EP2038935A1 - Silicon solar cells comprising lanthanides for modifying the spectrum and method for the production thereof - Google Patents

Silicon solar cells comprising lanthanides for modifying the spectrum and method for the production thereof

Info

Publication number
EP2038935A1
EP2038935A1 EP07725694A EP07725694A EP2038935A1 EP 2038935 A1 EP2038935 A1 EP 2038935A1 EP 07725694 A EP07725694 A EP 07725694A EP 07725694 A EP07725694 A EP 07725694A EP 2038935 A1 EP2038935 A1 EP 2038935A1
Authority
EP
European Patent Office
Prior art keywords
lanthanides
silicon material
silicon
layer
solar cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07725694A
Other languages
German (de)
French (fr)
Inventor
Dirk Habermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmid Technology Systems GmbH
Original Assignee
Schmid Technology Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmid Technology Systems GmbH filed Critical Schmid Technology Systems GmbH
Publication of EP2038935A1 publication Critical patent/EP2038935A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a method for doping silicon material for solar cells and silicon material which has been doped with a corresponding method, as well as solar cells made from such a silicon material.
  • silicon Due to the property of silicon as an "indirect semiconductor", it has only a weak light-emitting property at room temperature. Only at temperatures around 20 K is an intense electroluminescence detectable. In contrast, the good absorption property of silicon in the wavelength range of 400-1200 nm is the basis, which makes it particularly suitable as a starting material for photovoltaic processes.
  • Silicon doped with the elements boron and phosphorus has a characteristic light absorption.
  • Characteristic feature of the Lanthanide is the almost complete shielding of the unpaired electrons of the 4f orbitals from the surrounding crystal field by electrons of outer shells. Thus, the energy levels of the excited states of these unpaired electrons are largely constant regardless of the crystal field. Despite a low interaction with the crystal field, the transition probability for the occupation of these energy levels is strongly influenced by the crystal field and is reflected in the different quantum efficiency of the emission bands depending on the crystal structure.
  • Lanthanides are based on a completely different tech- area known as luminescence activators in natural and industrial phosphors.
  • the invention has for its object to provide an aforementioned method, a silicon material and solar cells with which problems of the prior art can be avoided and in particular an energy yield of a finished solar cell is improved.
  • the silicon material to be doped is in a flat form, as a wafer or the like, as is known.
  • lanthanides are doped in a topmost layer of the silicon material, which is less than 1 micron, to thereby change the absorption properties of the silicon material. This can be done for both mono- and multicrystalline solar cells.
  • the lanthanides or the corresponding doping material are applied to the uppermost layer or to the surface of the silicon material.
  • This has the advantage that the application process is simple.
  • the conversion of the above-mentioned photons in the uppermost layer of the silicon material can be used particularly well for the subsequent generation of electrical energy.
  • the doping of the uppermost layer of the silicon material or of the solar cell is of particular advantage.
  • the lanthanides can be introduced into a layer on the silicon material or the silicon material, which consists only partially of silicon.
  • a layer on the silicon material or the silicon material which consists only partially of silicon.
  • One possibility is an antireflection layer or a layer of Si 3 N 4 .
  • Another possibility is a layer of TCO, ie translucent electrically conductive oxide material, for example ZnO or TiO.
  • Another possible layer is a layer of carbon nanotubes (CNT), which can also be applied to the actual silicon of the solar cell.
  • Yet another possible layer is a layer of amorphous - A -
  • Silicon possibly also in conjunction with SiO x or SiO 2 .
  • the lanthanides can also be incorporated in mineral phases with an oxygen-ligand field.
  • the doping of lanthanides can take place in the region of the pn junction of the silicon material. Again, good photon generation efficiency in the vicinity of the bandgap of silicon from far higher energy photons is possible.
  • lanthanides can be doped into the region of the back surface field, that is to say the back side, of the silicon material.
  • the lanthanides can be doped into a layer of the silicon material consisting essentially of SiO 2 .
  • the diffusion processes used in the current Si solar cell production with the presence of free oxygen and nitrogen under high temperatures can also form structures or phases in or at the interface to the silicon or in the silicon material, such as:
  • Diffusion of the introduced lanthanides in the pn junction near the solar cell surface can be used specifically for the formation of p-dominated O-lanthanide structures or clusters.
  • One possibility is to diffuse the lanthanides into the silicon material.
  • Another possibility is to apply the lanthanides in a sputtering process. Essentially conventional sputter sources and applicators can be used for this purpose.
  • doping with lanthanides can be carried out by containing them in an aqueous solution or a gel, which are applied to the silicon material.
  • a heat treatment for diffusing can be carried out by containing them in an aqueous solution or a gel, which are applied to the silicon material.
  • the lanthanides can be applied by a gas phase process or a CVD process.
  • the lanthanides can be applied by condensation, ie by precipitation from a gaseous phase. This can be done without annealing, which is considered to be advantageous for diffusing the lanthanides.
  • the lanthanides can be applied by solid state contact, ie by direct application of lanthanide material.
  • a doping of the silicon material with lanthanides can take place by ion implantation.
  • lanthanides can be diffused from a layer doped with lanthanides on the silicon material into the silicon material, advantageously under the effect of heat or by heat treatment.
  • the silicon material or the surface can be tempered in a further step. This can serve for better diffusion of the doping material. However, it is not essential.
  • various lanthanides can be used or in each case only a single lanthanide material. However, it is also possible to use combinations of different lanthanides for doping, which are then present together.
  • Particularly suitable lanthanides are those lanthanides whose main emission lines lie in the visible range of the light, that is to say somewhat below 1.2 eV. These are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • the doping with the lanthanides can also be carried out coupled with that of other doping elements, for example Mn 2+ .
  • the main emission line is in the visible range of light
  • the absorption of light in the silicon material in the UV and UV-near range can be improved, not only in the silicon material per se, but also also in p- and n-doped silicon, in silicon-oxygen clusters, in SiO (x) and in Si3N 4 .
  • the light absorption in various mineral phases of the silicon material can be improved.
  • the lanthanides are diffused at a depth of less than 1 ⁇ m, for example only 500 nm to 600 nm. This allows the diffusion process to be kept simpler. Furthermore, a less deep diffusion is considered sufficient.
  • a layer formed by doping with lanthanides lies in the silicon material, whereby it can also form its own layer.
  • this layer is, as previously noted, relatively high up in the silicon material or in the finished solar cell.
  • the silicon material according to the invention is just produced according to the invention by a method with the above-described possibilities. From such a silicon material, a solar cell according to the invention can then be constructed.

