EP2052133B1 - Arrangement for optimising the running clearance for turbomachines - Google Patents

Arrangement for optimising the running clearance for turbomachines Download PDF

Info

Publication number
EP2052133B1
EP2052133B1 EP07817418.2A EP07817418A EP2052133B1 EP 2052133 B1 EP2052133 B1 EP 2052133B1 EP 07817418 A EP07817418 A EP 07817418A EP 2052133 B1 EP2052133 B1 EP 2052133B1
Authority
EP
European Patent Office
Prior art keywords
inner ring
outer ring
arrangement according
ring
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07817418.2A
Other languages
German (de)
French (fr)
Other versions
EP2052133A2 (en
Inventor
Alexander Böck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP2052133A2 publication Critical patent/EP2052133A2/en
Application granted granted Critical
Publication of EP2052133B1 publication Critical patent/EP2052133B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/22Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity

Definitions

  • the invention relates to an arrangement for optimizing the running gap for at least sections of axial-type turbomachinery by controlling or regulating the run-gap-relevant inner diameter of at least one stator blade surrounding a rotor blade ring.
  • the document GB 2 108 591 A relates to an arrangement for running gap optimization, in which over the circumference a plurality of interrupted, ie segmented, inner ring via lever mechanisms with actuators in the diameter is variable. At any deviation from the design diameter of the inner ring deviates from the ideal circular shape, ie polygonized.
  • the object of the invention is to propose an arrangement for running-gap optimization for at least sections of axial-type turbomachinery, which is fast-reacting as well as powerful and reliable.
  • the arrangement comprises a stator structure having an inner ring, an outer ring concentric with the latter and radially spaced and a plurality of webs integrally connecting the rings in a novel manner on. All webs are inclined relative to the radial direction by the same angle in the circumferential direction. Furthermore, the arrangement comprises an adjusting device for rotating the inner ring relative to the outer ring under elastic change of the running gap-relevant inner diameter.
  • it is a mechanical arrangement, which, starting from a zero adjustment "center position" depending on the direction of rotation allows both a compression and expansion of the inner ring under elastic, reversible deformation.
  • the reaction rate of the arrangement depends primarily on the speed of the selected adjustment. Since the invention is not dependent on thermally induced deformations, speed improvements can be achieved, for. B. by hydraulic, pneumatic or piezoelectric force generator. This also has the advantage that no or at least no relevant process gas flow has to be taken from the engine for the adjustment.
  • the arrangement 1 for running gap optimization comprises two essential functional units, firstly an integral, elastically deformable stator structure 3 and secondly an adjusting device with at least one lever 10, at least one actuator 16 and at least one sensor 18 for running splitter detection.
  • the stator structure 3 consists essentially of a circular, self-contained inner ring 5, of a concentric to this radially spaced circular outer ring 7 and a plurality of distributed over the circumference of the stator 3, the inner ring 5 and the outer ring 7 integral
  • the webs 8 are inclined at a defined angle ⁇ relative to the radial direction in the circumferential direction, so that a relative rotation of the inner ring 5 and the outer ring 7 a reversible compression or widening of the inner ring 5 and thus a change of the running clearance relevant inner diameter D entails.
  • the inner ring 5 has in relation to the outer ring 7 has a thinner cross-section, is thus much more flexible. This ensures that the desired change in diameter essentially results from the deformation of the inner ring 5.
  • the radially inner and radially outer ends of the webs 8 are integrally connected to the inner ring 5 and the outer ring 7 and designed as elastic solid joints. It can be seen that the webs 8 are contoured over their radial length, wherein the radially central region 9 is thickened relative to the ends and thus stiffened. Thus, the webs 8 behave over the majority of their radial length rigid body-like, which amplifies the change in diameter of the inner ring 5 at a given relative rotation.
  • the webs 8 may also be contoured with respect to their axial extent.
  • the outer ring 7 is rotationally held in a housing-like support 29, so that it forms the truly static element of the stator structure 3.
  • the possibly with - in FIG. 1 not shown - Rotor blade coming into contact inner ring 5 is provided radially inside with a friction-tolerant Anstreifbelag 17, the inside of the running gap-relevant inner diameter D predetermines.
  • the Anstreifbelag 17 follows the elastic deformation (compression, expansion) of the inner ring. 5
  • FIG. 1 still essential elements of the adjustment.
  • the relative rotation causing force transmission between the inner ring 5 and the outer ring 7 takes place mechanically.
  • a pivoting movements about an axis parallel to the axis of rotation of the turbomachine axis permitting storage 13 for a lever 10 is disposed on the outer ring 7 at least one point of its circumference.
  • the inner ring 5 is a corresponding recess, which together with a nose-like end of the lever 10 is a positive, play-free and low-friction Joint 15 forms.
  • the connecting line from the hinge 15 to the bearing 13 (center to center) extends at an angle ⁇ to the radial direction.
  • the adjusting kinematics including the angle ⁇ , are designed so that the local run-gap-relevant deformation of the inner ring 5 corresponds optimally to the deformation in the region of a web 8.
  • the angle ⁇ is generally different from the angle ⁇ .
  • angles ⁇ and ⁇ are here - arbitrarily - set in such a way that the longitudinal center line of a web 8 and the connecting line from the bearing 13 to the joint 15 (center to center) are each strung with the running gap relevant inside diameter D, respectively a connecting line of the Rotary axis of the turbomachine to the intersection S1, S2 is placed, and then the acute angle between the respective connecting line "rotation axis intersection” and the longitudinal center line "web” and the connecting line "bearing joint” are determined.
  • the angles are comparable only if the relevant intersection points S1, S2 lie on the same diameter, but which does not necessarily have to be the inner diameter D.
  • the lever 10 is angled to save space, with its long lever arm 12 is adapted to the circular cylindrical outer contour of the outer ring 7 and its support 29 and still extends within the housing 27 of the turbomachine.
  • the passage of the lever 10 through the outer ring 7 in the region of the bearing 13 is provided with a lip-like or seal 14, whereby the interior of the stator 3 is separated from the radially outer environment, unless there is a connection over at least one Front side of the stator structure 3.
  • an actuator 16 engages, which is largely arranged on the outside of the housing 27 of the turbomachine.
  • the actuator 16 is preferably designed as a double-acting, ie pressure and tensile forces generating, power cylinder whose power supply can be pneumatic, hydraulic or electrical / electronic. Due to the arrangement on the long lever arm 12, the Aktuator element and thus also its weight, etc. are reduced. Only the required Aktuatorhub thereby increases. In FIG. 1 Bottom right another gap without bridge 8 with a bearing and a yoke for another lever 10 (not shown) recognizable. With even distribution over the circumference so here four actuator / lever kinematics would be provided. Theoretically, a kinematics for the stator structure would suffice. With a view to the most uniform possible deformation of the inner ring 5 and on a redundant system you will probably install two or more kinematics.
  • FIG. 2 shows as a concrete application example a multi-stage compressor 26 in axial construction with two arrangements 1, 2 according to the invention for Laufspaltoptimtechnik in partial longitudinal section. Above you can see the multi-part housing 27 of the compressor 26 with flange. Down in FIG. 2 the flow channel of the compressor with a plurality of rotor and vane rings and a part of the rotor 34 is shown. The - not reproduced - rotation axis would run horizontally below the representation. The flow through the compressor 26 is from left to right, see the white arrows.
  • the arrangements 1, 2 are in the radial planes of the blade rings 30, 31, wherein the axial distance is such that even a vane ring with vane ring segments 33 between the assemblies 1, 2 place fits.
  • a common carrier 29 for the two stator structures 3, 4 is present within the housing 27 and fastened to the housing 27 via a flange connection.
  • the lever 10, 11 passing through the carrier 29 and the two pedestals for the actuators not shown here can be seen on the outside, here above, on the housing 27.
  • the inner ring 5 of the left, upstream stator structure 3 is kinematically coupled on both sides with guide vane segments 32, 33.
  • the inner ring 6 of the right stator structure 4 is kinematically coupled on one side with the vane ring segments 33.
  • the assemblies 1, 2 affect not only the running gaps of the blade rings 30, 31, ie the outer airseal, but also the gaps between the rotor 34 and the vane ring segments 32, 33, ie the Inner Airseal. Due to the two-sided coupling with the inner rings 5 and 6, the vane ring segments 33 are optimally moved. The vane ring segments 32 coupled only on one side to the inner ring 5 are not moved to the same extent, but still advantageously.
  • FIG. 3 shows in the partial cross section the range of such a sensor 18 within an arrangement for running gap optimization.
  • the sensor 18 is fixed relative to the inner ring 5 immediately surrounding a blade ring.
  • a sleeve-like holder 20 is integrated into the inner ring 5, in which the sensor 18 is radially inserted from the outside against the stop and again pulled out.
  • the authoritative radially inner sensor end is approximately flush with the inner surface of the squealer pad 17.
  • the Anstreifbelag must have a "window", ie a breakthrough in the region of the sensor 18.
  • at least one web 8 may be omitted in order to make space for the sensor 18 together with the holder 20.
  • a passage 21 is provided with sufficient clearance in the circumferential direction to the sensor shaft.
  • a slidable on the outer diameter of the outer ring 7, sliding sealing ring 22 is arranged, which is loaded via a spring washer 23 radially from the outside.
  • a bellows 24 extends radially, which forms an elastic, open channel for a flexible connecting line 19 of the sensor 18. The bellows 24 is also used to hold the sensor 18 in its operating position by exerting a defined radial force.
  • the bellows 24 is in turn connected to a cover 25 which is attached to a flange 28 of the housing 27 releasably and sealed, preferably screwed.
  • the connection line 19 leads to electrical or electronic components, which are attributable to the control or regulation system of the gap optimization ultimately exporting, at least one actuator 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Anordnung zur Laufspaltoptimierung für zumindest abschnittsweise in Axialbauart ausgeführte Turbomaschinen durch Steuerung bzw. Regelung des laufspaltrelevanten Innendurchmessers mindestens einer einen Laufschaufelkranz umschließenden Statorstruktur.The invention relates to an arrangement for optimizing the running gap for at least sections of axial-type turbomachinery by controlling or regulating the run-gap-relevant inner diameter of at least one stator blade surrounding a rotor blade ring.

In Fachkreisen werden für diese Technologie meist die Bezeichnungen "aktive Spalthaltungskontrolle" bzw. "Active Clearance Control CACC)" verwendet. Die bekannten konstruktiven Lösungen beruhen in der Regel auf dem Prinzip, dass Gehäusebereiche bzw. Statorelemente definiert mit Luft niedrigerer Temperatur, d. h. mit Kühlluft, angeströmt werden, um durch thermische Kontraktion dieser Bauteile den Laufspalt zu beeinflussen. Eine Reduzierung bzw. Unterbrechung des Kühlluftstromes lässt die Bauteile wieder expandieren. Die Wirkungsweise ist umso effektiver, je größer der Temperaturunterschied zwischen Bauteil und Kühlluft ist. Vorzugsweise wird ein heißer Turbinenstator mit relativ kühler Verdichterluft beaufschlagt. Eine derartige Anordnung ist beispielsweise in der US 6 454 529 B1 geschützt. Die Entwicklung geht auch bei Verdichtern hin zur aktiven Spalthaltungskontrolle. Eine thermische Beeinflussung des Gehäuses bzw. Stators stößt speziell im Verdichter infolge geringer Temperaturunterschiede an ihre Grenzen. Somit sind reaktionsschnellere und leistungsfähigere Systeme gefragt.In professional circles, the designations for this technology most "active clearance control control" or "learance A ctive C C ontrol CACC)" is used. The known constructive solutions are generally based on the principle that housing areas or stator elements defined with air of lower temperature, ie with cooling air, are flown in order to influence the running gap by thermal contraction of these components. A reduction or interruption of the cooling air flow causes the components to expand again. The effect is the more effective, the greater the temperature difference between the component and cooling air. Preferably, a hot turbine stator is charged with relatively cool compressor air. Such an arrangement is for example in the US Pat. No. 6,454,529 B1 protected. The development also goes with compressors to the active fission attitude control. A thermal influence of the housing or stator comes especially in the compressor due to low temperature differences to their limits. Thus, more responsive and more powerful systems are in demand.

Aus dem Dokument DE 102 33 881 A1 ist eine Anordnung zur Laufspaltoptimierung für Turbomaschinen bekannt, welche eine sich an wechselnde thermische Bedingungen anpassende Statorstruktur aufweist. Diese besteht aus einem geschlossenen Außenring, einem dazu konzentrischen, geschlossenen Innenring sowie aus einer Vielzahl von über den Umfang verteilten, relativ zur Radialrichtung in Umfangsrichtung geneigten, den Außen- mit dem Innenring gelenkig verbindenden Stege. Bei unterschiedlicher Wärmedehnung der Ringe halten die schwenkbaren Stege die Ringe stets konzentrisch zueinander. Der Durchmesser des Innenringes ist somit nur über thermische Maßnahmen, d.h. relativ langsam, veränderbar.From the document DE 102 33 881 A1 an arrangement for running gap optimization for turbomachines is known which has an adapting to changing thermal conditions stator structure. This consists of a closed outer ring, a concentric closed inner ring and a plurality of distributed over the circumference, relative to the radial direction in the circumferential direction inclined, the outer with the inner ring hingedly connecting webs. At different thermal expansion of the rings, the pivotable webs keep the rings always concentric to each other. The diameter of the inner ring is thus only via thermal measures, ie relatively slow, changeable.

Das Dokument GB 2 108 591 A betrifft eine Anordnung zur Laufspaltoptimierung, bei der ein über den Umfang mehrfach unterbrochener, d.h. segmentierter, Innenring über Hebelmechanismen mit Aktuatoren im Durchmesser veränderbar ist. Bei jeder Abweichung vom Auslegungsdurchmesser weicht der Innenring von der idealen Kreisform ab, d.h. polygonisiert.The document GB 2 108 591 A relates to an arrangement for running gap optimization, in which over the circumference a plurality of interrupted, ie segmented, inner ring via lever mechanisms with actuators in the diameter is variable. At any deviation from the design diameter of the inner ring deviates from the ideal circular shape, ie polygonized.

Aus dem Dokument FR 2 458 676 A ist eine Anordnung zur Laufspaltoptimierung bekannt, die der ein segmentierter Innenring über faltenbalgartige, pneumatische Aktuatoren im Durchmesser veränderbar ist. Auch hier besteht der Nachteil des Polygonisierens.From the document FR 2 458 676 A an arrangement for running gap optimization is known, which is a segmented inner ring on bellows-type, pneumatic actuators in diameter variable. Again, there is the disadvantage of polygonizing.

Angesichts der bekannten Lösungen besteht die Aufgabe der Erfindung darin, eine Anordnung zur Laufspaltoptimierung für zumindest abschnittsweise in Axialbauart ausgeführte Turbomaschinen vorzuschlagen, welche reaktionsschnell sowie leistungsstark und zuverlässig ist.In view of the known solutions, the object of the invention is to propose an arrangement for running-gap optimization for at least sections of axial-type turbomachinery, which is fast-reacting as well as powerful and reliable.

Diese Aufgabe wird durch die in Anspruch 1 gekennzeichneten Merkmale gelöst, in Verbindung mit den gattungsbildenden Merkmalen in dessen Oberbegriff. Die Anordnung weist eine Statorstruktur mit einem Innenring, einem zu diesem konzentrischen und radial beanstandeten Außenring und mehreren die Ringe in neuartiger Weise integral verbindenden Stegen auf. Alle Stege sind relativ zur Radialrichtung um den gleichen Winkel in Umfangsrichtung geneigt. Weiterhin umfasst die Anordnung eine Verstelleinrichtung zur Verdrehung des Innenringes relativ zum Außenring unter elastischer Veränderung des laufspaltrelevanten Innendurchmessers. Somit handelt es sich um eine mechanische Anordnung, welche ausgehend von einer verstellkraftfreien "Mittelstellung" je nach Verdrehrichtung sowohl eine Stauchung als auch eine Aufweitung des Innenringes unter elastischer, reversibler Verformung ermöglicht. Die Reaktionsgeschwindigkeit der Anordnung hängt vorwiegend von der Schnelligkeit der gewählten Verstelleinrichtung ab. Da die Erfindung nicht auf thermisch induzierte Verformungen angewiesen ist, lassen sich geschwindigkeitsmäßig erhebliche Verbesserungen erreichen, z. B. durch hydraulische , pneumatische oder piezoelektrische Krafterzeuger. Dies hat auch den Vorteil, das für die Verstellung kein oder zumindest kein relevanter Prozessgasstrom aus dem Triebwerk entnommen werden muss.This object is achieved by the features characterized in claim 1, in conjunction with the generic features in the preamble. The arrangement comprises a stator structure having an inner ring, an outer ring concentric with the latter and radially spaced and a plurality of webs integrally connecting the rings in a novel manner on. All webs are inclined relative to the radial direction by the same angle in the circumferential direction. Furthermore, the arrangement comprises an adjusting device for rotating the inner ring relative to the outer ring under elastic change of the running gap-relevant inner diameter. Thus, it is a mechanical arrangement, which, starting from a zero adjustment "center position" depending on the direction of rotation allows both a compression and expansion of the inner ring under elastic, reversible deformation. The reaction rate of the arrangement depends primarily on the speed of the selected adjustment. Since the invention is not dependent on thermally induced deformations, speed improvements can be achieved, for. B. by hydraulic, pneumatic or piezoelectric force generator. This also has the advantage that no or at least no relevant process gas flow has to be taken from the engine for the adjustment.

Bevorzugte Ausgestaltungen der Anordnung sind in den Unteransprüchen gekennzeichnet.Preferred embodiments of the arrangement are characterized in the subclaims.

Die Erfindung wird nachfolgend anhand der Zeichnungen noch näher erläutert. Dabei zeigen in vereinfachter, nicht maßstäblicher Darstellung:

  • Figur 1 einen Teilquerschnitt durch eine Anordnung zur Laufspaltoptimierung,
  • Figur 2 einen Teillängsschnitt durch einen Verdichter mit zwei Anordnungen zur Laufspaltoptimierung, und
  • Figur 3 einen Teilquerschnitt durch eine Anordnung zur Laufspaltoptimierung im Bereich eines Sensors zur Laufspalterfassung.
The invention will be explained in more detail with reference to the drawings. In a simplified, not to scale representation:
  • FIG. 1 a partial cross section through an arrangement for running gap optimization,
  • FIG. 2 a partial longitudinal section through a compressor with two arrangements for running gap optimization, and
  • FIG. 3 a partial cross section through an arrangement for running gap optimization in the region of a sensor for Laufspalterfassung.

Die Anordnung 1 zur Laufspaltoptimierung umfasst zwei wesentliche Funktionseinheiten und zwar erstens eine integrale, elastisch verformbare Statorstruktur 3 und zweitens eine Verstelleinrichtung mit mindestens einem Hebel 10, mindestens einem Aktuator 16 und mindestens einem Sensor 18 zur Laufspalterfassung. Die Statorstruktur 3 besteht im Wesentlichen aus einem kreisförmigen, in sich geschlossenen Innenring 5, aus einem zu diesem konzentrischen, radial beabstandeten kreisförmigen Außenring 7 und aus mehreren, über den Umfang der Statorstruktur 3 verteilten, den Innenring 5 und den Außenring 7 integral sowie elastisch gegeneinander verdrehbar verbindenden Stegen 8. Die Stege 8 sind unter einem definierten Winkel α relativ zur Radialrichtung in Umfangsrichtung geneigt, so dass eine Relativverdrehung des Innenrings 5 und des Außenrings 7 eine reversible Stauchung oder Aufweitung des Innenrings 5 und damit eine Veränderung des laufspaltrelevanten Innendurchmessers D zur Folge hat. Der Innenring 5 weist in Relation zum Außenring 7 einen dünneren Querschnitt auf, ist somit deutlich nachgiebiger. Damit wird erreicht, dass die gewünschte Durchmesseränderung im Wesentlichen aus der Verformung des Innenrings 5 resultiert. Die radial inneren und radial äußeren Enden der Stege 8 sind integral mit dem Innenring 5 bzw. dem Außenring 7 verbunden und als elastische Festkörpergelenke ausgeführt. Es ist zu erkennen, dass die Stege 8 über ihre radiale Länge konturiert sind, wobei der radial mittlere Bereich 9 gegenüber den Enden aufgedickt und somit versteift ist. Damit verhalten sich die Stege 8 über den Großteil ihrer radialen Länge starrkörperartig, was die Durchmesseränderung des Innenrings 5 bei vorgegebener Relativverdrehung verstärkt. Die Stege 8 können auch hinsichtlich ihrer axialen Erstreckung konturiert sein. Ihre axiale Tiefe kann am Außenring 7 größer sein, als am Innenring 5, mit einer konischen Verjüngung dazwischen. Bei hoher axialer Steifigkeit können so die Verstellkräfte reduziert werden. Diese Konturierung ist nicht dargestellt. Der Außenring 7 ist verdrehfest in einem gehäuseartigen Träger 29 gehalten, so dass er das wirklich statische Element der Statorstruktur 3 bildet. Der ggf. mit - in Figur 1 nicht dargestellten - Laufschaufelspitzen in Berührung kommende Innenring 5 ist radial innen mit einem reibtoleranten Anstreifbelag 17 versehen, dessen Innenseite den laufspaltrelevanten Innendurchmesser D vorgibt. Der Anstreifbelag 17 folgt der elastischen Verformung (Stauchung, Aufweitung) des Innenringes 5.The arrangement 1 for running gap optimization comprises two essential functional units, firstly an integral, elastically deformable stator structure 3 and secondly an adjusting device with at least one lever 10, at least one actuator 16 and at least one sensor 18 for running splitter detection. The stator structure 3 consists essentially of a circular, self-contained inner ring 5, of a concentric to this radially spaced circular outer ring 7 and a plurality of distributed over the circumference of the stator 3, the inner ring 5 and the outer ring 7 integral The webs 8 are inclined at a defined angle α relative to the radial direction in the circumferential direction, so that a relative rotation of the inner ring 5 and the outer ring 7 a reversible compression or widening of the inner ring 5 and thus a change of the running clearance relevant inner diameter D entails. The inner ring 5 has in relation to the outer ring 7 has a thinner cross-section, is thus much more flexible. This ensures that the desired change in diameter essentially results from the deformation of the inner ring 5. The radially inner and radially outer ends of the webs 8 are integrally connected to the inner ring 5 and the outer ring 7 and designed as elastic solid joints. It can be seen that the webs 8 are contoured over their radial length, wherein the radially central region 9 is thickened relative to the ends and thus stiffened. Thus, the webs 8 behave over the majority of their radial length rigid body-like, which amplifies the change in diameter of the inner ring 5 at a given relative rotation. The webs 8 may also be contoured with respect to their axial extent. Their axial depth can be greater on the outer ring 7 than on the inner ring 5, with a conical taper between them. At high axial stiffness so the adjustment can be reduced. This contouring is not shown. The outer ring 7 is rotationally held in a housing-like support 29, so that it forms the truly static element of the stator structure 3. The possibly with - in FIG. 1 not shown - Rotor blade coming into contact inner ring 5 is provided radially inside with a friction-tolerant Anstreifbelag 17, the inside of the running gap-relevant inner diameter D predetermines. The Anstreifbelag 17 follows the elastic deformation (compression, expansion) of the inner ring. 5

Über die Statorstruktur 3 hinaus zeigt Figur 1 noch wesentliche Elemente der Verstelleinrichtung. Die die Relativverdrehung bewirkende Kraftübertragung zwischen dem Innenring 5 und dem Außenring 7 erfolgt mechanisch. Hierzu ist am Außenring 7 an wenigstens einer Stelle seines Umfangs eine Schwenkbewegungen um eine zur Drehachse der Turbomaschine parallele Achse zulassende Lagerung 13 für einen Hebel 10 angeordnet. Am Innenring 5 befindet sich eine korrespondierende Vertiefung, die zusammen mit einem nasenartigen Ende des Hebels 10 ein formschlüssiges, möglichst spielfreies und reibungsarmes Gelenk 15 bildet. Die Verbindungslinie vom Gelenk 15 zur Lagerung 13 (Mitte zu Mitte) verläuft unter einem Winkel β zur Radialrichtung. Da an dieser Stelle kein stützender Steg 8 vorhanden ist, ist die Verstellkinematik einschließlich des Winkels β so ausgelegt, dass die lokale laufspaltrelevante Verformung des Innenrings 5 bestmöglich der Verformung im Bereich eines Steges 8 entspricht. Dabei ist der Winkel β in der Regel vom Winkel α verschieden. Die Winkel α und β sind hier - willkürlich - in der Weise festgelegt, dass die Längsmittellinie eines Steges 8 und die Verbindungslinie von der Lagerung 13 zum Gelenk 15 (Mitte zu Mitte) jeweils mit dem laufspaltrelevanten Innendurchmesser D geschritten werden, jeweils eine Verbindungslinie von der Drehachse der Turbomaschine zum Schnittpunkt S1, S2 gelegt wird, und dann die spitzen Winkel zwischen der jeweiligen Verbindungslinie "Drehachse-Schnittpunkt" und der Längsmittellinie "Steg" sowie der Verbindungslinie "Lagerung -Gelenk" ermittelt werden. Die Winkel sind nur dann vergleichbar, wenn die maßgeblichen Schnittpunkte S1, S2 auf dem gleichen Durchmesser liegen, welcher aber nicht zwingend der Innendurchmesser D zu sein braucht. Der Hebel 10 ist platzsparend abgewinkelt, wobei sein langer Hebelarm 12 an die kreiszylindrische Außenkontur des Außenringes 7 bzw. seines Trägers 29 angepasst ist und noch innerhalb des Gehäuses 27 der Turbomaschine verläuft. Die Durchführung des Hebels 10 durch den Außenring 7 im Bereich der Lagerung 13 ist mit einer lippenartigen bzw. manschettenartigen Abdichtung 14 versehen, wodurch das Innere der Statorstruktur 3 von der radial äußeren Umgebung getrennt ist, es sei denn, es gibt eine Verbindung über wenigstens eine Stirnseite der Statorstruktur 3. Am Ende des langen Hebelarmes 12 greift ein Aktuator 16 an, der großteils auf der Außenseite des Gehäuses 27 der Turbomaschine angeordnet ist. Der Aktuator 16 ist bevorzugt als doppeltwirkender, d. h. Druck- und Zugkräfte erzeugender, Kraftzylinder ausgeführt, dessen Energieversorgung pneumatisch, hydraulisch bzw. elektrisch/elektronisch erfolgen kann. Durch die Anordnung am langen Hebelarm 12 werden die Aktuatorkräfte und somit auch dessen Gewicht, etc. reduziert. Lediglich der erforderliche Aktuatorhub vergrößert sich hierdurch. In Figur 1 ist rechts unten eine weitere Lücke ohne Steg 8 mit einer Lagerung und einer Gelenkgabel für einen weiteren Hebel 10 (nicht dargestellt) erkennbar. Bei gleichmäßiger Verteilung über den Umfang wären hier also vier Aktuator-/Hebel-Kinematiken vorgesehen. Theoretisch würde eine Kinematik für die Statorstruktur genügen. Im Hinblick auf eine möglichst gleichmäßige Verformung des Innenrings 5 sowie auf ein redundantes System wird man wohl zwei oder mehr Kinematiken installieren.Beyond the stator structure 3 FIG. 1 still essential elements of the adjustment. The relative rotation causing force transmission between the inner ring 5 and the outer ring 7 takes place mechanically. For this purpose, a pivoting movements about an axis parallel to the axis of rotation of the turbomachine axis permitting storage 13 for a lever 10 is disposed on the outer ring 7 at least one point of its circumference. The inner ring 5 is a corresponding recess, which together with a nose-like end of the lever 10 is a positive, play-free and low-friction Joint 15 forms. The connecting line from the hinge 15 to the bearing 13 (center to center) extends at an angle β to the radial direction. Since no supporting web 8 is present at this point, the adjusting kinematics, including the angle β, are designed so that the local run-gap-relevant deformation of the inner ring 5 corresponds optimally to the deformation in the region of a web 8. The angle β is generally different from the angle α. The angles α and β are here - arbitrarily - set in such a way that the longitudinal center line of a web 8 and the connecting line from the bearing 13 to the joint 15 (center to center) are each strung with the running gap relevant inside diameter D, respectively a connecting line of the Rotary axis of the turbomachine to the intersection S1, S2 is placed, and then the acute angle between the respective connecting line "rotation axis intersection" and the longitudinal center line "web" and the connecting line "bearing joint" are determined. The angles are comparable only if the relevant intersection points S1, S2 lie on the same diameter, but which does not necessarily have to be the inner diameter D. The lever 10 is angled to save space, with its long lever arm 12 is adapted to the circular cylindrical outer contour of the outer ring 7 and its support 29 and still extends within the housing 27 of the turbomachine. The passage of the lever 10 through the outer ring 7 in the region of the bearing 13 is provided with a lip-like or seal 14, whereby the interior of the stator 3 is separated from the radially outer environment, unless there is a connection over at least one Front side of the stator structure 3. At the end of the long lever arm 12, an actuator 16 engages, which is largely arranged on the outside of the housing 27 of the turbomachine. The actuator 16 is preferably designed as a double-acting, ie pressure and tensile forces generating, power cylinder whose power supply can be pneumatic, hydraulic or electrical / electronic. Due to the arrangement on the long lever arm 12, the Aktuatorkräfte and thus also its weight, etc. are reduced. Only the required Aktuatorhub thereby increases. In FIG. 1 Bottom right another gap without bridge 8 with a bearing and a yoke for another lever 10 (not shown) recognizable. With even distribution over the circumference so here four actuator / lever kinematics would be provided. Theoretically, a kinematics for the stator structure would suffice. With a view to the most uniform possible deformation of the inner ring 5 and on a redundant system you will probably install two or more kinematics.

Figur 2 zeigt als konkretes Anwendungsbeispiel einen mehrstufigen Verdichter 26 in Axialbauweise mit zwei erfindungsgemäßen Anordnungen 1, 2 zur Laufspaltoptimierung im Teillängsschnitt. Oben erkennt man das mehrteilige Gehäuse 27 des Verdichters 26 mit Flanschverbindungen. Unten in Figur 2 ist der Strömungskanal des Verdichters mit mehreren Lauf- und Leitschaufelkränzen sowie einem Teil des Rotors 34 dargestellt. Die - nicht wiedergegebene - Drehachse würde horizontal unterhalb der Darstellung verlaufen. Die Durchströmung des Verdichters 26 erfolgt von links nach rechts, siehe die weißen Pfeile. Die Anordnungen 1, 2 liegen in den Radialebenen der Laufschaufelkränze 30, 31, wobei der axiale Abstand so ist, dass noch ein Leitschaufelkranz mit Leitschaufelkranzsegmenten 33 zwischen den Anordnungen 1, 2 Platz findet. Konzentrisch mit radialem Abstand ist innerhalb des Gehäuses 27 ein gemeinsamer Träger 29 für die beiden Statorstrukturen 3, 4 vorhanden und über eine Flanschverbindung am Gehäuse 27 befestigt. Man erkennt die durch den Träger 29 hindurchführenden Hebel 10, 11 sowie die beiden Sockel für die hier nicht wiedergegebenen Aktuatoren außen, hier oben, am Gehäuse 27. Der Innenring 5 der linken, stromaufwärtigen Statorstruktur 3 ist beiderseits mit Leitschaufelkranzsegmenten 32, 33 kinematisch gekoppelt. Der Innenring 6 der rechten Statorstruktur 4 ist einseitig mit den Leitschaufelkranzsegmenten 33 kinematisch gekoppelt. Auf diese Weise beeinflussen die Anordnungen 1, 2 nicht nur die Laufspalte der Laufschaufelkränze 30, 31, d. h. die Outer Airseal, sondern auch die Spalte zwischen dem Rotor 34 und den Leitschaufelkranzsegmenten 32, 33, d. h. die Inner Airseal. Durch die beidseitige Koppelung mit den Innenringen 5 und 6 werden die Leitschaufelkranzsegmente 33 optimal mitbewegt. Die nur einseitig mit dem Innenring 5 gekoppelten Leitschaufelkranzsegmente 32 werden nicht im selben Maß, aber immer noch in vorteilhafter Weise mitbewegt. FIG. 2 shows as a concrete application example a multi-stage compressor 26 in axial construction with two arrangements 1, 2 according to the invention for Laufspaltoptimierung in partial longitudinal section. Above you can see the multi-part housing 27 of the compressor 26 with flange. Down in FIG. 2 the flow channel of the compressor with a plurality of rotor and vane rings and a part of the rotor 34 is shown. The - not reproduced - rotation axis would run horizontally below the representation. The flow through the compressor 26 is from left to right, see the white arrows. The arrangements 1, 2 are in the radial planes of the blade rings 30, 31, wherein the axial distance is such that even a vane ring with vane ring segments 33 between the assemblies 1, 2 place fits. Concentric with a radial distance, a common carrier 29 for the two stator structures 3, 4 is present within the housing 27 and fastened to the housing 27 via a flange connection. The lever 10, 11 passing through the carrier 29 and the two pedestals for the actuators not shown here can be seen on the outside, here above, on the housing 27. The inner ring 5 of the left, upstream stator structure 3 is kinematically coupled on both sides with guide vane segments 32, 33. The inner ring 6 of the right stator structure 4 is kinematically coupled on one side with the vane ring segments 33. In this way, the assemblies 1, 2 affect not only the running gaps of the blade rings 30, 31, ie the outer airseal, but also the gaps between the rotor 34 and the vane ring segments 32, 33, ie the Inner Airseal. Due to the two-sided coupling with the inner rings 5 and 6, the vane ring segments 33 are optimally moved. The vane ring segments 32 coupled only on one side to the inner ring 5 are not moved to the same extent, but still advantageously.

Voraussetzung für eine Steuerung bzw. Regelung im Sinne einer Optimierung ist, dass der tatsächliche, momentane Laufspalt in angepassten Zeitabständen erfasst und steuerungs- bzw. regelungstechnisch verarbeitet wird. Bei eher stationären Betriebszuständen können größere Zeitintervalle zwischen den Messungen liegen, bei hochgradig instationären Betriebszuständen wird man Messungen in kurzen Zeitabständen bis hin zu einer kontinuierlichen Messwerterfassung durchführen. Schon aus Redundanzgründen sollten mindestens zwei Sensoren zur Laufspalterfassung vorhanden sein. Bei mehreren Stufen wirkt die Redundanz über die Stufen hinweg. Mit mehreren Sensoren am Umfang ist es auch möglich, quasi-statische Exzentrizitäten des Rotors relativ zum Stator zu erfassen. Figur 3 zeigt im Teilquerschnitt den Bereich eines derartigen Sensors 18 innerhalb einer Anordnung zur Laufspaltoptimierung. Der Sensor 18 ist relativ zu dem einen Laufschaufelkranz unmittelbar umschließenden Innenring 5 fest angeordnet. Zu diesem Zweck ist in den Innenring 5 ein buchsenartiger Halter 20 integriert, in den der Sensor 18 radial von Außen gegen Anschlag einführbar und wieder herausziehbar ist. Das maßgebliche, radial innere Sensorende ist etwa bündig mit der inneren Oberfläche des Anstreifbelags 17. Durch ein geringfügiges Zurücksetzen radial nach Außen wird sichergestellt, dass der Sensor 18 beim Anstreifen der Laufschaufelspitzen nicht beschädigt wird. Jedenfalls muss der Anstreifbelag im Bereich des Sensors 18 ein "Fenster", d. h. einen Durchbruch aufweisen. Je nach Abstand der Stege 8 in Umfangsrichtung muss ggf. mindestens ein Steg 8 entfallen, um dem Sensor 18 samt Halter 20 Platz zu machen. Da der Innenring 5 zur Spaltoptimierung zusammen mit dem Sensor 18 relativ zum Außenring 7 verdreht wird, ist in letzterem eine Durchführung 21 mit ausreichend Spiel in Umfangsrichtung zum Sensorschaft hin vorgesehen. Zur Abdichtung der Durchführung 21 ist ein an dem Außendurchmesser des Außenrings 7 anliegender, gleitfähiger Dichtring 22 angeordnet, welcher über eine Federscheibe 23 radial von Außen belastet ist. Zwischen dem Gehäuse 27 des Verdichters 26 und dem Außenring 7 erstreckt sich radial ein Faltenbalg 24, welcher einen elastischen, offenen Kanal für eine flexible Anschlussleitung 19 des Sensors 18 bildet. Der Faltenbalg 24 wird auch dazu benutzt, den Sensor 18 durch Ausübung einer definierten Radialkraft in seiner Betriebsposition zu halten. Der Faltenbalg 24 ist seinerseits mit einem Deckel 25 verbunden, der an einem Flansch 28 des Gehäuses 27 lösbar und abgedichtet befestigt, vorzugsweise angeschraubt ist. Die Anschlussleitung 19 führt zu elektrischen bzw. elektronischen Bauelementen, welche dem Steuer- bzw. Regelsystem des die Spaltoptimierung letztlich ausführenden, mindestens einen Aktuators 16 zuzurechnen sind.The prerequisite for a control or regulation in the sense of an optimization is that the actual, instantaneous running gap is recorded at adjusted time intervals and processed in terms of control or regulation. For more steady-state operating conditions, there may be larger time intervals between the measurements, for highly transient operating conditions you will carry out measurements in short time intervals up to a continuous data acquisition. For reasons of redundancy, at least two sensors should be present for the run splitter detection. With multiple levels, redundancy works across levels. With several sensors on the circumference it is also possible to detect quasi-static eccentricities of the rotor relative to the stator. FIG. 3 shows in the partial cross section the range of such a sensor 18 within an arrangement for running gap optimization. The sensor 18 is fixed relative to the inner ring 5 immediately surrounding a blade ring. For this purpose, a sleeve-like holder 20 is integrated into the inner ring 5, in which the sensor 18 is radially inserted from the outside against the stop and again pulled out. The authoritative radially inner sensor end is approximately flush with the inner surface of the squealer pad 17. By slightly resetting radially outward, it is ensured that the sensor 18 is not damaged when the blade tips are rubbed against it. In any case, the Anstreifbelag must have a "window", ie a breakthrough in the region of the sensor 18. Depending on the distance of the webs 8 in the circumferential direction, if necessary, at least one web 8 may be omitted in order to make space for the sensor 18 together with the holder 20. Since the inner ring 5 is rotated for gap optimization together with the sensor 18 relative to the outer ring 7, in the latter a passage 21 is provided with sufficient clearance in the circumferential direction to the sensor shaft. To seal the passage 21, a slidable on the outer diameter of the outer ring 7, sliding sealing ring 22 is arranged, which is loaded via a spring washer 23 radially from the outside. Between the housing 27 of the compressor 26 and the outer ring 7, a bellows 24 extends radially, which forms an elastic, open channel for a flexible connecting line 19 of the sensor 18. The bellows 24 is also used to hold the sensor 18 in its operating position by exerting a defined radial force. The bellows 24 is in turn connected to a cover 25 which is attached to a flange 28 of the housing 27 releasably and sealed, preferably screwed. The connection line 19 leads to electrical or electronic components, which are attributable to the control or regulation system of the gap optimization ultimately exporting, at least one actuator 16.

Claims (13)

  1. An arrangement (1, 2) for optimizing the running clearance for turbomachines that at least in sections are of the axial construction type, such as, for example, turbocompressors, gas turbines and steam turbines, in particular for compressors of stationary gas turbines, by controlling or regulating the inside diameter (D), which is relevant to the running clearance, of at least one stator structure (3, 4) surrounding a rotor-blade ring (30, 31), wherein the arrangement (1, 2) comprises the stator structure (3, 4), wherein the stator structure (3, 4) has a closed circular inner ring (5, 6), a circular outer ring (7) that is concentric to the inner ring (5, 6) and radially spaced therefrom, and also a plurality of webs (8) which connect the inner ring (5, 6) to the outer ring (7), are inclined at a defined angle (α) to the radial direction in the circumferential direction and are distributed over the circumference of the stator structure (3, 4),
    characterised in that
    the webs (8) integrally connect the inner ring (5, 6) to the outer ring (7), and in that the arrangement (1, 2) comprises an adjusting device for turning the inner ring (5, 6) relative to the outer ring (7) with elastic modification of the inside diameter (D), which is relevant to the running clearance, of the inner ring (5, 6).
  2. An arrangement according to claim 1,
    characterised in that
    the adjusting device comprises at least one lever (10, 11), which is pivoted on the outer ring (7) and is connected in a form-closing and also articulated manner to the inner ring (5, 6), and at least one actuator (16) that moves the lever (10, 11).
  3. An arrangement according to claim 2,
    characterised in that
    the at least one lever (10, 11) is angled, adapted over the greater part of its length to the outside diameter of the outer ring (7) and sealed in the region of its bearing (13) on the outer ring (7).
  4. An arrangement according to claim 2 or 3,
    characterised in that
    the at least one actuator (16) is constructed as a force cylinder and acts at the end of the long lever arm (12) of the lever (10, 11) outside the outer ring (7).
  5. An arrangement according to one of claims 1 to 4,
    characterised in that
    at least one sensor (18), which detects the running clearance, is secured to the inner ring (5, 6).
  6. An arrangement according to claim 5,
    characterised in that
    the outer ring (7) has at least one sealed feedthrough (21) for the connecting line (19) of the at least one sensor (18) and also for the installation and removal of the at least one sensor (18) through the outer ring (7).
  7. An arrangement according to claim 5 or 6,
    characterised in that
    the at least one sensor (18) is integrated into a control circuit for the actuation of the at least one actuator (16).
  8. An arrangement according to one of claims 1 to 7,
    characterised in that
    the inner ring (5, 6) is constructed so as to be thinner in cross section and thus easier to deform than the outer ring (7).
  9. An arrangement according to one of claims 1 to 8,
    characterised in that
    the webs (8) are constructed so as to be contoured, being thicker in the radially central region (9) between the inner ring (5, 6) and the outer ring (7).
  10. An arrangement according to one of claims 2 to 9,
    characterised in that
    the inclination of the at least one lever (10, 11) between its bearing (13) on the outer ring (7) and its connection to the inner ring (5, 6) at a defined angle (β) to the radial direction is selected with regard to optimum roundness of the inner ring (5, 6) by way of the adjusting movement and is different from the inclination of the webs (α) relative to the radial direction.
  11. An arrangement according to one of claims 1 to 10,
    characterised in that
    the inner ring (5, 6) of the at least one stator structure (3, 4) is kinematically coupled to guidevane-ring segments (32, 33) on at least one side and thus also influences their running clearance towards the rotor.
  12. An arrangement according to one of claims 1 to 11,
    characterised in that
    the at least one stator structure (3, 4) is designed for a reduction in the inside diameter (D), which is relevant to the running clearance, by approximately -0.2 % by compression of the inner ring (5, 6), and for an enlargement in the inside diameter (D), which is relevant to the running clearance, by approximately +0.2 % by expansion of the inner ring (5, 6).
  13. An arrangement according to one of claims 1 to 12,
    characterised in that
    the webs (8) have a greater depth in the axial direction on the outer ring (7) than on the inner ring (5, 6) and taper conically from the outer ring (7) to the inner ring (5, 6).
EP07817418.2A 2006-08-17 2007-08-08 Arrangement for optimising the running clearance for turbomachines Expired - Fee Related EP2052133B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006038753A DE102006038753A1 (en) 2006-08-17 2006-08-17 Arrangement for running gap optimization for turbomachines
PCT/DE2007/001416 WO2008019657A2 (en) 2006-08-17 2007-08-08 Arrangement for optimising the running clearance for turbomachines

Publications (2)

Publication Number Publication Date
EP2052133A2 EP2052133A2 (en) 2009-04-29
EP2052133B1 true EP2052133B1 (en) 2014-01-15

Family

ID=39044234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07817418.2A Expired - Fee Related EP2052133B1 (en) 2006-08-17 2007-08-08 Arrangement for optimising the running clearance for turbomachines

Country Status (5)

Country Link
US (1) US8608427B2 (en)
EP (1) EP2052133B1 (en)
CA (1) CA2660368A1 (en)
DE (1) DE102006038753A1 (en)
WO (1) WO2008019657A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006029A1 (en) * 2009-01-24 2010-07-29 Mtu Aero Engines Gmbh turbomachinery
US9228447B2 (en) 2012-02-14 2016-01-05 United Technologies Corporation Adjustable blade outer air seal apparatus
US9683453B2 (en) * 2013-09-11 2017-06-20 General Electric Company Turbine casing clearance management system
US9695705B2 (en) 2014-10-29 2017-07-04 General Electric Company Systems and methods for controlling rotor to stator clearances in a steam turbine
US10458429B2 (en) 2016-05-26 2019-10-29 Rolls-Royce Corporation Impeller shroud with slidable coupling for clearance control in a centrifugal compressor
US10851712B2 (en) 2017-06-27 2020-12-01 General Electric Company Clearance control device
IT201900005266A1 (en) * 2019-04-05 2020-10-05 Nuovo Pignone Tecnologie Srl Steam turbine with rotating stator blades
CN110725722B (en) * 2019-08-27 2022-04-19 中国科学院工程热物理研究所 Dynamic and continuous adjustable structure for movable blade top clearance suitable for impeller machinery
CN113107615B (en) * 2021-04-08 2022-08-26 沈阳航空航天大学 Active clearance control labyrinth seal structure based on eccentric damping action
US12006829B1 (en) 2023-02-16 2024-06-11 General Electric Company Seal member support system for a gas turbine engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227418A (en) * 1963-11-04 1966-01-04 Gen Electric Variable clearance seal
DE2922835C2 (en) 1979-06-06 1985-06-05 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Circumferential gap seal on axial flow machines
GB2108591A (en) 1981-11-03 1983-05-18 Rolls Royce Casing of a gas turbine engine rotor
DE3509192A1 (en) * 1985-03-14 1986-09-25 MTU Motoren- und Turbinen-Union München GmbH, 8000 München FLOWING MACHINE WITH MEANS FOR CONTROLLING THE RADIAL GAP
GB2313414B (en) * 1996-05-24 2000-05-17 Rolls Royce Plc Gas turbine engine blade tip clearance control
US6454529B1 (en) 2001-03-23 2002-09-24 General Electric Company Methods and apparatus for maintaining rotor assembly tip clearances
DE10233881B4 (en) * 2002-07-25 2010-02-18 Rolls-Royce Deutschland Ltd & Co Kg By thermal effects radially variable ring element
US7686569B2 (en) * 2006-12-04 2010-03-30 Siemens Energy, Inc. Blade clearance system for a turbine engine

Also Published As

Publication number Publication date
DE102006038753A1 (en) 2008-03-13
US8608427B2 (en) 2013-12-17
WO2008019657A3 (en) 2008-04-17
US20100232942A1 (en) 2010-09-16
EP2052133A2 (en) 2009-04-29
CA2660368A1 (en) 2008-02-21
WO2008019657A2 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
EP2052133B1 (en) Arrangement for optimising the running clearance for turbomachines
EP2435665B1 (en) Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
EP2435664B1 (en) Clearance control system for a turbomachine
EP0289697B1 (en) Actuator for the variable guide vanes of an axial turbo machine
DE3446389C2 (en) Stator structure for an axial gas turbine
EP2024608B1 (en) Turbo compressor in an axial type of construction
DE3541508C1 (en) Exhaust gas turbocharger
EP3283732B1 (en) Guide vane adjustment device and turbomachine
DE102010016532A1 (en) Turbine housing with pin bearing
JP5126505B2 (en) Variable pitch blade control
DE102008037429A1 (en) Device and method for influencing the margin of tolerance of turbine blade tips
EP2527253B1 (en) De-icing device for an aviation gas turbine engine
DE102011054468A1 (en) Variable turbine nozzle system
DE19807247A1 (en) Turbomachine with rotor and stator
WO2014079653A1 (en) Gas bearing, arrangement and turbomachine
EP2194230A1 (en) Guide blade assembly for an axial turbo engine
DE10122732C2 (en) Arrangement for a non-hermetic seal
EP3176386B1 (en) Inner shroud assembly, corresponding inner shroud, inner casing and turbomachine
DE112017001730B4 (en) Housing position regulating device
DE2745130C2 (en) Sealing device for the free blade ends of axial turbines
EP2611992A1 (en) Housing-side structure of a turbomachine
WO2018162306A1 (en) Turbine comprising adjustable guide vanes
EP2982834B1 (en) Roller bearing, in particular needle bearing, to be mounted on a rotating pin of a variable guide blade of a turbo engine
WO2006111405A1 (en) Device and method for reducing loss through sealing gaps in turbomachines
CH558477A (en) ADJUSTMENT DEVICE FOR ROTATING GUIDE VANES.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090525

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131002

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012712

Country of ref document: DE

Effective date: 20140220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012712

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012712

Country of ref document: DE

Effective date: 20141016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012712

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012712

Country of ref document: DE

Effective date: 20150303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901