EP2038441B1 - Process for producing shaped refractory metal bodies - Google Patents

Process for producing shaped refractory metal bodies Download PDF

Info

Publication number
EP2038441B1
EP2038441B1 EP07765458.0A EP07765458A EP2038441B1 EP 2038441 B1 EP2038441 B1 EP 2038441B1 EP 07765458 A EP07765458 A EP 07765458A EP 2038441 B1 EP2038441 B1 EP 2038441B1
Authority
EP
European Patent Office
Prior art keywords
weight
tungsten
molybdenum
heavy metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07765458.0A
Other languages
German (de)
French (fr)
Other versions
EP2038441A1 (en
Inventor
Henning Uhlenhut
Uwe BLÜMLING
Klaus Andersson
Bernd DÖBLING
Michael Svec
Karl-Hermann Buchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QSIL Metals Hermsdorf GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Priority to PL07765458T priority Critical patent/PL2038441T3/en
Publication of EP2038441A1 publication Critical patent/EP2038441A1/en
Application granted granted Critical
Publication of EP2038441B1 publication Critical patent/EP2038441B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]

Definitions

  • the present invention relates to a method for the production of sheets of tungsten heavy metal or molybdenum alloy and their use. Due to their high density of 17 to 18.6 g / cm 3 , tungsten heavy metal alloys are suitable for shielding short-wave electromagnetic radiation, for example. They are therefore often used for radiation protection or beam guidance in X-ray equipment. Other applications include balancing weights in the aerospace and automotive industries or molded components for aluminum die casting molds. Tungsten heavy metal alloys consist of about 90% to about 97% by weight tungsten. The remainder is binder metal. Such sheets are commercially available in thicknesses of about 0.4 mm to about 1.2 mm, but have by rolling anisotropic material properties and an anisotropic microstructure (based on tungsten) on. Tungsten heavy metal components are usually sintered close to the final shape and then machined or, in the case of flat components, produced from sheet metal.
  • US 3,155,502 discloses a method for producing shaped articles, wherein first a refractory metal powder with water-soluble organic binders . Lubricants and a small amount of water is mixed. The mixture is extruded into a green body and can be further compacted in a cold rolling step and then sintered in an inert atmosphere.
  • EP 0 325 179 describes a process for the production of sheets from a tungsten heavy metal alloy, in which the constituents of the alloy are mixed in a liquid medium to a slurry in which the liquid constituents are sucked off. From the dried slurry, a planar shaped body is prepared, which is dried and sintered to a density of at least 90% of the theoretical density of the alloy. The sintered shaped body is then rolled in further steps to the desired final thickness.
  • This object is achieved by a method for the production of shaped articles from a tungsten heavy metal alloy and from molybdenum alloys, wherein a slurry for film casting is produced from a tungsten heavy metal alloy or molybdenum alloy, a film is poured from the slurry and the film is debinded and sintered after drying, to get a sheet.
  • the molded article according to the invention is generally available as a sheet or as a sheet metal by, for example, stamping, stamping or forming. Other suitable forming methods for obtaining the molded article include, for example, bending, water jet or laser cutting, spark erosion, and machining.
  • tungsten heavy metal alloy or molybdenum alloy means materials selected from the group consisting of tungsten heavy metal alloys, tungsten, tungsten alloys, molybdenum and molybdenum alloys. The method according to the invention can thus be used advantageously for many materials.
  • the objects obtained by the process according to the invention have these features and thus solve this task.
  • Film casting is a cost effective process for producing planar components for a variety of applications in the electrical industry, such. As chip substrates, piezo actuators and multilayer capacitors. In recent years, however, interest in film casting has grown significantly for other, new product areas. With conventional methods for the production of ceramic components, such as dry pressing, slip casting or extrusion, the economic production of large-area, flat, thin, defect-free and homogeneous substrates, which have sufficient green strength, tight dimensional tolerances and a smooth surface is extremely difficult or even impossible ,
  • Suitable shaping methods include, for example, bending, water jet or laser cutting, spark erosion and machining.
  • An object of the invention is a method as defined in claims 1 to 5.
  • Another object is the use as defined in any one of claims 6 to 11.
  • a slurry for film casting is prepared from a tungsten heavy metal alloy or molybdenum alloy, cast from the slurry a film on a substrate and the film is debind after drying and sintered to obtain the sheet, the film by pulling the pad is brought in the drawing direction by pouring cut to the desired thickness.
  • tungsten metal powder or molybdenum metal powder is first mixed with a metal binder, also in the form of a metal powder.
  • the metallic binder is usually an alloy containing metals selected from the group consisting of nickel, iron, copper with each other or with other metals.
  • an alloy of tungsten or molybdenum may be used with the metallic binder in the form of a metal powder.
  • metal binder can be used advantageously nickel / iron and nickel / copper alloys.
  • the metallic binder is usually made of nickel, iron, copper, cobalt, manganese, molybdenum and / or aluminum.
  • the tungsten or molybdenum content is from 60% by weight to 98% by weight, advantageously from 78% by weight to 97% by weight, in particular from 90% by weight to 95% by weight, or 90.2% by weight .-% to 95.5 wt .-%.
  • the nickel content is 1 wt .-% to 30 wt .-%, advantageously 2 wt .-% to 15 wt .-%, or 2.6 wt .-% to 6 wt .-%, or 3 wt .-% to 5.5% by weight.
  • the iron content is 0 wt .-% to 15 wt .-%, advantageously 0.1 wt .-% to 7 wt .-%, in particular 0.2 wt .-% to 5.25 wt .-% or 0.67 Wt .-% to 4.8 wt .-%.
  • the copper content is 0 wt .-% to 5 wt .-%, advantageously 0.08 wt .-% to 4 wt .-%, in particular 0.5 wt .-% to 3 wt .-% or 0.95 wt. % to 2.1% by weight.
  • the cobalt content is 0 wt .-% to 2 wt .-%, advantageously 0.1 wt .-% to 0.25 wt .-% or 0.1 wt .-% to 0.2 wt .-%.
  • the manganese content is 0 wt.% To 0.15 wt.%, Preferably 0.05 wt .-% to 0.1 wt .-%.
  • the aluminum content is 0 to 0.2 wt .-%, preferably 0.05 to 0.15 Wt .-%, or 0.1 wt .-%.
  • the tungsten content is from 60 1 wt .-% to 30 wt .-% to 80 wt .-% to 30 wt .-%, if only iron and nickel are used as a metallic binder. In this case, optionally 0 to 0.2% by weight of aluminum may be advantageous.
  • the tungsten or molybdenum powder or alloy powder advantageously has a specific surface area of about 0.1 m 2 / g to about 2 m 2 / g, the particle size is usually less than 100 .mu.m, in particular less than 63 .mu.m.
  • This mixture is then introduced into a solvent which preferably contains a dispersant and then deagglomerated, for example in a ball mill or other suitable device.
  • the dispersant prevents agglomeration of the powder particles, lowers the viscosity of the slurry and results in a higher green density of the cast film.
  • Polyester / polyamine condensation polymers such as Hypermer KD1 from Uniqema are advantageously used as the dispersant; however, those skilled in the art will be aware of other suitable materials such as fish oil (Menhaden Fish Oil Z3) or alkyl phosphate compounds (ZSCHIMMER & SCHWARZ KF 1001).
  • solvents it is possible to use polar organic solvents, for example esters, ethers, alcohols or ketones, such as methanol, ethanol, n-propanol, n-butanol, diethyl ether, tert-butyl methyl ether, methyl acetate, ethyl acetate, acetone, ethyl methyl ketone or mixtures thereof ,
  • the solvent used is an azeotropic mixture of two solvents, for example a mixture of ethanol and ethyl methyl ketone in a ratio of 31.8 to 68.2 percent by volume.
  • This mixture is ground, for example, in a ball mill or other suitable mixing unit and thereby homogenized. This process is generally carried out for about 24 hours to obtain the first mixture.
  • the polymeric binder may be added in the preparation of the first mixture, optionally with additional solvent and optionally a plasticizer.
  • the polymeric binder can also be added in the preparation of the second mixture.
  • the polymeric binder may be added in part both in the preparation of the first mixture and in part in the preparation of the second mixture.
  • a solvent or solvent mixture may be used and the polymeric binder added with another solvent or solvent mixture such that a desired solvent mixture (e.g., an azeotropic mixture) does not set until after the addition of the polymeric binder.
  • a desired solvent mixture e.g., an azeotropic mixture
  • the polymeric binder must meet many requirements. It serves primarily to combine individual powder particles when drying together, should be soluble in the solvent and be well compatible with the dispersant.
  • the addition of the polymeric binder greatly influences the viscosity of the slurry. Advantageously, it causes only a slight increase in viscosity and at the same time has a stabilizing effect on the dispersion.
  • the polymeric binder must burn out without residue.
  • the polymeric binder provides good strength and handleability of the green sheet. An optimal polymeric binder reduces the tendency of drying cracks in the green sheet and does not hinder solvent evaporation by forming a dense surface layer.
  • polymeric binder it is generally possible to use polymers or polymer formulations having a low ceiling temperature, such as polyacetal, polyacrylates or methacrylates or its copolymers (acrylic resins such as ZSCHIMMER & SCHWARZ KF 3003 and KF 3004), as well as polyvinyl alcohol or its derivatives such as polyvinyl acetate or Polyvinyl butyral (KURARAY Mowital SB 45 H, FERRO Butvar B-98, and B-76, KURARAY Mowital SB 60 H).
  • polyacetal polyacrylates or methacrylates or its copolymers
  • polyvinyl alcohol or its derivatives such as polyvinyl acetate or Polyvinyl butyral (KURARAY Mowital SB 45 H, FERRO Butvar B-98, and B-76, KURARAY Mowital SB 60 H).
  • plasticizer plasticizer additives
  • plasticizer additives which cause by lowering the glass transition temperature of the polymeric binder, a higher flexibility of the green sheet.
  • the plasticizer penetrates into the network structure of the polymeric binder, which causes the intermolecular frictional resistance and thus the viscosity of the slurry to be reduced.
  • the plasticizer used is advantageously a benzyl phthalate (FERRO Santicizer 261A).
  • Binders and plasticizers can be added as binder suspension or binder solution.
  • the binder suspension is advantageously composed of polyvinyl butyral and benzyl phthalate at a ratio of 1: 1, by weight.
  • the second mixture is obtained.
  • the second mixture has a solids content of about 30 to 60 percent by volume.
  • the solvent content is usually less than 45 percent by volume.
  • the proportion of organic compounds other than the solvent, such as polymeric binder, dispersant and plasticizer, is generally 5 to 15% by volume in total.
  • the second mixture has a specific viscosity which is in the range from 1 Pa ⁇ s to 7 Pa ⁇ s.
  • the second mixture After homogenizing the second mixture, it is conditioned in casting charges and degassed.
  • the conditioned slurry is slowly stirred in a special pressure vessel and evacuated at reduced pressure. This is a common process step, which is known in principle to the person skilled in the art, so that the optimal conditions can be found with a small number of experiments.
  • the slurry thus obtained, or the homogenized, conditioned and degassed second mixture is then used for film casting.
  • the slip is poured onto a base and brought to a certain thickness with a squeegee.
  • a film casting installation is also used which has an in FIG. 1 having pictured casting shoe.
  • the slip 4 is filled and is brought by pulling the pad 5 in the drawing direction 6 by the Gellozier 3 to the desired thickness.
  • a base can advantageously be used on one side silicone coated plastic film, which consists for example of PET (polyethylene terephthalate); in principle, however, other films are also suitable, which can withstand the forces occurring during pulling and have low adhesion to the dried slip.
  • the surface of the film may also be patterned to impart a surface texture to the finished sheet.
  • silicone-coated PET films having a thickness of about 100 ⁇ m are suitable.
  • the thickness of the cast film depends on the cutting height, the hydrostatic pressure in the casting shoe, and the pulling rate.
  • the slip height In order to achieve a constant hydrostatic pressure, the slip height must be kept constant via a corresponding filling and level control.
  • the in FIG. 1 Shown Doppelschg hassleschuh improves compliance with a constant hydrostatic pressure in the second chamber, which is formed by the cutting 1 and 2 and allows very accurate compliance with a desired film thickness.
  • foils up to 40 cm wide can be easily cast.
  • the belt speed varies between 15 m / h (meters per hour) and 30 m / h.
  • the set cutting heights depend on the desired film thickness and are between 50 .mu.m and 2000 .mu.m, in particular between 500 .mu.m and 2000 .mu.m.
  • the film thickness after drying is about 30% of the cutting height.
  • the thickness of the sintered sheets depends on the z-shrinkage during sintering.
  • the shrinkage of the dried film is about 20% during sintering.
  • the cast metal powder films dry continuously in the drying channel of the casting plant in a temperature range of 25 - 70 ° C.
  • the drying channel is flowed through in countercurrent with air.
  • the high solvent vapor concentrations during drying necessitate a drying channel that complies with the explosion protection guidelines.
  • the film can be processed for example by cutting, punching or machining.
  • thin welding rods, rings, crucibles, boats or isotope containers can be obtained.
  • film parts are folded or assembled, for example, to pipes, boats or larger crucibles, wherein the film can also be glued.
  • an adhesive for example, unconsumed slip or unconsumed binder suspension can be used.
  • the article obtained from the film can be subjected to the further process steps.
  • Debinding means removing as far as possible residue-free organic constituents required for film casting, such as polymeric binders and plasticizers from the material. If residues remain in the form of carbon, this leads to the formation of carbides, such as tungsten carbide, in the subsequent sintering process.
  • Debindering takes place in a thermal process.
  • the films are heated with a suitable temperature profile.
  • FIG. 2 shows an example of a suitable temperature profile.
  • the organic components are first softened and possibly liquid.
  • Polymeric components such as the polymeric binder or dispersant are advantageously depolymerized, therefore, as mentioned above, a low ceiling temperature of these components is advantageous.
  • these liquid phases should evaporate and be removed via the atmosphere. The temperature is expected to rise so fast that no low-volatile cracking products.
  • These lead to carbon deposits in the form of soot To increase the vapor pressure is heated to 600 ° C under a vacuum of 50 - 150 mbar absolute, whereby a better evaporation of the liquid phase is achieved.
  • the atmosphere in the furnace chamber must be rinsed.
  • nitrogen is used in a proportion of about 2% by volume of hydrogen or less.
  • the hydrogen content advantageously has the effect that the furnace atmosphere is free of oxygen and oxidation of the metal powders is avoided.
  • Debinding is completed up to about 600 ° C.
  • the components at this stage are a weakly bound powder packing.
  • the thermal process is increased to about 800 ° C. There arise manageable, very brittle components that can be subjected to the following sintering step.
  • the film is sintered.
  • the sintering temperature is between about 1300 ° C and about 1600 ° C, especially 1400 ° C and 1550 ° C. Typically, the sintering times are about 2 hours to 8 hours. It is preferably sintered in a hydrogen atmosphere, in a vacuum or under an inert gas such as nitrogen or a noble gas such as argon with the addition of hydrogen. After sintering, there is a dense sheet with up to 100% of the theoretical density. The sintering can take place in batch or push furnaces.
  • the debindered and sintered foils are to be sintered on suitable sintered bases.
  • the films to be sintered with a smooth, flat cover, so that discarding of the film is avoided during the sintering process.
  • several films can be superimposed, which additionally increases the sintering capacity.
  • the stacked films are preferably separated from each other by sintering pads.
  • As sintering substrate are preferably ceramic plates or films which do not react with the tungsten heavy metal alloy under the sintering conditions. There are, for example, in question: alumina, aluminum nitride, boron nitride, silicon carbide or zirconium oxide. Furthermore, the surface quality of the sintered substrate is decisive for the surface quality of the film to be sintered.
  • the sheet may be rolled under conditions known in the art. It is rolled depending on the thickness of the sheet between about 1100 ° C and room temperature. Sheets approximately 2 mm thick are rolled at high temperatures, while foils can be rolled at room temperature.
  • rolling in the method according to the invention unlike the prior art, serves less to reduce the thickness, but it is intended Above all, the rippling of the sheet eliminated and the surface quality can be improved.
  • annealing to reduce internal stresses can be performed.
  • the annealing is generally carried out at temperatures of 600 ° C to 1000 ° C in a vacuum or under protective gas or reducing atmosphere. If necessary, the steps of rolling and annealing may be repeated until the desired surface quality and, if necessary, thickness have been achieved.
  • the method according to the invention allows the production of sheets of a tungsten heavy metal alloy or molybdenum alloy which have a thickness of less than 0.4 mm.
  • the density of the sheet is 17 g / cm 3 to 18.6 g / cm 3 , preferably 17.3 g / cm 3 to 18.3 g / cm 3 .
  • the method according to the invention allows the production of sheets from a tungsten heavy metal alloy or molybdenum alloy, which has an isotropic microstructure based on tungsten or molybdenum.
  • an isotropic microstructure is understood to mean a uniform mixture of the crystallographic orientations without a preferred orientation, as well as an approximately round grain shape of the tungsten phase or molybdenum phase.
  • Sheets and films produced by rolling in accordance with the prior art preferably have ⁇ 100> and ⁇ 110> orientations parallel to the normal direction of the sheet (see FIG. 11 ). These preferred orientations are part of a typical rolling texture as seen from the pole figures (see FIG. 12 ) can be read.
  • This formation of the crystallographic texture is accompanied by the oblong expression of the grain shape along the rolling direction (cf. Fig. 3 and Fig. 9 ).
  • FIG. 7 no crystallographic preferred direction along the standard of brass read (see. Fig. 7 and Fig. 11 ).
  • the pole pieces ( FIG. 8 ) have an intensity maximum of 2.0, but this is compared to the maximum intensity of 4.7 in the pole pieces for the rolled sheet ( FIG.
  • the thickness of the sheets described is advantageously less than 1.5 mm, in particular less than 0.5 mm, especially less than 0.4 mm.
  • the sheets of the invention have as another property that the strength and bendability are independent of direction.
  • the open porosity of the sheets of the invention is low and is 20 percent or less.
  • the sheets contain the materials described above. Iron should not be used if the material is to be non-magnetic.
  • an alloy powder of the composition W-0.2% Fe-5.3% Ni-2.1% Cu-0.2% Fe was used to produce a tungsten heavy metal sheet.
  • the powder had a specific surface area of 0.6 m 2 / g and a particle size of less than 63 ⁇ m.
  • the alloy powder was in a ball mill with 0.3 kg of polyester / polyamine condensation polymer (UNIQEMA Hypermer KD1) and 2.3 l of a mixture of 31.8 vol .-% ethanol and 68.2 vol .-% ethyl methyl ketone for 24 hours in ground and homogenized in a ball mill.
  • FIG. 3 shows the microstructure of the obtained tungsten heavy metal sheet, the image vertical is parallel to the lead normal, the image horizontal parallel to the drawing direction.
  • FIGS. 5 and 6 show pictures of the microstructure of the obtained tungsten heavy metal sheet, FIG. 5 with the image vertical parallel to the sheet normal and the image horizontal parallel to the rolling direction, FIG. 5 with the image vertical parallel to the lead normals and the image horizontals parallel to the transverse direction. In FIG. 5 is a slight stretch to see in FIG. 6 is a flattening of the particles recognizable.
  • FIG. 7 represents the microstructure (cf. FIG. 3 ), in which the color of the tungsten particles indicates the crystal direction of the grain, which is parallel to the normal direction of the sheet (compare to Figure 7a: color code).
  • FIG. 7 shows a uniform distribution of all colors, so that no crystallographic preferred direction with respect to the sheet normal is recognizable.
  • the texture is represented in the form of pole figures.
  • FIG. 8 shows a relatively restless texture with no apparent rolling texture.
  • a tungsten heavy metal sheet with a density of 17.5 g / cm 3 which was obtained by rolling and contained an amount of 92.4% tungsten and 7.6% metallic binder, was investigated analogously.
  • element powders in the composition W-0.2% Fe-5.3% Ni-2.1% Cu-0.2% Fe were mixed in a ball mill and ground.
  • the powder mixture was isostatically pressed at 1500 bar and then sintered at 1450 ° C in a hydrogen atmosphere.
  • An approximately 10 mm thick plate of the sintered material was brought by multiple hot / hot rolling by about 20% each with subsequent annealing to a thickness of about 1 mm.
  • the preheating temperature of about 1300 ° C is reduced at 10 mm thickness with decreasing thickness. In the last rolling step is preheated only at about 300 ° C.
  • FIG. 9 shows the microstructure of the obtained tungsten heavy metal sheet, the image vertical is parallel to the lead normal, the image horizontal parallel to the rolling direction.
  • FIG. 10 shows the microstructure of the obtained Tungsten heavy metal sheet, the image vertical is parallel to the metal standard, the image horizontal is parallel to the transverse direction. In both pictures it can be clearly seen that the tungsten particles were stretched in the rolling direction by the rolling process.
  • FIG. 10 shows the microstructure across the rolling direction. The tungsten particles are slightly flattened.
  • FIG. 8 represents the microstructure (cf. FIG. 9 ), wherein the color of the tungsten particles indicates the crystal direction of the grain, which is parallel to the normal direction of the sheet (cf. Figure 7a : Color code). In contrast to FIG. 7 dominate in FIG. 11 red and blue colors. It can It can be read that the stretched tungsten particles have aligned preferably ⁇ 100> and ⁇ 110> directions parallel to the sheet normal.
  • FIG. 12 the texture is represented in the form of pole figures. In FIG. 12 is contrary to FIG. 8 to recognize a clear difference between the transverse and rolling direction. Therefore, due to the orientation of the tungsten particles, the sheet has anisotropic material properties within the sheet plane.
  • Table 1 are further examples of compositions which are processed as in Example 1 into sheets. Tungsten is filled in wt .-% to a total of 100 wt .-% (identified by "ad 100").
  • Table 2 consists of 136 sheets using molybdenum instead of tungsten and the content of the metal binder components nickel, iron, copper, cobalt, manganese or aluminum as shown in Table 1 in weight percent. No.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Blechen aus Wolframschwermetalllepierunp oder Motybdänlegierung sowie deren Verwendung. Wolframschwermetalllegierungen sind aufgrund ihrer hohen Dichte von 17 bis 18,6 g/cm3 beispielsweise dazu geeignet, kurzwellige elektromagnetische Strahlung abzuschirmen. Sie werden daher häufig zum Strahlungsschutz oder zur Strahlführung in Röntgengeräten eingesetzt. Andere Anwendungen sind zum Beispiel Ausgleichsgewichte in der der Luftfahrt- und Automobilindustrie oder Formbauteile für Aluminiumdruckgussformen.
Wolframschwermetalllegierungen bestehen zu etwa 90 Gew.-% bis etwa 97 Gew.-% aus Wolfram. Der restliche Anteil sind Bindermetalle. Derartige Bleche sind in Dicken von etwa 0,4 mm bis etwa 1,2 mm kommerziell erhältlich, weisen durch Walzbehandlung jedoch anisotrope Werkstoffeigenschaften und ein anisotrope Mikrostruktur (bezogen auf Wolfram) auf.
Wolframschwermetallbauteile werden meist endformnah gesintert und anschließend spanend bearbeitet oder im Falle von flachen Bauteilen aus Blechen hergestellt.
The present invention relates to a method for the production of sheets of tungsten heavy metal or molybdenum alloy and their use. Due to their high density of 17 to 18.6 g / cm 3 , tungsten heavy metal alloys are suitable for shielding short-wave electromagnetic radiation, for example. They are therefore often used for radiation protection or beam guidance in X-ray equipment. Other applications include balancing weights in the aerospace and automotive industries or molded components for aluminum die casting molds.
Tungsten heavy metal alloys consist of about 90% to about 97% by weight tungsten. The remainder is binder metal. Such sheets are commercially available in thicknesses of about 0.4 mm to about 1.2 mm, but have by rolling anisotropic material properties and an anisotropic microstructure (based on tungsten) on.
Tungsten heavy metal components are usually sintered close to the final shape and then machined or, in the case of flat components, produced from sheet metal.