Abstract

The aim of the invention is to improve the energy yield efficiency of solar cells. According to the invention, the silicon material is doped with one or more different lanthanides such that said material penetrates into a layer approximately 60 nm deep. Photons, whose energy is at least double that of the 1.2 eV silicon material band gap, are thus converted into at least two photons having energy in the region of the silicon band gap, by excitation and recombination of the unpaired 4f electrons of the lanthanides. As a result, additional photons having advantageous energy close to the silicon band gap are provided for electron-hole pair formation.

Description

Beschreibung description
SILIZIUM-SOLARZELLEN MIT LANTHANIDEN ZUR VERÄNDERUNG DES SPEKTRUMS UNDSILICON SOLAR CELLS WITH LANTHANIDES FOR CHANGING THE SPECTRUM AND
VERFAHREN ZU DEREN HERSTELLUNGMETHOD FOR THE PRODUCTION THEREOF
Anwendungsgebiet und Stand der TechnikField of application and state of the art
Die Erfindung betrifft ein Verfahren zur Dotierung von Siliziummaterial für Solarzellen sowie Siliziummaterial, das mit einem dementsprechen- den Verfahren dotiert worden ist, ebenso wie Solarzellen aus einem solchen Siliziummaterial.The invention relates to a method for doping silicon material for solar cells and silicon material which has been doped with a corresponding method, as well as solar cells made from such a silicon material.
Aufgrund der Eigenschaft des Siliziums als "indirekter Halbleiter" hat dieser eine nur schwache Licht-emittierende Eigenschaft bei Raumtemperatur. Lediglich bei Temperaturen um 20 K ist eine intensive Elektrolumi- neszenz nachweisbar. Demgegenüber ist die gute Absorptionseigenschaft von Silizium im Wellenlängenbereich von 400-1200 nm die Basis, die es als Ausgangsmaterial für photovoltaische Prozesse besonders geeignet macht.Due to the property of silicon as an "indirect semiconductor", it has only a weak light-emitting property at room temperature. Only at temperatures around 20 K is an intense electroluminescence detectable. In contrast, the good absorption property of silicon in the wavelength range of 400-1200 nm is the basis, which makes it particularly suitable as a starting material for photovoltaic processes.
Mit den Elementen Bor und Phosphor dotiertes Silizium weist eine charakteristische Lichtabsorption auf. Kennzeichnende Eigenschaft der Lanthanide ist die nahezu komplette Abschirmung der ungepaarten Elektronen der 4f Orbitale vom umgebenden Kristallfeld durch Elektronen äußerer Schalen. Somit sind die Energieniveaus der Anregungszustände dieser ungepaarten Elektronen unabhängig vom Kristallfeld weitestgehend konstant. Trotz einer geringen Wechselwirkung mit dem Kristallfeld ist die Übergangwahrscheinlichkeit für die Besetzung dieser Energieniveaus durchaus stark vom Kristallfeld beeinflusst und zeigt sich in der unterschiedlichen Quanteneffizienz der Emissionsbanden abhängig von der Kristallstruktur. Lanthanide sind auf einem ganz anderen techni- schen Gebiet bekannt als Lumineszenz-Aktivatoren in natürlichen und technischen Leuchtstoffen.Silicon doped with the elements boron and phosphorus has a characteristic light absorption. Characteristic feature of the Lanthanide is the almost complete shielding of the unpaired electrons of the 4f orbitals from the surrounding crystal field by electrons of outer shells. Thus, the energy levels of the excited states of these unpaired electrons are largely constant regardless of the crystal field. Despite a low interaction with the crystal field, the transition probability for the occupation of these energy levels is strongly influenced by the crystal field and is reflected in the different quantum efficiency of the emission bands depending on the crystal structure. Lanthanides are based on a completely different tech- area known as luminescence activators in natural and industrial phosphors.
Aufgabe und LösungTask and solution
Der Erfindung liegt die Aufgabe zugrunde, ein eingangs genanntes Verfahren, ein Siliziummaterial sowie Solarzellen zu schaffen, mit denen Probleme des Standes der Technik vermieden werden können und insbesondere eine Energieausbeute einer fertigen Solarzelle verbessert ist.The invention has for its object to provide an aforementioned method, a silicon material and solar cells with which problems of the prior art can be avoided and in particular an energy yield of a finished solar cell is improved.
Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1 , ein Siliziummaterial mit den Merkmalen des Anspruchs 23 sowie eine aus solchem Siliziummaterial hergestellte Solarzelle mit den Merkmalen des Anspruchs 27. Vorteilhafte sowie bevorzugte Ausgestaltung der Erfindung sind Gegenstand der weiteren Ansprüche und werden im Folgenden näher erläutert. Manche der nachfolgenden Merkmale werden nur einmal aufgezählt. Sie sollen jedoch unabhängig davon für das Verfahren, das Siliziummaterial sowie die fertige Solarzelle gelten können. Der Wortlaut der Ansprüche wird durch ausdrückliche Bezugnahme zum Inhalt der Beschreibung gemacht.This object is achieved by a method having the features of claim 1, a silicon material having the features of claim 23 and a solar cell made of such silicon material with the features of claim 27. Advantageous and preferred embodiment of the invention are the subject of further claims and are in Explained in more detail below. Some of the following features are listed only once. However, they should apply regardless of the process, the silicon material and the finished solar cell. The wording of the claims is incorporated herein by express reference.
Das zu dotierende Siliziummaterial liegt in flacher Form vor, und zwar als Wafer odgl., wie dies bekannt ist. Erfindungsgemäß werden in eine oberste Schicht bzw. einen obersten Bereich des Siliziummaterials, der weniger als 1 μm beträgt, Lanthanide eindotiert, um dadurch die Absorptionseigenschaften des Siliziummaterials zu ändern. Dies kann sowohl für mono- als auch für multikristalline Solarzellen gemacht werden.The silicon material to be doped is in a flat form, as a wafer or the like, as is known. According to the invention, lanthanides are doped in a topmost layer of the silicon material, which is less than 1 micron, to thereby change the absorption properties of the silicon material. This can be done for both mono- and multicrystalline solar cells.
Durch den Einbau von Lanthaniden in diese Silizium-Strukturen oder weitere Strukturen der Solarzelle sowie in Mischphasen aus diesen Strukturen kann eine effizientere Ausnutzung der UV und UV-nahen Strahlung des Sonnenlichts erreicht werden. Dies soll in der Form ge- schehen, dass aus einem Photon mit einer Energie mindestens zweimal größer als die Bandlücke von Silizium (1.12 eV) durch die Anregung und Rekombination der ungepaarten 4f Elektronen der Lanthanide zwei oder mehr Photonen mit Energien nur wenig größer als die Bandlücke von Silizium (1.12 eV) oder gleich dieser gebildet werden. Die Hauptemissionslinie von Silizium liegt im Bereich unter 1.12 eV. Die extrinsische Photolumineszenz kann dann zur Erzeugung elektrischer Energie beitragen, indem dann zusätzliche Photonen mit Energien nahe der Silizium- Bandlücke zur Elektronen-Loch-Paarbildung zur Verfügung stehen. Die Photonen, die durch Anregung und Rekombination von Elektronen der Lanthanide entstehen, sollen direkt zur Bildung von Elektronen-Loch- Paaren in p- oder n-SHizium beitragen.The incorporation of lanthanides in these silicon structures or other structures of the solar cell and in mixed phases of these structures, a more efficient use of UV and UV-near radiation of sunlight can be achieved. This should be done in the form see that from a photon with an energy at least twice as large as the band gap of silicon (1.12 eV) by the excitation and recombination of the unpaired 4f electrons of the lanthanides two or more photons with energies only slightly larger than the band gap of silicon (1.12 eV) or be formed like this. The main emission line of silicon is in the range below 1.12 eV. Extrinsic photoluminescence may then contribute to the generation of electrical energy by then providing additional photons with energies near the silicon band gap for electron-hole pairing. The photons produced by excitation and recombination of electrons of the lanthanides are said to contribute directly to the formation of electron-hole pairs in p- or n-silicon.
Vorteilhaft werden die Lanthanide bzw. das entsprechende Dotiermaterial auf die oberste Schicht bzw. auf die Oberfläche des Siliziummaterials aufgebracht. Dies weist den Vorteil auf, dass das Aufbringungsverfahren zum einen einfach ist. Des weiteren kann die Umwandlung der eingangs genannten Photonen in der obersten Schicht des Siliziummaterials besonders gut für die nachfolgende Erzeugung von elektrischer Energie genutzt werden. Insofern ist eben das Dotieren der obersten Schicht des Siliziummaterials bzw. der Solarzelle von besonderem Vorteil.Advantageously, the lanthanides or the corresponding doping material are applied to the uppermost layer or to the surface of the silicon material. This has the advantage that the application process is simple. Furthermore, the conversion of the above-mentioned photons in the uppermost layer of the silicon material can be used particularly well for the subsequent generation of electrical energy. In this respect, the doping of the uppermost layer of the silicon material or of the solar cell is of particular advantage.
In Ausgestaltung der Erfindung können die Lanthanide in eine Schicht auf dem Siliziummaterial oder des Siliziummaterials eingebracht werden, die nur teilweise aus Silizium besteht. Eine Möglichkeit ist eine Antirefle- xions-Schicht bzw. eine Schicht aus Si3N4. Eine weitere Möglichkeit ist eine Schicht aus TCO, also lichtdurchlässigem elektrisch leitfähigem O- xid-Material, beispielsweise ZnO oder TiO. Eine weitere mögliche Schicht ist eine Schicht aus Carbon Nano Tubes (CNT), welche ebenfalls auf dem eigentlichen Silizium der Solarzelle aufgebracht sein kann. Eine nochmals weitere mögliche Schicht ist eine Schicht aus amorphen - A -In an embodiment of the invention, the lanthanides can be introduced into a layer on the silicon material or the silicon material, which consists only partially of silicon. One possibility is an antireflection layer or a layer of Si 3 N 4 . Another possibility is a layer of TCO, ie translucent electrically conductive oxide material, for example ZnO or TiO. Another possible layer is a layer of carbon nanotubes (CNT), which can also be applied to the actual silicon of the solar cell. Yet another possible layer is a layer of amorphous - A -
Silizium (a-Silizium), unter Umständen auch in Verbindung mit SiOx oder SiO2. In einem solchen vorgenannten Fall mit dem Einbringen in eine Schicht, die nur teilweise aus Silizium besteht, können die Lanthanide auch in Mineralphasen mit einem Sauerstoff-Ligandenfeld eingebaut werden.Silicon (a-silicon), possibly also in conjunction with SiO x or SiO 2 . In such an aforementioned case with the introduction into a layer which consists only partially of silicon, the lanthanides can also be incorporated in mineral phases with an oxygen-ligand field.
In weiterer Ausgestaltung der Erfindung kann die Eindotierung von Lan- thaniden in den Bereich des pn-Übergangs des Siliziummaterials stattfinden. Auch hier ist eine gute Wirksamkeit bei der Erzeugung von Photonen in der Nähe der Bandlücke von Silizium aus Photonen mit einer weitaus höheren Energie möglich.In a further embodiment of the invention, the doping of lanthanides can take place in the region of the pn junction of the silicon material. Again, good photon generation efficiency in the vicinity of the bandgap of silicon from far higher energy photons is possible.
In weiterer Ausgestaltung der Erfindung können Lanthanide in den Bereich des Back Surface Field, also der Rückseite, des Siliziummaterials eindotiert werden.In a further embodiment of the invention, lanthanides can be doped into the region of the back surface field, that is to say the back side, of the silicon material.
In nochmals weiterer Ausgestaltung der Erfindung können die Lanthanide in eine im Wesentlichen aus SiO2 bestehende Schicht des Siliziummaterials eindotiert werden.In yet a further embodiment of the invention, the lanthanides can be doped into a layer of the silicon material consisting essentially of SiO 2 .
Die bei der aktuellen Si-Solarzellenherstellung eingesetzten Diffusionsprozesse mit der Anwesenheit von freiem Sauerstoff und Stickstoff unter hohen Temperaturen können auch Strukturen bzw. Phasen in oder an der Grenzfläche zum Silizium bzw. im Silizium-Material bilden wie:The diffusion processes used in the current Si solar cell production with the presence of free oxygen and nitrogen under high temperatures can also form structures or phases in or at the interface to the silicon or in the silicon material, such as:
1. Lanthanid-Sauerstoff-Cluster1. Lanthanide oxygen cluster
2. Si-B-P-O-Lanthanide-Phase2. Si-B-P-O-lanthanide phase
3. Lanthanid-Si-O-N-Phasen oder deren Mischphasen.3. Lanthanide Si-O-N phases or their mixed phases.
Diese Bereiche, die im engeren Sinne nicht als reine Si-Lanthanide Verbindung zu bezeichnen sind, können auch zur Effizienzsteigerung durch den zuvor beschriebenen Prozess der mit Lanthanid gekoppelten Elekt- ronenlochpaarbildung beitragen. Ein Ziel ist es auch, durch das Diffusionsverfahren besonders Sauerstoff-Cluster in Verbindung mit Lanthan- iden in einer Silizium-dominierten Struktur zu erzeugen und somit die für viele Lanthanide bekannte Photolumineszenz mit Emission im sichtbaren Bereich des Spektrums (400-800 nm) zu ermöglichen.These ranges, which are strictly speaking not to be referred to as pure Si-lanthanide compounds, can also contribute to increasing the efficiency by the process of lanthanide-coupled electron hole pair formation described above. One goal is also to use the diffusion process in particular oxygen clusters in conjunction with lanthanum iden to produce in a silicon-dominated structure and thus to enable the known for many lanthanides photoluminescence with emission in the visible region of the spectrum (400-800 nm).
Eine Diffusion der eingebrachten Lanthanide in den pn-Übergang nahe der Solarzellenoberfläche kann gezielt zur Bildung von p-dominierten O- Lanthanide-Strukturen bzw. Clustern genutzt werden. Eine Möglichkeit ist es, die Lanthanide in das Siliziummaterial einzudiffundieren. Eine weitere Möglichkeit besteht darin, die Lanthanide in einem Sputter-Ver- fahren aufzubringen. Hierfür können im Wesentlichen übliche Sputter- Quellen und Aufbringungsvorrichtungen genutzt werden.Diffusion of the introduced lanthanides in the pn junction near the solar cell surface can be used specifically for the formation of p-dominated O-lanthanide structures or clusters. One possibility is to diffuse the lanthanides into the silicon material. Another possibility is to apply the lanthanides in a sputtering process. Essentially conventional sputter sources and applicators can be used for this purpose.
In anderer Ausgestaltung der Erfindung kann eine Dotierung mit Lantha- niden erfolgen, indem diese in einer wässrigen Lösung oder einem Gel enthalten sind, die auf das Siliziummaterial aufgebracht werden. Hier erfolgt anschließend vorteilhaft eine Temperung zum Eindiffundieren.In another embodiment of the invention, doping with lanthanides can be carried out by containing them in an aqueous solution or a gel, which are applied to the silicon material. Here then advantageously followed by a heat treatment for diffusing.
In nochmals anderer Ausgestaltung der Erfindung können die Lanthanide durch einen Gasphasenprozess bzw. einen CVD-Prozess aufgebracht werden.In yet another embodiment of the invention, the lanthanides can be applied by a gas phase process or a CVD process.
In weiterer Ausgestaltung der Erfindung ist es möglich, die Lanthanide durch einen Plasmaprozess auf das Siliziummaterial aufzubringen und einzudiffundieren.In a further embodiment of the invention, it is possible to apply the lanthanides by a plasma process on the silicon material and diffuse.
In nochmals weiterer Ausgestaltung der Erfindung können die Lanthanide durch Kondensation, also durch Niederschlag aus einer gasartigen Phase, aufgebracht werden. Dies kann ohne Temperung erfolgen, wobei eine solche zum Eindiffundieren der Lanthanide als vorteilhaft angesehen wird. In weiterer Ausgestaltung der Erfindung können die Lanthanide durch Festkörperkontakt aufgebracht werden, also durch direktes Aufbringen von Lanthanidmaterial.In a further embodiment of the invention, the lanthanides can be applied by condensation, ie by precipitation from a gaseous phase. This can be done without annealing, which is considered to be advantageous for diffusing the lanthanides. In a further embodiment of the invention, the lanthanides can be applied by solid state contact, ie by direct application of lanthanide material.
In nochmals weiterer Ausgestaltung der Erfindung kann eine Dotierung des Siliziummaterials mit Lanthaniden durch Ionenimplantation stattfinden.In yet a further embodiment of the invention, a doping of the silicon material with lanthanides can take place by ion implantation.
In weiterer Ausgestaltung der Erfindung können Lanthanide aus einer mit Lanthaniden dotierten Schicht auf dem Siliziummaterial in das Siliziummaterial hinein diffundiert werden, vorteilhaft unter Wärmeeinwirkung bzw. durch Temperung.In a further embodiment of the invention, lanthanides can be diffused from a layer doped with lanthanides on the silicon material into the silicon material, advantageously under the effect of heat or by heat treatment.
Nach einem derartigen Aufbringen der Lanthanide kann in einem weiteren Schritt eine Temperung des Siliziummaterials bzw. der Oberfläche erfolgen. Diese kann zum besseren Eindiffundieren des Dotiermaterials dienen. Sie ist jedoch nicht unbedingt notwendig.After such application of the lanthanides, the silicon material or the surface can be tempered in a further step. This can serve for better diffusion of the doping material. However, it is not essential.
Bei dem verwendeten Material können verschiedene Lanthanide verwendet werden oder aber auch jeweils nur ein einziges Lanthanidmaterial. Es ist aber auch möglich, Kombinationen verschiedener Lanthanide zur Dotierung zu verwenden, die dann gemeinsam vorliegen. Als Lanthanide eignen sich insbesondere diejenigen Lanthanide, deren Hauptemissionslinien im sichtbaren Bereich des Lichts liegen, also etwas unter 1 ,2 eV. Dies sind La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und Lu. Vorteilhaft wird jedoch im Rahmen der Erfindung Er von den verwendeten Lanthaniden ausgeschlossen. Die Dotierung mit den Lanthaniden kann auch mit derjenigen anderer Dotierelemente gekoppelt erfolgen, beispielsweise Mn2+. Vor allem dadurch, dass die Hauptemissionslinie im sichtbaren Bereich des Lichts liegt, kann die Absorption des Lichts im Siliziummaterial im UV- und UV-nahen Bereich verbessert werden, und zwar nicht nur im Siliziummaterial an sich, sondern auch in p- sowie n-dotiertem Silizium, in Silizium-Sauerstoff-Clustem, in SiO(x) und in Si3N4. Ebenso kann die Lichtabsorption in verschiedenen Mineralphasen des Siliziummaterials verbessert werden.In the material used, various lanthanides can be used or in each case only a single lanthanide material. However, it is also possible to use combinations of different lanthanides for doping, which are then present together. Particularly suitable lanthanides are those lanthanides whose main emission lines lie in the visible range of the light, that is to say somewhat below 1.2 eV. These are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. However, within the scope of the invention, it is advantageously excluded from the lanthanides used. The doping with the lanthanides can also be carried out coupled with that of other doping elements, for example Mn 2+ . Mainly because the main emission line is in the visible range of light, the absorption of light in the silicon material in the UV and UV-near range can be improved, not only in the silicon material per se, but also also in p- and n-doped silicon, in silicon-oxygen clusters, in SiO (x) and in Si3N 4 . Likewise, the light absorption in various mineral phases of the silicon material can be improved.
In weiterer Ausgestaltung der Erfindung erfolgt ein Eindiffundieren der Lanthanide mit einer Tiefe von weniger als 1μm, beispielsweise nur 500nm bis 600nm. Dadurch kann der Diffusionsprozess einfacher gehalten werden. Des weiteren wird ein weniger tiefes Eindiffundieren als ausreichend angesehen.In a further embodiment of the invention, the lanthanides are diffused at a depth of less than 1 μm, for example only 500 nm to 600 nm. This allows the diffusion process to be kept simpler. Furthermore, a less deep diffusion is considered sufficient.
Es ist möglich, dass eine durch Dotierung mit Lanthaniden entstehende Schicht im Siliziummaterial liegt, wobei sie dabei auch eine eigene Schicht bilden kann. Vorteilhaft liegt diese Schicht, wie zuvor angemerkt worden ist, relativ weit oben im Siliziummaterial bzw. in der fertigen Solarzelle.It is possible that a layer formed by doping with lanthanides lies in the silicon material, whereby it can also form its own layer. Advantageously, this layer is, as previously noted, relatively high up in the silicon material or in the finished solar cell.
Das erfindungsgemäße Siliziummaterial wird eben erfindungsgemäß durch ein Verfahren mit den vorbeschriebenen Möglichkeiten hergestellt. Aus einem derartigen Siliziummaterial kann dann eine erfindungsgemäße Solarzelle aufgebaut werden.The silicon material according to the invention is just produced according to the invention by a method with the above-described possibilities. From such a silicon material, a solar cell according to the invention can then be constructed.
Diese und weitere Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombination bei einer Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz beansprucht wird. Die Unterteilung der Anmeldung in einzelne Abschnitte sowie Zwischen-Überschriften beschränken die unter diesen gemachten Aussagen nicht in ihrer Allgemeingültigkeit. These and other features will become apparent from the claims, but also from the description, wherein the individual features may be realized alone or in combination in the form of subcombination in one embodiment of the invention and in other fields and may represent advantageous and protectable embodiments for which protection is claimed here. The subdivision of the application into individual sections as well as intermediate headings does not restrict the general validity of the statements made thereunder.

Claims

Patentansprüche claims
1. Verfahren zur Dotierung von Siliziummaterial für Solarzellen, wobei das Siliziummaterial in flacher Form als Wafer odgl. vorliegt, dadurch gekennzeichnet, dass in eine oberste Schicht bzw. in einen obersten Bereich von weniger als 1μm Lanthanide eindotiert werden zur Veränderung der Absorptionseigenschaften des Siliziummaterials.1. A method for doping silicon material for solar cells, wherein the silicon material in flat form as a wafer or the like. is present, characterized in that in a topmost layer or in an uppermost region of less than 1 micron lanthanides are doped to change the absorption properties of the silicon material.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Lanthanide bzw. das Dotiermaterial auf die oberste Schicht bzw. die Oberfläche aufgebracht werden.2. The method according to claim 1, characterized in that the lanthanides or the doping material are applied to the uppermost layer or the surface.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lanthanide in eine vornehmlich aus SislsU bestehende Schicht auf Silizium für Solarzellen eingebracht werden.3. The method according to claim 1 or 2, characterized in that the lanthanides are introduced into a predominantly made of SislsU layer on silicon for solar cells.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lanthanide in eine TCO-Schicht auf Silizium für Solarzellen eingebracht werden.4. The method according to claim 1 or 2, characterized in that the lanthanides are introduced into a TCO layer on silicon for solar cells.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lanthanide in eine transparente Carbon Nano Tubes-Schicht auf Silizium für Solarzellen eingebracht werden.5. The method according to claim 1 or 2, characterized in that the lanthanides are introduced into a transparent carbon nanotube layer on silicon for solar cells.
6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lanthanide in eine Schicht auf amorphem Silizium für Solarzellen eingebracht werden, wobei diese Schicht vorzugsweise im wesentlichen aus Si3N4 besteht. 6. The method according to claim 1 or 2, characterized in that the lanthanides are introduced into a layer on amorphous silicon for solar cells, said layer preferably consists essentially of Si 3 N 4 .
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide in den Bereich des pn- Übergangs von Silizium für Solarzellen eingebracht werden.7. The method according to any one of the preceding claims, characterized in that the lanthanides are introduced into the region of the pn junction of silicon for solar cells.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide in den Bereich des back sur- face field von Silizium für Solarzellen eingebracht werden.8. The method according to any one of the preceding claims, characterized in that the lanthanides are introduced into the region of the back sur- face field of silicon for solar cells.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide in einer vornehmlich aus SiO2 bestehenden Schicht an dem Silizium für Solarzellen eingebracht werden.9. The method according to any one of the preceding claims, characterized in that the lanthanides are introduced in a predominantly consisting of SiO 2 layer on the silicon for solar cells.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide in das Siliziummaterial hinein diffundiert werden.10. The method according to any one of the preceding claims, characterized in that the lanthanides are diffused into the silicon material.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide durch ein Sputterverfahren aufgebracht bzw. in das Siliziummaterial hinein gebracht werden.11. The method according to any one of the preceding claims, characterized in that the lanthanides are applied by a sputtering or brought into the silicon material into it.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide als wässrige Lösung oder Gel aufgebracht bzw. in das Siliziummatehai hinein gebracht werden.12. The method according to any one of the preceding claims, characterized in that the lanthanides are applied as an aqueous solution or gel or brought into the Siliziummatehai into it.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide durch einen Gasphasenpro- zess aufgebracht bzw. in das Siliziummaterial hinein gebracht werden. 13. The method according to any one of the preceding claims, characterized in that the lanthanides are applied by a gas-phase process or brought into the silicon material.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide durch einen Plasmaprozess aufgebracht bzw. in das Siliziummaterial hinein gebracht werden.14. The method according to any one of the preceding claims, characterized in that the lanthanides are applied by a plasma process or brought into the silicon material.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide durch Kondensation aufgebracht bzw. in das Siliziummaterial hinein gebracht werden.15. The method according to any one of the preceding claims, characterized in that the lanthanides are applied by condensation or brought into the silicon material.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide durch Festkörperkontakt aufgebracht bzw. in das Siliziummaterial hinein gebracht werden.16. The method according to any one of the preceding claims, characterized in that the lanthanides are applied by solid state contact or brought into the silicon material.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide durch Ionenimplantation aufgebracht bzw. in das Siliziummaterial hinein gebracht werden.17. The method according to any one of the preceding claims, characterized in that the lanthanides are applied by ion implantation or brought into the silicon material.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide über mit Lanthaniden dotierte Schichten und eine anschließende Diffusion der Lanthanide in das Siliziummaterial hinein aufgebracht bzw. in das Siliziummaterial hinein gebracht werden.18. Method according to claim 1, characterized in that the lanthanides are applied via layers doped with lanthanides and a subsequent diffusion of the lanthanides into the silicon material or brought into the silicon material.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Aufbringen der Lanthanide auf oder in das Siliziummaterial anschließend eine Temperung durchgeführt wird.19. The method according to any one of the preceding claims, characterized in that after the application of the lanthanides on or in the silicon material then annealing is performed.
20. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei den verwendeten Lanthaniden Erbium ausgeschlossen ist. 20. The method according to any one of the preceding claims, characterized in that erbium is excluded in the lanthanides used.
21. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lanthanide weniger als 1000nm tief in das Siliziummaterial hinein diffundiert werden, vorzugsweise 500nm bis 600nm.21. The method according to any one of the preceding claims, characterized in that the lanthanides are diffused less than 1000nm deep into the silicon material, preferably 500nm to 600nm.
22. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mit Lanthaniden dotierte Schicht innerhalb einer Schicht des Siliziummaterials liegt, vorzugsweise eine eigene Schicht bildet.22. The method according to any one of the preceding claims, characterized in that the lanthanide-doped layer is within a layer of the silicon material, preferably forms a separate layer.
23. Siliziummaterial in Form von Wafern odgl. für die Herstellung von Solarzellen, dadurch gekennzeichnet, dass es durch ein Verfahren nach einem der vorhergehenden Ansprüche mit Lanthaniden dotiert ist.23. Silicon material in the form of wafers or the like. for the production of solar cells, characterized in that it is doped with lanthanides by a method according to one of the preceding claims.
24. Siliziummaterial nach Anspruch 23, dadurch gekennzeichnet, dass bei den verwendeten Lanthaniden Erbium ausgeschlossen ist.24. Silicon material according to claim 23, characterized in that erbium is excluded in the lanthanides used.
25. Siliziummaterial nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass die Lanthanide weniger als 1000nm tief in das Siliziummaterial hinein diffundiert sind, vorzugsweise 500nm bis 600nm.25. Silicon material according to claim 23 or 24, characterized in that the lanthanides are diffused less than 1000 nm deep into the silicon material, preferably 500 nm to 600 nm.
26. Siliziummaterial nach einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, dass die mit Lanthaniden dotierte Schicht innerhalb einer Schicht des Siliziummaterials liegt, wobei sie vorzugsweise eine eigene Schicht bildet.26. Silicon material according to one of claims 23 to 25, characterized in that the layer doped with lanthanides lies within a layer of the silicon material, wherein it preferably forms its own layer.
27. Solarzelle, die ein Siliziummaterial nach einem der Ansprüche 23 bis 26 aufweist bzw. daraus hergestellt ist. 27. A solar cell comprising or made of a silicon material according to any one of claims 23 to 26.
EP07725694A 2006-06-29 2007-05-31 Silicon solar cells comprising lanthanides for modifying the spectrum and method for the production thereof Withdrawn EP2038935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006031300A DE102006031300A1 (en) 2006-06-29 2006-06-29 Method for doping silicon material for solar cells, correspondingly doped silicon material and solar cell
PCT/EP2007/004807 WO2008000332A1 (en) 2006-06-29 2007-05-31 Silicon solar cells comprising lanthanides for modifying the spectrum and method for the production thereof

Publications (1)

Publication Number Publication Date
EP2038935A1 true EP2038935A1 (en) 2009-03-25

Family

ID=38371030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07725694A Withdrawn EP2038935A1 (en) 2006-06-29 2007-05-31 Silicon solar cells comprising lanthanides for modifying the spectrum and method for the production thereof

Country Status (11)

Country Link
US (1) US20090199902A1 (en)
EP (1) EP2038935A1 (en)
JP (1) JP2009542018A (en)
KR (1) KR20090042905A (en)
CN (1) CN101501863A (en)
AU (1) AU2007264127A1 (en)
DE (1) DE102006031300A1 (en)
NO (1) NO20090454L (en)
SG (1) SG186507A1 (en)
TW (1) TW200805693A (en)
WO (1) WO2008000332A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2311431B2 (en) * 2008-06-06 2009-07-21 Universidad Politecnica De Madrid PROCEDURE FOR THE MANUFACTURE OF INTER-MEDIUM BAND OPTOELECTRONIC DEVICES BASED ON LAMINA DELGADA TECHNOLOGY.
CN102828242B (en) * 2012-09-06 2015-05-27 西安隆基硅材料股份有限公司 Crystalline silicon with lower converting lighting quantum dots and preparation method thereof
WO2016055669A1 (en) * 2014-10-08 2016-04-14 Universidad De La Laguna Photovoltaic collector
CN105552170A (en) * 2016-01-29 2016-05-04 佛山市聚成生化技术研发有限公司 Preparation method for solar cell and solar cell prepared by same
CN105762206A (en) * 2016-04-11 2016-07-13 西安隆基硅材料股份有限公司 Crystalline silicon and manufacture method therefor
CN105839182A (en) * 2016-04-11 2016-08-10 西安隆基硅材料股份有限公司 Crystalline silicon and preparing method thereof
CN106169512A (en) * 2016-08-24 2016-11-30 晶科能源有限公司 A kind of rear-earth-doped crystalline silicon, its preparation method and solaode
KR102040516B1 (en) * 2018-02-01 2019-12-05 성균관대학교산학협력단 A single band upconversion luminescence and a method thereof
CN110577209A (en) * 2019-09-19 2019-12-17 天津大学 Preparation method for in-situ synthesis of carbon nano tube surface loaded copper oxide nano particles

