-injection apparatus with elastically deformable elements other than coil springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/30—Fuel-injection apparatus having mechanical parts, the movement of which is damped
- F02M2200/306—Fuel-injection apparatus having mechanical parts, the movement of which is damped using mechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/90—Selection of particular materials
- F02M2200/9015—Elastomeric or plastic materials
Definitions
- the invention relates to an actuator arrangement and injection valve.
- Actuator arrangements are in wide spread use, in particular injection valves for instance for internal combustion engines comprise actuator arrangements, which comprise solid state actuator units.
- actuator arrangements which comprise solid state actuator units.
- the solid state actuator unit In order to inject fuel, the solid state actuator unit is energized so that a fluid flow through the fluid outlet portion of the injection valve is enabled.
- the respective injection valve may be suited to dose fluids under very high pressures.
- the pressures may be in case of a gasoline engine, for example in a range of up to 200 bar or in the case of diesel engines in a range of up to 2,000 bar.
- electric energy needs to be transmitted to or from the actuator arrangement in a very fast way.
- the object of the invention is to create an actuator arrangement that is simply to be manufactured and which enables reliable operation.
- the invention is distinguished by an actuator arrangement, comprising a housing body with a recess, and a solid state actuator unit within the recess with a longitudinal axis comprising electric pins being electrically coupable to a power supply.
- the solid state actuator unit comprises a first axial end area designed to act as drive side and a second axial end area facing a free volume of the recess, wherein the free volume is filled at least in part with a damping body.
- the damping body may comprise liquid, solid state or gel, wherein the gel corresponds to a visco-elastic fluid.
- the damping body comprises a silicon based filler.
- the damping body comprises a foam.
- the damping body comprises micro plastic balls.
- the damping body comprises micro rubber balls.
- the damping body comprises a channel being designed to penetrate and provide a fluid communication between the free volume and at least a part of the surface of the solid state actuator unit.
- the invention is distinguished by an injection valve with a valve assembly within a recess and an actuator arrangement of the first aspect of the invention, comprising a solid state actuator unit within the recess, wherein the solid state actuator unit is being designed for acting on the valve assembly.
- Figure 1 shows an actuator arrangement 10 comprising a housing body 12 with a recess 14, and a solid state actuator unit 16 within the recess 14 of the housing body 12 with a longitudinal axis A comprising electric pins 18 being electrically coupable to a power supply.
- the electric pins 18 might be coupled by weldings, in particular resistance weldings, or soldered connections to an electric conductor 70 ( figure 2 ), which is supplied with electric energy.
- injection valves for instance for internal combustion engines may comprise the actuator arrangement.
- the solid state actuator unit 16 comprises a solid state actuator 20.
- the solid state actuator 20 changes its length in axial direction depending on a control signal applied to it such as electric energy supplied to it.
- the solid state actuator unit 16 is typically a piezo actuator unit. It may however also be any other solid state actuator unit known to the person skilled in the art such as a magnetostrictive actuator unit.
- the solid state actuator unit 16 comprises a first axial end area 22 designed to act as drive side and a second axial end area 24, which is facing away from the first axial end area 22, facing a free volume 26 of the recess 14, in particular directly facing it.
- the electric pins 18 can be arranged in optional direction, for instance in axial direction of the solid state actuator unit 16 or perpendicular to it. In particular, the electric pins 18 protrude in the free volume 26.
- On the drive side of the solid state actuator unit 16 facing the first axial end area 22 optional actuating elements are arranged such as a valve needle or a rotor.
- An actuator housing enclosing the solid state actuator 20 may comprise a spring tube 28, a top cap 30 and a bottom cap 31.
- Part of the top cap 30 may form at least part of the second axial end area 24.
- Part of the bottom cap 31 may form at least part of the first axial end area 22 comprising the drive side of the solid state actuator unit 16.