Bei der Herstellung von Wolframschwermetallblechen und auch Blechen aus Molybdänlegierungen treten verschiedene Probleme auf:

  • Zwischen zwei Glühschritten kann im Allgemeinen nur eine sehr begrenzte Walzverformung eingebracht werden. Bei zu starker Walzverformung reißen die Bleche ein und werden unbrauchbar. Typische, erlaubte Verformungsgrade liegen unter 20 % zwischen zwei Glühschritten. Bei Blechdicken unter 0,4 mm ist es notwendig mehr als 4 Glühungen durchzuführen. Dadurch wird das Verfahren signifikant erschwert, wenn dünne Bleche hergestellt werden sollen.
  • Die gewalzten, dünnen Bleche können aufgrund ihrer Länge nur schwer in üblichen Produktionsöfen geglüht werden können. Platzsparendes Aufwickeln ist wegen der Sprödigkeit der Bleche nicht durchführbar, so dass meist eine große Anzahl kleiner Bleche verarbeitet werden muss. Hierdurch wird die Herstellung dünner Bleche mit einer Dicke von 0,5 mm oder weniger signifikant erschwert.
  • Die bekannten Bleche zeigen bedingt durch das Herstellungsverfahren anisotrope, das heißt richtungsabhängige, Werkstoffeigenschaften innerhalb der Blechebene sowie eine Textur, bei welcher die <100>- und <110>-Richtungen parallel zur Blechnormalen ausgerichtet sind.
In the manufacture of tungsten heavy metal sheets and also sheets of molybdenum alloys, various problems arise:
  • In general, only a very limited rolling deformation can be introduced between two annealing steps. If the rolling deformation is too high, the sheets break and become unusable. Typical allowable degrees of deformation are below 20% between two anneals. For sheet thicknesses below 0.4 mm, it is necessary to perform more than 4 anneals. This significantly complicates the process when thin sheets are to be made.
  • The rolled, thin sheets can be difficult to anneal in conventional production ovens because of their length. Space-saving winding is not feasible because of the brittleness of the sheets, so that usually a large number of small sheets must be processed. This will be the Making thin sheets with a thickness of 0.5 mm or less significantly more difficult.
  • Due to the manufacturing process, the known metal sheets show anisotropic, that is directional, material properties within the sheet metal plane and a texture in which the <100> and <110> directions are aligned parallel to the sheet metal standard.

US 3,155,502 offenbart ein Verfahren zum Herstellen von geformten Gegenständen, bei dem zuerst ein Pulver aus Refraktärmetallen mit wasserlöslichen organischen Bindern. Schmierstoffen und einer kleinen Menge Wasser vermischt wird. Die Mischung wird zu einem Grünkörper extrudiert und kann in einem Kaltwalzschritt weiter kompaktiert und anschließend in einer inerten Atmosphäre gesintert. US 3,155,502 discloses a method for producing shaped articles, wherein first a refractory metal powder with water-soluble organic binders . Lubricants and a small amount of water is mixed. The mixture is extruded into a green body and can be further compacted in a cold rolling step and then sintered in an inert atmosphere.

EP 0 325 179 beschreibt ein Verfahren zur Herstellung von Blechen aus einer Wolframschwermetalllegierung, bei dem die Bestandteile der Legierung in einem flüssigen Medium zu einem Schlicker gemischt werden, bei dem die flüssigen Bestandteile abgesaugt werden. Aus dem getrockneten Schlicker wird ein planarer Formkörper hergestellt, der getrocknet und auf eine Dichte von mindestens 90% der theoretischen Dichte der Legierung gesintert wird. Der gesinterte Formkörper wird dann in weiteren Schritten auf die gewünschte Enddicke gewalzt. EP 0 325 179 describes a process for the production of sheets from a tungsten heavy metal alloy, in which the constituents of the alloy are mixed in a liquid medium to a slurry in which the liquid constituents are sucked off. From the dried slurry, a planar shaped body is prepared, which is dried and sintered to a density of at least 90% of the theoretical density of the alloy. The sintered shaped body is then rolled in further steps to the desired final thickness.

Es war die Aufgabe der vorliegenden Erfindung, ein technisch einfacheres Herstellungsverfahren für derartige Bleche mit einer geringen Dicke bereitzustellen. Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von geformten Gegenständen aus einer Wolframschwermetallegierung und aus Molybdänlegierungen, wobei aus einer Wolframschwermetallegierung oder Molybdänlegierung ein Schlicker zum Foliengießen hergestellt wird, aus dem Schlicker eine Folie gegossen wird und die Folie nach dem Trocknen entbindert und gesintert wird, ein Blech zu erhalten. Der geformte Gegenstand gemäß der Erfindung ist im Allgemeinen ein Blech oder aus einem Blech durch beispielsweise Stanzen, Prägen oder Umformen erhältlich. Weitere geeignete Formgebungsverfahren zum Erhalt des geformten Gegenstandes sind beispielsweise Biegen, Wasserstrahl- oder Laserschneiden, Funkenerosion und spanende Bearbeitung.It was the object of the present invention to provide a technically simpler manufacturing method for such sheets with a small thickness. This object is achieved by a method for the production of shaped articles from a tungsten heavy metal alloy and from molybdenum alloys, wherein a slurry for film casting is produced from a tungsten heavy metal alloy or molybdenum alloy, a film is poured from the slurry and the film is debinded and sintered after drying, to get a sheet. The molded article according to the invention is generally available as a sheet or as a sheet metal by, for example, stamping, stamping or forming. Other suitable forming methods for obtaining the molded article include, for example, bending, water jet or laser cutting, spark erosion, and machining.