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949463A (en) * 1973-02-13 1976-04-13 Communications Satellite Corporation (Comsat) Method of applying an anti-reflective coating to a solar cell
US5249195A (en) * 1992-06-30 1993-09-28 At&T Bell Laboratories Erbium doped optical devices
US5322813A (en) * 1992-08-31 1994-06-21 International Business Machines Corporation Method of making supersaturated rare earth doped semiconductor layers by chemical vapor deposition
JP3698215B2 (en) * 1995-01-23 2005-09-21 勝泰 河野 Light receiving element
DE19522539C2 (en) * 1995-06-21 1997-06-12 Fraunhofer Ges Forschung Solar cell with an emitter having a surface texture and method for producing the same
JPH10125940A (en) * 1996-10-16 1998-05-15 Toshiba Corp Photoelectric conversion element
JPH10270807A (en) * 1997-03-27 1998-10-09 Shinichiro Uekusa Semiconductor for light emitting device and its manufacture
JP2001077388A (en) * 1999-09-07 2001-03-23 Sumitomo Osaka Cement Co Ltd Solar cell and its manufacturing method
JP2001320067A (en) * 2000-03-02 2001-11-16 Nippon Sheet Glass Co Ltd Photoelectric converter
US6734453B2 (en) * 2000-08-08 2004-05-11 Translucent Photonics, Inc. Devices with optical gain in silicon
JP4291973B2 (en) * 2001-02-08 2009-07-08 大阪瓦斯株式会社 Photoelectric conversion material and photovoltaic cell
JP2003243682A (en) * 2002-02-19 2003-08-29 Sumitomo Bakelite Co Ltd Solar cell
US6768048B2 (en) * 2002-12-04 2004-07-27 The Boeing Company Sol-gel coatings for solar cells
CA2522405A1 (en) * 2003-04-16 2004-11-04 Apollon Solar Photovoltaic module and production method thereof
JP2005026534A (en) * 2003-07-04 2005-01-27 Sharp Corp Semiconductor device and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008000332A1 *

Also Published As

Publication number Publication date
CN101501863A (en) 2009-08-05
KR20090042905A (en) 2009-05-04
NO20090454L (en) 2009-03-11
DE102006031300A1 (en) 2008-01-03
SG186507A1 (en) 2013-01-30
US20090199902A1 (en) 2009-08-13
TW200805693A (en) 2008-01-16
JP2009542018A (en) 2009-11-26
AU2007264127A1 (en) 2008-01-03
WO2008000332A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
EP2038935A1 (en) Silicon solar cells comprising lanthanides for modifying the spectrum and method for the production thereof
EP0545388B1 (en) Device with a luminescent material and process of its fabrication
DE112013006094T5 (en) Production of a solar cell emitter zone using silicon nanoparticles
DE102010006314A1 (en) Photovoltaic multiple thin-film solar cell
DE102008030693A1 (en) Heterojunction solar cell with absorber with integrated doping profile
Zhang et al. Photoluminescence and ZnO→ Eu3+ energy transfer in Eu3+-doped ZnO nanospheres
EP1859487A2 (en) Photovoltaic cell containing a semiconductor photovoltaically active material
CN102250610A (en) Preparation method of composite ZnO-mesoporous silica nanomaterial
CN107892913B (en) method for improving fluorescence efficiency of impurity-enhanced rare earth up-conversion material
WO2007077114A1 (en) Photovoltaically active semiconductor material and photovoltaic cell
DE112018005216T5 (en) Upconversion luminescence for the light harvest coupled with plasmonic metal nanostructures
DE102007043215A1 (en) Photovoltaic arrangement with optically active glass ceramic
Shwetharani et al. Green to blue light emitting CsPbBr 3 perovskite by ligand exchange and its encapsulation by TiO 2 for tandem effect in photovoltaic applications
DE102014109179B4 (en) Method for producing differently doped areas in a silicon substrate, in particular for a solar cell, and solar cell with these differently doped areas
CN111748346A (en) Up-conversion nanowire and preparation method and application thereof
EP3321973B1 (en) Crystalline solar cell having a transparent, conductive layer between the front contacts and method for manufacturing such a solar cell
Miao et al. Y2O3: Eu3+, Tb3+ spherical particles based anti-reflection and wavelength conversion bi-functional films: Synthesis and application to solar cells
Kumi et al. Ultraviolet to visible down conversion of SiO2–Ce3+, Tb3+ nanospheres-poly-EVA films for solar cell application
DE102012217576A1 (en) Manufacturing solar cell, by providing semiconductor element to convert light of predetermined first wavelength region into electrical energy, and providing coating to convert light of second wavelength region to first wavelength region
WO2015044342A1 (en) Method for producing a solar cell
Mhlongo et al. Effects of Ce3+ concentration, beam voltage and current on the cathodoluminescence intensity of SiO2: Pr3+–Ce3+ nanophosphor
Li et al. Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites
DE102008035986B4 (en) Photovoltaic element with a layer of a luminescent glass ceramic
DE112015001440T5 (en) Passivation of light-receiving surfaces of solar cells
WO2006045600A1 (en) Photovoltaic cell comprising a photovoltaic active semiconductor material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20110628

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131203