- the solid state actuator unit 16 further comprises a piston 32, which is coupled to the top cap 30 or may in one peace form part of the top cap 30. It may apply an axial preload force on the solid state actuator unit 16.
- the energizing of the solid state actuator unit 16 may cause undesired movements and vibrations within the actuator arrangement 10, which for example might stress weldings.
- a damping body 34 With the damping body 34 beeing mechanically coupled to the second axial end area 24 of the solid state actuator unit 16, undesired movements of the solid state actuator unit 16 can be prevented and vibrations within the second axial end area 24 of the actuator arrangement 10 can be limited.
- electric connections and resistance weldings between the electric pins 18 of the solid state actuator unit 16 and the power supply can be protected against undesired movements and vibrations.
- the damping body 34 may comprise for example a silicon based filler, a foam or micro plastic balls such as micro rubber balls or combinations among them.
- the damping body 34 within the actuator arrangement 10 is simply to be manufactured.
- the silicon based filler or the foam there has to be no additional separation from the damping body 34 to the rest of the free volume 26, since none of them is fluid.
- an additional limitative element such as a spring rest may be advantageous.
- the micro plastic balls show dimensions of a radius in a range of 0.3 mm up to 1.0 mm, whereas an especially advantageous radius is 0.5 mm.
- the damping body 34 may comprise a channel 36 being designed to penetrate and provide a fluid communication between the free volume 26 and at least a part of the surface of the solid state actuator unit 16.
- the channel 36 may provide fluid communication between at least a part of the shell of the solid state actuator unit 16 and the free volume 26. Therefore, the channel 36 as a simple element allows a continuous oxygen flow within the actuator arrangement 10. In particular, it prevents breaking of the ceramic by providing an oxygen flow advantageous for ceramic.
- FIG. 2 shows an injection valve 38 that may be used as a fuel injection valve for an internal combustion engine.
- the injection valve 38 comprises a valve assembly 40, the solid state actuator unit 16 and a connector 42.
- the injection valve 38 has a two-part housing body 44, 46 with a tubular shape which has the central longitudinal axis A.
- the housing body 44, 46 of the injection valve 38 comprises the recess 14 which is axially led through the housing body 44, 46.
- the valve assembly 40 comprises a valve body 48 and a valve needle 50.
- the valve body 48 has a valve body spring rest 52 and the valve needle 50 comprises a valve needle spring rest 54, both spring rests 52, 54 supporting a spring 56 arranged between the valve body 48 and the valve needle 50.
- a bellow 58 is arranged which is sealingly coupling the valve body 48 with the valve needle 50. By this a fluid flow between the recess 14 and a chamber 60 is prevented.
- the bellow 58 is formed and arranged in a way that the valve needle 50 is actuable by the solid state actuator unit 16.
- a fluid outlet portion 62 is closed or open depending on the axial position of a valve needle 50.
- the solid state actuator 20 can exert a force to the valve needle 50.
- the force from the solid state actuator 20 being exerted to the valve needle 50 in an axial direction allows or prevents a fluid flow through the fluid outlet portion 62.
- the injection valve 38 has a fluid inlet portion 64 which is arranged in the housing body 44, 46 and which for instance is coupled to a not shown fuel connector.
- the fuel connector is designed to be connected to a high pressure fuel chamber of an internal combustion engine, the fuel is stored under high pressure, for example, under the pressure above 200 bar.
- the valve assembly 40 is arranged in the injection valve 38 facing the first axial end area 22 on the drive side of the solid state actuator unit 16 sharing a part of the recess 14 of the housing body 44 of the actuator arrangement 10 along the longitudinal axis A.
- a thermal compensator unit 66 is arranged facing the second axial end area 24 of the solid state actuator unit 16 and facing the free volume 26 and is mechanically coupled to the piston 32 of the solid state actuator 20.
- the thermal compensator unit 66 enables to set an axial preload force on the solid state actuator unit 16 via the piston 32 to compensate changes of the fluid flow through the fluid outlet portion 62 in the case of temperature changes of the injection valve 38.
