JP4291973B2 - Photoelectric conversion material and photovoltaic cell - Google Patents

Photoelectric conversion material and photovoltaic cell Download PDF

Info

Publication number
JP4291973B2
JP4291973B2 JP2002029524A JP2002029524A JP4291973B2 JP 4291973 B2 JP4291973 B2 JP 4291973B2 JP 2002029524 A JP2002029524 A JP 2002029524A JP 2002029524 A JP2002029524 A JP 2002029524A JP 4291973 B2 JP4291973 B2 JP 4291973B2
Authority
JP
Japan
Prior art keywords
carbon
photoelectric conversion
electron
solar cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002029524A
Other languages
Japanese (ja)
Other versions
JP2002335004A (en
Inventor
千春 山口
久次 松井
勝美 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002029524A priority Critical patent/JP4291973B2/en
Publication of JP2002335004A publication Critical patent/JP2002335004A/en
Application granted granted Critical
Publication of JP4291973B2 publication Critical patent/JP4291973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子供与体、電子受容体、電子輸送体及び必要により光増感剤で構成された光電変換材料およびそれを用いた光電池(太陽電池など)に関する。
【0002】
【従来の技術】
現在実用化されている太陽電池には、シリコン系光電変換材料と化合物半導体系光電変換材料が主に使用されており、有機系光電変換材料は余り使用されていない。一方、1977年に導電性ポリアセチレンが発見されて以来、有機薄膜を利用した太陽電池の研究も盛んに行われている。しかし、有機系材料を用いた太陽電池は、一般に、安定性が低く、しかもエネルギー変換率が低い。
【0003】
特開平10−81754号公報には、ビピリジル単位を有する金属錯体で構成され、可視光領域および近赤外領域でも感光性を有する金属錯体ポリマーが開示されている。しかし、この金属錯体ポリマーは構造が複雑であるとともにビピリジル単位に対して配位する特殊な配位子を用いる必要がある。
【0004】
特開平9−73180号公報には、炭素数70以上の基本骨格を有するカーボンクラスターなどの非晶質フラーレンおよびその誘導体の少なくとも一種と、この非晶質フラーレンが分散したマトリックスポリマーとで構成された光導電体が開示されている。この文献には、導電性支持体と、この導電性支持体上に形成された電荷輸送層および前記光導電体からなる電荷発生層とを備えた感光体も開示されている。これらの光電変換材料は、太陽電池などの光電池、感光体などの感光材料として有用である。しかし、この材料に対しても、さらに高い光電変換効率が求められている。
【0005】
特開2000−261016号公報には、C60,C70などの球殻状炭素分子を電子受容体として内包した化合物(例えば、フェロセンなどの有機金属錯体単位と、ポルフィリン単位と、フラーレン単位とが順次リンカーで結合した化合物)で構成された光電荷分離材料が開示されている。この文献には、電子供与体、光増感剤および電子受容体を三次元的に配置し、光励起による電荷分離状態に方向性を付与した光電荷分離材料と、この光電荷分離材料で構成された光電池も開示されている。しかし、前記光電荷分離材料は、フラーレンなどの球殻状炭素分子を電子受容体として内包させる必要があるため、構造が複雑化し、光電荷分離材料や光電池を高い生産性で工業的に有利に製造することが困難である。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、高い光電変換機能を有し、大面積化、薄膜化、軽量化やコストダウンが可能な光電変換材料およびそれを用いた光電池を提供することにある。
【0007】
本発明の他の目的は、構造が簡単であり、かつ高い安定性および変換効率を有する光電変換材料およびそれを用いた光電池を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、前記課題を達成するため鋭意検討した結果、フラーレン類などの球殻状炭素が電子受容体として有効に機能するとともに、カーボンナノチューブ類などの線状又は筒状炭素が電荷輸送体として有効に機能すること、また、平面的(又は二次元的構造)かつ線状の炭素(例えば、グラファイトリボンなど)が、電子受容体と電荷輸送体としての両機能を有することを見いだし、本発明を完成した。
【0009】
すなわち、本発明の光電変換材料は、電子供与体と、球殻状炭素と、線状又は筒状炭素とを含む。光電変換材料は、さらに光増感剤を含んでいてもよい。光電変換材料において、前記各成分(電子供与体、球殻状炭素、線状又は筒状炭素および必要により光増感剤)の配置又は配列状態は、電子供与体からのキャリア(電子又は正孔)が電子輸送体に効率よく輸送される限り特に制限されず、例えば、電子供与体と電子輸送体との間に光増感剤が介在し、かつ電子受容体がキャリア(電子、正孔)を電荷輸送体に付与可能な形態で、それぞれの成分が二次元的又は三次元的に配置又は配向していてもよい。より具体的には、二次元的構造の光電変換材料は、例えば、電子供与体を含む電子供与層と、この電子供与層上に形成され、かつ電子受容体と電子輸送体(又は電荷輸送体)とを含む電荷輸送層とで構成してもよい。また、電子供与体を含む電子供与層と、この電子供与層上に形成され、かつ光増感剤を含む光増感層と、この光増感層上に形成され、かつ電子受容体と電子輸送体(又は電荷輸送体)とを含む電荷輸送層とで構成してもよい。このような二次元的構造の光電変換材料において、電子供与層および電荷輸送層は球殻状の炭素を含んでいてもよく、電子供与層と電荷輸送層との間には球殻状炭素の濃度差を形成してもよい。例えば、電子供与層における球殻状炭素の濃度は電荷輸送層よりも小さくてもよい。
【0010】
前記球殻状の炭素としては、フラーレン類、その修飾体、金属内包物などが例示でき、線状又は筒状炭素としては、チューブ状、繊維状またはリボン状の形態の炭素、例えば、カーボンナノチューブ、グラファイトナノファイバー、グラファイトリボン、フィブリル、グラファイト層間化合物、それらの修飾体などが例示できる。さらに、光増感剤としては、π電子系化合物、例えば、ポルフィリン類、金属キレート化合物、ポリアニリン類、芳香族多環化合物、ポリアセン系骨格構造を有する化合物などが例示できる。
【0011】
前記光電変換材料は、高い光電変換効率を有しており、安定性も高い。そのため、本発明は、前記光電変換材料で構成された種々の素子又はユニット、例えば、光電池(太陽電池など)も包含する。
【0012】
【発明の実施の形態】
本発明の光電変換材料の特色は、球殻状炭素と線状又は筒状炭素とを組み合わせている点にある。前記球殻状炭素は電子受容体として機能させることができ、線状又は筒状炭素は電荷輸送体として機能させることができる。また、平面的(又は二次元的構造)で、しかも線状の炭素(例えば、グラファイトリボンなど)は、電子受容体と電荷輸送体との両機能を兼ね備える。
【0013】
球殻状炭素には、フラーレン類、その修飾体、金属内包物などが挙げられる。これらの球殻状炭素は、単独で又は二種以上組み合わせて使用できる。フラーレン類としては、種々の立体構造を有するカーボンクラスター、例えば、C60、C70、C74、C76、C78、C82、C84、C720、C860などのフラーレン類などが挙げられる。フラーレン類の形態は、例えば、サッカーボール状、バッキーボール状などであってもよい。
【0014】
フラーレン類は置換基の導入などにより修飾されていてもよい。修飾方法は、特に限定されず、例えば、フラーレン類の反応性に富む炭素5員環部を化学的に修飾できる。置換基の種類は、特に限定されず、例えば、アルキル基(メチル基、t−ブチル基などのC1-10アルキル基など)、アリール基(フェニル基など)、アラルキル基(ベンジル基など)、ジオキソラン単位、ハロゲン又は酸素原子などが例示でき、液晶ポリマー、色素類、ポリエチレンオキシドなどの導入により修飾してもよい。フラーレン類の修飾により、溶媒、高分子への可溶化や親和性の改善、フラーレン類の配列又は配向を可能にする。
【0015】
金属を内包したフラーレン類としては、種々の金属、例えば、周期表第1A族元素(K、Na、Rbなど)、周期表第2A族元素、ランタノイド族元素(Laなど)などの金属がドープされたフラーレン類が例示できる。ドーパントとしての金属は単独で又は二種以上組み合わせてドープとしてもよい。これらの金属内包フラーレン類は、単独で又は二種以上組み合わせて使用してもよい。
【0016】
線状又は筒状炭素には、チューブ状、繊維状またはリボン状の形態の炭素が含まれる。このような炭素としては、例えば、カーボンナノチューブ、カーボンナノコイル、グラファイトナノファイバー(又はカーボンナノファイバー)、グラファイトリボン、フィブリル、グラファイト層間化合物などが例示できる。これらの炭素材は単独で又は二種以上組み合わせて使用できる。
【0017】
好ましい線状又は筒状炭素は、チューブ状又はリボン状、例えば、カーボンナノチューブ類、グラファイトリボン類である。カーボンナノチューブ類は、単層カーボンナノチューブ、多層カーボンナノチューブであってもよく、バッキーオニオン(bucky-onion)構造を有していてもよい。
【0018】
カーボンナノチューブ類などの線状又は筒状炭素の平均直径は、例えば、0.7〜300nm、好ましくは0.7〜250nm、さらに好ましくは1〜250nm、特に5〜250nm程度であってもよい。なお、前記平均直径は、リボン状の形態の炭素では、平均厚み又は平均幅を意味する。
【0019】
溶媒、高分子への可溶化や親和性の改善、線状又は筒状炭素の配列又は配向を制御するため、カーボンナノチューブ類などの炭素は、前記フラーレン類と同様に、置換基の導入などにより修飾してもよい。修飾方法および置換基の種類は、前記フラーレン類と同様である。なお、カーボンナノチューブ類には、金属内包フラーレン類と同じく、金属をドープしてもよい。グラファイトリボンなどの平面的(二次元的構造)でしかも線状の炭素は構造的にエッジ部分を多く含むため、置換基の導入、修飾や金属内包が容易である。
【0020】
電子供与体(正孔受容体又は電子発生剤)としては、特に限定されないが、導電性高分子であり、かつp型半導体としての機能を有する高分子が望ましい。このような電子供与体としては、PT[ポリ(3−アルキルチオフェン)]などのポリチオフェン系樹脂、PPV[ポリ(P−フェニレンビニレン)],OOPV[ポリ(2,5−ジオクチルオキシ−P−フェニレンビニレン)],PEDOT[ポリ(2,3−ジヒドロチエノ)[3,4−b]-1,4−ジオキン],PSS[ポリ(スチレンスルホネート)]などのポリフェニレンビニレン系樹脂、ポリフェニレン系樹脂(例えば、ポリ(p−フェニレン)系樹脂、ポリ(m−フェニレン)系樹脂)やそれらの置換体などが挙げられる。
【0021】
光増感剤としては、例えば、アンテナ分子、すなわち光を有効に吸収して他の物質に電子、正孔をトランスファーする化合物であればよく、例えば、π電子系化合物(ポルフィリン類、金属キレート化合物、ポリアニリン、芳香族多環化合物、ポリアセン系骨格構造を有する化合物など)、異種元素を含むπ電子系化合物(カルバゾールなど)、ハロゲン化されたπ電子系化合物、キニザリン又はその誘導体などが例示できる。ポルフィリン類としては、ポルフィリン骨格を有する種々の化合物、例えば、ポルフィリン、フタロシアニン、金属フタロシアニン(鉄フタロシアニンなどの遷移金属を含むフタロシアニン)、テトラベンゾポルフィリン又はテトラフェニルポルフィリン又はその誘導体〔金属テトラベンゾポルフィリン(亜鉛−テトラベンゾポルフィリン、マグネシウム−テトラベンゾポルフィリンなど)、テトラキスペンタフルオロフェニルポルフィリンなど〕などが例示される。金属キレート化合物としては、例えば、ジメチルグリオキシム、ジチゾン、オキシン、アセチルアセトン、グリシン、EDTA(エチレンジアミン四酢酸)、NTAなどの金属塩(例えば、遷移金属塩)などが例示できる。
【0022】
芳香族多環化合物としては、石油蒸留残渣、ナフサ熱分解残渣、エチレンボトム油、石炭液化油、コールタールなどの石油系又は石炭系重質油、ナフタレンなどの縮合によって合成された多環式炭化水素類、これら炭化水素類の構造中にヘテロ原子(窒素原子、イオウ原子、ホウ素原子、リン原子、酸素原子など)が導入された多環式炭化水素類、さらに前記残渣からの溶剤抽出などにより得られる多環式炭化水素類などが例示される。
【0023】
ポリアセン系骨格構造を有する化合物は、特開昭60−170163号公報に記載されている芳香族炭化水素化合物とアルデヒド類との縮合物の熱処理物であって、水素原子/炭素原子の原子比が0.05〜0.5である。
【0024】
ハロゲン原子を有する化合物としては、特に限定されず、例えば、フッ化炭化水素類、フッ化芳香族多環化合物(フッ化ピッチなど)、重質油フッ化物、六フッ化ベンゼン、オクタフルオロナフタレン、デカフルオロフェナンスレン、デカフルオロピレンなど)、これらに対応する塩化炭化水素類、臭化炭化水素類、ヨウ素化炭化水素類などが例示できる。これらのハロゲン化物のうちフッ化ピッチが好ましい。これらのハロゲン化物は単独で又は二種以上組み合わせて使用できる。
【0025】
なお、ポルフィリン類は、ポルフィリンデンドリマーとして使用でき、ポリアニリンも化学結合により電子供与体、電子受容体、電子輸送体に結合させて使用できる。