Unter dem Begriff Wolframschwermetallegierung oder Molybdänlegierung sind im Sinne der vorliegenden Erfindung Materialien ausgewählt aus der Gruppe bestehend aus Wolframschwermetalllegierungen, Wolfram, Wolframlegierungen, Molybdän und Molybdänlegierungen zu verstehen. Das Verfahren gemäß der Erfindung ist somit für zahlreiche Materialien vorteilhaft einsetzbar.For the purposes of the present invention, the term tungsten heavy metal alloy or molybdenum alloy means materials selected from the group consisting of tungsten heavy metal alloys, tungsten, tungsten alloys, molybdenum and molybdenum alloys. The method according to the invention can thus be used advantageously for many materials.

Es war eine weitere Aufgabe, einen geformten Gegenstand aus einer Wolframschwermetallegierung oder Molybdänlegierung, welches eine isotrope Mikrostruktur bezogen auf Wolfram bzw. Molybdän, aufweist, bereitzustellen, welcher isotrope Eigenschaften besitzt. Die nach dem Verfahren gemäß der Erfindung erhaltenen Gegenstände weisen diese Merkmale auf und lösen somit diese Aufgabe.It was another object to provide a molded article of tungsten heavy metal alloy or molybdenum alloy having an isotropic microstructure with respect to tungsten and molybdenum, respectively, which has isotropic properties. The objects obtained by the process according to the invention have these features and thus solve this task.

Das Foliengießen ist ein kostengünstiges Verfahren zur Herstellung planarer Komponenten für verschiedenste Anwendungen in der Elektroindustrie, wie z. B. Chipsubstrate, Piezoaktuatoren und Mehrschichtkondensatoren. In den letzten Jahren ist jedoch das Interesse am Foliengießen für andere, neue Produktbereiche stark gewachsen. Mit herkömmlichen Verfahren zur Herstellung von keramischen Bauteilen, wie Trockenpressen, Schlickerguss oder Extrusion ist die wirtschaftliche Herstellung von großflächigen, ebenen, dünnen, defektfreien und homogenen Substraten, die eine ausreichende Grünfestigkeit, enge Maßtoleranzen und eine glatte Oberfläche aufweisen, überaus schwierig oder gar nicht möglich.Film casting is a cost effective process for producing planar components for a variety of applications in the electrical industry, such. As chip substrates, piezo actuators and multilayer capacitors. In recent years, however, interest in film casting has grown significantly for other, new product areas. With conventional methods for the production of ceramic components, such as dry pressing, slip casting or extrusion, the economic production of large-area, flat, thin, defect-free and homogeneous substrates, which have sufficient green strength, tight dimensional tolerances and a smooth surface is extremely difficult or even impossible ,

Gemäß dem derzeitigen Stand der Technik umfasst das Verfahren zur Herstellung von Blechen aus Wolframschwermetalllegierungen oder Molybdänlegierungen im Allgemeinen folgende Schritte:

  • Metallpulver mischen (z.B. Wolfram und metallischer Binder)
  • mahlen
  • pressen
  • sintern
    mehrfaches Wiederholen der Schritte
  • walzen
  • glühen
    bis die gewünschte Blechstärke erreicht ist
  • richten
According to the current state of the art, the method for producing sheets of tungsten heavy metal alloys or molybdenum alloys generally comprises the following steps:
  • Mix metal powder (eg tungsten and metallic binder)
  • grind
  • press
  • sinter
    repeating the steps several times
  • roll
  • glow
    until the desired thickness is reached
  • judge

Anschließend werden die Bleche zum gewünschten Bauteil verarbeitet. Geeignete Formgebungsverfahren sind beispielsweise Biegen, Wasserstrahl- oder Laserschneiden, Funkenerosion und spanende Bearbeitung.Subsequently, the sheets are processed to the desired component. Suitable shaping methods include, for example, bending, water jet or laser cutting, spark erosion and machining.

Ein Gegenstand der Erfindung ist ein Verfahren wie in den Ansprüchen 1 bis 5 definiert.An object of the invention is a method as defined in claims 1 to 5.

Ein weiterer Gegenstand ist die Verwendung wie in einem der Ansprüche 6 bis 11 definiert.Another object is the use as defined in any one of claims 6 to 11.

Bei dem Verfahren gemäß der Erfindung wird aus einer Wolframschwermetallegierung oder Molybdänlegierung ein Schlicker zum Foliengießen hergestellt, aus dem Schlicker eine Folie auf eine Unterlage gegossen und die Folie nach dem Trocknen entbindert und gesintert, um das Blech zu erhalten, wobei die Folie durch Ziehen der Unterlage in Ziehrichtung durch Gießschneiden auf die gewünschte Dicke gebracht wird.In the method according to the invention, a slurry for film casting is prepared from a tungsten heavy metal alloy or molybdenum alloy, cast from the slurry a film on a substrate and the film is debind after drying and sintered to obtain the sheet, the film by pulling the pad is brought in the drawing direction by pouring cut to the desired thickness.

Das Verfahren ist insbesondere ein Verfahren zur Herstellung von Blechen aus einer Wolframschwermetallegierung oder Molybdänlegierung enthaltend die Schritte

  • Bereitstellen eines Pulvers aus einer Wolframschwermetallegierung oder Molybdänlegierung;
  • Mischen mit Lösemittel, Dispergator und gegebenenfalls polymerem Binder, um eine erste Mischung zu erhalten;
  • Mahlen und Homogenisieren der ersten Mischung;
  • Hinzufügen von Plastifizierer und gegebenenfalls weiterem Lösemittel und / oder polymerem Binder, um eine zweite Mischung zu erhalten;
  • Homogenisieren der zweiten Mischung;
  • Entgasen der zweiten Mischung;
  • Foliengießen der zweiten Mischung;
  • Trocknen der gegossenen Folie;
  • Entbindern der gegossenen Folie;
  • Sintern der Folie, um ein erstes Schwermetallblech zu erhalten.
In particular, the method is a method for producing sheets of tungsten heavy metal alloy or molybdenum alloy containing the steps
  • Providing a tungsten heavy metal alloy or molybdenum alloy powder;
  • Mixing with solvent, dispersant and optionally polymeric binder to obtain a first mixture;
  • Grinding and homogenizing the first mixture;
  • Adding plasticizer and optionally further solvent and / or polymeric binder to obtain a second mixture;
  • Homogenizing the second mixture;
  • Degassing the second mixture;
  • Film casting the second mixture;
  • Drying the cast film;
  • Debinding the cast film;
  • Sintering the foil to obtain a first heavy metal sheet.

In einer vorteilhaften Ausführung enthält das Verfahren zusätzlich noch die Schritte

  • Walzen und Glühen des ersten Schwermetallbleches, um ein zweites Schwermetallblech zu erhalten;
  • gegebenenfalls Wiederholen des Walzen und Glühens, bis die gewünschte Oberflächenstruktur und Dicke erreicht ist;
  • Richten des zweiten Schwermetallbleches.
In an advantageous embodiment, the method additionally contains the steps
  • Rolling and annealing the first heavy metal sheet to obtain a second heavy metal sheet;
  • optionally repeating the rolling and annealing until the desired surface texture and thickness is achieved;
  • Straightening the second heavy metal sheet.

In dem Verfahren gemäß der Erfindung wird zunächst Wolframmetallpulver oder Molybdänmetallpulver mit einem metallischen Binder, ebenfalls in Form eines Metallpulvers, miteinander gemischt. Der metallische Binder ist üblicherweise eine Legierung enthaltend Metalle ausgewählt aus der Gruppe bestehend aus Nickel, Eisen, Kupfer miteinander oder mit anderen Metallen. Alternativ kann auch eine Legierung von Wolfram oder Molybdän mit dem metallischen Binder in Form eines Metallpulvers eingesetzt werden. Als metallische Binder lassen sich vorteilhaft Nickel/Eisen- und Nickel/Kupfer-Legierungen verwenden.In the process according to the invention, tungsten metal powder or molybdenum metal powder is first mixed with a metal binder, also in the form of a metal powder. The metallic binder is usually an alloy containing metals selected from the group consisting of nickel, iron, copper with each other or with other metals. Alternatively, an alloy of tungsten or molybdenum may be used with the metallic binder in the form of a metal powder. As metal binder can be used advantageously nickel / iron and nickel / copper alloys.

Der metallische Binder besteht in der Regel aus Nickel, Eisen, Kupfer, Kobalt, Mangan, Molybdän und/oder Aluminium.The metallic binder is usually made of nickel, iron, copper, cobalt, manganese, molybdenum and / or aluminum.

Der Wolfram- oder Molybdängehalt beträgt von 60 Gew.-% bis 98 Gew.-%, vorteilhaft von 78 Gew.-% bis 97 Gew.%, insbesondere 90 Gew.-% bis 95 Gew.-%, oder 90,2 Gew.-% bis 95,5 Gew.-%.The tungsten or molybdenum content is from 60% by weight to 98% by weight, advantageously from 78% by weight to 97% by weight, in particular from 90% by weight to 95% by weight, or 90.2% by weight .-% to 95.5 wt .-%.

Der Nickelgehalt beträgt 1 Gew.-% bis 30 Gew.-%, vorteilhaft 2 Gew.-% bis 15 Gew.-%, oder 2,6 Gew.-% bis 6 Gew.-%, oder 3 Gew.-% bis 5,5 Gew.-%.The nickel content is 1 wt .-% to 30 wt .-%, advantageously 2 wt .-% to 15 wt .-%, or 2.6 wt .-% to 6 wt .-%, or 3 wt .-% to 5.5% by weight.

Der Eisengehalt beträgt 0 Gew.-% bis 15 Gew.-%, vorteilhaft 0,1 Gew.-% bis 7 Gew.-%, insbesondere 0,2 Gew.-% bis 5,25 Gew.-% oder 0,67 Gew.-% bis 4,8 Gew.-%. Der Kupfergehalt beträgt 0 Gew.-% bis 5 Gew.-%, vorteilhaft 0,08 Gew.-% bis 4 Gew.-%, insbesondere 0,5 Gew.-% bis 3 Gew.-% oder 0,95 Gew.-% bis 2,1 Gew.-%. Der Kobaltgehalt beträgt 0 Gew.-% bis 2 Gew.-%, vorteilhaft 0,1 Gew.-% bis 0,25 Gew.-% oder 0,1 Gew.-% bis 0,2 Gew.-%.The iron content is 0 wt .-% to 15 wt .-%, advantageously 0.1 wt .-% to 7 wt .-%, in particular 0.2 wt .-% to 5.25 wt .-% or 0.67 Wt .-% to 4.8 wt .-%. The copper content is 0 wt .-% to 5 wt .-%, advantageously 0.08 wt .-% to 4 wt .-%, in particular 0.5 wt .-% to 3 wt .-% or 0.95 wt. % to 2.1% by weight. The cobalt content is 0 wt .-% to 2 wt .-%, advantageously 0.1 wt .-% to 0.25 wt .-% or 0.1 wt .-% to 0.2 wt .-%.

Der Mangangehalt beträgt 0 Gew.% bis 0,15 Gew.%, vorteilhaft 0,05 Gew.-% bis 0,1 Gew.-%. Der Aluminiumgehalt beträgt 0 bis 0,2 Gew.-%, vorteilhaft 0,05 bis 0,15 Gew.-%, oder 0,1 Gew.-%. Vorteilhaft liegt der Wolframgehalt bei 60 1 Gew.-% bis 30 Gew.-% bis 80 Gew.-% bis 30 Gew.-%, wenn nur Eisen und Nickel als metallischer Binder verwendet werden. In diesem Fall können optional 0 bis 0,2 Gew.-% Aluminium vorteilhaft sein.The manganese content is 0 wt.% To 0.15 wt.%, Preferably 0.05 wt .-% to 0.1 wt .-%. The aluminum content is 0 to 0.2 wt .-%, preferably 0.05 to 0.15 Wt .-%, or 0.1 wt .-%. Advantageously, the tungsten content is from 60 1 wt .-% to 30 wt .-% to 80 wt .-% to 30 wt .-%, if only iron and nickel are used as a metallic binder. In this case, optionally 0 to 0.2% by weight of aluminum may be advantageous.

Das Wolfram- oder Molybdänpulver bzw. Legierungspulver hat vorteilhaft eine spezifische Oberfläche von etwa 0,1 m2/g bis etwa 2 m2/g, die Teilchengröße beträgt meist weniger als 100 µm, insbesondere weniger als 63 µm. Diese Mischung wird anschließend in ein Lösemittel eingebracht, welches vorzugsweise einen Dispergator enthält und anschließend deagglomeriert, beispielsweise in eine Kugelmühle oder einer anderen geeigneten Vorrichtung.The tungsten or molybdenum powder or alloy powder advantageously has a specific surface area of about 0.1 m 2 / g to about 2 m 2 / g, the particle size is usually less than 100 .mu.m, in particular less than 63 .mu.m. This mixture is then introduced into a solvent which preferably contains a dispersant and then deagglomerated, for example in a ball mill or other suitable device.

Der Dispergator verhindert das Agglomerieren der Pulverteilchen, senkt die Viskosität des Schlickers und führt zu einer höheren Gründichte der gegossenen Folie. Als Dispergator werden vorteilhaft Polyester/Polyamin-Kondensationspolymere, wie beispielsweise Hypermer KD1 der Firma Uniqema eingesetzt; dem Fachmann sind jedoch weitere geeignete Materialien bekannt, wie beispielsweise Fischöl (Menhaden Fish Oil Z3) oder Alkylphosphatverbindungen (ZSCHIMMER & SCHWARZ KF 1001).The dispersant prevents agglomeration of the powder particles, lowers the viscosity of the slurry and results in a higher green density of the cast film. Polyester / polyamine condensation polymers such as Hypermer KD1 from Uniqema are advantageously used as the dispersant; however, those skilled in the art will be aware of other suitable materials such as fish oil (Menhaden Fish Oil Z3) or alkyl phosphate compounds (ZSCHIMMER & SCHWARZ KF 1001).