- the injection valve 38 further comprises the connector 42 with a non-conductive connector body 68 in which an electric conductor 70 is arranged. Electric energy can be supplied to the electric conductor 70 of the connector 42.
- the solid state actuator unit 16 comprises an adapter 72 consisting of terminal elements 74. The electric conductor 70 of the connector 42 is electrically coupled to one of the terminal elements 74 of the adapter 72 which is electrically coupled to another of the terminal elements 74 which on its part is electrically coupled to the electric pins 18 of the solid state actuator 20. Consequently, electric energy can be simply supplied to the solid state actuator 20 via the connector 42.
- the damping body 34 which is filled at least into a part of the free volume 26, may be conterminous to limitative elements facing the second axial end area 24 of the solid state actuator unit 16.
- the limitative element may be a spring rest of the thermal compensator unit 66. In this case, especially reliable damping of undesired movements of the solid state actuator unit 16 and vibrations within the second axial end area 24 of the actuator arrangement 10 is accomplished.
- the valve needle 50 prevents a fluid flow through the fluid outlet portion 62 in the valve body 48 in a closing position of the valve needle 50. Outside of the closing position of the valve needle 50, the valve needle 50 enables the fluid flow through the fluid outlet portion 62.
- the solid state actuator 20 may change its axial length if it is energized. By changing its length the solid state actuator 20 may exert a force on the valve needle 50.
- the valve needle 50 is able to move in axial direction out of the closing position. Outside the closing position of the valve needle 50 there is a gap between the valve body 48 and the valve needle 50 at the first axial end area 22 of the injection valve 38 facing away from the solid state actuator 20.
- the spring 56 can force the valve needle 50 via the valve needle spring rest 54 towards the solid state actuator 20. In the case the solid state actuator 20 is de-energized, the solid state actuator 20 shortens its length.
- the spring 56 can force the valve needle 50 to move in axial direction in its closing position. It is depending on the force balance between the force on the valve needle 50 caused by the solid state actuator 20 and the force on the valve needle 50 caused by the spring 56 whether the valve needle 50 is in its closing position or not.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Electrically Driven Valve-Operating Means (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200760006816 DE602007006816D1 (de) | 2007-10-31 | 2007-10-31 | Aktuatoranordnung und Einspritzventil |
EP20070021324 EP2055927B1 (de) | 2007-10-31 | 2007-10-31 | Aktuatoranordnung und Einspritzventil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20070021324 EP2055927B1 (de) | 2007-10-31 | 2007-10-31 | Aktuatoranordnung und Einspritzventil |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2055927A1 true EP2055927A1 (de) | 2009-05-06 |
EP2055927B1 EP2055927B1 (de) | 2010-05-26 |
Family
ID=39433022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20070021324 Ceased EP2055927B1 (de) | 2007-10-31 | 2007-10-31 | Aktuatoranordnung und Einspritzventil |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2055927B1 (de) |
DE (1) | DE602007006816D1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106407517A (zh) * | 2016-08-31 | 2017-02-15 | 同济大学建筑设计研究院(集团)有限公司 | 一种基于位移法的粘滞阻尼墙变形分解方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725002A (en) | 1985-09-17 | 1988-02-16 | Robert Bosch Gmbh | Measuring valve for dosing liquids or gases |
WO2002040858A1 (de) | 2000-11-20 | 2002-05-23 | Siemens Aktiengesellschaft | Injektorgehäuse mit einer aktoreinheit und dazwischenliegender dämpfungsscheibe |