【0026】
前記成分で構成された光電変換材料は、高安定性および高エネルギー変換率を実現する。すなわち、光励起により電子供与体から電子受容体へ電子が移動するとともに、電子供与体へ正孔が移動し、電荷分離状態が効率よく生成する。例えば、光増感剤の光励起により光増感剤から電子受容体へ電子が移動するとともに、光増感剤から電子供与体へ正孔が移動し、電荷分離状態を効率よく形成できる。しかも、線状又は筒状炭素の電子輸送体により、電荷分離状態に方向性を与えることができる。そのため、失活することなく、電荷を輸送でき、高い安定性および光電変換効率が得られるものと思われる。
【0027】
このような光電変換材料では、フラーレン類、カーボンナノチューブ類などの炭素材には構造的特異性とともに多くのπ電子系が存在するためか、光との強い相互作用、分子間電荷移動、電子輸送現象などが生じ、高い効率で光電変換機能が発現するものと思われる。例えば、光増感剤は、光励起によりキャリア又は電荷(電子と正孔)を生成し、電子受容体へ電子を与えるとともに、電子供与体へ正孔を与える。そのため、光増感剤は、キャリア又は電荷(電子と正孔)を分離する機能を有しており、後続反応に利用可能な電荷分離状態を効率よく生成させる。このように、光増感剤により、生成した電荷(電子と正孔)を分離して輸送できるため、pn接合面での電荷発生によるシリコン系半導体と比較して、高い光電変換効率が得られる。しかも、カーボンナノチューブ類などの線状または筒状炭素は少量の添加で方向性のあるパーコレーション伝導路を形成する。そのため、電子輸送体は、電荷輸送に極めて有効であり、電荷を失活させることなく輸送できるものと思われる。
【0028】
前記各成分は、物理的又は化学的蒸着法、リソグラフィ技術などを利用して光電変換材料又は光電変換素子を形成してもよく、マトリックス樹脂と複合化して光電変換材料又は光電変換素子を形成してもよい。マトリックス樹脂としては、例えば、ポリオレフィン系樹脂(ポリエチレン系樹脂、ポリプロピレン系樹脂、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル共重合体など)、酢酸ビニル系樹脂(酢酸ビニル−塩化ビニル共重合体、酢酸ビニル−(メタ)アクリル酸エステル共重合体など)、(メタ)アクリル系樹脂(ポリメタクリル酸メチル、メタクリル酸メチル−(メタ)アクリル酸エステル共重合体、メタクリル酸メチル−スチレン−(メタ)アクリル酸エステル共重合体など)、ポリスチレン系樹脂(ポリスチレン、スチレン−(メタ)アクリル酸エステル共重合体、スチレン−(メタ)アクリル酸共重合体、スチレン−無水マレイン酸共重合体など)、塩化ビニル系樹脂、ポリエステル系樹脂(ポリアリレート系樹脂を含む)、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール系樹脂(ポリビニルブチラール系樹脂など)、ポリスルホン系樹脂、ポリフェニレンオキシド系樹脂などが例示できる。これらのマトリックス樹脂は単独で又は二種以上組み合わせて使用できる。
【0029】
マトリックス樹脂としては、導電性高分子、ポリアセン系骨格構造を有する化合物などが好ましい。導電性高分子としては、例えば、ポリアセチレン系高分子(ポリアセチレンなどの溶媒不溶性樹脂、フェニルアセチレンなどを用いた溶媒可溶性ポリアセチレン系樹脂など)、ポリフェニレン系高分子(例えば、ポリ(p−フェニレン)系樹脂、ポリ(m−フェニレン)系樹脂、ポリ(p−フェニレンビニレン)などのポリフェニレンビニレン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフェニレンオキシド系樹脂など)、複素環式高分子(ポリピロール、ポリ(3−アルキルチオフェン)などのポリチオフェン系樹脂、ポリフラン系樹脂、ポリセレノフェン系樹脂、ポリテルロフェン系樹脂など)、イオン性高分子(ポリアニリン系樹脂、ポリ(3−メチル−4−カルボキシピロール)などのピロール系樹脂など)、はしご型高分子などが例示できる。導電性高分子としては、通常、溶媒可溶性樹脂が使用される。なお、マトリックス樹脂の種類は特に制限されず、電子供与層や電荷輸送層などの層の機能に応じて選択でき、電子供与層としてはp型導電性高分子を用いる場合が多く、電荷輸送層としてはn型導電性高分子を用いる場合が多い。
【0030】
ポリアセン系骨格構造を有する化合物には、例えば、光増感剤の項で記載した前記ポリアセン系骨格構造を有する化合物が含まれる。
【0031】
なお、ディスコティック液晶を電子供与体に用いると、カラム構造に配列し、正孔や電子の輸送に効果的である。
【0032】
マトリックス樹脂として、p型半導体的性質を有する導電性高分子を用いると、フラーレン類は電子供与体を取り込んでn型半導体的性質を有する電荷移動型物質となりやすい。さらに、フラーレン類と導電性高分子との複合体は、特に光に対して大きな応答を示す。このことは、シリコン系半導体のpn接合素子とは異なる光誘起電荷移動で説明されるドナー−アクセプター型素子を形成していることに起因すると思われ、光照射により複合体全体で励起子が発生する。そのため、導電性高分子との組合せにおいて、電子供与体としてフラーレン類などを用いることにより、効率よくキャリア(電子、正孔)を生成する。
【0033】
本発明の光電変換材料において、電子供与体、電子受容体および電子輸送体で構成されていればよく、光増感剤を含有していてもよい。このような光電変換材料は各成分の複合体(又は混合組成物)であってもよい。好ましい態様において、各成分は、互いに関連付けて、二次元的(層状)又は三次元的に配置できる。例えば、それぞれの成分が二次元的又は三次元的に配置、結合又は配向した構造において、電子供与体と電子輸送体との間に、電子受容体がキャリア(電子)を電荷輸送体に付与可能な形態で配置、結合又は配向していてもよく、電子供与体と電子輸送体との間に光増感剤が介在し、かつ電子受容体はキャリア(電子)を電荷輸送体に付与可能な形態で配置、結合又は配向していてもよい。
【0034】
好ましい態様では、光増感剤の光励起により生成したキャリア又は電荷(電子又は正孔)を分離して効率よく移動させるため、光増感剤には、キャリアを輸送可能な形態で、電子供与体が結合又は近接(又は配向)しているとともに、電子受容体(球殻状炭素)も結合又は近接(又は配向)している。さらに、電荷輸送体(線状又は筒状炭素)は、キャリアを輸送可能な形態で、少なくとも前記電子受容体(球殻状炭素)と結合又は近接(又は配向)しており、電荷輸送体(線状又は筒状炭素)は、光増感剤を介して、キャリアを輸送可能な形態で、前記電子供与体および前記電子受容体(球殻状炭素)と結合又は近接(又は配向)していてもよい。このような光電変換材料としては、例えば、下記式で表される複合体が例示できる。
【0035】
Ed−L1−P−L2−Ea−(Ct)
(式中、Edは電子供与体、Pは光増感剤、Eaは電子受容体、Ctは電荷輸送体を示し、Ea−(Ct)は電子受容体Eaと電荷輸送体Ctとが結合、近接又は配向していることを示す。L1およびL2はそれぞれ同一又は異なって、電子供与体Ed、光増感剤P、電子受容体Eaを連結するリンカーを示す)
なお、前記各成分を結合させるためのリンカーとしては、慣用の反応を利用して形成される結合、例えば、直接結合、アミド結合、エステル結合、ウレタン結合、エーテル結合などが利用できる。なお、これらのリンカーの一例としては、例えば、特開2000−261016号公報などを参照できる。
【0036】
好ましい態様において、光電変換材料(又は光電変換素子)は、二次元的な層構造(積層構造)を有している。このような積層構造は、例えば、電子供与体を含む電子供与層と、この電子供与層上に形成された電子輸送層とで構成された積層構造を有している。この電子輸送層は、通常、電子受容体(球殻状炭素など)と電子輸送体(線状又は筒状炭素など)とを含んでいる。特に、電子供与体を含む電子供与層と、この電子供与層上に形成され、かつ光増感剤を含む光増感層と、この光増感層上に形成され、かつ電子受容体と電子輸送体とを含む電荷輸送層とで構成された構造を含む。なお、光増感層の光増感剤は、電子供与層と電荷輸送層との界面近傍に分散していてもよい。
【0037】
このような層構造の光電変換材料において、電子供与層および電荷輸送層は、球殻状の炭素を含んでいてもよい。また、電子供与層および電荷輸送層での球殻状の炭素の濃度は異なっていてもよい。例えば、電子供与層における球殻状炭素の濃度は、電荷輸送層での球殻状炭素の濃度より小さくてもよい。例えば、電子供与層と電荷輸送層との球殻状炭素の含有量の差は、例えば、1〜80重量%、好ましくは5〜70重量%(例えば、10〜50重量%)程度であってもよい。電子供与層中の球殻状炭素の含有量は10重量%以下(例えば、0〜10重量%、特に0〜7重量%程度)、電荷輸送層中の球殻状炭素の含有量は10重量%以上(例えば、10〜70重量%程度)であってもよい。
【0038】
前記層構造の光電変換材料又は素子において、種々の製膜法、例えば、スパッタリング、蒸着などの化学的又は物理的蒸着法、前記マトリックス樹脂(導電性高分子など)を利用するコーティング法、これらの方法を組み合わせた方法などにより各層を形成してもよい。例えば、基板上に、電子供与体と必要により球殻状炭素とマトリックス樹脂とを含む塗布液をコーティングして電子供与層を形成し、光増感剤とマトリックス樹脂とを含む塗布液をコーティングして光増感層を形成し、電子受容体と電子輸送体とマトリックス樹脂とを含む塗布剤をコーティングすることにより電荷輸送層を形成できる。また、所望の層(例えば、光増感層など)は必要により化学的又は物理的蒸着法により形成してもよい。
【0039】
電子供与層における球殻状炭素の割合は、マトリックス樹脂100重量部に対して、例えば、0.01〜10重量部、好ましくは0.1〜9重量部、さらに好ましくは1〜8重量部程度である。
【0040】
光増感層において、全体100重量部に対する光増感剤の割合は、例えば、1〜100重量部、好ましくは2〜100重量部、さらに好ましくは5〜100重量部程度である。
【0041】
電荷輸送層において、全体100重量部に対する電子受容体(球殻状炭素)の割合は、例えば、10重量部以上(例えば、10〜200重量部程度)、好ましくは15重量部以上(例えば、15〜150重量部程度)、さらに好ましくは20重量部以上(例えば、20〜120重量部程度)であり、電子輸送体(線状又は筒状炭素)の割合は、例えば、0.1重量部以上(例えば、0.5〜100重量部程度)、好ましくは1重量部以上(例えば、1〜50重量部程度)、さらに好ましくは2重量部以上(例えば、2〜30重量部程度)である。
【0042】
さらに、電子供与層の厚みは、例えば、5nm〜300μm(例えば、5nm〜30μm)、好ましくは50nm〜50μm、さらに好ましくは50nm〜30μm程度である。光増感層の厚みは、例えば、5nm〜50μm、好ましくは5nm〜5μm、さらに好ましくは5nm〜1μm程度である。電荷輸送層の厚みは、例えば、5nm〜300μm(例えば、5nm〜30μm)、好ましくは50nm〜50μm、さらに好ましくは50nm〜30μm程度である。
【0043】
前記基板は、光電変換材料の種類や用途に応じて、前記成分や層が吸着や化学結合などにより物理的又は化学的に結合できる基板、例えば、導電体、半導体、絶縁体(例えば、金、銀、銅、アルミニウムなどの導電性金属、酸化スズ、酸化インジウム、酸化亜鉛、ITOなどの透明導電体又は半導電体、シリコンなどの半導電体又は絶縁体、ガラス、プラスチックフィルムなどの透明絶縁体、導電性、半導電性又は絶縁性セラミックスなど)などから適当に選択できる。
【0044】
なお、基板は、光電変換素子(例えば、太陽電池などの光電池)の電極として使用することもできる。この場合には、光の入射側の電極には透明導電体又は半導電体が使用でき、反対側の電極には金属などの導電性金属などが使用できる。また、光の入射側の透明導電体は透明基板(ガラス板など)で保護してもよい。
【0045】
前記塗布液の溶媒としては、例えば、アルコール類、エステル類、ケトン類、エーテル類、アミド類、硫黄含有化合物(スルホキシド類を含む)、ハロゲン化炭化水素類、炭化水素類などが挙げられ、溶媒は混合溶媒として使用してもよい。なお、芳香族炭化水素類(ベンゼン、トルエン)、脂環族炭化水素類(シクロヘキサンなど)、脂肪族炭化水素類(ノルマルヘキサンなど)、ハロゲン化炭化水素類(塩化メチレン、クロロホルム、トリクロロエチレンなど)、二硫化炭素などは、フラーレン類、ナノチューブ類に対する溶解量が多いために好適である。
【0046】
なお、コーティングには、例えば、スピンコーティング法、スプレーコーティング法、ロールコーティング法、蒸着法などの慣用の方法が採用でき、塗布液をコーティングした後、乾燥することにより層構造を有する光電変換材料を得ることができる。
【0047】
より具体的には、層状構造の光電変換素子において、電子供与層は、低濃度(例えば、10重量%以下)のフラーレン類(C60など)と、マトリックス樹脂(チオフェン系樹脂、フェニレン系樹脂などの導電性高分子、特にp型導電性高分子)とで形成できる。この電子供与層は、電荷輸送性化合物(例えば、正孔を輸送可能なディスコティック液晶など)をパーコレーション濃度前後で含んでいてもよい。
【0048】
光増感層は、電荷分離を生成させるため、電子供与層と電荷輸送層との間に介在していればよく、電子供与層と電荷輸送層との界面において光増感剤が分散していてもよい。また、光増感剤の種類や層又は分散形態などにより、光電変換素子のスペクトル特性を改善できる。
【0049】
電子輸送層は、例えば、フラーレン類(C60など)と、カーボンナノチューブ類と、マトリックス樹脂(導電性高分子、特にn型導電性高分子)とで形成できる。この電子輸送層には、カーボンナノチューブ類と同様に電荷輸送性化合物をパ−コレーション閾値以上の濃度で含んでいてもよい。この場合、フラーレン類(C60フラーレンなど)とともに、導電性高分子との間で光誘起電荷移動を生じる化合物を用いてもよい。
【0050】