Als Lösemittel lassen sich vorteilhaft polare organische Lösungsmittel verwenden, wie beispielsweise Ester, Ether, Alkohole oder Ketone, wie Methanol, Ethanol, n-Propanol, n-Butanol, Diethylether, tert.-Butylmethylether, Essigsäuremethylester, Essigsäureethylester, Aceton, Ethylmethylketon oder deren Mischungen. Vorzugsweise wird als Lösemittel ein azeotropes Gemisch zweier Lösemittel verwendet, beispielsweise ein Gemisch aus Ethanol und Ethylmethylketon im Verhältnis von 31,8 zu 68,2 Volumenprozent.As solvents it is possible to use polar organic solvents, for example esters, ethers, alcohols or ketones, such as methanol, ethanol, n-propanol, n-butanol, diethyl ether, tert-butyl methyl ether, methyl acetate, ethyl acetate, acetone, ethyl methyl ketone or mixtures thereof , Preferably, the solvent used is an azeotropic mixture of two solvents, for example a mixture of ethanol and ethyl methyl ketone in a ratio of 31.8 to 68.2 percent by volume.

Dieses Gemisch wird beispielsweise in einer Kugelmühle oder einem anderen geeigneten Mischaggregat gemahlen und dabei homogenisiert. Dieser Vorgang wird im Allgemeinen etwa 24 Stunden lang durchgeführt und so die erste Mischung erhalten.This mixture is ground, for example, in a ball mill or other suitable mixing unit and thereby homogenized. This process is generally carried out for about 24 hours to obtain the first mixture.

Der polymere Binder kann bei der Herstellung der ersten Mischung zugefügt werden, optional mit weiterem Lösemittel und gegebenenfalls einem Plastifizierer. In einer alternativen Ausführungsform lässt sich der polymere Binder auch bei der Herstellung der zweiten Mischung zugeben. In einer alternativen Ausführungsform kann der polymere Binder zum Teil sowohl bei der Herstellung der ersten Mischung zugefügt werden als auch zum Teil bei der Herstellung der zweiten Mischung. Diese Variante hat den Vorteil, dass nach Zugabe eines Teiles des polymeren Binders in die erste Mischung diese Mischung stabiler ist und eine geringere oder keine Sedimentation zeigt.The polymeric binder may be added in the preparation of the first mixture, optionally with additional solvent and optionally a plasticizer. In an alternative embodiment, the polymeric binder can also be added in the preparation of the second mixture. In an alternative embodiment, the polymeric binder may be added in part both in the preparation of the first mixture and in part in the preparation of the second mixture. These Variant has the advantage that after adding a portion of the polymeric binder in the first mixture, this mixture is more stable and shows less or no sedimentation.

Meist wird ein Gemisch aus Plastifizierer, polymerem Binder und Lösemittel zugefügt. Hierbei können die gleichen Lösemittel wie oben beschrieben werden.Mostly a mixture of plasticizer, polymeric binder and solvent is added. Here, the same solvents as described above.

Alternativ kann zur Herstellung der ersten Mischung ein Lösemittel oder Lösemittelgemisch verwendet werden und der polymere Binder mit einem anderen Lösemittel oder Lösemittelgemisch zugesetzt werden, so dass sich ein gewünschtes Lösemittelgemisch (z.B. ein azeotropes Gemisch) erst nach der Zugabe des polymeren Binders einstellt.Alternatively, to prepare the first mixture, a solvent or solvent mixture may be used and the polymeric binder added with another solvent or solvent mixture such that a desired solvent mixture (e.g., an azeotropic mixture) does not set until after the addition of the polymeric binder.

Der polymere Binder, muß viele Anforderungen erfüllen. Er dient vorwiegend dazu, einzelne Pulverteilchen beim Trocknen miteinander zu verbinden, soll im Lösemittel löslich und gut mit dem Dispergator verträglich sein. Die Zugabe des polymeren Binders beeinflusst die Viskosität des Schlickers stark. Vorteilhaft bewirkt er nur eine geringe Viskositätserhöhung und besitzt gleichzeitig eine stabilisierende Wirkung auf die Dispersion. Der polymere Binder muss rückstandsfrei ausbrennen. Zusätzlich sorgt der polymere Binder für eine gute Festigkeit und Handhabbarkeit der Grünfolie. Ein optimaler polymerer Binder reduziert die Tendenz von Trocknungsrissen in der Grünfolie und behindert nicht die Lösemittelverdampfung durch die Ausbildung einer dichten Oberflächenschicht. Als polymerer Binder lassen sich generell Polymere oder Polymerzubereitungen mit einer niedrigen Ceiling-Temperatur verwenden, wie beispielsweise Polyacetal, Polyacrylate oder -methacrylate oder dessen Copolymere (Acrylharze wie ZSCHIMMER & SCHWARZ KF 3003 und KF 3004), sowie Polyvinylalkohol oder dessen Derivate, wie Polyvinylacetat oder Polyvinylbutyral (KURARAY Mowital SB 45 H, FERRO Butvar B-98, und B-76, KURARAY Mowital SB 60 H).The polymeric binder must meet many requirements. It serves primarily to combine individual powder particles when drying together, should be soluble in the solvent and be well compatible with the dispersant. The addition of the polymeric binder greatly influences the viscosity of the slurry. Advantageously, it causes only a slight increase in viscosity and at the same time has a stabilizing effect on the dispersion. The polymeric binder must burn out without residue. In addition, the polymeric binder provides good strength and handleability of the green sheet. An optimal polymeric binder reduces the tendency of drying cracks in the green sheet and does not hinder solvent evaporation by forming a dense surface layer. As the polymeric binder, it is generally possible to use polymers or polymer formulations having a low ceiling temperature, such as polyacetal, polyacrylates or methacrylates or its copolymers (acrylic resins such as ZSCHIMMER & SCHWARZ KF 3003 and KF 3004), as well as polyvinyl alcohol or its derivatives such as polyvinyl acetate or Polyvinyl butyral (KURARAY Mowital SB 45 H, FERRO Butvar B-98, and B-76, KURARAY Mowital SB 60 H).

Als Plastifizierer (Weichmacher) werden Additive verwendet, welche durch Herabsetzung der Glastemperatur des polymeren Binders eine höhere Flexibilität der Grünfolie bewirken.As plasticizer (plasticizer) additives are used, which cause by lowering the glass transition temperature of the polymeric binder, a higher flexibility of the green sheet.

Der Plastifizierer dringt in die Netzwerkstruktur des polymeren Binders ein, was dazu führt, dass der intermolekulare Reibungswiderstand und damit die Viskosität des Schlickers herabgesetzt wird. Durch Einstellung eines geeigneten Weichmacher-/Binderverhältnisses und durch die Kombination von verschiedenen Weichmachertypen lassen sich Folieneigenschaften wie Reißfestigkeit und Dehnbarkeit steuern.The plasticizer penetrates into the network structure of the polymeric binder, which causes the intermolecular frictional resistance and thus the viscosity of the slurry to be reduced. By setting a suitable plasticizer / binder ratio and by combining different Plasticizer types can be used to control film properties such as tear resistance and ductility.

Als Plastifizierer wird vorteilhaft ein Benzylphthalat (FERRO Santicizer 261A) eingesetzt.The plasticizer used is advantageously a benzyl phthalate (FERRO Santicizer 261A).

Binder und Plastifizierer lassen sich als Bindersuspension oder Binderlösung zum zugeben. Die Bindersuspension setzt sich vorteilhaft aus Polyvinylbutyral und Benzylphthalat mit einem Verhältnis 1:1, bezogen auf das Gewicht, zusammen.Binders and plasticizers can be added as binder suspension or binder solution. The binder suspension is advantageously composed of polyvinyl butyral and benzyl phthalate at a ratio of 1: 1, by weight.

Nach der Zugabe des polymeren Binders, gegebenenfalls mit weiterem Lösemittel und optional mit Plastifizierer, wird die zweite Mischung erhalten.After the addition of the polymeric binder, optionally with further solvent and optionally with plasticizer, the second mixture is obtained.

Die zweite Mischung weist einen Feststoffanteil von ca. 30 bis 60 Volumenprozent auf. Der Lösemittelanteil ist meist kleiner als 45 Volumenprozent. Der Anteil an vom Lösemittel verschiedenen organischen Verbindungen, wie polymerer Binder, Dispergator und Plastifizierer beträgt in der Summe meist 5 bis 15 Volumenprozent. Je nach Zusammensetzung besitzt die zweite Mischung eine bestimmte Viskosität, die im Bereich von 1 Pa·s bis 7 Pa·s liegt.The second mixture has a solids content of about 30 to 60 percent by volume. The solvent content is usually less than 45 percent by volume. The proportion of organic compounds other than the solvent, such as polymeric binder, dispersant and plasticizer, is generally 5 to 15% by volume in total. Depending on the composition, the second mixture has a specific viscosity which is in the range from 1 Pa · s to 7 Pa · s.

Diese wird -meist für weitere 24 Stunden- in einem geeigneten Mischaggregat, wie einer Kugelmühle, homogenisiert.This is-mostly for a further 24 hours-homogenized in a suitable mixing unit, such as a ball mill.

Nach dem Homogenisieren der zweiten Mischung wird diese in Gießchargen konditioniert und entgast. Der konditionierte Schlicker wird in einem speziellen Druckbehälter langsam gerührt und bei Unterdruck evakuiert. Dies ist ein üblicher Verfahrensschritt, der dem Fachmann prinzipiell bekannt ist, so dass die optimalen Bedingungen mit einer geringen Anzahl an Versuchen aufzufinden sind. Der so erhaltene Schlicker, bzw. die homogenisierte, konditionierte und entgaste zweite Mischung wird anschließend zum Foliengießen verwendet.After homogenizing the second mixture, it is conditioned in casting charges and degassed. The conditioned slurry is slowly stirred in a special pressure vessel and evacuated at reduced pressure. This is a common process step, which is known in principle to the person skilled in the art, so that the optimal conditions can be found with a small number of experiments. The slurry thus obtained, or the homogenized, conditioned and degassed second mixture is then used for film casting.

Im einfachsten Fall wird der Schlicker auf eine Unterlage gegossen und mit einem Rakel auf eine bestimmte Dicke gebracht.In the simplest case, the slip is poured onto a base and brought to a certain thickness with a squeegee.

Bei dem erfindungsgemäßen Verfahren wird dabei auch eine Foliengießanlage eingesetzt, welche einen in Figur 1 abgebildeten Gießschuh aufweist. In Figur 1 wird der Schlicker 4 eingefüllt und wird durch Ziehen der Unterlage 5 in Ziehrichtung 6 durch die Gießschneiden 3 auf die gewünschte Dicke gebracht. Als Unterlage kann vorteilhaft eine einseitig silikonbeschichtete Kunststoffolie verwendet werden, die beispielsweise aus PET (Polyethylenterephthalat) besteht; prinzipiell geeignet sind aber auch andere Folien, die den beim Ziehen auftretenden Kräften widerstehen können und eine geringe Haftung an dem getrockneten Schlicker aufweisen. Die Oberfläche der Folie kann auch strukturiert sein, um dem fertigen Blech eine Oberflächenstruktur zu verleihen. Geeignet sind zum Beispiel silikonbeschichtete PET-Folien mit einer Dicke von etwa 100 µm.In the method according to the invention, a film casting installation is also used which has an in FIG. 1 having pictured casting shoe. In FIG. 1 the slip 4 is filled and is brought by pulling the pad 5 in the drawing direction 6 by the Gießschneiden 3 to the desired thickness. As a base can advantageously be used on one side silicone coated plastic film, which consists for example of PET (polyethylene terephthalate); in principle, however, other films are also suitable, which can withstand the forces occurring during pulling and have low adhesion to the dried slip. The surface of the film may also be patterned to impart a surface texture to the finished sheet. For example, silicone-coated PET films having a thickness of about 100 μm are suitable.

Für einen Schlicker mit konstanten Eigenschaften hängt die Dicke der gegossenen Folie von der Schneidenhöhe, vom hydrostatischen Druck im Gießschuh und der Ziehgeschwindigkeit ab. Um einen konstanten hydrostatischen Druck zu erreichen, muss die Schlickerhöhe über eine entsprechende Befüllung und Niveauregulierung konstant gehalten werden. Der in Figur 1 abgebildete Doppelkammergießschuh verbessert die Einhaltung eines konstanten hydrostatischen Druckes in der zweiten Kammer, welche durch die Schneiden 1 und 2 gebildet wird und erlaubt die sehr genaue Einhaltung einer gewünschten Foliendicke. Im Allgemeinen können Folien bis 40 cm Breite problemlos gegossen werden. Die Bandgeschwindigkeit variiert zwischen 15 m/h (Meter pro Stunde) und 30 m/h. Die eingestellten Schneidenhöhen hängen von der gewünschten Foliendicke ab und liegen zwischen 50 µm und 2000 µm, insbesondere zwischen 500 µm und 2000 µm.For a slurry having constant properties, the thickness of the cast film depends on the cutting height, the hydrostatic pressure in the casting shoe, and the pulling rate. In order to achieve a constant hydrostatic pressure, the slip height must be kept constant via a corresponding filling and level control. The in FIG. 1 Shown Doppelkammergießschuh improves compliance with a constant hydrostatic pressure in the second chamber, which is formed by the cutting 1 and 2 and allows very accurate compliance with a desired film thickness. In general, foils up to 40 cm wide can be easily cast. The belt speed varies between 15 m / h (meters per hour) and 30 m / h. The set cutting heights depend on the desired film thickness and are between 50 .mu.m and 2000 .mu.m, in particular between 500 .mu.m and 2000 .mu.m.

Im Allgemeinen beträgt die Foliendicke nach dem Trocknen ca. 30 % der Schneidenhöhe. Die Dicke der gesinterten Bleche ist abhängig von der z-Schwindung beim Sintern. Die Schwindung der getrockneten Folie beträgt beim Sintern ca. 20 %. Die gegossenen Metallpulverfolien trocknen kontinuierlich im Trocknungskanal der Gießanlage in einem Temperaturbereich von 25 - 70 °C. Der Trocknungskanal wird im Gegenstrom mit Luft durchströmt. Die hohen Lösemitteldampfkonzentrationen beim Trocknen bedingen einen Trocknungskanal, der den Explosions-Schutzrichtlinien entspricht.In general, the film thickness after drying is about 30% of the cutting height. The thickness of the sintered sheets depends on the z-shrinkage during sintering. The shrinkage of the dried film is about 20% during sintering. The cast metal powder films dry continuously in the drying channel of the casting plant in a temperature range of 25 - 70 ° C. The drying channel is flowed through in countercurrent with air. The high solvent vapor concentrations during drying necessitate a drying channel that complies with the explosion protection guidelines.

Die genauen Verfahrensbedingungen hängen von der Zusammensetzung des verwendeten Schlickers und den Parametern der verwendeten Foliengießanlage ab. Der Fachmann kann durch eine geringe Anzahl an Routineversuchen die geeigneten Einstellungen herausfinden.The exact process conditions depend on the composition of the slip used and the parameters of the film caster used. The person skilled in the art can find out the suitable settings through a small number of routine tests.

Um unterschiedlich geformte Gegenstände herzustellen kann die Folie beispielsweise durch Schneiden, Stanzen oder auch spanend bearbeitet werden. Hierdurch lassen sich beispielsweise dünne Schweißstäbe, Ringe, Tiegel, Schiffchen oder Isotopenbehälter erhalten. Für komplexer geformte Gegenstände können auch ausgeschnittene Folienteile beispielsweise zu Rohren, Schiffchen oder größeren Tiegeln gefaltet oder zusammengesetzt werden, wobei sich die Folie auch kleben lässt. Als Klebstoff ist beispielsweise unverbrauchter Schlicker oder unverbrauchte Bindersuspension verwendbar. Anschließend kann der aus der Folie erhaltene Gegenstand den weiteren Verfahrensschritten unterzogen werden.In order to produce differently shaped objects, the film can be processed for example by cutting, punching or machining. As a result, for example, thin welding rods, rings, crucibles, boats or isotope containers can be obtained. For more complex shaped objects can also cut out film parts are folded or assembled, for example, to pipes, boats or larger crucibles, wherein the film can also be glued. As an adhesive, for example, unconsumed slip or unconsumed binder suspension can be used. Subsequently, the article obtained from the film can be subjected to the further process steps.

Nach dem Trocknen der Folie wird diese entbindert. Entbinderung bedeutet die möglichst rückstandsfreie Entfernung aller zum Foliengießen benötigten organischen Bestandteile wie polymerer Binder und Weichmacher aus dem Material. Falls Rückstände in Form von Kohlenstoff zurückbleiben führt dies im folgenden Sinterprozess zur Bildung von Karbiden, beispielsweise von Wolframkarbid.After drying the film, this is debinded. Debinding means removing as far as possible residue-free organic constituents required for film casting, such as polymeric binders and plasticizers from the material. If residues remain in the form of carbon, this leads to the formation of carbides, such as tungsten carbide, in the subsequent sintering process.

Die Entbinderung erfolgt in einem thermischen Prozess. Hierbei werden die Folien mit einem geeigneten Temperaturprofil aufgeheizt. Figur 2 zeigt beispielhaft ein geeignetes Temperaturprofil. Durch die Erwärmung werden die organischen Bestandteile zunächst erweicht und gegebenenfalls flüssig. Polymere Bestandteile, wie der polymerer Binder oder der Dispergator, werden vorteilhaft depolymerisiert, weshalb wie oben erwähnt eine niedrige Ceiling-Temperatur dieser Komponenten vorteilhaft ist. Mit steigender Temperatur sollen diese flüssigen Phasen verdampfen und über die Atmosphäre abgeführt werden. Die Temperatur soll dabei so schnell ansteigen, dass keine schwerflüchtigen Crackprodukte entstehen. Diese führen zu Kohlenstoffablagerungen in Form von Ruß
Zur Erhöhung des Dampfdruckes wird bis 600°C unter einem Vakuum von 50 - 150 mbar absolut erwärmt, wodurch eine bessere Verdampfung der Flüssigphase erzielt wird.
Debindering takes place in a thermal process. Here, the films are heated with a suitable temperature profile. FIG. 2 shows an example of a suitable temperature profile. By heating, the organic components are first softened and possibly liquid. Polymeric components such as the polymeric binder or dispersant are advantageously depolymerized, therefore, as mentioned above, a low ceiling temperature of these components is advantageous. With increasing temperature, these liquid phases should evaporate and be removed via the atmosphere. The temperature is expected to rise so fast that no low-volatile cracking products. These lead to carbon deposits in the form of soot
To increase the vapor pressure is heated to 600 ° C under a vacuum of 50 - 150 mbar absolute, whereby a better evaporation of the liquid phase is achieved.

Zum Abtransport der verdampften organischen Bestandteile muss die Atmosphäre im Ofenraum gespült werden. Hierzu wird Stickstoff mit einem Anteil von etwa 2 Vol.-% Wasserstoff oder weniger verwendet. Der Wasserstoffanteil bewirkt vorteilhaft, dass die Ofenatmosphäre frei von Sauerstoff ist und eine Oxidation der Metallpulver vermieden wird.To remove the evaporated organic components, the atmosphere in the furnace chamber must be rinsed. For this purpose, nitrogen is used in a proportion of about 2% by volume of hydrogen or less. The hydrogen content advantageously has the effect that the furnace atmosphere is free of oxygen and oxidation of the metal powders is avoided.

Das Entbindern ist bis etwa 600°C abgeschlossen. Bei den Bauteilen handelt es sich in diesem Stadium um eine schwach gebundene Pulverpackung. Um einDebinding is completed up to about 600 ° C. The components at this stage are a weakly bound powder packing. To one

Ansintern der Pulverkörner zu erreichen wird der thermische Prozess bis etwa 800°C erhöht. Es entstehen handhabbare, sehr spröde Bauteile, die dem folgenden Sinterschritt unterworfen werden können.To achieve sintering of the powder grains, the thermal process is increased to about 800 ° C. There arise manageable, very brittle components that can be subjected to the following sintering step.

Nach dem Entbindern wird die Folie gesintert. Je nach Legierungszusammensetzung liegt die Sintertemperatur zwischen etwa 1300°C und etwa 1600°C, insbesondere 1400°C und 1550°C. typischerweise liegen die Sinterzeiten bei ca. 2 h bis 8 h. Es wird vorzugsweise in einer Wasserstoffatmosphäre, im Vakuum oder unter Schutzgas wie Stickstoff oder einem Edelgas wie Argon evtl. unter Beimengung von Wasserstoff gesintert. Nach dem Sintern liegt ein dichtes Blech mit bis zu 100 % der theoretischen Dichte vor. Das Sintern kann in Batch- oder Durchschuböfen stattfinden. Die entbinderten und angesinterten Folien sind auf geeigneten Sinteruntelagen zu sintern. Dabei ist es vorteilhaft die zu sinternden Folien mit einer glatten, ebenen Abdeckung zu beschweren, damit ein Verwerfen der Folie während des Sintervorgangs vermieden wird. Dazu können auch mehrere Folien übereinander gelegt werden, wodurch zusätzlich die Sinterkapazität erhöht wird. Die gestapelten Folien sind vorzugsweise durch Sinterunterlagen voneinander zu trennen. Als Sinterunterlage eignen sich vorzugsweise keramische Platten oder Folien, welche unter den Sinterbedingungen nicht mit der Wolframschwermetalllegierung reagieren. Es kommen hierfür beispielsweise in Frage: Aluminiumoxid, Aluminiumnitrid, Bornitrid, Siliziumcarbid oder Zirkonoxid. Ferner ist die Oberflächenqualität der Sinterunterlage entscheidend für die Oberflächenqualität der zu sinternden Folie. Defekte können sich unmittelbar auf der Folie abbilden oder zu Anhaftungen während des Sinterns führen. Anhaftungen führen häufig zu Rissbildung oder zum Verzug der Folien, da die Schwindung während des Sinterns behindert wird. Zum Reduzieren der Welligkeit und/oder der Verbesserung der Oberflächenqualität kann vorteilhaft ein Walzschritt angeschlossen werden. Das Blech kann unter Bedingungen, die aus dem bisherigen Stand der Technik bekannt sind gewalzt werden. Dabei wird je nach Dicke des Blechs zwischen ca. 1100°C und Raumtemperatur gewalzt. Bleche mit ca. 2 mm Dicke werden bei hohen Temperaturen gewalzt, während Folien bei Raumtemperatur gewalzt werden können. Das Walzen dient in dem Verfahren gemäß der Erfindung im Gegensatz zum Stand der Technik jedoch weniger dem Reduzieren der Dicke, sondern es soll vor allem die Welligkeit des Blechs beseitigt und die Oberflächenqualität verbessert werden.
Zur Herstellung besonders dünner Bleche kann allerdings auch zur Dickenreduktion gewalzt werden.
Abschließend kann eine Glühung zur Reduzierung innerer Spannungen durchgeführt werden. Das Glühen wird im Allgemeinen bei Temperaturen von 600°C bis 1000°C im Vakuum oder unter Schutzgas bzw. reduzierender Atmosphäre durchgeführt.
Die Schritte des Walzen und Glühens können gegebenenfalls wiederholt werden, bis die gewünschte Oberflächenqualität und gegebenenfalls Dicke erreicht wurden.
After debinding, the film is sintered. Depending on the alloy composition, the sintering temperature is between about 1300 ° C and about 1600 ° C, especially 1400 ° C and 1550 ° C. Typically, the sintering times are about 2 hours to 8 hours. It is preferably sintered in a hydrogen atmosphere, in a vacuum or under an inert gas such as nitrogen or a noble gas such as argon with the addition of hydrogen. After sintering, there is a dense sheet with up to 100% of the theoretical density. The sintering can take place in batch or push furnaces. The debindered and sintered foils are to be sintered on suitable sintered bases. It is advantageous to weight the films to be sintered with a smooth, flat cover, so that discarding of the film is avoided during the sintering process. For this purpose, several films can be superimposed, which additionally increases the sintering capacity. The stacked films are preferably separated from each other by sintering pads. As sintering substrate are preferably ceramic plates or films which do not react with the tungsten heavy metal alloy under the sintering conditions. There are, for example, in question: alumina, aluminum nitride, boron nitride, silicon carbide or zirconium oxide. Furthermore, the surface quality of the sintered substrate is decisive for the surface quality of the film to be sintered. Defects can be imaged directly on the film or lead to adhesion during sintering. Buildup often results in cracking or distortion of the films as shrinkage during sintering is hindered. To reduce the waviness and / or the improvement of the surface quality, a rolling step can be advantageously connected. The sheet may be rolled under conditions known in the art. It is rolled depending on the thickness of the sheet between about 1100 ° C and room temperature. Sheets approximately 2 mm thick are rolled at high temperatures, while foils can be rolled at room temperature. However, rolling in the method according to the invention, unlike the prior art, serves less to reduce the thickness, but it is intended Above all, the rippling of the sheet eliminated and the surface quality can be improved.
For the production of particularly thin sheets, however, can also be rolled to reduce the thickness.
Finally, an annealing to reduce internal stresses can be performed. The annealing is generally carried out at temperatures of 600 ° C to 1000 ° C in a vacuum or under protective gas or reducing atmosphere.
If necessary, the steps of rolling and annealing may be repeated until the desired surface quality and, if necessary, thickness have been achieved.

Das Verfahren gemäß der Erfindung erlaubt die Herstellung von Blechen aus einer Wolframschwermetallegierung oder Molybdänlegierung, welche eine Dicke von weniger als 0,4 mm aufweisen. Die Dichte des Bleches liegt bei 17 g/cm3 bis 18,6 g/ cm3, vorzugsweise bei 17,3 g/ cm3 bis 18,3 g/ cm3. Das Verfahren gemäß der Erfindung erlaubt die Herstellung von Blechen aus einer Wolframschwermetallegierung oder Molybdänlegierung, welches eine isotrope Mikrostruktur bezogen auf Wolfram bzw. Molybdän, aufweist. Unter einer isotropen Mikrostruktur wird gemäß der Erfindung eine gleichmäßige Mischung der kristallographischen Orientierungen ohne eine Vorzugsorientierung verstanden, sowie eine annähernd runde Kornform der Wolframphase bzw. Molybdänphase.
Bleche und Folien, die gemäß dem Stand der Technik durch Walzen hergestellt werden, weisen bevorzugt <100>- und <110>-Orientierungen parallel zur Normalenrichtung des Blechs auf (siehe Figur 11). Diese Vorzugsorientierungen sind Teil einer typischen Walztextur, wie sie aus den Polfiguren (siehe Figur 12) abgelesen werden kann. Diese Ausbildung der kristallographischen Textur geht einher mit der länglichen Ausprägung der Kornform entlang der Walzrichtung (vgl. Fig. 3 und Fig. 9). Im Vergleich dazu ist aus Figur 7 keine kristallographische Vorzugsrichtung entlang der Blechnormalen abzulesen (vgl. Fig. 7 und Fig. 11). Die Polfiguren (Figur 8) weisen zwar ein Intensitätsmaximum von 2,0 auf, dieses ist jedoch im Vergleich zum Intensitätsmaximum von 4,7 in den Polfiguren für das gewalzte Blech (Figur 12) als ein sehr schwaches Intensitätsmaximum zu bewerten. Die Ursache für das Auftreten eines Intensitätsmaximums von 2,0 ist viel mehr in der Messstatistik zu suchen als in der tatsächlichen kristallographischen Textur des Materials. Es ist zu berücksichtigen, dass es kein allgemein anerkanntes Verfahren zum quantitativen Vergleich von Texturen gibt. Der Fachmann ist vielmehr auf vergleichende Messungen und seine fachkundige Interpretation angewiesen. Insbesondere handelt es sich dabei um eine Mikrostruktur, wobei (I) die Verteilung der kristallographischen Orientierungen um weniger als 30 Prozent über jede Oberfläche parallel zur Flächennormalen variiert, und (II) die Verteilung der kristallographischen Orientierungen um weniger als 30 Prozent über jede Ebene senkrecht zur Flächennormalen variiert. Die vorliegenden Kristallographischen Orientierungen sind üblicherweise die <100> und <110>- Orientierungen. Insbesondere handelt es sich dabei um eine Mikrostruktur, wobei (I) die Verteilung der <100> und <110>- Orientierungen um weniger als 30 Prozent über jede Oberfläche parallel zur Flächennormalen variiert, und (II) die Verteilung der <100> und <110>- Orientierungen um weniger als 30 Prozent über jede Ebene senkrecht zur Flächennormalen variiert. Die Dicke der beschriebenen Bleche liegt vorteilhaft bei weniger als 1,5 mm, insbesondere weniger als 0,5 mm, besonders kleiner 0,4 mm. Die Bleche der Erfindung weisen als weitere Eigenschaft auf, dass die Festigkeit und Biegbarkeit richtungsunabhängig sind.
The method according to the invention allows the production of sheets of a tungsten heavy metal alloy or molybdenum alloy which have a thickness of less than 0.4 mm. The density of the sheet is 17 g / cm 3 to 18.6 g / cm 3 , preferably 17.3 g / cm 3 to 18.3 g / cm 3 . The method according to the invention allows the production of sheets from a tungsten heavy metal alloy or molybdenum alloy, which has an isotropic microstructure based on tungsten or molybdenum. According to the invention, an isotropic microstructure is understood to mean a uniform mixture of the crystallographic orientations without a preferred orientation, as well as an approximately round grain shape of the tungsten phase or molybdenum phase.
Sheets and films produced by rolling in accordance with the prior art preferably have <100> and <110> orientations parallel to the normal direction of the sheet (see FIG. 11 ). These preferred orientations are part of a typical rolling texture as seen from the pole figures (see FIG. 12 ) can be read. This formation of the crystallographic texture is accompanied by the oblong expression of the grain shape along the rolling direction (cf. Fig. 3 and Fig. 9 ). In comparison, is off FIG. 7 no crystallographic preferred direction along the standard of brass read (see. Fig. 7 and Fig. 11 ). The pole pieces ( FIG. 8 ) have an intensity maximum of 2.0, but this is compared to the maximum intensity of 4.7 in the pole pieces for the rolled sheet ( FIG. 12 ) as a very weak intensity maximum. The cause of the occurrence of an intensity maximum of 2.0 is much more in the To look for measurement statistics as in the actual crystallographic texture of the material. It should be noted that there is no universally accepted method for the quantitative comparison of textures. The skilled person rather relies on comparative measurements and his expert interpretation. In particular, it is a microstructure where (I) the distribution of the crystallographic orientations varies less than 30 percent over each surface parallel to the surface normal, and (II) the distribution of the crystallographic orientations is less than 30 percent across each plane perpendicular to the surface Surface normal varies. The present crystallographic orientations are usually the <100> and <110> orientations. In particular, it is a microstructure where (I) the distribution of the <100> and <110> orientations varies less than 30 percent over each surface parallel to the surface normal, and (II) the distribution of <100> and <110> - Orientations varied by less than 30 percent over each plane perpendicular to the surface normal. The thickness of the sheets described is advantageously less than 1.5 mm, in particular less than 0.5 mm, especially less than 0.4 mm. The sheets of the invention have as another property that the strength and bendability are independent of direction.

Die offene Porosität der Bleche der Erfindung ist gering und liegt bei 20 Prozent oder weniger.
Als metallischen Binder enthalten die Bleche die oben beschriebenen Materialien. Eisen sollte nicht verwendet werden, wenn das Material unmagnetisch sein soll.
The open porosity of the sheets of the invention is low and is 20 percent or less.
As a metallic binder, the sheets contain the materials described above. Iron should not be used if the material is to be non-magnetic.

BeispieleExamples Beispiel 1example 1

50 kg eines Legierungspulvers der Zusammensetzung W-0,2%Fe-5,3%Ni-2,1%Cu-0,2%Fe wurde zur Herstellung eines Wolframschwermetallbleches eingesetzt. Das Pulver besaß eine spezifische Oberfläche von 0,6 m2/g und eine Teilchengröße von kleiner als 63 µm. Das Legierungspulver wurde in einer Kugelmühle mit 0,3 kg Polyester/Polyamin-Kondensationspolymer (UNIQEMA Hypermer KD1) und 2,3 l eines Gemisches aus 31,8 Vol.-% Ethanol und 68,2 Vol.-% Ethylmethylketon für 24 Stunden in einer Kugelmühle gemahlen und homogenisiert. Anschließend wurde eine Menge von 2,5 kg eines Gemisches von 0,7 kg Polyvinylbutyral (Kuraray Mowital SB 45 H), 0,7 kg Benzylphthalat (FERRO Santicizer 261A) und 1,5 l eines Gemisches aus 31,8 Vol.-% Ethanol und 68,2 Vol.-% Ethylmethylketon als Lösemittel zugegeben und für weitere 24 Stunden homogenisiert. Anschließend wurde die Mischung in Gießchargen konditioniert und entgast. Der erhaltene Schlicker besaß eine Viskosität von 3,5 Pa·s. Die Dichte des Schlickers betrug 7 g/cm3. Der Schlicker wurde anschließend auf einer Gießanlage unter Verwendung eines Doppelkammergießschuhs auf einer silikonbeschichteten PET-Folie mit einer Ziehgeschwindigkeit von 30 m/h zu einem Band mit einer Länge von 15 m, einer Breite von 40 cm und einer Dicke von 1100 µm ausgezogen und bei einer Temperatur von 35° C für 24 Stunden getrocknet. Anschließend wurde die erhaltene Grünfolie in einem Vakuum von 50 mbar und dem in Figur 2 angegebenen Temperaturprofil entbindert. Das erhaltene vorgesinterte Material wurde bei einer Temperatur von 1485°C für 2 Stunden in einer Wasserstoffatmosphäre gesintert. Figur 3 zeigt die Mikrostruktur des erhaltenen Wolframschwermetallblechs, die Bildvertikale befindet sich parallel zur Blechnormale, die Bildhorizontale parallel zur Ziehrichtung. Figur 4 zeigt die Mikrostruktur des erhaltenen Wolframschwermetallblechs, die Bildvertikale befindet sich parallel zur Blechnormalen, die Bildhorizontale befindet sich parallel zur Querrichtung. In beiden Bildern ist erkennbar, dass keine Richtungsabhängigkeit der Kornform vorliegt und die Wolframpartikel in beiden Schnittebenen ein im Wesentlichen rundes Erscheinungsbild zeigen.50 kg of an alloy powder of the composition W-0.2% Fe-5.3% Ni-2.1% Cu-0.2% Fe was used to produce a tungsten heavy metal sheet. The powder had a specific surface area of 0.6 m 2 / g and a particle size of less than 63 μm. The alloy powder was in a ball mill with 0.3 kg of polyester / polyamine condensation polymer (UNIQEMA Hypermer KD1) and 2.3 l of a mixture of 31.8 vol .-% ethanol and 68.2 vol .-% ethyl methyl ketone for 24 hours in ground and homogenized in a ball mill. Subsequently was an amount of 2.5 kg of a mixture of 0.7 kg polyvinyl butyral (Kuraray Mowital SB 45 H), 0.7 kg benzyl phthalate (FERRO Santicizer 261A) and 1.5 l of a mixture of 31.8 vol% ethanol and 68.2 vol .-% ethyl methyl ketone added as a solvent and homogenized for a further 24 hours. Subsequently, the mixture was conditioned in casting charges and degassed. The slurry obtained had a viscosity of 3.5 Pa · s. The density of the slurry was 7 g / cm 3 . The slurry was then drawn on a casting line using a double-chamber casting shoe on a silicone-coated PET film at a drawing speed of 30 m / h to a tape having a length of 15 m, a width of 40 cm and a thickness of 1100 microns and a Temperature of 35 ° C dried for 24 hours. Subsequently, the resulting green sheet was in a vacuum of 50 mbar and the in FIG. 2 specified temperature profile entbindert. The obtained presintered material was sintered at a temperature of 1485 ° C for 2 hours in a hydrogen atmosphere. FIG. 3 shows the microstructure of the obtained tungsten heavy metal sheet, the image vertical is parallel to the lead normal, the image horizontal parallel to the drawing direction. FIG. 4 shows the microstructure of the obtained tungsten heavy metal sheet, the image vertical is parallel to the sheet normal, the image horizontal is parallel to the transverse direction. In both images it can be seen that there is no directional dependence of the grain shape and that the tungsten particles show a substantially round appearance in both sectional planes.

Das erhaltene Blech wurde bei 1200°C gewalzt und anschließend 2 Stunden bei einer Temperatur von 800 °C in reduzierender Atmosphäre geglüht. Das erhaltene Wolframschwermetallblech enthielt 92,4 % Wolfram und 7,6 % des metallischen Binders. Das Blech besaß eine Dichte von 17,5 g/cm3. Figuren 5 und 6 zeigen Bilder der Mikrostruktur des erhaltenen Wolframschwermetallblechs, Figur 5 mit der Bildvertikale parallel zur Blechnormalen und der Bildhorizontale parallel zur Walzrichtung, Figur 5 mit der Bildvertikalen parallel zur Blechnormalen und der Bildhorizontalen parallel zur Querrichtung. In Figur 5 ist eine leichte Streckung zu erkennen, in Figur 6 ist eine Abflachung der Partikel erkennbar.The sheet obtained was rolled at 1200 ° C and then annealed for 2 hours at a temperature of 800 ° C in a reducing atmosphere. The tungsten heavy metal sheet obtained contained 92.4% tungsten and 7.6% of the metallic binder. The sheet had a density of 17.5 g / cm 3 . FIGS. 5 and 6 show pictures of the microstructure of the obtained tungsten heavy metal sheet, FIG. 5 with the image vertical parallel to the sheet normal and the image horizontal parallel to the rolling direction, FIG. 5 with the image vertical parallel to the lead normals and the image horizontals parallel to the transverse direction. In FIG. 5 is a slight stretch to see in FIG. 6 is a flattening of the particles recognizable.

Die kristallographische Textur wurde durch EBSD- (Electron Back-Scatter Diffraction) Messungen bestimmt. Figur 7 stellt die Mikrostruktur dar (vergleiche Figur 3), wobei die Farbe der Wolframpartikel die Kristallrichtung des Korns angibt, welche parallel zur Normalenrichtung des Blechs liegt (vergleiche dazu Bild 7a: Farb-Code). Figur 7 zeigt eine gleichmässige Verteilung aller Farben, so dass keine kristallographische Vorzugsrichtung bzgl. der Blechnormalen erkennbar ist.
In den Figur 8 ist die Textur in Form von Polfiguren dargestellt. Figur 8 zeigt eine relativ unruhige Textur ohne erkennbare Walztextur.
The crystallographic texture was determined by EBSD (Electron Back-Scatter Diffraction) measurements. FIG. 7 represents the microstructure (cf. FIG. 3 ), in which the color of the tungsten particles indicates the crystal direction of the grain, which is parallel to the normal direction of the sheet (compare to Figure 7a: color code). FIG. 7 shows a uniform distribution of all colors, so that no crystallographic preferred direction with respect to the sheet normal is recognizable.
In the FIG. 8 the texture is represented in the form of pole figures. FIG. 8 shows a relatively restless texture with no apparent rolling texture.

VergleichsbeispielComparative example

Ein Wolframschwermetallblech einer Dichte von 17,5 g/cm3, welches durch Walzen erhalten wurde und eine Menge von 92,4% Wolfram und 7,6% metallischem Binder enthielt wurde analog untersucht.
Dazu wurden Elementpulver in der Zusammensetzung W-0,2%Fe-5,3%Ni-2,1%Cu-0,2% Fe in einer Kugelmühle gemischt und gemahlen. Anschließend wurde die Pulvermischung isostatisch bei 1500 bar gepresst und dann bei 1450°C in einer Wasserstoffatmosphäre gesintert. Eine ca. 10 mm starke Platte des gesinterten Materials wurde durch mehrfaches Heiß/Warmwalzen um jeweils ca. 20 % mit jeweils anschließender Glühbehandlung auf eine Stärke von ca. 1 mm gebracht. Dabei wird die Vorglühtemperatur von ca. 1300°C bei 10 mm Stärke mit abnehmender Dicke reduziert. Im letzten Walzschritt wird nur mit etwa 300°C vorgewärmt.
A tungsten heavy metal sheet with a density of 17.5 g / cm 3 , which was obtained by rolling and contained an amount of 92.4% tungsten and 7.6% metallic binder, was investigated analogously.
To this end, element powders in the composition W-0.2% Fe-5.3% Ni-2.1% Cu-0.2% Fe were mixed in a ball mill and ground. Subsequently, the powder mixture was isostatically pressed at 1500 bar and then sintered at 1450 ° C in a hydrogen atmosphere. An approximately 10 mm thick plate of the sintered material was brought by multiple hot / hot rolling by about 20% each with subsequent annealing to a thickness of about 1 mm. The preheating temperature of about 1300 ° C is reduced at 10 mm thickness with decreasing thickness. In the last rolling step is preheated only at about 300 ° C.

Figur 9 zeigt die Mikrostruktur des erhaltenen Wolframschwermetallblechs, die Bildvertikale befindet sich parallel zur Blechnormale, die Bildhorizontale parallel zur Walzrichtung. Figur 10 zeigt die Mikrostruktur des erhaltenen
Wolframschwermetallblechs, die Bildvertikale befindet sich parallel zur Blechnormalen, die Bildhorizontale befindet sich parallel zur Querrichtung. In beiden Bildern ist deutlich zu erkennen, dass die Wolframpartikel durch den Walzprozess in Walzrichtung gestreckt wurden. Figur 10 zeigt die Mikrostruktur quer zur Walzrichtung. Die Wolframpartikel sind leicht abgeflacht.
FIG. 9 shows the microstructure of the obtained tungsten heavy metal sheet, the image vertical is parallel to the lead normal, the image horizontal parallel to the rolling direction. FIG. 10 shows the microstructure of the obtained
Tungsten heavy metal sheet, the image vertical is parallel to the metal standard, the image horizontal is parallel to the transverse direction. In both pictures it can be clearly seen that the tungsten particles were stretched in the rolling direction by the rolling process. FIG. 10 shows the microstructure across the rolling direction. The tungsten particles are slightly flattened.

Die kristallographische Textur wurde durch EBSD-(Electron Back-Scatter Diffraction) Messungen bestimmt. Figur 8 stellt die Mikrostruktur dar (vergleiche Figur 9), wobei die Farbe der Wolframpartikel die Kristallrichtung des Korns angibt, welche parallel zur Normalenrichtung des Blechs liegt (vergleiche dazu Figur 7a: Farb-Code). Im Gegensatz zu Figur 7 dominieren in Figur 11 rote und blaue Farben. Daraus kann abgelesen werden, dass die gestreckten Wolframpartikel bevorzugt <100>- und <110>-Richtungen parallel zur Blechnormalen ausgerichtet haben.
In Figur 12 ist die Textur in Form von Polfiguren dargestellt. In Figur 12 ist im Gegensatz zu Figur 8 ein deutlicher Unterschied zwischen Quer- und Walzrichtung zu erkennen. Daher weist das Blech aufgrund der Ausrichtung der Wolframpartikel anisotrope Werkstoffeigenschaften innerhalb der Blechebene auf.
The crystallographic texture was determined by EBSD (Electron Back-Scatter Diffraction) measurements. FIG. 8 represents the microstructure (cf. FIG. 9 ), wherein the color of the tungsten particles indicates the crystal direction of the grain, which is parallel to the normal direction of the sheet (cf. Figure 7a : Color code). In contrast to FIG. 7 dominate in FIG. 11 red and blue colors. It can It can be read that the stretched tungsten particles have aligned preferably <100> and <110> directions parallel to the sheet normal.
In FIG. 12 the texture is represented in the form of pole figures. In FIG. 12 is contrary to FIG. 8 to recognize a clear difference between the transverse and rolling direction. Therefore, due to the orientation of the tungsten particles, the sheet has anisotropic material properties within the sheet plane.

In der folgenden Tabelle 1 finden sich weitere Beispiele für Zusammensetzungen, welche wie in Beispiel 1 zu Blechen verarbeitet werden. Wolfram wird in Gew.-% zu insgesamt 100 Gew.-% aufgefüllt (kenntlich gemacht durch "ad 100"). Tabelle 2: Tabelle 2 besteht aus 136 Blechen, wobei Molybdän statt Wolfram eingesetzt wird und der Gehalt der metallische Binderkomponenten Nickel, Eisen, Kupfer, Kobalt, Mangan oder Aluminium wie in Tabelle 1 in Gewichtsprozent angegeben sind. Nr. Wolfram -Gehalt / Gew.-% Nickel-Gehalt / Gew.-% Eisen-Gehalt / Gew.-% Kupfer-Gehalt / Gew.-% Kobalt-Gehalt / Gew.-% Mangan-Gehalt / Gew.-% Aluminium-Gehalt / Gew.-% 1 ad 100 25 15 2 ad 100 25 15 0,1 3 ad 100 15 5 4 ad 100 15 5 0,1 5 ad 100 5 2,5 2 0 0 0 6 ad 100 5 2,5 2 0,1 7 ad 100 5 2,5 2 0,05 8 ad 100 5 2,5 2 0,1 0,05 9 ad 100 5 2,5 2 0,2 10 ad 100 5 2,5 2 0,1 11 ad 100 5 2,5 2 0,2 0,1 12 ad 100 5 2,5 2 1,9 0,1 13 ad 100 5 2,5 2 1,9 14 ad 100 5 2,5 2 0,1 15 ad 100 6 0,2 2,5 0 0 0 16 ad 100 6 0,2 2,5 0,1 17 ad 100 6 0,2 2,5 0,05 18 ad 100 6 0,2 2,5 0,1 0,05 19 ad 100 6 0,2 2,5 0,2 20 ad 100 6 0,2 2,5 0,1 21 ad 100 6 0,2 2,5 0,2 0,1 22 ad 100 6 0,2 2,5 1,9 0,1 23 ad 100 6 0,2 2,5 1,9 24 ad 100 6 0,2 2,5 0,1 25 ad 100 7 0 3 0 0 0 26 ad 100 7 0 3 0,1 27 ad 100 7 0 3 0,05 28 ad 100 7 0 3 0,1 0,05 29 ad 100 7 0 3 0,2 30 ad 100 7 0 3 0,1 31 ad 100 7 0 3 0,2 0,1 32 ad 100 7 0 3 1,9 0,1 33 ad 100 7 0 3 1,9 34 ad 100 7 0 3 0,1 35 äd 100 7 0,15 2,8 0 0 0 36 ad 100 7 0,15 2,8 0,1 37 ad 100 7 0,15 2,8 0,05 38 ad 100 7 0,15 2,8 0,1 0,05 39 ad 100 7 0,15 2,8 0,2 40 ad 100 7 0,15 2,8 0,1 41 ad 100 7 0,15 2,8 0,2 0,1 42 ad 100 7 0,15 2,8 1,9 0,1 43 ad 100 7 0,15 2,8 1,9 44 ad 100 7 0,15 2,8 0,1 45 ad 100 5 2 0 0 0 0 46 ad 100 5 2 0 0,1 47 ad 100 5 2 0 0,05 48 ad 100 5 2 0 0,1 0,05 49 ad 100 5 2 0 0,2 50 ad 100 5 2 0 0,1 51 ad 100 5 2 0 0,2 0,1 52 ad 100 5 2 0 1,9 0,1 53 ad 100 5 2 0 1,9 54 ad 100 5 2 0 0,1 55 ad 100 3,5 1,5 0 0 0 0 56 ad 100 3,5 1,5 0 0,1 57 ad 100 3,5 1,5 0 0,05 58 ad 100 3,5 1,5 0 0,1 0,05 59 ad 100 3,5 1,5 0 0,2 60 ad 100 3,5 1,5 0 0,1 61 ad 100 3,5 1,5 0 0,2 0,1 62 ad 100 3,5 1,5 0 1,9 0,1 63 ad 100 3,5 1,5 0 1,9 64 ad 100 3,5 1,5 0 0,1 65 ad 100 2 1,2 0,95 0 0 0 66 ad 100 2 1,2 0,95 0,1 67 ad 100 2 1,2 0,95 0,05 68 ad 100 2 1,2 0,95 0,1 0,05 69 ad 100 2 1,2 0,95 0,2 70 ad 100 2 1,2 0,95 0,1 71 ad 100 2 1,2 0,95 0,2 0,1 72 ad 100 2 1,2 0,95 1,9 0,1 73 ad 100 2 1,2 0,95 1,9 74 ad 100 2 1,2 0,95 0,1 75 ad 100 3,4 1,4 0 0 0 0 76 ad 100 3,4 1,4 0 0,1 77 ad 100 3,4 1,4 0 0,05 78 ad 100 3,4 1,4 0 0,1 0,05 79 ad 100 3,4 1,4 0 0,2 80 ad 100 3,4 1,4 0 0,1 81 ad 100 3,4 1,4 0 0,2 0,1 82 ad 100 3,4 1,4 0 1,9 0,1 83 ad 100 3,4 1,4 0 1,9 84 ad 100 3,4 1,4 0 0,1 85 ad 100 3 1,3 0 0 0 0 86 ad 100 3 1,3 0 0,1 87 ad 100 3 1,3 0 0,05 88 ad 100 3 1,3 0 0,1 0,05 89 ad 100 3 1,3 0 0,2 90 ad 100 3 1,3 0 0,1 91 ad 100 3 1,3 0 0,2 0,1 92 ad 100 3 1,3 0 1,9 0,1 93 ad 100 3 1,3 0 1,9 94 ad 100 3 1,3 0 0,1 95 ad 100 4,4 0,7 0,1 0 0 0 96 ad 100 4,4 0,7 0,1 0,1 97 ad 100 4,4 0,7 0,1 0,05 98 ad 100 4,4 0,7 0,1 0,1 0,05 99 ad 100 4,4 0,7 0,1 0,2 100 ad 100 4,4 0,7 0,1 0,1 101 ad 100 4,4 0,7 0,1 0,2 0,1 102 ad 100 4,4 0,7 0,1 1,9 0,1 103 ad 100 4,4 0,7 0,1 1,9 104 ad 100 4,4 0,7 0,1 0,1 105 ad 100 3,5 0,1 1,4 0 0 0 106 ad 100 3,5 0,1 1,4 0,1 107 ad 100 3,5 0,1 1,4 0,05 108 ad 100 3,5 0,1 1,4 0,1 0,05 109 ad 100 3,5 0,1 1,4 0,2 110 ad 100 3,5 0,1 1,4 0,1 111 ad 100 3,5 0,1 1,4 0,2 0,1 112 ad 100 3,5 0,1 1,4 1,9 0,1 113 ad 100 3,5 0,1 1,4 1,9 114 ad 100 3,5 0,1 1,4 0,1 115 ad 100 1,5 1,5 0 0 0 0 116 ad 100 1,5 1,5 0 0,1 117 ad 100 1,5 1,5 0 0,05 118 ad 100 1,5 1,5 0 0,1 0,05 119 ad 100 1,5 1,5 0 0,2 120 ad 100 1,5 1,5 0 0,1 121 ad 100 1,5 1,5 0 0,2 0,1 122 ad 100 1,5 1,5 0 1,9 0,1 123 ad 100 1,5 1,5 0 1,9 124 ad 100 1,5 1,5 0 0,1 125 ad 100 2,1 0,9 0 0 0 0 126 ad 100 2,1 0,9 0 0,1 127 ad 100 2,1 0,9 0 0,05 128 ad 100 2,1 0,9 0 0,1 0,05 129 ad 100 2,1 0,9 0 0,2 130 ad 100 2,1 0,9 0 0,1 131 ad 100 2,1 0,9 0 0,2 0,1 132 ad 100 2,1 0,9 0 1,9 0,1 133 ad 100 2,1 0,9 0 1,9 134 ad 100 2,1 0,9 0 0,1 135 ad 100 2,1 0,9 0 136 ad 100 2,1 0,9 0 In the following Table 1 are further examples of compositions which are processed as in Example 1 into sheets. Tungsten is filled in wt .-% to a total of 100 wt .-% (identified by "ad 100"). Table 2: Table 2 consists of 136 sheets using molybdenum instead of tungsten and the content of the metal binder components nickel, iron, copper, cobalt, manganese or aluminum as shown in Table 1 in weight percent. No. Tungsten content / wt% Nickel content / wt% Iron content / wt% Copper content / wt.% Cobalt content / wt% Manganese content / wt% Aluminum content / wt% 1 ad 100 25 15 2 ad 100 25 15 0.1 3 ad 100 15 5 4 ad 100 15 5 0.1 5 ad 100 5 2.5 2 0 0 0 6 ad 100 5 2.5 2 0.1 7 ad 100 5 2.5 2 0.05 8th ad 100 5 2.5 2 0.1 0.05 9 ad 100 5 2.5 2 0.2 10 ad 100 5 2.5 2 0.1 11 ad 100 5 2.5 2 0.2 0.1 12 ad 100 5 2.5 2 1.9 0.1 13 ad 100 5 2.5 2 1.9 14 ad 100 5 2.5 2 0.1 15 ad 100 6 0.2 2.5 0 0 0 16 ad 100 6 0.2 2.5 0.1 17 ad 100 6 0.2 2.5 0.05 18 ad 100 6 0.2 2.5 0.1 0.05 19 ad 100 6 0.2 2.5 0.2 20 ad 100 6 0.2 2.5 0.1 21 ad 100 6 0.2 2.5 0.2 0.1 22 ad 100 6 0.2 2.5 1.9 0.1 23 ad 100 6 0.2 2.5 1.9 24 ad 100 6 0.2 2.5 0.1 25 ad 100 7 0 3 0 0 0 26 ad 100 7 0 3 0.1 27 ad 100 7 0 3 0.05 28 ad 100 7 0 3 0.1 0.05 29 ad 100 7 0 3 0.2 30 ad 100 7 0 3 0.1 31 ad 100 7 0 3 0.2 0.1 32 ad 100 7 0 3 1.9 0.1 33 ad 100 7 0 3 1.9 34 ad 100 7 0 3 0.1 35 100 7 0.15 2.8 0 0 0 36 ad 100 7 0.15 2.8 0.1 37 ad 100 7 0.15 2.8 0.05 38 ad 100 7 0.15 2.8 0.1 0.05 39 ad 100 7 0.15 2.8 0.2 40 ad 100 7 0.15 2.8 0.1 41 ad 100 7 0.15 2.8 0.2 0.1 42 ad 100 7 0.15 2.8 1.9 0.1 43 ad 100 7 0.15 2.8 1.9 44 ad 100 7 0.15 2.8 0.1 45 ad 100 5 2 0 0 0 0 46 ad 100 5 2 0 0.1 47 ad 100 5 2 0 0.05 48 ad 100 5 2 0 0.1 0.05 49 ad 100 5 2 0 0.2 50 ad 100 5 2 0 0.1 51 ad 100 5 2 0 0.2 0.1 52 ad 100 5 2 0 1.9 0.1 53 ad 100 5 2 0 1.9 54 ad 100 5 2 0 0.1 55 ad 100 3.5 1.5 0 0 0 0 56 ad 100 3.5 1.5 0 0.1 57 ad 100 3.5 1.5 0 0.05 58 ad 100 3.5 1.5 0 0.1 0.05 59 ad 100 3.5 1.5 0 0.2 60 ad 100 3.5 1.5 0 0.1 61 ad 100 3.5 1.5 0 0.2 0.1 62 ad 100 3.5 1.5 0 1.9 0.1 63 ad 100 3.5 1.5 0 1.9 64 ad 100 3.5 1.5 0 0.1 65 ad 100 2 1.2 0.95 0 0 0 66 ad 100 2 1.2 0.95 0.1 67 ad 100 2 1.2 0.95 0.05 68 ad 100 2 1.2 0.95 0.1 0.05 69 ad 100 2 1.2 0.95 0.2 70 ad 100 2 1.2 0.95 0.1 71 ad 100 2 1.2 0.95 0.2 0.1 72 ad 100 2 1.2 0.95 1.9 0.1 73 ad 100 2 1.2 0.95 1.9 74 ad 100 2 1.2 0.95 0.1 75 ad 100 3.4 1.4 0 0 0 0 76 ad 100 3.4 1.4 0 0.1 77 ad 100 3.4 1.4 0 0.05 78 ad 100 3.4 1.4 0 0.1 0.05 79 ad 100 3.4 1.4 0 0.2 80 ad 100 3.4 1.4 0 0.1 81 ad 100 3.4 1.4 0 0.2 0.1 82 ad 100 3.4 1.4 0 1.9 0.1 83 ad 100 3.4 1.4 0 1.9 84 ad 100 3.4 1.4 0 0.1 85 ad 100 3 1.3 0 0 0 0 86 ad 100 3 1.3 0 0.1 87 ad 100 3 1.3 0 0.05 88 ad 100 3 1.3 0 0.1 0.05 89 ad 100 3 1.3 0 0.2 90 ad 100 3 1.3 0 0.1 91 ad 100 3 1.3 0 0.2 0.1 92 ad 100 3 1.3 0 1.9 0.1 93 ad 100 3 1.3 0 1.9 94 ad 100 3 1.3 0 0.1 95 ad 100 4.4 0.7 0.1 0 0 0 96 ad 100 4.4 0.7 0.1 0.1 97 ad 100 4.4 0.7 0.1 0.05 98 ad 100 4.4 0.7 0.1 0.1 0.05 99 ad 100 4.4 0.7 0.1 0.2 100 ad 100 4.4 0.7 0.1 0.1 101 ad 100 4.4 0.7 0.1 0.2 0.1 102 ad 100 4.4 0.7 0.1 1.9 0.1 103 ad 100 4.4 0.7 0.1 1.9 104 ad 100 4.4 0.7 0.1 0.1 105 ad 100 3.5 0.1 1.4 0 0 0 106 ad 100 3.5 0.1 1.4 0.1 107 ad 100 3.5 0.1 1.4 0.05 108 ad 100 3.5 0.1 1.4 0.1 0.05 109 ad 100 3.5 0.1 1.4 0.2 110 ad 100 3.5 0.1 1.4 0.1 111 ad 100 3.5 0.1 1.4 0.2 0.1 112 ad 100 3.5 0.1 1.4 1.9 0.1 113 ad 100 3.5 0.1 1.4 1.9 114 ad 100 3.5 0.1 1.4 0.1 115 ad 100 1.5 1.5 0 0 0 0 116 ad 100 1.5 1.5 0 0.1 117 ad 100 1.5 1.5 0 0.05 118 ad 100 1.5 1.5 0 0.1 0.05 119 ad 100 1.5 1.5 0 0.2 120 ad 100 1.5 1.5 0 0.1 121 ad 100 1.5 1.5 0 0.2 0.1 122 ad 100 1.5 1.5 0 1.9 0.1 123 ad 100 1.5 1.5 0 1.9 124 ad 100 1.5 1.5 0 0.1 125 ad 100 2.1 0.9 0 0 0 0 126 ad 100 2.1 0.9 0 0.1 127 ad 100 2.1 0.9 0 0.05 128 ad 100 2.1 0.9 0 0.1 0.05 129 ad 100 2.1 0.9 0 0.2 130 ad 100 2.1 0.9 0 0.1 131 ad 100 2.1 0.9 0 0.2 0.1 132 ad 100 2.1 0.9 0 1.9 0.1 133 ad 100 2.1 0.9 0 1.9 134 ad 100 2.1 0.9 0 0.1 135 ad 100 2.1 0.9 0 136 ad 100 2.1 0.9 0

Claims (11)

  1. Method for manufacturing a metal sheet, with a thickness of less than 0.4 mm, made of a tungsten heavy metal alloy or a molybdenum alloy, having an isotropic microstructure based on molybdenum or tungsten, wherein
    a slip for foil casting is produced from a tungsten heavy metal alloy or molybdenum alloy,
    a foil is cast from the slip onto a substrate and, after drying, the foil is freed of binder and sintered in order to obtain the metal sheet, wherein the foil is brought to the desired thickness by drawing the substrate in the drawing direction through casting blades.
  2. Method according to Claim 1, characterized in that the tungsten heavy metal alloy or molybdenum alloy comprises
    78% by weight to 97% by weight tungsten or molybdenum,
    2% by weight to 15% by weight nickel,
    0.1% by weight to 7% by weight iron,
    0.08% by weight to 4% by weight copper.
  3. Method according to either or both of Claims 1 and 2, characterized in that the polymeric binder is selected from the group consisting of polyacetal, poly(meth)acrylate and copolymers thereof, polyvinyl alcohol and derivatives thereof, in particular polyvinyl butyral.
  4. Method according to one or more of Claims 1 to 3, characterized in that the second mixture has a viscosity in the region of 1 to 7 Pas.
  5. Method according to one or more of Claims 1 to 4, characterized in that the sintering temperature is in the range between 1300 and 1600°C.
  6. Use of a metal sheet, with a thickness of less than 0.4 mm, made of a tungsten heavy metal alloy or a molybdenum alloy, having an isotropic microstructure based on molybdenum or tungsten, wherein the tungsten heavy metal alloy or molybdenum alloy comprises
    78% by weight to 97% by weight tungsten or molybdenum,
    2% by weight to 15% by weight nickel,
    0.1% by weight to 7% by weight iron,
    0.08% by weight to 4% by weight copper, and wherein the metal sheet has a density of 17-18.6 g/cm3, for shielding from short-wavelength electromagnetic radiation or for radiation protection or for beam guiding in X-ray devices.
  7. Use according to Claim 6, wherein the isotropic microstructure contains an even mixture of crystallographic orientations without a preferred orientation.
  8. Use according to Claim 7, wherein
    (I) the distribution of the crystallographic orientations varies by less than 30% over each surface parallel to the surface normal, and
    (II) the distribution of the crystallographic orientations varies by less than 30% over each surface perpendicular to the surface normal.
  9. Use according to Claim 7 or 8, wherein the crystallographic orientations are the <100> and <110> orientations.
  10. Use according to one or more of Claims 6 to 9, wherein the strength and flexibility are direction-independent.
  11. Use according to one or more of Claims 6 to 10, wherein the open porosity is 20% or less.
EP07765458.0A 2006-06-22 2007-06-18 Process for producing shaped refractory metal bodies Not-in-force EP2038441B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07765458T PL2038441T3 (en) 2006-06-22 2007-06-18 Process for producing shaped refractory metal bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006029101 2006-06-22
PCT/EP2007/055986 WO2007147792A1 (en) 2006-06-22 2007-06-18 Process for producing shaped refractory metal bodies

Publications (2)

Publication Number Publication Date
EP2038441A1 EP2038441A1 (en) 2009-03-25
EP2038441B1 true EP2038441B1 (en) 2015-10-28

Family

ID=38421170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07765458.0A Not-in-force EP2038441B1 (en) 2006-06-22 2007-06-18 Process for producing shaped refractory metal bodies

Country Status (9)

Country Link
US (2) US20110206944A1 (en)
EP (1) EP2038441B1 (en)
JP (2) JP5661278B2 (en)
CN (1) CN101473054B (en)
DK (1) DK2038441T3 (en)
ES (1) ES2558877T3 (en)
HK (1) HK1132017A1 (en)
PL (1) PL2038441T3 (en)
WO (1) WO2007147792A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115866A1 (en) * 2011-10-13 2013-04-18 Karlsruher Institut für Technologie Metal pipe; Use of a metal tube as a structural component; Method for producing a metal pipe; metallic structural component; divertor
JP5847196B2 (en) * 2011-12-07 2016-01-20 株式会社アライドマテリアル Tungsten sintered alloy
DE102012006998A1 (en) 2012-04-10 2013-12-12 H.C. Starck Ceramics Gmbh Producing wear-resistant film useful for producing wear-resistant coatings on components, comprises producing a green film comprising hard material particles, and compacting the green film
DE102012217182A1 (en) 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Producing a refractory metal component
DE102012217191A1 (en) 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Producing a refractory metal component
DE102012217188A1 (en) 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Producing a refractory metal component
DE102012109782A1 (en) 2012-10-15 2014-04-17 Karlsruher Institut für Technologie layer composite
KR101675713B1 (en) * 2013-06-04 2016-11-11 에이치. 씨. 스타아크 아이앤씨 Slip and pressure casting of refractory metal bodies
CN104588651A (en) * 2014-10-31 2015-05-06 成都易态科技有限公司 Flexible multi-hole metal foil and manufacturing method thereof
DE102015218408A1 (en) 2015-09-24 2017-03-30 Siemens Aktiengesellschaft Component and / or surface of a refractory metal or a refractory metal alloy for thermocyclic loads and manufacturing method thereto
CN106141507B (en) * 2016-07-01 2018-08-24 中国科学院上海硅酸盐研究所 A kind of preparation method of the ceramic granule reinforced composite material film of low content of organics
CN106756379B (en) * 2017-01-10 2019-01-25 广州市华司特合金制品有限公司 Tungsten alloy barricade and the electronic information card for being provided with tungsten alloy barricade
JP7174476B2 (en) 2017-03-31 2022-11-17 Jx金属株式会社 tungsten target
JP7191390B2 (en) * 2017-05-16 2022-12-19 エルジー・ケム・リミテッド METHOD OF MANUFACTURING METAL FOAM
CN109518054A (en) * 2019-01-15 2019-03-26 株洲市美力迪实业有限公司 A kind of broaching tool material and preparation method thereof and broaching tool
CN110903020A (en) * 2019-11-27 2020-03-24 株洲硬质合金集团有限公司 Temperature-uniforming plate for 3D glass hot bending machine and preparation method and application thereof
CN113462942A (en) * 2021-07-02 2021-10-01 西安华力装备科技有限公司 Preparation method of high-yield tungsten alloy material
CN114480935B (en) * 2022-01-20 2022-11-29 广东工业大学 Tungsten-based alloy with grain size having gradient effect and preparation method thereof
CN115029597A (en) * 2022-06-02 2022-09-09 安泰天龙钨钼科技有限公司 Method for preparing tungsten and tungsten alloy sheets
CN114769593A (en) * 2022-06-02 2022-07-22 安泰科技股份有限公司 Method for preparing molybdenum and molybdenum alloy foil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155502A (en) * 1960-08-12 1964-11-03 Union Carbide Corp Powder metallurgy
US3403009A (en) 1964-08-10 1968-09-24 Minnesota Mining & Mfg Refractory metal structures
GB1121646A (en) * 1964-08-10 1968-07-31 Minnesota Mining & Mfg Sintered metal articles
US3324699A (en) * 1965-01-04 1967-06-13 Gen Electric Production of non-earing molybdenum sheet
US4491559A (en) * 1979-12-31 1985-01-01 Kennametal Inc. Flowable composition adapted for sintering and method of making
EP0325179A1 (en) * 1988-01-14 1989-07-26 GTE Products Corporation Process for producing tungsten heavy alloy sheet
US4777015A (en) * 1988-01-14 1988-10-11 Gte Products Corporation Process for producing tungsten heavy alloy sheet using a metallic salt binder system
JPH09235641A (en) * 1996-02-28 1997-09-09 Toho Kinzoku Kk Tungsten heavy alloy sheet its production
US6447715B1 (en) * 2000-01-14 2002-09-10 Darryl D. Amick Methods for producing medium-density articles from high-density tungsten alloys
JP2002030372A (en) * 2000-07-12 2002-01-31 Allied Material Corp Thin and deformed superheavy alloy sheet and its production method
US20070172378A1 (en) * 2004-01-30 2007-07-26 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof

Also Published As

Publication number Publication date
WO2007147792A1 (en) 2007-12-27
US20110206944A1 (en) 2011-08-25
DK2038441T3 (en) 2016-02-01
US10549350B2 (en) 2020-02-04
CN101473054A (en) 2009-07-01
JP2009541584A (en) 2009-11-26
HK1132017A1 (en) 2010-02-12
PL2038441T3 (en) 2016-04-29
CN101473054B (en) 2012-07-04
JP5661278B2 (en) 2015-01-28
EP2038441A1 (en) 2009-03-25
US20170050244A1 (en) 2017-02-23
ES2558877T3 (en) 2016-02-09
JP2014098209A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
EP2038441B1 (en) Process for producing shaped refractory metal bodies
US5846664A (en) Porous metal structures and processes for their production
DE69920621T2 (en) PROCESS FOR PRODUCING SINZER PARTS
EP3468939B1 (en) Zirconia ceramic, cellular body therefrom and process for the manufacture of the zirconia ceramic
WO2014044429A1 (en) Production of a refractory metal component
DE2232884A1 (en) METHOD OF PRODUCING POWDER FROM COMPOSITE PARTICLES
DE112015001562B4 (en) Process for producing a silicon nitride substrate
WO2005080618A1 (en) Method for the production of a molybdenum alloy
DD249006A5 (en) HOMOGENEOUS MASS, INCLUDING PARTICULAR CERAMIC MATERIAL
DE4320102A1 (en) Process for the production of polycrystalline dense moldings based on boron carbide by pressure-free sintering
DE102020109047A1 (en) SINTER CARBIDE POWDER FOR ADDITIVE MANUFACTURING
WO2012045106A1 (en) Collimator for x-ray, gamma, or particle radiation
WO2014044433A1 (en) Production of a refractory metal component
EP1801247A1 (en) Process of production of high-density semi-finished or finished product
WO1994018140A1 (en) Method of producing ceramic moldings containing fine-grained alumina, using powdered aluminum metal
DE10008162A1 (en) Adjusting element used for degreasing and/or calcining a powdered pressed part such as a ceramic is made of a porous body with a three-dimensional network structure having pores with a specified average diameter
DE102012015127B4 (en) Sinter support
DE102010019255B4 (en) Substrate body based on silicon nitride
WO2014044432A1 (en) Production of a refractory metal component
DE102012020829B4 (en) Process for the production of composite components
WO2009112192A2 (en) Composite material based on transition metal borides, method for the production thereof, and use thereof
DE2255975C2 (en) Application of the process of nitriding iron alloy particles to certain alloy powders for the manufacture of pole horns for magnetic heads
EP2425885B1 (en) Ceramic filter and method for producing a ceramic filter
DE10335167B4 (en) Process for producing a ceramic phosphor
DE19845532A1 (en) Process for the production of composite materials and representatives of such composite materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SVEC, MICHAEL

Inventor name: ANDERSSON, KLAUS

Inventor name: BLUEMLING, UWE

Inventor name: UHLENHUT, HENNING

Inventor name: BUCHNER, KARL-HERMANN

Inventor name: DOEBLING, BERND

17Q First examination report despatched

Effective date: 20090813

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 757982

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014356

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: H.C. STARCK HERMSDORF GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007014356

Country of ref document: DE

Owner name: H.C. STARCK HERMSDORF GMBH, DE

Free format text: FORMER OWNER: H.C. STARCK GMBH, 38642 GOSLAR, DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2558877

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160209

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160613

Year of fee payment: 10

Ref country code: GB

Payment date: 20160615

Year of fee payment: 10

Ref country code: CZ

Payment date: 20160607

Year of fee payment: 10

Ref country code: ES

Payment date: 20160510

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014356

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160425

Year of fee payment: 10

Ref country code: NL

Payment date: 20160610

Year of fee payment: 10

Ref country code: DK

Payment date: 20160610

Year of fee payment: 10

Ref country code: FR

Payment date: 20160516

Year of fee payment: 10

Ref country code: PL

Payment date: 20160421

Year of fee payment: 10

Ref country code: SE

Payment date: 20160613

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160621

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160618

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170630

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170618

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070618

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170618

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160618

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220427

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220525

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007014356

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 757982

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230618