US6814314B1 (en) | 1999-10-02 | 2004-11-09 | Robert Bosch Gmbh | Fuel injection valve |
WO2006032557A1 (de) * | 2004-09-23 | 2006-03-30 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
EP1647703A1 (de) * | 2004-10-15 | 2006-04-19 | Robert Bosch Gmbh | Aktormodul |
EP1741922A1 (de) * | 2005-06-28 | 2007-01-10 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
-
2007
- 2007-10-31 EP EP20070021324 patent/EP2055927B1/de not_active Ceased
- 2007-10-31 DE DE200760006816 patent/DE602007006816D1/de active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725002A (en) | 1985-09-17 | 1988-02-16 | Robert Bosch Gmbh | Measuring valve for dosing liquids or gases |
US6814314B1 (en) | 1999-10-02 | 2004-11-09 | Robert Bosch Gmbh | Fuel injection valve |
WO2002040858A1 (de) | 2000-11-20 | 2002-05-23 | Siemens Aktiengesellschaft | Injektorgehäuse mit einer aktoreinheit und dazwischenliegender dämpfungsscheibe |
WO2006032557A1 (de) * | 2004-09-23 | 2006-03-30 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
EP1647703A1 (de) * | 2004-10-15 | 2006-04-19 | Robert Bosch Gmbh | Aktormodul |
EP1741922A1 (de) * | 2005-06-28 | 2007-01-10 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106407517A (zh) * | 2016-08-31 | 2017-02-15 | 同济大学建筑设计研究院(集团)有限公司 | 一种基于位移法的粘滞阻尼墙变形分解方法 |
Also Published As
Publication number | Publication date |
---|---|
DE602007006816D1 (de) | 2010-07-08 |
EP2055927B1 (de) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7267111B2 (en) | Fuel injector | |
US6969009B2 (en) | Injector, especially fuel injection valve, with a piezoelectric actor | |
US6279842B1 (en) | Magnetostrictively actuated fuel injector | |
US6561436B1 (en) | Fuel injection valve | |
JP2006283756A (ja) | 圧電アクチュエータ | |
JP4157524B2 (ja) | 周囲を流動する媒体のための圧電アクチュエータ及び対応する圧電アクチュエータの使用法 | |
JP2006283756A5 (de) | ||
US9046066B2 (en) | Valve assembly for an injection valve, injection valve and method for assembling a valve assembly of an injection valve | |
JP2006513353A (ja) | 電気コネクタを備えた燃料インジェクタ | |
US20090102320A1 (en) | Piezoactuator | |
EP2055927A1 (de) | Aktuatoranordnung und Einspritzventil | |
US20040118950A1 (en) | Fuel injection valve | |
US6626373B1 (en) | Fuel injection valve | |
EP2075857B1 (de) | Aktuatoranordnung und Einspritzventil | |
CN100404846C (zh) | 燃料喷射阀 | |
EP1813805A1 (de) | Kompensationsvorrichtung für einen Injektor | |
JP2004197743A (ja) | 燃料噴射弁 | |
EP2105603A1 (de) | Aktuatoranordnung und Einspritzventil | |
EP2003329B1 (de) | Elektrischer Verbinder für einen Injektor, Aktuatoreinheit für einen Injektor, Injektor und Verfahren zur Kopplung eines ersten Verbinderelements mit einem zweiten Verbinderelement eines elektrischen Verbinders für einen Injektor | |
EP2034169B1 (de) | Elektrischer Verbinder, Aktoreinheit und Injektor | |
EP2078846B1 (de) | Aktuatoranordnung und Einspritzventil | |
EP2003327A1 (de) | Aktuatoreinheit für ein Einspritzventil und Einspritzventil | |
EP2107234A1 (de) | Aktuatoranordnung und Einspritzventil | |
EP2080895B1 (de) | Thermische Kompensationsanordnung und Einspritzventil | |
EP1918571B1 (de) | Injektor zur Dosierung von Flüssigkeit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20091106 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
AKX | Designation fees paid |
Designated state(s): DE FR IT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT |
|
REF | Corresponds to: |
Ref document number: 602007006816 Country of ref document: DE Date of ref document: 20100708 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110301 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007006816 Country of ref document: DE Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181031 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20181024 Year of fee payment: 12 Ref country code: FR Payment date: 20181022 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007006816 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |