EP2054944A2 - Solar power generation plant - Google Patents

Solar power generation plant

Info

Publication number
EP2054944A2
EP2054944A2 EP07856518A EP07856518A EP2054944A2 EP 2054944 A2 EP2054944 A2 EP 2054944A2 EP 07856518 A EP07856518 A EP 07856518A EP 07856518 A EP07856518 A EP 07856518A EP 2054944 A2 EP2054944 A2 EP 2054944A2
Authority
EP
European Patent Office
Prior art keywords
module
enable signal
modules
switching element
solar energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07856518A
Other languages
German (de)
French (fr)
Inventor
Hendrik Kolm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarWorld Innovations GmbH
Original Assignee
SP Solarprojekt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102006060815A external-priority patent/DE102006060815B4/en
Application filed by SP Solarprojekt GmbH filed Critical SP Solarprojekt GmbH
Publication of EP2054944A2 publication Critical patent/EP2054944A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a solar power plant, which is composed of one or more parallel strings of photovoltaic (PV) modules and feeds via inverters in a low-voltage grid.
  • PV photovoltaic
  • PV modules photovoltaic power generators
  • FIG. 1.1 to 1.4 show such generator circuits, wherein a single PV module has the short-circuit current Dc and the open-circuit voltage Uoc.
  • the single PV module has an open circuit voltage of 40VDC and a short circuit current of 5A.
  • Fig. 1.1 shows a single PV module 1.
  • 20 PV modules 1 to 20 are connected in series to form a string (string), with the individual voltages of the PV modules adding up to 800 VDC; the short circuit current of the string is 5A as that of the single module.
  • Fig. 1.4 Frequent shading in grid-connected solar power systems is shown in Fig. 1.4.
  • the individual PV modules are first connected in series to strings 1-20, "381-400, then the strings 1-20 ... 381-400 connected in parallel.
  • the total voltage is then 800 VDC, the total current 100A.
  • PV modules for solar generators generate these voltages as soon as light hits them.
  • downstream electrical equipment such as lines, charge controllers, inverters for grid or island operation are required. These are under the action of light on the solar generator at least partially under tension, even if no operation is desired, or the operation is not possible due to a fault.
  • Fig. 2 shows a frequently implemented arrangement with a generator circuit as shown in Fig. 1.4 and downstream central inverter ZR for grid parallel operation for the purpose of feeding into a supply network N.
  • a central inverter it is also possible to provide so-called string inverter to each string at a associated inverter to connect.
  • the inverter fails ZR, for example, due to a power failure, the operation still remains the solar generator and the downstream line system to the DC input of the inverter ZR under tension as long as the solar generator is exposed to light (until sunset).
  • additional DC cutouts FS may be placed in the DC path at any point accessible to manually de-energize subsequent resources, these circuit breakers FS can not prevent the PV modules from continuing to supply voltage.
  • the object of the invention is to provide measures to switch off each individual PV module automatically, so that the PV modules are current and voltage-free.
  • the invention is based on the consideration of switching the individual PV modules dead (as long as possible by short-circuiting or by disconnecting the output terminals) as long as there is no release for the generator operation from a downstream equipment.
  • the release can preferably by a on the DC lines auftnodulators control signal for each terminal switch done.
  • Fig. 4 is a circuit diagram of a first embodiment of a solar generator whose PV modules can be short-circuited via a remote-controlled switch;
  • Fig. 5.1 shows the switching state of the solar generator according to Fig. 4 in the absence of a release signal and thus de-energized PV modules