本発明の光電変換材料および光電変換素子又はデバイスは、光電変換機能、増幅機能、光整流機能などを利用した種々の光電変換デバイス、電光変換デバイス又はオプトエレクトロニクスデバイスへの幅広い応用が可能である。例えば、電子素子又は光電変換素子(ダイオード、整流素子、フォトダイオード、光センサ、光スイッチ、トランジスタ、FET、ホログラフィック素子など)、光電池(太陽電池など)、光起電力素子、光記録材(電子写真方式での感光体、光導電性トナー、光メモリなど)などとして有用である。特に、光電変換効率が高く、しかも安定しているため、光電池の光電変換素子として適している。しかも、光電変換デバイスは、大面積化、薄膜化、軽量化やコストダウンが可能であるため、壁や窓などにも適用でき、次世代の太陽電池の光電変換素子として利用できる。
【0051】
【発明の効果】
本発明では、球殻状炭素と線状又は筒状炭素とを組み合わせているため、光電変換機能が高い。また、大面積化、薄膜化、軽量化やコストダウンが可能である。しかも、簡単な構造で、高い安定性および変換効率を示す。そのため、光電変換材料又はその素子は光電池(特に太陽電池)に適している。
【0052】
【実施例】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0053】
なお、以下の実施例において、分子修飾方法(ブチル化方法)としては、以下の2方法を用いて分子修飾物を調製した。(1)C60フラーレン、カーボンナノチューブ又はグラファイトリボン(5g)、ジブチル亜鉛(105g)、ヨウ化ブチル(50ml)をフラスコに入れ、180℃で4時間攪拌した。反応終了後、エタノール、希塩酸で洗浄し、ブチル化物を調製した。(2)C60フラーレン、カーボンナノチューブ又はグラファイトリボン(5g)、カリウムK(7g)、テトラヒドロフランTHF(100ml)を三口フラスコに入れ、超音波照射下、60℃で5時間攪拌した。続いて、90mlのヨウ化ブチルを加え、室温で一晩攪拌した。溶媒を留去後、残さを水−エタノールで洗浄し、ブチル化物を調製した。
【0054】
実施例1
導電性高分子OOPPV(ポリ(2,5−ジオクチルオキシ−p−フェニレンビニレン))をクロロホルム中に溶解させ、この溶液中に、電子供与体として分子修飾したC60フラーレン5重量部(前記導電性高分子100重量部に対して)を加え、超音波処理した。得られた塗布剤を、透明電極としてITO膜を形成した石英ガラス基板上にスピンコートして薄膜(厚み120nmの電子供与層)を形成した。
【0055】
また、導電性高分子CNPPV(CN ポリ(p−フェニレンビニレン))をトリクロロエチレン中に溶解させ、この溶液中に、電子受容体としてC60フラーレン20重量部と、電荷輸送体としてポリエチレンオキシドで分子修飾したカーボンナノチューブ(平均直径40〜200nm、平均長さ20〜30μm)2重量部を加え、超音波処理した。得られた塗布剤を、電子供与層上にスピンコートし、電荷輸送層(厚み50nm)を形成した。さらに、電荷輸送層上にアルミニウムを蒸着して上部電極を形成し、素子を作製した。
【0056】
なお、上記C60フラーレンは、黒鉛電極を用い、100mmHgのヘリウム雰囲気でアーク放電し、得られたススをベンゼンで抽出し、得られたC60混合物を、塩基性活性アルミナを担体とし、ヘキサンを展開溶媒として、カラム分離精製することにより調製した。また、カーボンナノチューブは、CVD法を用い、700℃で、Ni−フタロシアニンを原料として調製した。
【0057】
作製した素子に直流電源を接続して、光導電性を調べた。光を照射しない場合、素子は絶縁体であった。この素子に可視光領域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、700nm以下の波長に対して光応答が観測された。
【0058】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電力が発生し、良好な太陽電池であることが判った。この太陽電池のエネルギー変換効率は4%であった。
【0059】
実施例2
光増感剤としてのポルフィン類(オクタエチルポルフィリン)を真空蒸着することにより、電子供与層と電荷輸送層との間に光増感層(厚み40nm)を形成する以外は、実施例1と同様の素子を作製した。この素子に可視光領域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性も測定した結果、800nm以下の波長に対して光応答が観測された。また、実施例1と比較して、光電流値が増加した。
【0060】
この太陽電池は、整流性を、透明電極側から波長635nmの単色光を照射したところ、過電力が発生し、良好な太陽電池であることが判った。この太陽電池のエネルギー変換効率は5%であった。
【0061】
実施例3
素子は、マトリックス樹脂(OOPVポリ(2,5−ジオクチルオキシ−p−フェニレンビニレン)60重量%,CNPPV(CN ポリ(p−フェニレンビニレン))30重量%)に、電子受容体としてのC60フラーレン5重量%と、電荷輸送物体としてポリエチレンオキシドで分子修飾したカーボンナノチューブ2重量%、光増感剤としてポルフィン類(オクタエチルポルフィン)3重量%とを分子分散させた光導電体を形成した。なお、フラーレンおよびカーボンナノチューブは、実施例1と同様のフラーレンおよびカーボンナノチューブを用いた。
【0062】
すなわち、上記成分をクロロホルム/トリクロロエチレン混合溶媒に溶解し、得られた塗布剤を、透明電極としてITO膜を形成した石英ガラス基板上にスピンコートして光導電層の薄膜(厚み0.3μm)を形成した。さらに、光導電層上にアルミニウムを蒸着して上部電極を形成し、素子を作製した。
【0063】
作製した素子に直接電源を接続して、光導電性を調べた。光を照射しない場合、感光体は絶縁体であった。この素子に可視光領域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観測された。
【0064】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電力が発生し、良好な太陽電池であることが判った。この太陽電池のエネルギー変換効率は3.5%であった。
【0065】
実施例4
導電性高分子OOPPV(ポリ(2,5−ジオクチルオキシ−p−フェニレンビニレン))をクロロベンゼン中に溶解させ、この溶液を超音波処理した。得られた塗布剤を、透明電極としてITO膜を形成した石英ガラス基板上にスピンコートして薄膜(厚み120nmの電子供与層)を形成した。
【0066】
また、導電性高分子CNPPV(CN ポリ(p−フェニレンビニレン))をトリクロロエチレン中に溶解させ、この溶液中に、電子受容体としてC60フラーレン20重量部と、電荷輸送体としてカーボンナノチューブ(平均直径40〜200nm、平均長さ20〜30μm)2重量部を加え、超音波処理した。得られた塗布剤を、電子供与層上にスピンコートし、電荷輸送層(厚み50nm)を形成した。さらに、電荷輸送層上にアルミニウムを蒸着して上部電極を形成し、素子を作製した。
【0067】
作製した素子に直流電源を接続して、光導電性を調べた。光を照射しない場合、素子は絶縁体であった。この素子に可視光領域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、700nm以下の波長に対して光応答が観測された。
【0068】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池のエネルギー変換効率は0.8%であった。
【0069】
実施例5
カーボンナノチューブに代えて、グラファイトリボンを使用する以外は、実施例4と同様の素子を作製した。この素子の可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、700nm以下の波長に対して光応答が観測された。
【0070】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は0.7%であった。
【0071】
実施例6
60フラーレン、カーボンナノチューブに代えて、グラファイトリボンを使用する以外は、実施例4と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、700nm以下の波長に対して光応答が観測された。
【0072】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は0.5%であった。
【0073】
実施例7
光増感剤としてのポルフィン類(オクタエチルポルフィリン)を真空蒸着することにより、電子供与層と電荷輸送層との間に光増感層(厚み40nm)を形成する以外は、実施例4と同様の素子を作製した。この素子に可視光領域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性も測定した結果、800nm以下の波長に対して光応答が観測された。また、実施例4と比較して、光電流値が増加した。
【0074】
この太陽電池は、整流性を、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池のエネルギー変換効率は1.5%であった。
【0075】
実施例8
導電性高分子OOPPVをクロロベンゼン中に溶解させ、この溶液中に、電子供与体としてC60フラーレン5重量部(OOPPV 100重量部に対して)を加え、超音波処理した。得られた塗布剤を、透明電極としてITO膜を形成した石英ガラス基板上にスピンコートして薄膜(厚み120nmの電子供与層)を形成した。
【0076】
また、導電性高分子CNPPVをトリクロロエチレン中に溶解させ、この溶液中に、電子受容体としてC60フラーレン20重量部と、電荷輸送体としてカーボンナノチューブ(平均直径40〜200nm、平均長さ20〜30μm)2重量部を加え、超音波処理した。得られた塗布剤を、電子供給層上にスピンコートし、電荷輸送層(厚み50nm)を形成した。さらに、電荷輸送層上にアルミニウムを蒸着して上部電極を形成し、素子を作製した。
【0077】
作製した素子に直接電源を接続して、光導電性を調べた。光を照射しない場合、素子は絶縁体であった。この素子に可視光領域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、700nm以下の波長に対して光応答が観測された。
【0078】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池のエネルギー変換効率は2%であった。
【0079】
実施例9
光増感剤としてのポルフィン類(オクタエチルポルフィリン)を真空蒸着することにより、電子供与層と電荷輸送層との間に光増感層(厚み40nm)を形成する以外は、実施例8と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存症を測定した結果、800nm以下の波長に対して光応答が観察された。
【0080】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は3%であった。
【0081】
実施例10
60フラーレン及びカーボンナノチューブに代えて、分子修飾C60フラーレン、分子修飾カーボンナノチューブを使用する以外は、実施例8と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観察された。
【0082】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は4%であった。
【0083】
実施例11
60フラーレン及びカーボンナノチューブの代わりに、分子修飾C60フラーレン、分子修飾カーボンナノチューブを使用する以外は、実施例9と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観察された。
【0084】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は5%であった。
【0085】
実施例12
60フラーレン及びカーボンナノチューブの代わりに、分子修飾C60フラーレン、分子修飾グラファイトリボンを使用する以外は、実施例8と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観察された。
【0086】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は4.5%であった。
【0087】
実施例13
60フラーレン及びカーボンナノチューブの代わりに、分子修飾C60フラーレン、分子修飾グラファイトリボンを使用する以外は、実施例9と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観察された。
【0088】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は5.3%であった。
【0089】
実施例14
60フラーレン及びカーボンナノチューブの代わりに、分子修飾グラファイトリボンを使用する以外は、実施例8と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観察された。
【0090】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は3.5%であった。
【0091】
実施例15
60フラーレン及びカーボンナノチューブの代わりに、分子修飾グラファイトリボンを使用する以外は、実施例9と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観察された。
【0092】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は4.6%であった。
【0093】
実施例16
素子として、マトリックス樹脂OOPPV60重量部及びCNPPV30重量部に、電子受容体としての分子修飾C60フラーレン5重量部と、電荷輸送体としての分子修飾カーボンナノチューブ2重量部、光増感剤として前記ポルフィン類3重量部とを分散させた光導電体を作製した。すなわち、上記成分をクロロベンゼン/トリクロロエチレン混合溶媒と混合し、得られた塗布剤を、透明電極としてITO膜を形成した石英ガラス基板上にスピンコートして光導電層の薄膜(厚み0.3μm)を形成した。さらに、光導電層上にアルミニウムを蒸着して上部電極を形成し,素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観察された。
【0094】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は3.5%であった。
【0095】
実施例17
60フラーレン及びカーボンナノチューブの代わりに、分子修飾グラファイトリボンを使用する以外は、実施例16と同様の素子を作製した。この素子に可視光域の光を透明電極側から照射したところ、光電流が観測された。タングステンランプを分光し、光電流強度の波長依存性を測定した結果、800nm以下の波長に対して光応答が観察された。
【0096】
この太陽電池は、整流性を示し、透明電極側から波長635nmの単色光を照射したところ、過電圧が発生し、良好な太陽電池であることが判った。この太陽電池の変換効率は3.9%であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoelectric conversion material composed of an electron donor, an electron acceptor, an electron transporter and, if necessary, a photosensitizer, and a photovoltaic cell (solar cell or the like) using the photoelectric conversion material.
[0002]
[Prior art]
In solar cells currently in practical use, silicon-based photoelectric conversion materials and compound semiconductor-based photoelectric conversion materials are mainly used, and organic-based photoelectric conversion materials are not so much used. On the other hand, since the discovery of conductive polyacetylene in 1977, research on solar cells using organic thin films has been actively conducted. However, solar cells using organic materials generally have low stability and low energy conversion rate.
[0003]
Japanese Patent Application Laid-Open No. 10-81754 discloses a metal complex polymer composed of a metal complex having a bipyridyl unit and having photosensitivity in the visible light region and the near infrared region. However, this metal complex polymer has a complicated structure and requires the use of a special ligand that coordinates to the bipyridyl unit.
[0004]
Japanese Patent Application Laid-Open No. 9-73180 is composed of at least one kind of amorphous fullerene such as a carbon cluster having a basic skeleton having 70 or more carbon atoms and derivatives thereof, and a matrix polymer in which the amorphous fullerene is dispersed. A photoconductor is disclosed. This document also discloses a photoconductor including a conductive support, a charge transport layer formed on the conductive support, and a charge generation layer made of the photoconductor. These photoelectric conversion materials are useful as photovoltaic materials such as solar cells and photosensitive materials such as photoreceptors. However, even higher photoelectric conversion efficiency is required for this material.
[0005]
Japanese Patent Laid-Open No. 2000-261016 discloses C 60 , C 70 Photoelectric charge separation materials composed of compounds containing spherical shell carbon molecules such as ferrocene as electron acceptors (for example, compounds in which organometallic complex units such as ferrocene, porphyrin units, and fullerene units are sequentially linked by a linker) Is disclosed. This document is composed of a photocharge separation material in which an electron donor, a photosensitizer and an electron acceptor are arranged three-dimensionally to give direction to the charge separation state by photoexcitation, and the photocharge separation material. A photovoltaic cell is also disclosed. However, since the photocharge separation material needs to enclose spherical shell carbon molecules such as fullerene as an electron acceptor, the structure is complicated, and the photocharge separation material and the photovoltaic cell are industrially advantageous with high productivity. It is difficult to manufacture.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a photoelectric conversion material having a high photoelectric conversion function and capable of increasing the area, reducing the thickness, reducing the weight, and reducing the cost, and a photovoltaic cell using the photoelectric conversion material.
[0007]
Another object of the present invention is to provide a photoelectric conversion material having a simple structure and high stability and conversion efficiency, and a photovoltaic cell using the photoelectric conversion material.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that spherical shell carbon such as fullerenes functions effectively as an electron acceptor, and linear or cylindrical carbon such as carbon nanotubes is charge transported. Found to function effectively as a body, and that planar (or two-dimensional structure) and linear carbon (eg, graphite ribbon) has both functions as an electron acceptor and a charge transporter, The present invention has been completed.
[0009]
That is, the photoelectric conversion material of the present invention includes an electron donor, spherical shell carbon, and linear or cylindrical carbon. The photoelectric conversion material may further contain a photosensitizer. In the photoelectric conversion material, the arrangement or arrangement of each of the above components (electron donor, spherical shell carbon, linear or cylindrical carbon, and photosensitizer if necessary) depends on the carrier (electron or hole) from the electron donor. ) Is efficiently transported to the electron transporter, for example, a photosensitizer is interposed between the electron donor and the electron transporter, and the electron acceptor is a carrier (electron, hole). Each component may be arranged or oriented two-dimensionally or three-dimensionally. More specifically, the photoelectric conversion material having a two-dimensional structure includes, for example, an electron donor layer including an electron donor, and an electron acceptor and an electron transporter (or charge transporter) formed on the electron donor layer. And a charge transport layer containing An electron donor layer containing an electron donor; a photosensitizer layer formed on the electron donor layer and containing a photosensitizer; and an electron acceptor and an electron formed on the photosensitizer layer. You may comprise with the charge transport layer containing a transport body (or charge transport body). In the photoelectric conversion material having such a two-dimensional structure, the electron donor layer and the charge transport layer may contain spherical shell-like carbon, and the spherical shell-like carbon is interposed between the electron donor layer and the charge transport layer. A density difference may be formed. For example, the concentration of spherical shell carbon in the electron donor layer may be smaller than that in the charge transport layer.
[0010]
Examples of the spherical shell-like carbon include fullerenes, modified products thereof, and metal inclusions. Examples of the linear or cylindrical carbon include carbon in a tube-like, fibrous, or ribbon-like form, such as carbon nanotubes. And graphite nanofibers, graphite ribbons, fibrils, graphite intercalation compounds, and modifications thereof. Furthermore, examples of the photosensitizer include π-electron compounds such as porphyrins, metal chelate compounds, polyanilines, aromatic polycyclic compounds, and compounds having a polyacene skeleton structure.
[0011]
The photoelectric conversion material has high photoelectric conversion efficiency and high stability. Therefore, the present invention also includes various elements or units composed of the photoelectric conversion material, for example, a photovoltaic cell (such as a solar cell).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The feature of the photoelectric conversion material of the present invention resides in the combination of spherical shell carbon and linear or cylindrical carbon. The spherical shell carbon can function as an electron acceptor, and the linear or cylindrical carbon can function as a charge transporter. In addition, planar (or two-dimensional structure) and linear carbon (for example, a graphite ribbon) has both functions of an electron acceptor and a charge transporter.
[0013]
Examples of the spherical shell carbon include fullerenes, modified products thereof, and metal inclusions. These spherical shell-like carbons can be used alone or in combination of two or more. Fullerenes include carbon clusters having various steric structures, such as C 60 , C 70 , C 74 , C 76 , C 78 , C 82 , C 84 , C 720 , C 860 And fullerenes. The form of fullerenes may be, for example, a soccer ball shape or a bucky ball shape.
[0014]
Fullerenes may be modified by introduction of substituents. The modification method is not particularly limited, and for example, a carbon 5-membered ring portion rich in the reactivity of fullerenes can be chemically modified. The type of the substituent is not particularly limited, and examples thereof include alkyl groups (C groups such as methyl group and t-butyl group 1-10 Alkyl groups, etc.), aryl groups (phenyl groups, etc.), aralkyl groups (benzyl groups, etc.), dioxolane units, halogens or oxygen atoms, etc., and may be modified by introducing liquid crystal polymers, dyes, polyethylene oxide, etc. . Modification of fullerenes enables solubilization in solvents and polymers, improved affinity, and alignment or orientation of fullerenes.
[0015]
The metal-encapsulated fullerenes are doped with various metals such as 1A group elements (K, Na, Rb, etc.), 2A group elements, lanthanoid elements (La, etc.) of the periodic table. And fullerenes. The metal as the dopant may be doped alone or in combination of two or more. These metal-encapsulated fullerenes may be used alone or in combination of two or more.
[0016]
Linear or tubular carbon includes carbon in the form of tubes, fibers or ribbons. Examples of such carbon include carbon nanotubes, carbon nanocoils, graphite nanofibers (or carbon nanofibers), graphite ribbons, fibrils, and graphite intercalation compounds. These carbon materials can be used alone or in combination of two or more.
[0017]
Preferred linear or cylindrical carbon is a tube or ribbon, such as carbon nanotubes or graphite ribbons. The carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes, and may have a bucky-onion structure.
[0018]
The average diameter of linear or cylindrical carbon such as carbon nanotubes may be, for example, 0.7 to 300 nm, preferably 0.7 to 250 nm, more preferably 1 to 250 nm, and particularly about 5 to 250 nm. In addition, the said average diameter means average thickness or average width in carbon of a ribbon form.
[0019]
In order to control solubilization and affinity to solvents and polymers, and to control the alignment or orientation of linear or cylindrical carbon, carbon such as carbon nanotubes can be obtained by introducing substituents, as in the case of fullerenes. It may be modified. The modification method and the kind of the substituent are the same as those of the fullerenes. The carbon nanotubes may be doped with a metal like the metal-encapsulated fullerenes. A planar (two-dimensional structure) and linear carbon such as a graphite ribbon structurally includes many edge portions, so that introduction, modification, and metal inclusion of substituents are easy.
[0020]
The electron donor (hole acceptor or electron generator) is not particularly limited, but is preferably a conductive polymer and a polymer having a function as a p-type semiconductor. Examples of such electron donors include polythiophene resins such as PT [poly (3-alkylthiophene)], PPV [poly (P-phenylenevinylene)], OOPV [poly (2,5-dioctyloxy-P-phenylene). Vinylene)], PEDOT [poly (2,3-dihydrothieno) [3,4-b] -1,4-dioquine], PSS [poly (styrene sulfonate)], and other polyphenylene vinylene resins, polyphenylene resins (for example, And poly (p-phenylene) resin, poly (m-phenylene) resin) and substituted products thereof.
[0021]
The photosensitizer may be any antenna molecule, that is, a compound that effectively absorbs light and transfers electrons and holes to other substances. For example, a π-electron compound (porphyrins, metal chelate compound) , Polyaniline, aromatic polycyclic compounds, compounds having a polyacene skeleton structure, etc.), π-electron compounds containing different elements (carbazole, etc.), halogenated π-electron compounds, quinizarin, or derivatives thereof. Examples of the porphyrins include various compounds having a porphyrin skeleton, such as porphyrin, phthalocyanine, metal phthalocyanine (phthalocyanine containing a transition metal such as iron phthalocyanine), tetrabenzoporphyrin, tetraphenylporphyrin or a derivative thereof [metal tetrabenzoporphyrin (zinc -Tetrabenzoporphyrin, magnesium-tetrabenzoporphyrin etc.), tetrakispentafluorophenylporphyrin etc.] and the like. Examples of the metal chelate compound include dimethylglyoxime, dithizone, oxine, acetylacetone, glycine, EDTA (ethylenediaminetetraacetic acid), metal salts such as NTA (for example, transition metal salts), and the like.
[0022]
Examples of aromatic polycyclic compounds include petroleum distillation residues, naphtha pyrolysis residues, ethylene bottom oil, coal liquefied oil, coal-based heavy oil such as coal tar, and polycyclic carbon synthesized by condensation of naphthalene. Hydrogen, polycyclic hydrocarbons in which heteroatoms (nitrogen atoms, sulfur atoms, boron atoms, phosphorus atoms, oxygen atoms, etc.) are introduced into the structure of these hydrocarbons, and solvent extraction from the residue Examples thereof include polycyclic hydrocarbons obtained.
[0023]
A compound having a polyacene skeleton structure is a heat-treated product of a condensate of an aromatic hydrocarbon compound and an aldehyde described in JP-A-60-170163, and has an atomic ratio of hydrogen atom / carbon atom. 0.05 to 0.5.
[0024]
The compound having a halogen atom is not particularly limited, and examples thereof include fluorinated hydrocarbons, fluorinated aromatic polycyclic compounds (fluorinated pitch, etc.), heavy oil fluoride, hexafluorobenzene, octafluoronaphthalene, Decafluorophenanthrene, decafluoropyrene, etc.), chlorinated hydrocarbons, brominated hydrocarbons, iodinated hydrocarbons and the like corresponding to these. Of these halides, fluoride pitch is preferred. These halides can be used alone or in combination of two or more.
[0025]
Porphyrins can be used as porphyrin dendrimers, and polyaniline can also be used by being bonded to an electron donor, electron acceptor, or electron transporter by a chemical bond.
[0026]
The photoelectric conversion material comprised with the said component implement | achieves high stability and a high energy conversion rate. That is, electrons move from the electron donor to the electron acceptor by photoexcitation and holes move to the electron donor, so that a charge separation state is efficiently generated. For example, electrons move from the photosensitizer to the electron acceptor by photoexcitation of the photosensitizer, and holes move from the photosensitizer to the electron donor, so that a charge separation state can be efficiently formed. Moreover, directivity can be given to the charge separation state by the electron transporter of linear or cylindrical carbon. Therefore, it is considered that charges can be transported without deactivation, and high stability and photoelectric conversion efficiency can be obtained.
[0027]
In such photoelectric conversion materials, carbon materials such as fullerenes and carbon nanotubes have many π-electron systems as well as structural specificity, which may cause strong interaction with light, intermolecular charge transfer, and electron transport. Phenomenon occurs, and it seems that the photoelectric conversion function is expressed with high efficiency. For example, the photosensitizer generates carriers or charges (electrons and holes) by photoexcitation, gives electrons to the electron acceptor, and gives holes to the electron donor. Therefore, the photosensitizer has a function of separating carriers or charges (electrons and holes), and efficiently generates a charge separation state that can be used for subsequent reactions. Thus, since the generated charges (electrons and holes) can be separated and transported by the photosensitizer, a higher photoelectric conversion efficiency can be obtained as compared with a silicon-based semiconductor by charge generation at the pn junction surface. . Moreover, linear or cylindrical carbon such as carbon nanotubes forms a directional percolation conduction path with a small addition. For this reason, the electron transporter is extremely effective for charge transport and can be transported without deactivating the charge.
[0028]
Each of the above components may form a photoelectric conversion material or a photoelectric conversion element using physical or chemical vapor deposition, lithography technology, etc., and may be combined with a matrix resin to form a photoelectric conversion material or a photoelectric conversion element. May be. Examples of matrix resins include polyolefin resins (polyethylene resins, polypropylene resins, ethylene-vinyl acetate copolymers, ethylene- (meth) acrylic acid ester copolymers, etc.), vinyl acetate resins (vinyl acetate-chloride). Vinyl copolymers, vinyl acetate- (meth) acrylic acid ester copolymers, etc.), (meth) acrylic resins (polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid ester copolymers, methyl methacrylate- Styrene- (meth) acrylic acid ester copolymer), polystyrene resin (polystyrene, styrene- (meth) acrylic acid ester copolymer, styrene- (meth) acrylic acid copolymer, styrene-maleic anhydride copolymer) Coalesce), vinyl chloride resin, polyester resin (polyaryle) Including preparative resin), polyamide resins, polycarbonate resins, polyvinyl alcohol resins, polyvinyl acetal resins (polyvinyl butyral resin), polysulfone resins, and polyphenylene oxide resin can be exemplified. These matrix resins can be used alone or in combination of two or more.
[0029]
As the matrix resin, a conductive polymer, a compound having a polyacene skeleton structure, and the like are preferable. Examples of the conductive polymer include polyacetylene polymers (solvent insoluble resins such as polyacetylene, solvent soluble polyacetylene resins using phenylacetylene, etc.), polyphenylene polymers (for example, poly (p-phenylene) resins, and the like. , Poly (m-phenylene) resins, polyphenylene vinylene resins such as poly (p-phenylene vinylene), polyphenylene sulfide resins, polyphenylene oxide resins, etc., heterocyclic polymers (polypyrrole, poly (3-alkylthiophene) ) Such as polythiophene resins, polyfuran resins, polyselenophene resins, polytellurophene resins), ionic polymers (polyaniline resins, poly (3-methyl-4-carboxypyrrole), etc. Etc.), a ladder-type polymer There can be exemplified. As the conductive polymer, a solvent-soluble resin is usually used. The type of the matrix resin is not particularly limited, and can be selected according to the function of the layer such as an electron donating layer or a charge transport layer. As the electron donating layer, a p-type conductive polymer is often used. In many cases, an n-type conductive polymer is used.
[0030]
The compound having a polyacene skeleton structure includes, for example, the compound having the polyacene skeleton structure described in the section of the photosensitizer.
[0031]
Note that when a discotic liquid crystal is used as an electron donor, it is arranged in a column structure and is effective for transporting holes and electrons.
[0032]
When a conductive polymer having p-type semiconducting properties is used as the matrix resin, fullerenes tend to take in an electron donor and become a charge transfer material having n-type semiconducting properties. Furthermore, a complex of fullerenes and a conductive polymer exhibits a particularly large response to light. This is thought to be due to the formation of a donor-acceptor type element explained by photoinduced charge transfer, which is different from that of a silicon-based semiconductor pn junction element, and excitons are generated in the entire complex by light irradiation. To do. Therefore, carriers (electrons, holes) are efficiently generated by using fullerenes as an electron donor in combination with a conductive polymer.
[0033]
The photoelectric conversion material of this invention should just be comprised with the electron donor, the electron acceptor, and the electron transporter, and may contain the photosensitizer. Such a photoelectric conversion material may be a composite (or mixed composition) of each component. In a preferred embodiment, the components can be arranged two-dimensionally (layered) or three-dimensionally in relation to one another. For example, in a structure where each component is arranged, bonded or oriented two-dimensionally or three-dimensionally, the electron acceptor can give a carrier (electron) to the charge transporter between the electron donor and the electron transporter. May be arranged, bonded or oriented in any form, a photosensitizer is interposed between the electron donor and the electron transporter, and the electron acceptor can impart carriers (electrons) to the charge transporter. It may be arranged, bonded or oriented in a form.
[0034]
In a preferred embodiment, in order to separate and efficiently move carriers or charges (electrons or holes) generated by photoexcitation of the photosensitizer, the photosensitizer has an electron donor in a form capable of transporting carriers. Are bonded or close (or oriented), and the electron acceptor (spherical carbon) is also bonded or close (or oriented). Further, the charge transporter (linear or cylindrical carbon) is in a form capable of transporting carriers, and is bound or close (or oriented) to at least the electron acceptor (spherical carbon), and the charge transporter ( (Linear or cylindrical carbon) is in a form capable of transporting carriers via a photosensitizer, and is bonded or close (or oriented) to the electron donor and the electron acceptor (spherical carbon). May be. As such a photoelectric conversion material, the complex represented by a following formula can be illustrated, for example.
[0035]
Ed-L1-P-L2-Ea- (Ct)
(In the formula, Ed represents an electron donor, P represents a photosensitizer, Ea represents an electron acceptor, Ct represents a charge transporter, Ea- (Ct) represents a bond between the electron acceptor Ea and the charge transporter Ct, L1 and L2 are the same or different and each represents a linker that connects the electron donor Ed, the photosensitizer P, and the electron acceptor Ea)
In addition, as a linker for coupling | bonding each said component, the coupling | bonding formed using a normal reaction, for example, a direct coupling | bonding, an amide bond, an ester bond, a urethane bond, an ether bond etc. can be utilized. As an example of these linkers, for example, JP-A No. 2000-261016 can be referred to.
[0036]
In a preferred embodiment, the photoelectric conversion material (or photoelectric conversion element) has a two-dimensional layer structure (laminated structure). Such a laminated structure has, for example, a laminated structure including an electron donor layer containing an electron donor and an electron transport layer formed on the electron donor layer. This electron transport layer usually contains an electron acceptor (such as spherical shell carbon) and an electron transporter (such as linear or cylindrical carbon). In particular, an electron donor layer containing an electron donor, a photosensitizer layer formed on the electron donor layer and containing a photosensitizer, an electron acceptor and an electron formed on the photosensitizer layer. A structure including a charge transport layer including a transporter. Note that the photosensitizer of the photosensitizing layer may be dispersed in the vicinity of the interface between the electron donating layer and the charge transporting layer.
[0037]
In the photoelectric conversion material having such a layer structure, the electron donating layer and the charge transporting layer may contain spherical shell-like carbon. Further, the concentration of the spherical shell-like carbon in the electron donor layer and the charge transport layer may be different. For example, the concentration of spherical shell carbon in the electron donor layer may be smaller than the concentration of spherical shell carbon in the charge transport layer. For example, the difference in the spherical carbon content between the electron donor layer and the charge transport layer is, for example, about 1 to 80% by weight, preferably about 5 to 70% by weight (for example, 10 to 50% by weight). Also good. The content of spherical shell carbon in the electron donor layer is 10% by weight or less (for example, about 0 to 10% by weight, particularly about 0 to 7% by weight), and the content of spherical shell carbon in the charge transport layer is 10% by weight. % Or more (for example, about 10 to 70% by weight).
[0038]
In the photoelectric conversion material or element having the layer structure, various film forming methods, for example, chemical or physical vapor deposition methods such as sputtering and vapor deposition, coating methods using the matrix resin (conductive polymer, etc.), Each layer may be formed by a combination of methods. For example, a coating solution containing an electron donor and, if necessary, spherical shell carbon and a matrix resin is coated on a substrate to form an electron donating layer, and a coating solution containing a photosensitizer and a matrix resin is coated. The charge transport layer can be formed by forming a photosensitizing layer and coating a coating agent containing an electron acceptor, an electron transporter and a matrix resin. Further, a desired layer (for example, a photosensitizing layer) may be formed by chemical or physical vapor deposition if necessary.
[0039]
The ratio of the spherical shell-like carbon in the electron donor layer is, for example, 0.01 to 10 parts by weight, preferably 0.1 to 9 parts by weight, more preferably about 1 to 8 parts by weight with respect to 100 parts by weight of the matrix resin. It is.
[0040]
In the photosensitized layer, the ratio of the photosensitizer to 100 parts by weight as a whole is, for example, 1 to 100 parts by weight, preferably 2 to 100 parts by weight, and more preferably about 5 to 100 parts by weight.
[0041]
In the charge transport layer, the ratio of the electron acceptor (spherical carbon) to 100 parts by weight of the whole is, for example, 10 parts by weight or more (for example, about 10 to 200 parts by weight), preferably 15 parts by weight or more (for example, 15 About 150 parts by weight), more preferably 20 parts by weight or more (for example, about 20 to 120 parts by weight), and the ratio of the electron transporter (linear or cylindrical carbon) is, for example, 0.1 parts by weight or more. (For example, about 0.5 to 100 parts by weight), preferably 1 part by weight or more (for example, about 1 to 50 parts by weight), more preferably 2 parts by weight or more (for example, about 2 to 30 parts by weight).
[0042]
Furthermore, the thickness of the electron donor layer is, for example, about 5 nm to 300 μm (for example, 5 nm to 30 μm), preferably about 50 nm to 50 μm, and more preferably about 50 nm to 30 μm. The thickness of the photosensitizing layer is, for example, about 5 nm to 50 μm, preferably about 5 nm to 5 μm, and more preferably about 5 nm to 1 μm. The thickness of the charge transport layer is, for example, about 5 nm to 300 μm (for example, 5 nm to 30 μm), preferably about 50 nm to 50 μm, and more preferably about 50 nm to 30 μm.
[0043]
The substrate is a substrate on which the components and layers can be physically or chemically bonded by adsorption or chemical bonding, depending on the type and use of the photoelectric conversion material, such as a conductor, a semiconductor, an insulator (for example, gold, Conductive metals such as silver, copper and aluminum, transparent conductors or semiconductors such as tin oxide, indium oxide, zinc oxide and ITO, semiconductors or insulators such as silicon, transparent insulators such as glass and plastic films , Conductive, semiconductive or insulating ceramics).
[0044]
In addition, a board | substrate can also be used as an electrode of a photoelectric conversion element (for example, photovoltaic cells, such as a solar cell). In this case, a transparent conductor or a semiconductor can be used for the light incident side electrode, and a conductive metal such as a metal can be used for the opposite electrode. The transparent conductor on the light incident side may be protected with a transparent substrate (such as a glass plate).
[0045]
Examples of the solvent for the coating solution include alcohols, esters, ketones, ethers, amides, sulfur-containing compounds (including sulfoxides), halogenated hydrocarbons, hydrocarbons, and the like. May be used as a mixed solvent. In addition, aromatic hydrocarbons (benzene, toluene), alicyclic hydrocarbons (such as cyclohexane), aliphatic hydrocarbons (such as normal hexane), halogenated hydrocarbons (such as methylene chloride, chloroform, trichloroethylene), Carbon disulfide is suitable because it has a large amount of dissolution in fullerenes and nanotubes.
[0046]
For coating, for example, a conventional method such as a spin coating method, a spray coating method, a roll coating method, or a vapor deposition method can be adopted. After coating the coating liquid, the photoelectric conversion material having a layer structure is dried. Obtainable.
[0047]
More specifically, in the photoelectric conversion element having a layered structure, the electron donating layer has a low concentration (for example, 10% by weight or less) of fullerenes (C 60 And a matrix resin (a conductive polymer such as a thiophene resin or a phenylene resin, particularly a p-type conductive polymer). This electron donating layer may contain a charge transporting compound (for example, a discotic liquid crystal capable of transporting holes) around the percolation concentration.
[0048]
The photosensitizing layer may be interposed between the electron donating layer and the charge transport layer in order to generate charge separation, and the photosensitizer is dispersed at the interface between the electron donating layer and the charge transport layer. May be. Further, the spectral characteristics of the photoelectric conversion element can be improved by the type, layer, or dispersion form of the photosensitizer.
[0049]
The electron transport layer may be, for example, fullerenes (C 60 Etc.), carbon nanotubes, and a matrix resin (conductive polymer, particularly n-type conductive polymer). This electron transport layer may contain a charge transporting compound at a concentration equal to or higher than the percolation threshold as in the case of carbon nanotubes. In this case, fullerenes (C 60 A compound that causes photoinduced charge transfer with a conductive polymer may be used together with fullerene or the like.
[0050]
The photoelectric conversion material and photoelectric conversion element or device of the present invention can be widely applied to various photoelectric conversion devices, electro-optical conversion devices, or optoelectronic devices utilizing a photoelectric conversion function, an amplification function, an optical rectification function, and the like. For example, electronic elements or photoelectric conversion elements (diodes, rectifier elements, photodiodes, optical sensors, optical switches, transistors, FETs, holographic elements, etc.), photovoltaic cells (solar cells, etc.), photovoltaic elements, optical recording materials (electronics) It is useful as a photographic photoreceptor, photoconductive toner, optical memory, and the like. In particular, since the photoelectric conversion efficiency is high and stable, it is suitable as a photoelectric conversion element for a photovoltaic cell. In addition, since the photoelectric conversion device can be increased in area, thinned, reduced in weight, and reduced in cost, it can be applied to walls and windows, and can be used as a photoelectric conversion element for the next generation solar cell.
[0051]
【The invention's effect】
In the present invention, since spherical shell carbon and linear or cylindrical carbon are combined, the photoelectric conversion function is high. Further, the area can be increased, the film thickness can be reduced, the weight can be reduced, and the cost can be reduced. Moreover, it has a simple structure and exhibits high stability and conversion efficiency. Therefore, the photoelectric conversion material or the element thereof is suitable for a photovoltaic cell (particularly a solar cell).
[0052]
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[0053]
In the following examples, molecular modifications were prepared using the following two methods as the molecular modification method (butylation method). (1) C 60 Fullerene, carbon nanotube or graphite ribbon (5 g), dibutyl zinc (105 g) and butyl iodide (50 ml) were placed in a flask and stirred at 180 ° C. for 4 hours. After completion of the reaction, the product was washed with ethanol and dilute hydrochloric acid to prepare a butylated product. (2) C 60 Fullerene, carbon nanotube or graphite ribbon (5 g), potassium K (7 g) and tetrahydrofuran THF (100 ml) were placed in a three-necked flask and stirred at 60 ° C. for 5 hours under ultrasonic irradiation. Subsequently, 90 ml of butyl iodide was added and stirred overnight at room temperature. After distilling off the solvent, the residue was washed with water-ethanol to prepare a butylated product.
[0054]
Example 1
Conductive polymer OOPPV (poly (2,5-dioctyloxy-p-phenylene vinylene)) was dissolved in chloroform, and this solution was subjected to molecular modification as an electron donor. 60 5 parts by weight of fullerene (based on 100 parts by weight of the conductive polymer) was added and sonicated. The obtained coating agent was spin-coated on a quartz glass substrate on which an ITO film was formed as a transparent electrode to form a thin film (electron donating layer having a thickness of 120 nm).
[0055]
In addition, a conductive polymer CNPPV (CN poly (p-phenylene vinylene)) is dissolved in trichloroethylene, and C as an electron acceptor is dissolved in this solution. 60 20 parts by weight of fullerene and 2 parts by weight of carbon nanotubes (average diameter 40 to 200 nm, average length 20 to 30 μm) molecularly modified with polyethylene oxide as a charge transporter were added and subjected to ultrasonic treatment. The obtained coating agent was spin-coated on the electron donating layer to form a charge transport layer (thickness 50 nm). Furthermore, aluminum was vapor-deposited on the charge transport layer to form an upper electrode, thereby producing a device.
[0056]
The above C 60 Fullerenes were arc-discharged in a 100 mmHg helium atmosphere using a graphite electrode, and the resulting soot was extracted with benzene, and the resulting C 60 The mixture was prepared by column separation and purification using basic activated alumina as a carrier and hexane as a developing solvent. Carbon nanotubes were prepared using Ni-phthalocyanine as a raw material at 700 ° C. using a CVD method.
[0057]
A DC power source was connected to the fabricated element, and the photoconductivity was examined. When light was not irradiated, the element was an insulator. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, an optical response was observed for a wavelength of 700 nm or less.
[0058]
This solar cell showed a rectifying property, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overpower was generated and the solar cell was a good solar cell. The energy conversion efficiency of this solar cell was 4%.
[0059]
Example 2
Except for forming a photosensitizing layer (thickness: 40 nm) between the electron donating layer and the charge transporting layer by vacuum deposition of porphins (octaethylporphyrin) as a photosensitizer, the same as in Example 1. The device was fabricated. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of measuring the wavelength dependence of the photocurrent intensity by spectroscopic analysis of a tungsten lamp, an optical response was observed for a wavelength of 800 nm or less. In addition, the photocurrent value increased as compared with Example 1.
[0060]
When this solar cell was irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, overpower was generated and it was found that this solar cell was a good solar cell. The energy conversion efficiency of this solar cell was 5%.
[0061]
Example 3
The element is composed of a matrix resin (60% by weight of OOPV poly (2,5-dioctyloxy-p-phenylene vinylene), 30% by weight of CNPPV (CN poly (p-phenylene vinylene))) and C as an electron acceptor. 60 A photoconductor was formed by molecularly dispersing 5% by weight of fullerene, 2% by weight of carbon nanotubes modified with polyethylene oxide as a charge transporting substance, and 3% by weight of porphine (octaethylporphine) as a photosensitizer. In addition, the fullerene and the carbon nanotube similar to Example 1 were used for the fullerene and the carbon nanotube.
[0062]
That is, the above components are dissolved in a chloroform / trichloroethylene mixed solvent, and the obtained coating agent is spin-coated on a quartz glass substrate on which an ITO film is formed as a transparent electrode to form a thin photoconductive layer (thickness 0.3 μm). Formed. Furthermore, aluminum was vapor-deposited on the photoconductive layer to form an upper electrode, thereby producing a device.
[0063]
A power source was directly connected to the fabricated device, and the photoconductivity was examined. When light was not irradiated, the photoreceptor was an insulator. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, an optical response was observed for wavelengths of 800 nm or less.
[0064]
This solar cell showed a rectifying property, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overpower was generated and the solar cell was a good solar cell. The energy conversion efficiency of this solar cell was 3.5%.
[0065]
Example 4
The conductive polymer OOPPV (poly (2,5-dioctyloxy-p-phenylene vinylene)) was dissolved in chlorobenzene, and this solution was sonicated. The obtained coating agent was spin-coated on a quartz glass substrate on which an ITO film was formed as a transparent electrode to form a thin film (electron donating layer having a thickness of 120 nm).
[0066]
In addition, a conductive polymer CNPPV (CN poly (p-phenylene vinylene)) is dissolved in trichloroethylene, and C as an electron acceptor is dissolved in this solution. 60 20 parts by weight of fullerene and 2 parts by weight of carbon nanotubes (average diameter of 40 to 200 nm, average length of 20 to 30 μm) as a charge transporter were added and subjected to ultrasonic treatment. The obtained coating agent was spin-coated on the electron donating layer to form a charge transport layer (thickness 50 nm). Furthermore, aluminum was vapor-deposited on the charge transport layer to form an upper electrode, thereby producing a device.
[0067]
A DC power source was connected to the fabricated element, and the photoconductivity was examined. When light was not irradiated, the element was an insulator. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, an optical response was observed for a wavelength of 700 nm or less.
[0068]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The energy conversion efficiency of this solar cell was 0.8%.
[0069]
Example 5
An element similar to that of Example 4 was produced except that a graphite ribbon was used instead of the carbon nanotube. When light in the visible light range of this device was irradiated from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, an optical response was observed for a wavelength of 700 nm or less.
[0070]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 0.7%.
[0071]
Example 6
C 60 A device similar to that of Example 4 was produced except that graphite ribbon was used instead of fullerene and carbon nanotube. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, an optical response was observed for a wavelength of 700 nm or less.
[0072]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 0.5%.
[0073]
Example 7
Except for forming a photosensitizing layer (thickness 40 nm) between the electron donating layer and the charge transporting layer by vacuum deposition of porphins (octaethylporphyrin) as a photosensitizer, as in Example 4. The device was fabricated. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of measuring the wavelength dependence of the photocurrent intensity by spectroscopic analysis of a tungsten lamp, an optical response was observed for a wavelength of 800 nm or less. In addition, the photocurrent value increased as compared with Example 4.
[0074]
When this solar cell was irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The energy conversion efficiency of this solar cell was 1.5%.
[0075]
Example 8
The conductive polymer OOPPV is dissolved in chlorobenzene, and C as an electron donor is added to this solution. 60 5 parts by weight of fullerene (based on 100 parts by weight of OOPPV) was added and sonicated. The obtained coating agent was spin-coated on a quartz glass substrate on which an ITO film was formed as a transparent electrode to form a thin film (electron donating layer having a thickness of 120 nm).
[0076]
In addition, the conductive polymer CNPPV is dissolved in trichlorethylene, and C as an electron acceptor is dissolved in this solution. 60 20 parts by weight of fullerene and 2 parts by weight of carbon nanotubes (average diameter of 40 to 200 nm, average length of 20 to 30 μm) as a charge transporter were added and subjected to ultrasonic treatment. The obtained coating agent was spin coated on the electron supply layer to form a charge transport layer (thickness 50 nm). Furthermore, aluminum was vapor-deposited on the charge transport layer to form an upper electrode, thereby producing a device.
[0077]
A power source was directly connected to the fabricated device, and the photoconductivity was examined. When light was not irradiated, the element was an insulator. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, an optical response was observed for a wavelength of 700 nm or less.
[0078]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The energy conversion efficiency of this solar cell was 2%.
[0079]
Example 9
Except for forming a photosensitizing layer (thickness 40 nm) between the electron donating layer and the charge transporting layer by vacuum deposition of porphins (octaethylporphyrin) as a photosensitizer, as in Example 8. The device was fabricated. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0080]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 3%.
[0081]
Example 10
C 60 Instead of fullerenes and carbon nanotubes, molecular modification C 60 A device similar to that of Example 8 was produced except that fullerene and molecularly modified carbon nanotubes were used. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0082]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 4%.
[0083]
Example 11
C 60 Instead of fullerenes and carbon nanotubes, molecular modification C 60 A device similar to that of Example 9 was produced except that fullerene and molecularly modified carbon nanotubes were used. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0084]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 5%.
[0085]
Example 12
C 60 Instead of fullerenes and carbon nanotubes, molecular modification C 60 A device similar to that of Example 8 was produced except that fullerene and a molecularly modified graphite ribbon were used. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0086]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 4.5%.
[0087]
Example 13
C 60 Instead of fullerenes and carbon nanotubes, molecular modification C 60 A device similar to that of Example 9 was produced except that fullerene and a molecularly modified graphite ribbon were used. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0088]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 5.3%.
[0089]
Example 14
C 60 A device similar to that of Example 8 was produced except that a molecularly modified graphite ribbon was used instead of fullerene and carbon nanotube. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0090]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 3.5%.
[0091]
Example 15
C 60 A device similar to that of Example 9 was produced except that a molecularly modified graphite ribbon was used instead of fullerene and carbon nanotube. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0092]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 4.6%.
[0093]
Example 16
As an element, a matrix resin OOPPV 60 parts by weight and CNPPV 30 parts by weight are combined with a molecular modification C as an electron acceptor. 60 A photoconductor was prepared by dispersing 5 parts by weight of fullerene, 2 parts by weight of molecularly modified carbon nanotubes as a charge transporter, and 3 parts by weight of the porphine as a photosensitizer. That is, the above components are mixed with a chlorobenzene / trichloroethylene mixed solvent, and the obtained coating agent is spin-coated on a quartz glass substrate on which an ITO film is formed as a transparent electrode to form a thin photoconductive layer (thickness 0.3 μm). Formed. Furthermore, aluminum was vapor-deposited on the photoconductive layer to form an upper electrode, thereby fabricating a device. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0094]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 3.5%.