  • Fig. 5.2 shows the switching state of the solar generator according to Fig. 4 with the enable signal available and thus active PV modules
  • Fig. 6 is a circuit diagram of a second embodiment of a solar generator whose PV modules via a remote controllable switch can be switched on the output side high impedance
  • Fig. 7.1 shows the switching state of the solar generator according to Fig. 6 in the absence of a release signal and thus de-energized PV modules
  • Fig. 7.2 shows the switching state of the solar generator according to Fig. 6 with the enable signal available and thus active PV modules.
  • the first embodiment of a solar generator shown in Fig. 4 with the features of the invention has over the prior art according to Fig. 2, two additional components, namely
  • a release block C, D (modulator) in or on the downstream equipment N which transmits an enable signal for the module switch via the DC voltage line
  • Each module switch A is permanently closed without enable signal FG, whereby the PV module is operated in a short circuit and at the terminals of the PV module, the output voltage ⁇ IV is applied. If the enable signal FG is modulated onto the connection line to the module or to the modules by means of the enable module C, D, the demodulator B in the PV module switches the module switch A into the high-resistance state, so that the PV module has its operating voltage at the output terminals leads.
  • Fig. 5.1 shows the status "Module de-energized”
  • Fig. 5.2 shows the status "Module active”.
  • the invention provides for arranging in each PV module, preferably in the junction box, a switch (A) which short-circuits the PV module so that the clamping voltage at the DC terminals of the PV module becomes almost zero when not enabled from the downstream resources.
  • a switch for the PV module, this short circuit is a control mode.
  • the switch A can eg as a semiconductor gate element (Logic Level Power Mosfet) or as a bipolar transistor with insulated gate bipolar transistor ("Insulated Gate Bipolar Transistor").
  • Each switch A is driven by an associated demodulation circuit B, which when released by the downstream equipment, the switch A in the high-impedance state, so that the PV module can supply voltage.
  • the associated demodulator B is adjusted to the carrier frequency of the enable block C, D and provides for the control of the module switch A.
  • the enable module C, D preferably consists of a frequency-stable clock generator C, which is formed, for example quartz-stable, with downstream power amplifier with push-pull output. Via a balun transformer D for impedance conversion and galvanic isolation, the carrier signal is coupled as a pilot tone to the DC connection line to the PV modules and their demodulators B. The carrier signal can be switched on or off via a logic input of the clock generator.
  • a release block C, D is assigned to each string.
  • a release block C, D is sufficient for the entire generator, unless several subgenerators should be separately switchable (eg for fault detection).
  • the PV modules are not in the absence of the enable signal FG - as in the first Form of execution according to Fig. 4 - short-circuited in itself, but switched on the output side by the module switch A high impedance.
  • the module switches A are arranged in series with the output terminals of the PV modules 1 to 400.
  • Each module switch A is constantly open without release signal FG, whereby the terminal voltage of the PV modules 1 to 400 with open module switches A is zero volts.
  • This de-energized state of PV modules 1 to 400 is illustrated in Fig. 7.1.
  • the module switches A switch on the voltage at the module terminals, whereby the PV modules 1 to 400 become active.
  • This active state of the PV modules 1 to 400 is illustrated in Fig. 7.2.
  • the advantage of the second embodiment of the solar generator according to the invention according to Figures 6, 7.1 and 7.2 is that the control energy for driving the module switch A can be obtained directly from the modulated control signal, which is favorable for the testing of the PV modules after the production.

Abstract

Solar power generation plants are designed from one or more parallel strings of photovoltaic (PV) modules and feed into a low-voltage system via inverted rectifiers. According to the invention, a switching element (A) is associated with each PV module (1 to 400) at the output end, the switching element (A) being switchable by means of an enable signal (FG) in such a way that the associated PV module is dead when there is no enable signal (FG) while being activated when an enable signal (FG) is supplied.

Description

SOLARENERGIEERZEUGUNGSANLAGE SOLAR POWER GENERATION SYSTEM
B E S C H R E I B U N GDESCRIPTION
Die Erfindung bezieht sich auf eine Solarenergieerzeugungsanlage, welche aus einer oder mehreren parallelen Ketten (Strings) von Photovoltaik-(PV)- Modulen aufgebaut ist und über Wechselrichter in ein Niederspannungsnetz einspeist.The invention relates to a solar power plant, which is composed of one or more parallel strings of photovoltaic (PV) modules and feeds via inverters in a low-voltage grid.
In Solarstromanlagen werden photovoltaische Stromerzeuger (PV-Module) eingesetzt, die als Strahlungsenergiewandler auf der Basis des äußeren lichtelektrischen Effektes die direkte Umwandlung von Lichtenergie in Elektroenergie realisieren.In solar power plants photovoltaic power generators (PV modules) are used, which realize the direct conversion of light energy into electrical energy as a radiation energy converter based on the external photoelectric effect.
Es ist allgemein bekannt, einzelne PV-Module zu Generatoren zu verschalten, die dann Spannungen und Ströme liefern, die weitaus höhere Werte annehmen, als die eines einzelnen PV -Moduls. Die Abbildungen 1.1 bis 1.4 zeigen solche Generator-Schaltungen, wobei ein einzelnes PV-Modul den Kurzschlussstrom Dc und die Leerlaufspannung Uoc besitzt. Beispielsweise besitzt das einzelne PV- Modul eine Leerlaufspannung von 40VDC und einen Kurzschlussstrom von 5A.It is well known to connect individual PV modules to generators, which then deliver voltages and currents that are much higher than those of a single PV module. Figures 1.1 to 1.4 show such generator circuits, wherein a single PV module has the short-circuit current Dc and the open-circuit voltage Uoc. For example, the single PV module has an open circuit voltage of 40VDC and a short circuit current of 5A.
Abb. 1.1 zeigt ein einzelnes PV-Modul 1. Bei der Schaltung nach Abb. 1.2 werden 20 PV-Module 1 bis 20 zu einer Kette (String) in Serie geschaltet, wobei sich die Einzelspannungen der PV-Module zu 800 VDC addieren; der Kurzschlussstrom des Strings beträgt 5A wie der des einzelnen Moduls.Fig. 1.1 shows a single PV module 1. In the circuit according to Fig. 1.2, 20 PV modules 1 to 20 are connected in series to form a string (string), with the individual voltages of the PV modules adding up to 800 VDC; the short circuit current of the string is 5A as that of the single module.
Bei der Generatorschaltung nach Abb. 1.3 werden 20 PV-Module 1 bis 20 parallel geschaltet, wobei sich der Strom der PV-Module addiert und 100A beträgt, während die Gesamt-Spannung 40 VDC beträgt.In the generator circuit shown in Fig. 1.3, 20 PV modules 1 to 20 are connected in parallel, the current of the PV modules adding up to 100A while the total voltage is 40 VDC.
Eine häufige Verschattung in netzgekoppelten Solarstromanlagen zeigt Abb. 1.4. Hier werden die einzelnen PV-Module zunächst zu Strings 1-20 ,„ 381-400 in Serie verschaltet, anschließend werden die Strings 1-20 ... 381-400 parallel verschaltet. Die Gesamt-Spannung beträgt dann 800 VDC, der Gesamtstrom 100A.Frequent shading in grid-connected solar power systems is shown in Fig. 1.4. Here, the individual PV modules are first connected in series to strings 1-20, "381-400, then the strings 1-20 ... 381-400 connected in parallel. The total voltage is then 800 VDC, the total current 100A.
Diese beschriebenen Anordnungen von PV-Modulen für Solargeneratoren erzeugen diese Spannungen, sobald Licht auf sie trifft. Um die erzeugte Leistungen nutzen zu können, sind in der Regel nachgeschaltete elektrische Betriebsmittel wie Leitungen, Laderegler, Wechselrichter für Netz- oder Inselbetrieb erforderlich. Diese stehen bei Lichteinwirkung auf den Solargenerator zumindest teilweise unter Spannung, auch wenn kein Betrieb gewünscht wird, oder der Betrieb aufgrund einer Störung nicht möglich ist.These described arrangements of PV modules for solar generators generate these voltages as soon as light hits them. In order to use the generated power, usually downstream electrical equipment such as lines, charge controllers, inverters for grid or island operation are required. These are under the action of light on the solar generator at least partially under tension, even if no operation is desired, or the operation is not possible due to a fault.
Abb. 2 zeigt eine häufig realisierte Anordnung mit einer Generatorschaltung gemäß Abb. 1.4 und nachgeschaltetem Zentralwechselrichter ZR für Netzparallelbetrieb zum Zweck der Einspeisung in ein Versorgungsnetz N. Anstelle eines Zentralwechselrichters ist es auch möglich, sogenannte String- Wechselrichter vorzusehen, um jeden einzelnen String an einem zugeordneten Wechselrichter anzuschließen. Versagt der Wechselrichter ZR z.B. durch eine Netzstörung den Betrieb, bleibt trotzdem der Solargenerator und die nachgeschaltete Leitungsanlage bis zum Gleichstrom-Eingang des Wechselrichters ZR unter Spannung, solange der Solargenerator Licht ausgesetzt ist (bis Sonnenuntergang). Zwar können gemäß Abb. 3 zusätzliche DC-Freischalter FS in dem Gleichstrompfad an jederzeit zugänglicher Stelle angeordnet werden, um nachfolgende Betriebsmittel manuell spannungslos zu schalten, doch können diese Freischalter FS nicht verhindern, dass die PV-Module weiterhin Spannung liefern.Fig. 2 shows a frequently implemented arrangement with a generator circuit as shown in Fig. 1.4 and downstream central inverter ZR for grid parallel operation for the purpose of feeding into a supply network N. Instead of a central inverter, it is also possible to provide so-called string inverter to each string at a associated inverter to connect. The inverter fails ZR, for example, due to a power failure, the operation still remains the solar generator and the downstream line system to the DC input of the inverter ZR under tension as long as the solar generator is exposed to light (until sunset). Although, as shown in Fig. 3, additional DC cutouts FS may be placed in the DC path at any point accessible to manually de-energize subsequent resources, these circuit breakers FS can not prevent the PV modules from continuing to supply voltage.
Würde ein solcher Freischalter FS beispielsweise gemäß Abb. 3, angeordnet, bleibt generatorseitig trotzdem Spannung anstehen. Da häufig Solargeneratoren auf Gebäuden errichtet werden, steht nun das Problem, dass im Brandfalle kein spannungsloser Zustand der PV-Module mit zugehöriger Leitungsanlage erreicht werden kann, was dazu führt, dass Löschmaßnahmen nicht eingeleitet werden und Versicherungen aus diesem Grund den Schutz verweigern. Ein weiteres Problem besteht darin, dass bei Installations- oder Wartungsarbeiten am Solargenerator oder der Leitungsanlage ebenfalls kein spannungsloser Zustand erreicht werden kann, solange Licht auf den Solargenerator scheint. Dies ist aus Unfallverhütungsgründen kaum tragbar, so dass hier dringender Handlungsbedarf besteht.If such a circuit breaker FS, for example, as shown in Fig. 3, arranged, generator side still voltage remains pending. Since solar generators are often erected on buildings, the problem now is that, in the event of fire, no voltage-free state of the PV modules with associated line system can be achieved, which means that extinguishing measures are not initiated and insurance companies therefore refuse protection. Another problem is that during installation or maintenance work on the solar generator or the line system also does not reach a de-energized state can be as long as light shines on the solar generator. This is hardly tolerable for accident prevention reasons, so that there is an urgent need for action.
Die Aufgabe der Erfindung besteht darin, Maßnahmen vorzusehen, um jedes einzelne PV-Modul automatisch abzuschalten, so dass die PV- Module ström- und spannungslos werden.The object of the invention is to provide measures to switch off each individual PV module automatically, so that the PV modules are current and voltage-free.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the characterizing features of claim 1.
Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Solaranlage ergeben sich aus den Unteransprüchen.Advantageous embodiments and further developments of the solar system according to the invention will become apparent from the dependent claims.
Die Erfindung beruht auf der Überlegung, die einzelnen PV-Module solange spannungslos zu schalten (entweder durch Kurzschließen oder durch Auftrennen der Ausgangsklemmen), solange von einem nachgeschalteten Betriebsmittel keine Freigabe für den Generatorbetrieb erfolgt. Die Freigabe kann vorzugsweise durch ein auf die Gleichstromleitungen auftnoduliertes Steuersignal für die einzelnen Klemmenschalter erfolgen.The invention is based on the consideration of switching the individual PV modules dead (as long as possible by short-circuiting or by disconnecting the output terminals) as long as there is no release for the generator operation from a downstream equipment. The release can preferably by a on the DC lines auftnoduliertes control signal for each terminal switch done.
Die Erfindung wird an Hand der Zeichnungen näher erläutert. Es zeigt:The invention will be explained in more detail with reference to the drawings. It shows:
Abb. 4 ein Schaltbild einer ersten Ausführungsform eines Solargenerators, dessen PV-Module über einen fernsteuerbaren Schalter kurzgeschlossen werden können;Fig. 4 is a circuit diagram of a first embodiment of a solar generator whose PV modules can be short-circuited via a remote-controlled switch;
Abb. 5.1 den Schaltzustand des Solargenerators nach Abb. 4 bei fehlendem Freigabesignal und damit spannungslosen PV- Modulen,Fig. 5.1 shows the switching state of the solar generator according to Fig. 4 in the absence of a release signal and thus de-energized PV modules,
Abb. 5.2 den Schaltzustand des Solargenerators nach Abb. 4 bei vorhandenem Freigabesignal und damit aktiven PV- Modulen,Fig. 5.2 shows the switching state of the solar generator according to Fig. 4 with the enable signal available and thus active PV modules,
Abb. 6 ein Schaltbild einer zweiten Ausführungsform eines Solargenerators, dessen PV-Module über einen fernsteuerbaren Schalter ausgangsseitig hochohmig geschaltet werden können,Fig. 6 is a circuit diagram of a second embodiment of a solar generator whose PV modules via a remote controllable switch can be switched on the output side high impedance,
Abb. 7.1 den Schaltzustand des Solargenerators nach Abb. 6 bei fehlendem Freigabesignal und damit spannungslosen PV- Modulen, undFig. 7.1 shows the switching state of the solar generator according to Fig. 6 in the absence of a release signal and thus de-energized PV modules, and
Abb. 7.2 den Schaltzustand des Solargenerators nach Abb. 6 bei vorhandenem Freigabesignal und damit aktiven PV- Modulen.Fig. 7.2 shows the switching state of the solar generator according to Fig. 6 with the enable signal available and thus active PV modules.
Die in Abb. 4 gezeigte erste Ausführungsform eines Solargenerators mit den erfindungsgemäßen Merkmalen weist gegenüber dem Stand der Technik nach Abb. 2 zwei zusätzliche Komponenten auf, nämlichThe first embodiment of a solar generator shown in Fig. 4 with the features of the invention has over the prior art according to Fig. 2, two additional components, namely
a) für jedes PV-Modul einen Modulschalter A mit Demodulator B, unda) for each PV module, a module switch A with demodulator B, and
b) einen Freigabebaustein C, D (Modulator) im oder am nachgeschalteten Betriebsmittel N, welcher über die Gleichspannungsleitung ein Freigabesignal für die Modulschalter überträgt Jeder Modulschalter A ist ohne Freigabesignal FG ständig geschlossen, wodurch das PV-Modul im Kurzschluss betrieben wird und an den Klemmen des PV-Moduls die Ausgangsspannung < IV anliegt. Wird das Freigabesignal FG durch das nachgeschaltete Betriebsmittel auf die Verbindungsleitung zum Modul bzw. zu den Modulen mittels des Freigabebausteins C, D aufmoduliert, schaltet der Demodulator B im PV- Modul den Modulschalter A in den hochohmigen Zustand, so dass das PV-Modul seine Betriebsspannung an den Ausgangsklemmen fuhrt.b) a release block C, D (modulator) in or on the downstream equipment N, which transmits an enable signal for the module switch via the DC voltage line Each module switch A is permanently closed without enable signal FG, whereby the PV module is operated in a short circuit and at the terminals of the PV module, the output voltage <IV is applied. If the enable signal FG is modulated onto the connection line to the module or to the modules by means of the enable module C, D, the demodulator B in the PV module switches the module switch A into the high-resistance state, so that the PV module has its operating voltage at the output terminals leads.
Abb. 5.1 zeigt den Zustand "Modul spannungslos" , Abb. 5.2 den Zustand "Modul aktiv".Fig. 5.1 shows the status "Module de-energized", Fig. 5.2 shows the status "Module active".
Die Erfindung sieht vor, in jedes PV-Modul vorzugsweise in die Anschlussdose einen Schalter (A) anzuordnen, der das PV-Modul in sich kurzschließt, so dass die Klemmspannung an den DC-Anschlüssen des PV-Moduls nahezu Null wird, wenn keine Freigabe vom nachgeordneten Betriebsmittel erfolgt. Für das PV-Modul ist dieser Kurzschluss ein Regelbetriebszustand. Der Schalter A kann z.B. als Halbleiter Gateelement (Logic Level Power Mosfet) oder als Bipolartransistor mit isolierter Gateelektrode ("Insulated Gate Bipolar Transistor") ausgeführt werden. Jeder Schalter A wird von einer zugeordneten Demodulationsschaltung B angesteuert, die bei Freigabe durch das nachgeschaltete Betriebsmittel den Schalter A in den hochohmigen Zustand überführt, so dass das PV-Modul Spannung liefern kann.The invention provides for arranging in each PV module, preferably in the junction box, a switch (A) which short-circuits the PV module so that the clamping voltage at the DC terminals of the PV module becomes almost zero when not enabled from the downstream resources. For the PV module, this short circuit is a control mode. The switch A can eg as a semiconductor gate element (Logic Level Power Mosfet) or as a bipolar transistor with insulated gate bipolar transistor ("Insulated Gate Bipolar Transistor"). Each switch A is driven by an associated demodulation circuit B, which when released by the downstream equipment, the switch A in the high-impedance state, so that the PV module can supply voltage.
Der zugeordnete Demodulator B ist auf die Trägerfrequenz des Freigabebausteines C, D abgeglichen und sorgt für die Ansteuerung des Modulschalters A.The associated demodulator B is adjusted to the carrier frequency of the enable block C, D and provides for the control of the module switch A.
Freigabebaustein (Modulator)Enable module (modulator)
Der Freigabebaustein C, D besteht vorzugsweise aus einem frequenzstabilen Taktgenerator C, der z.B. quarzstabil ausgebildet ist, mit nachgeschaltetem Leistungsverstärker mit Gegentaktausgang. Über einen Balun-Transformator D zur Impedanzwandlung und galvanischen Trennung wird das Trägersignal als Pilotton auf die Gleichstrom- Verbindungsleitung zu den PV-Modulen und deren Demodulatoren B eingekoppelt. Über einen Logik-Eingang des Taktgenerators kann das Trägersignal ein- bzw. ausgeschaltet werden. Bei stringweise arbeitenden Generatoren (Abb. 1.2) wird jedem String ein Freigabebaustein C, D zugeordnet. Bei Generatoren nach Abb. 1.3 und Abb. 1.4 genügt ein Freigabebaustein C, D für den gesamten Generator, es sei denn, es sollen mehrere Teilgeneratoren getrennt schaltbar sein (z.B. zur Fehlerdetektion).The enable module C, D preferably consists of a frequency-stable clock generator C, which is formed, for example quartz-stable, with downstream power amplifier with push-pull output. Via a balun transformer D for impedance conversion and galvanic isolation, the carrier signal is coupled as a pilot tone to the DC connection line to the PV modules and their demodulators B. The carrier signal can be switched on or off via a logic input of the clock generator. In the case of generators operating in string fashion (Fig. 1.2), a release block C, D is assigned to each string. For generators according to Fig. 1.3 and Fig. 1.4, a release block C, D is sufficient for the entire generator, unless several subgenerators should be separately switchable (eg for fault detection).
Da Solarmodule mit dem erfindungsgemäßen Mudulschalter ohne Freigabesignal bei der Ausführungsform nach Abb. 4 ständig kurzgeschlossen sind, ist eine elektrische Prüfung mittels Volt- und Amperemeter, bzw. Modulflasher nicht möglich. Deshalb sollte ein Prüfgerät während der Messung der elektrischen Größen das erforderliche Freigabesignal erzeugen, wodurch sowohl manuelle wie auch automatische Prüfungen möglich sind. Gleichzeitig kann die ordnungsgemäße Funktion des Modulschalters überprüft werden.Since solar modules are permanently short-circuited with the Mudulschalter invention without release signal in the embodiment of Fig. 4, an electrical test by means of voltmeter and ammeter, or Modulflasher is not possible. Therefore, a tester should generate the required enable signal during the measurement of electrical quantities, allowing both manual and automatic testing. At the same time, the proper operation of the module switch can be checked.
Bei der in den Abbildungen 6, 7.1 und 7.2 dargestellten zweiten Ausführungsform eines erfindungsgemäßen Solargenerators werden die PV-Module bei fehlendem Freigabesignal FG nicht - wie bei der ersten Ausfiiihrungsform nach Abb. 4 - in sich kurzgeschlossen, sondern durch die Modulschalter A ausgangsseitig hochohmig geschaltet. Hierzu sind die Modulschalter A in Reihe zu den Ausgangsklemmen der PV-Module 1 bis 400 angeordnet. Jeder Modulschalter A ist ohne Freigabesignal FG ständig geöffnet, wodurch die Klemmenspannung der PV-Module 1 bis 400 bei geöffneten Modulschaltern A Null Volt beträgt. Dieser spannungslose Zustand der PV-Module 1 bis 400 ist in Abb. 7.1 veranschaulicht. Wird die Freigabe erteilt, schalten die Modulschalter A die Spannung an den Modulklemmen durch, wodurch die PV-Module 1 bis 400 aktiv werden. Dieser aktive Zustand der PV-Module 1 bis 400 ist in Abb. 7.2 veranschaulicht.In the second embodiment of a solar generator according to the invention shown in Figures 6, 7.1 and 7.2, the PV modules are not in the absence of the enable signal FG - as in the first Form of execution according to Fig. 4 - short-circuited in itself, but switched on the output side by the module switch A high impedance. For this purpose, the module switches A are arranged in series with the output terminals of the PV modules 1 to 400. Each module switch A is constantly open without release signal FG, whereby the terminal voltage of the PV modules 1 to 400 with open module switches A is zero volts. This de-energized state of PV modules 1 to 400 is illustrated in Fig. 7.1. When the release is granted, the module switches A switch on the voltage at the module terminals, whereby the PV modules 1 to 400 become active. This active state of the PV modules 1 to 400 is illustrated in Fig. 7.2.
Der Vorteil der zweiten Ausfuhrungsform des erfindungsgemäßen Solargenerators gemäß den Abbildungen 6, 7.1 und 7.2 besteht darin, dass die Steuerenergie zum Ansteuern der Modulschalter A direkt aus dem aufmodulierten Steuersignal bezogen werden kann, was für die Prüfung der PV-Module nach erfolgter Fertigung günstig ist. The advantage of the second embodiment of the solar generator according to the invention according to Figures 6, 7.1 and 7.2 is that the control energy for driving the module switch A can be obtained directly from the modulated control signal, which is favorable for the testing of the PV modules after the production.

Claims

P A T E N T A N S P R Ü C H E PATENT APPLICATIONS
1. Solarenergieerzeugungsanlage, welche aus einer oder mehreren parallelen Ketten (Strings) von Photovoltaik-(PV)-Modulen aufgebaut ist und über Wechselrichter in ein Niederspannungsnetz einspeist, dadurch gekennzeichnet, dass jedem PV-Modul (1 bis 400) ausgangsseitig ein Schaltelement (A) zugeordnet ist, welches von einem Freigabesignal (FG) schaltbar ist, derart, dass bei fehlendem Freigabesignal (FG) das zugeordnete PV-Modul (1 bis 400) spannungslos ist und bei vorhandenem Freigabesignal aktiviert ist.1. solar energy generating system, which is composed of one or more parallel strings of photovoltaic (PV) modules and feeds via inverters in a low-voltage network, characterized in that each PV module (1 to 400) on the output side, a switching element (A ), which is switchable by an enable signal (FG), such that in the absence of the enable signal (FG), the associated PV module (1 to 400) is de-energized and is activated when there is an enable signal.
2. Solarenergieerzeugungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass zwischen den Gleichspannungsklemmen jedes PV-Moduls (1 bis 400) ein Schaltelement (A) angeordnet ist, welches bei fehlendem Freigabesignal (FG) das zugeordnete PV-Modul kurzschließt und bei vorhandenem Freigabesignal (FG) das zugeordnete PV-Modul (1 bis 400) in den Leerlauf schaltet. 2. Solar energy generation system according to claim 1, characterized in that between the DC voltage terminals of each PV module (1 to 400) a switching element (A) is arranged, which shorts the assigned PV module in the absence of the enable signal (FG) and in the presence of an enable signal (FG ) switches the assigned PV module (1 to 400) to idle.
3. Solarenergieerzeugungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass in Reihe zu dem Gleichspannungs-Ausgang jedes PV-Moduls (1 bis 400) ein Schaltelement (A) angeordnet ist, welches bei fehlendem Freigabesignal (FG) das zugeordnete PV-Modul (1 bis 400) an seinem Ausgang hochohmig schaltet und bei vorhandenem Freigabesignal (FG) die Spannung an dem Ausgang durchschaltet.3. Solar energy generation system according to claim 1, characterized in that in series with the DC output of each PV module (1 to 400), a switching element (A) is arranged, which in the absence of the enable signal (FG), the associated PV module (1 to 400) switches high resistance at its output and switches on the voltage at the output when the enable signal (FG) is present.
4. Solarenergieerzeugungsanlage nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass an die Gleichspannungsleitung(en) zwischen dem oder den Wechselrichter(n) und dem oder den parallelen Ketten (Strings) von Photovoltaik-(PV)-Modulen galvanisch getrennt ein Freigabebaustein (C, D) angekoppelt ist, welcher ein Trägersignal auf die Gleichspannung aufmoduliert, und dass ein Steuereingang jedes schaltbaren Schaltelementes (A) mit einem Demodulator (B) verbunden ist, welcher auf die Trägerfrequenz des Trägersignals abgeglichen ist und das empfangene Trägersignal in das Freigabesignal (FG) für das Schaltelement (A) demoduliert. 4. Solar energy generation system according to claim 2 or 3, characterized in that the DC line (s) between the inverter or inverters (n) and the one or more parallel chains (strings) of photovoltaic (PV) modules galvanically isolated a release block (C , D), which modulates a carrier signal to the DC voltage, and that a control input of each switchable switching element (A) is connected to a demodulator (B), which is adjusted to the carrier frequency of the carrier signal and the received carrier signal in the enable signal (FG ) for the switching element (A) demodulated.
5. Solarenergieerzeugungsanlage nach Anspruch 4, dadurch gekennzeichnet, dass der Freigabebaustein (C, D) einen frequenzstabilen Taktgenerator (C) und einen nachgeschalteten Leistungsverstärker mit Gegentaktausgang aufweist, welcher über einen Balun-Transformator (D) zur Impedanzwandlung und galvanischen Trennung mit der Gleichspannungsleitung(en) zwischen dem zentralen Wechselrichter und dem oder den parallelen Ketten (Strings) von Photovoltaik-(PV)-Modulen gekoppelt ist.5. Solar energy generation system according to claim 4, characterized in that the enable module (C, D) has a frequency-stable clock generator (C) and a downstream power amplifier with push-pull output, which via a balun transformer (D) for impedance conversion and galvanic isolation with the DC power line ( en) is coupled between the central inverter and the parallel string (s) of photovoltaic (PV) modules.
6. Solarenergieerzeugungsanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Schaltelement (A) aus einem Halbleiterbauelement, beispielsweise einem Leistungs- Feldeffekttransistor in MOS-Technik mit schaltbaren Logikpegeln („Logic Level Power-MOSFET" ) oder einem Bipolartransistor mit isolierter Gateelektrode ("Insulated Gate Bipolar Transistor") besteht. 6. Solar energy generation system according to one of claims 1 to 5, characterized in that the switching element (A) of a semiconductor device, for example a power field effect transistor in MOS technology with switchable logic levels ("logic level power MOSFET") or a bipolar transistor with insulated Gate electrode ("Insulated Gate Bipolar Transistor") consists.
EP07856518A 2006-12-21 2007-12-10 Solar power generation plant Withdrawn EP2054944A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006060815A DE102006060815B4 (en) 2006-09-21 2006-12-21 Solar power generation plant
PCT/EP2007/010745 WO2008077473A2 (en) 2006-12-21 2007-12-10 Solar power generation plant

Publications (1)

Publication Number Publication Date
EP2054944A2 true EP2054944A2 (en) 2009-05-06

Family

ID=39562988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856518A Withdrawn EP2054944A2 (en) 2006-12-21 2007-12-10 Solar power generation plant

Country Status (2)

Country Link
EP (1) EP2054944A2 (en)
WO (1) WO2008077473A2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11228278B2 (en) 2007-11-02 2022-01-18 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US8933321B2 (en) 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
EP2722979B1 (en) 2008-03-24 2022-11-30 Solaredge Technologies Ltd. Switch mode converter including auxiliary commutation circuit for achieving zero current switching
IT1394746B1 (en) * 2009-07-14 2012-07-13 Infor System S R L SYSTEM FOR THE INSTALLATION OF PHOTOVOLTAIC MODULES IN ELECTRICAL SAFETY CONDITIONS AND RELATED INSTALLATION METHOD.
ITMI20091879A1 (en) * 2009-10-29 2011-04-30 Infor System S R L ELECTRIC SAFETY DEVICE FOR SOLAR SYSTEMS WITH PHOTOVOLTAIC PANELS AND SOLAR SYSTEM THAT INCORPORATES THIS LIFELINK SOLAR DEVICE.
EP2561596B1 (en) * 2010-04-22 2019-05-22 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
EP2455977A1 (en) * 2010-11-16 2012-05-23 Siemens Aktiengesellschaft Photovoltaic device
DE102010052009A1 (en) * 2010-11-19 2012-05-24 Kostal Industrie Elektrik Gmbh Photovoltaic system and photovoltaic module
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
US8963375B2 (en) 2011-06-30 2015-02-24 Sunpower Corporation Device and method for electrically decoupling a solar module from a solar system
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
EP2870633A2 (en) * 2012-07-09 2015-05-13 Dow Global Technologies LLC Systems and methods for detecting discontinuities in a solar array circuit and terminating current flow therein
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
EP4318001A3 (en) 2013-03-15 2024-05-01 Solaredge Technologies Ltd. Bypass mechanism
DE102013219855A1 (en) 2013-10-01 2015-04-02 Robert Bosch Gmbh Method and module control unit for operating a solar module on a solar system and method and system control unit for operating a solar system
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
DE102018102767A1 (en) 2018-02-07 2019-08-08 Sma Solar Technology Ag METHOD FOR DETERMINING A PROPERTY OF AT LEAST ONE PV MODULE BY MEANS OF A UNIDIRECTIONALLY COMMUNICATION TO THE PV MODULE AND PV PLANT USING THE METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE118717C (en) *
DE102006060815B4 (en) 2006-09-21 2013-05-29 Solarworld Innovations Gmbh Solar power generation plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217878A (en) * 1990-08-27 1992-08-07 Sanyo Electric Co Ltd Composite input inverter device
JPH05218481A (en) * 1992-02-07 1993-08-27 Kanegafuchi Chem Ind Co Ltd Solar cell module
EP1309063B1 (en) * 2001-10-17 2007-03-21 Bernhard Beck System for feeding power from DC current generators into the AC network
DE102005018173B4 (en) * 2005-04-19 2009-05-14 Swiontek, Karl, Dipl.-Ing. Switching device for safe interruption of operation of photovoltaic systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE118717C (en) *
DE102006060815B4 (en) 2006-09-21 2013-05-29 Solarworld Innovations Gmbh Solar power generation plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008077473A2

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring

Also Published As

Publication number Publication date
WO2008077473A2 (en) 2008-07-03
WO2008077473A3 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
DE102006060815B4 (en) Solar power generation plant
EP2054944A2 (en) Solar power generation plant
EP2369725B1 (en) Short circuiting unit
EP3345301B1 (en) Safe photovoltaic system
EP2671256A1 (en) Protective device for a photovoltaic system
DE102012109012B4 (en) Circuit arrangement for a solar power plant with a DC voltage source for an offset voltage
DE102013103753A1 (en) PHOTOVOLIC POWER GENERATION PLANT AND METHOD FOR OPERATING A PV PLANT
DE102011110682A1 (en) Junction box for a solar panel with a protection circuit
WO2018172134A1 (en) Method for controlling a direct current switch, direct current switch, and dc voltage system
EP2282388A1 (en) Device for feeding in electrical energy of a number of strings of photovoltaic modules in an electricity network
DE102010026778B4 (en) Device and method for providing a DC input voltage for a photovoltaic inverter and photovoltaic system with this device
DE102010060398A1 (en) Method for operating a photovoltaic system for feeding electrical power into a medium-voltage network
DE102012104005A1 (en) Photovoltaic system and method for operating a photovoltaic system for feeding electrical power into a medium-voltage network
DE102010060463B4 (en) Circuit arrangement for potential adjustment of a photovoltaic generator and photovoltaic system
WO2018104441A1 (en) Low-voltage circuit breaker device
DE202006001063U1 (en) Inverter for feeding electrical energy from a photovoltaic unit to a three phase mains has a DC converter with maximum power point tracking control and bridge circuit
EP4200463B1 (en) Photovoltaically supplied electrolysis
DE102011018229B4 (en) Circuit arrangement and method for electrical isolation of an electrical device from the network
DE102011000737B4 (en) Protective device for a photovoltaic system, photovoltaic module with such a protective device and operating method for such a protective device
EP2904677B1 (en) Circuit configuration with an inverter
DE102011075658B4 (en) Method for generating energy by means of a photovoltaic system and photovoltaic system
DE102013112362A1 (en) Photovoltaic system, has electronic components connected to power sources with photovoltaic generator, and power source unit connected with DC current spacers for alternatively supplying power to components over DC current spacers
LU93202B1 (en) Multi-strand photovoltaic system, method for operating such and reverse current protection circuit for such
EP3283894A1 (en) Method for testing an inverter device or a power converter device
DE102019121134A1 (en) Method for the detection of switching states of a circuit breaker module in a converter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080623

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOLM, HENDRIK

17Q First examination report despatched

Effective date: 20091117

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOLM, HENDRIK

DAX Request for extension of the european patent (deleted)
19U Interruption of proceedings before grant

Effective date: 20100412

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20101102

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLARWORLD INNOVATIONS GMBH

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160503