[0095]
Example 17
C 60 A device similar to that of Example 16 was produced except that a molecularly modified graphite ribbon was used instead of fullerene and carbon nanotube. When this element was irradiated with light in the visible light region from the transparent electrode side, a photocurrent was observed. As a result of spectroscopy of the tungsten lamp and measuring the wavelength dependence of the photocurrent intensity, a photoresponse was observed for wavelengths of 800 nm or less.
[0096]
This solar cell showed rectifying properties, and when irradiated with monochromatic light having a wavelength of 635 nm from the transparent electrode side, it was found that an overvoltage was generated and the solar cell was a good solar cell. The conversion efficiency of this solar cell was 3.9%.

Claims (4)

電子供与体と、電子受容体としての球殻状炭素と、電荷輸送体としての線状又は筒状炭素と光増感剤とを含
マトリックス樹脂としての電子供与体に、電子受容体と、電荷輸送体と、光増感剤とを分散させた光電変換材料であって、
球殻状炭素が、フラーレン類、その修飾体およびその金属内包物から選択された少なくとも一種であり、
線状又は筒状炭素が、カーボンナノチューブおよびその修飾体から選択された少なくとも一種である光電変換材料。
Seen containing an electron donor, and a spherical shell-like carbon as an electron acceptor, and a linear or tubular carbon and photosensitizer as a charge transporter,
A photoelectric conversion material in which an electron acceptor, a charge transporter, and a photosensitizer are dispersed in an electron donor as a matrix resin,
The spherical shell carbon is at least one selected from fullerenes, modified products thereof, and metal inclusions thereof,
A photoelectric conversion material in which the linear or cylindrical carbon is at least one selected from carbon nanotubes and modified products thereof.
球殻状炭素が、フラーレン類の修飾体およびフラーレン類の金属内包物から選択された少なくとも一種である請求項1記載の光電変換材料。Spherical shell carbon, photoelectric conversion material according to claim 1 Symbol placement is at least one selected from metal inclusions modifications and fullerenes fullerenes. 光増感剤が、ポルフィリン類、金属キレート化合物、ポリアニリン類、芳香族多環化合物、ポリアセン系骨格構造を有する化合物から選択されたπ電子系化合物である請求項1記載の光電変換材料。Photosensitizers, porphyrins, metal chelate compound, polyaniline, aromatic polycyclic compound, a photoelectric conversion material according to claim 1 Symbol mounting a π electron system compound selected from compounds having a polyacene skeletal structure. 請求項1記載の光電変換材料で構成されている光電池。Photovoltaic cell is constituted by a photoelectric conversion material according to claim 1 Symbol placement.
JP2002029524A 2001-02-08 2002-02-06 Photoelectric conversion material and photovoltaic cell Expired - Fee Related JP4291973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029524A JP4291973B2 (en) 2001-02-08 2002-02-06 Photoelectric conversion material and photovoltaic cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-32652 2001-02-08
JP2001032652 2001-02-08
JP2002029524A JP4291973B2 (en) 2001-02-08 2002-02-06 Photoelectric conversion material and photovoltaic cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008319724A Division JP4928533B2 (en) 2001-02-08 2008-12-16 Photoelectric conversion material and photovoltaic cell

Publications (2)

Publication Number Publication Date
JP2002335004A JP2002335004A (en) 2002-11-22
JP4291973B2 true JP4291973B2 (en) 2009-07-08

Family

ID=26609145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029524A Expired - Fee Related JP4291973B2 (en) 2001-02-08 2002-02-06 Photoelectric conversion material and photovoltaic cell

Country Status (1)

Country Link
JP (1) JP4291973B2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211289B2 (en) * 2002-05-29 2009-01-21 東レ株式会社 Photovoltaic element
JP4189199B2 (en) * 2002-10-29 2008-12-03 三井化学株式会社 Organic solar cells
JPWO2004049458A1 (en) * 2002-11-28 2006-03-30 新日本石油株式会社 Photoelectric conversion element
FR2849539B1 (en) * 2002-12-30 2005-04-15 Nanoledge DEVICE COMPRISING AT LEAST ONE TYPE OF TUBULAR NANOSTRUCTURE HAVING AT ITS SURFACE AT LEAST ONE COMPLEX PIGMENT
WO2004089822A1 (en) * 2003-04-07 2004-10-21 Ideal Star Inc. Method and apparatus for producing gas atom containing fullerene, and gas atom containing fullerene
FR2856197B1 (en) * 2003-06-11 2005-09-16 Nanoledge DEVICE COMPRISING AT LEAST ONE TYPE OF TUBULAR NANOSTRUCTURE IN FIBER FORM
ES2537515T3 (en) * 2003-06-11 2015-06-09 Axson Services Gmbh Photovoltaic cell comprising carbon nanotubes that have a pigment on their surfaces
DE10326546A1 (en) * 2003-06-12 2005-01-05 Siemens Ag Organic solar cell with an intermediate layer with asymmetric transport properties
JP4619660B2 (en) * 2004-02-04 2011-01-26 信越ポリマー株式会社 Photoelectric conversion element and manufacturing method thereof
JP4875837B2 (en) * 2003-06-30 2012-02-15 株式会社イデアルスター Solid-type dye-sensitized element and method for producing the same
JP2005032793A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Organic photoelectric converter
JP4221499B2 (en) * 2003-08-27 2009-02-12 独立行政法人産業技術総合研究所 Solar cell and manufacturing method thereof
JP4639336B2 (en) * 2003-09-02 2011-02-23 国立大学法人信州大学 Conductive polymer thin film composite
JP2005093307A (en) * 2003-09-19 2005-04-07 Konica Minolta Medical & Graphic Inc Photoelectric conversion element
JP2005203659A (en) 2004-01-19 2005-07-28 Sony Corp Photoelectric converting material and its manufacturing method, photoelectric converting element and its manufacturing method, and electronic device and its manufacturing method
JP4767498B2 (en) * 2004-02-04 2011-09-07 信越ポリマー株式会社 Photoelectric conversion element and manufacturing method thereof
JP5244287B2 (en) * 2004-03-19 2013-07-24 富士フイルム株式会社 Image sensor and method for applying electric field to image sensor
JP2005294042A (en) * 2004-03-31 2005-10-20 Nippon Sheet Glass Co Ltd Photoelectric transducer and its manufacturing method
JP2007131536A (en) * 2004-07-27 2007-05-31 Vitamin C60 Bioresearch Kk Skin melanin-controlling agent
JP2006073201A (en) * 2004-08-31 2006-03-16 Ideal Star Inc Photoelectric conversion material, photoelectric conversion device and manufacturing method of photoelectric conversion material
KR101001744B1 (en) * 2004-12-27 2010-12-15 삼성전자주식회사 Photovoltaic electrode using carbon nanotube and photovoltaic cell comprising the same
JP2006190729A (en) * 2005-01-04 2006-07-20 Shinshu Univ Optical sensor and its manufacturing method
WO2006112361A1 (en) * 2005-04-18 2006-10-26 Hiroshi Maeda Polymeric pharmaceutical agent for treatment of cancer and process for production of the same
JP2007180190A (en) * 2005-12-27 2007-07-12 Toyota Central Res & Dev Lab Inc Organic solar cell
JP4729708B2 (en) * 2006-03-17 2011-07-20 国立大学法人信州大学 Carbon fiber-conductive polymer composite film and method for producing the same
JP4817428B2 (en) * 2006-03-24 2011-11-16 国立大学法人九州大学 Photoresponsive electrode and organic solar cell using the same
DE102006031300A1 (en) * 2006-06-29 2008-01-03 Schmid Technology Systems Gmbh Method for doping silicon material for solar cells, correspondingly doped silicon material and solar cell
JP2008091467A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Organic thin film solar cell element and coating liquid for forming photoelectric conversion layer
JP2008091575A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Organic thin film solar cell element and coating liquid for forming photoelectric conversion layer
JP2008243841A (en) * 2007-03-23 2008-10-09 Univ Of Yamanashi Composition, optical conductor thin film, and optical conductor element
EP2154690A4 (en) * 2007-04-27 2015-04-01 Kuraray Co Transparent conductive film and method for producing transparent conductive film
JP5127329B2 (en) * 2007-07-12 2013-01-23 日立造船株式会社 Photoelectric conversion element and manufacturing method thereof
JP5127330B2 (en) * 2007-07-12 2013-01-23 日立造船株式会社 Photoelectric conversion element and manufacturing method thereof
JP5093673B2 (en) * 2008-04-17 2012-12-12 独立行政法人産業技術総合研究所 Organic thin film solar cell
WO2010045308A2 (en) * 2008-10-14 2010-04-22 Drexel University Polymer dispersed liquid crystal photovoltaic device and method for making
JP5381748B2 (en) * 2010-01-27 2014-01-08 コニカミノルタ株式会社 Organic photoelectric conversion element, solar cell, and optical sensor array
JP5704563B2 (en) * 2011-03-30 2015-04-22 独立行政法人産業技術総合研究所 Photoelectric conversion element and solar cell

Also Published As

Publication number Publication date
JP2002335004A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP4291973B2 (en) Photoelectric conversion material and photovoltaic cell
Yang et al. Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors
US8017863B2 (en) Polymer wrapped carbon nanotube near-infrared photoactive devices
JP5566890B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
US20090107539A1 (en) Photoelectric device
JP5583809B2 (en) Organic solar cell
JP5360197B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2008109097A (en) Material for photovolatic element and the photovolatic element
KR20120038505A (en) Methanofullerene derivatives and photoelectric conversion elements using same
CN102203972A (en) Merocyanines for producing photoactive layers for organic solar cells and organic photodetectors
JP5098957B2 (en) Organic photoelectric conversion element
US20070295395A1 (en) Photovoltaic Device With Trimetaspheres
JP5712769B2 (en) Organic photoelectric conversion element and solar cell
JP5375066B2 (en) Method for producing organic photoelectric conversion element, and organic photoelectric conversion element
Yamamoto et al. Extension of light-harvesting area of bulk-heterojunction solar cells by cosensitization with ring-expanded metallophthalocyanines fused with fluorene skeletons
JP2010093099A (en) Organic photoelectric converting element and method of manufacturing the same
JP2010283003A (en) Organic photoelectric conversion element, solar battery using the same, and photosensor array
JP4928533B2 (en) Photoelectric conversion material and photovoltaic cell
JP5098956B2 (en) Manufacturing method of organic photoelectric conversion element
Zhen et al. Benzo [c] thiophene–C60 Diadduct: An Electron Acceptor for p–n Junction Organic Solar Cells Harvesting Visible to Near‐IR Light
JP2012209496A (en) Photoelectric conversion element and solar cell
Ma et al. Efficient D1: D2: A Ternary Polymer Solar Cells with Low Voltage Loss and Unblocked Hole Transport Channel Characterized by Kelvin Probe Force Microscopy
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2014154653A (en) Organic photoelectric conversion element, manufacturing method of the same and solar cell
US9520564B2 (en) Photoelectric conversion material, method for producing the same, and organic photovoltaic cell containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150410

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees