EP2036063A1 - 3d-el-hdvf element und herstellungsverfahren und anwendung - Google Patents

3d-el-hdvf element und herstellungsverfahren und anwendung

Info

Publication number
EP2036063A1
EP2036063A1 EP07765656A EP07765656A EP2036063A1 EP 2036063 A1 EP2036063 A1 EP 2036063A1 EP 07765656 A EP07765656 A EP 07765656A EP 07765656 A EP07765656 A EP 07765656A EP 2036063 A1 EP2036063 A1 EP 2036063A1
Authority
EP
European Patent Office
Prior art keywords
component
film
film element
electroluminescent
dimensionally deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07765656A
Other languages
English (en)
French (fr)
Inventor
Thilo-J. Werners
Michael Heite
Thomas-Hermann Kessler
Klaus Reinartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EFL HOLDINGS TECH BV
Original Assignee
Lyttron Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lyttron Technology GmbH filed Critical Lyttron Technology GmbH
Publication of EP2036063A1 publication Critical patent/EP2036063A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/003Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/723Articles for displaying or advertising

Definitions

  • the present invention relates to a three-dimensionally deformed film element produced by high-pressure isostatic deformation, a method for producing the inventive three-dimensionally deformed film element and the use of the erfmdungswashen three dimensionally deformed film element for forming display elements such as a speedometer disk for land, water and aircraft, for training of safety belt panels or warning panels in land, water and air vehicles and warning panels in buildings and to form housing elements for mobile and stationary electronic devices and for forming a keyboard.
  • display elements such as a speedometer disk for land, water and aircraft, for training of safety belt panels or warning panels in land, water and air vehicles and warning panels in buildings and to form housing elements for mobile and stationary electronic devices and for forming a keyboard.
  • Electroluminescent luminous surfaces for mobile or stationary electronic devices are known in the prior art. Such electroluminescent luminous surfaces are usually used as built-in components for the backlighting of display devices and operating elements.
  • Conventional electroluminescent luminous surfaces have a polyester film as a carrier material with a vapor-deposited on the electrically conductive largely transparent layer.
  • such electroluminescent luminous surfaces generally contain further layers, e.g. Protective layers. Since these layers used in the prior art for the production of electroluminescent luminous surfaces often have a brittle character or can not withstand a deformation process with high temperatures, the conventional display devices are generally planar, which may be e.g. For objects that have three-dimensional geometries, this can lead to an impairment of the perceptibility of information information and operability.
  • Three-dimensional electroluminescent displays have therefore already been proposed in the prior art.
  • DE-A 44 30 907 relates to a three-dimensional electroluminescent display with a transparent pane, a light-transmitting layer applied on at least one side of the pane, at least one electroluminescent lamp applied next to the light-transmitting layer and a substrate formed on the electroluminescent lamp and the pane to form a one-piece, three-dimensional electroluminescent display.
  • the production of the three-dimensional electroluminescent display is based on a preformed disk. However, it is further mentioned that the disk may also be reshaped, that is, that the three-dimensional electroluminescent display is formed prior to the molding of the substrate by conventional methods.
  • DE-A 44 30 907 contains no further information regarding suitable conventional methods.
  • DE-A 102 34 031 relates to an electroluminescent luminous surface which has the structure of a capacitor with two electrodes lying parallel, of which at least one is transparent, with a luminous substance which can be excited by an electric field and which is arranged between the electrodes.
  • the electro-luminescent luminous surface further includes a carrier layer provided with information, which is made of a freely deformable foil material or of a hard material having a three-dimensionally deformed surface, wherein the carrier layer congruent according to their deformation at least in the area of their information information with a coating a first electrically conductive layer, a pigment layer, an insulation and reflection layer, a cover electrode and an optional protective layer.
  • the production of the electroluminescent luminous surface is effected by first printing the carrier layer of the freely deformable foil material or of a hard material, which was previously brought into a three-dimensionally deformed surface shape, with informational information and then with a first electrically conductive layer, a pigment layer, a Insulation and reflection layer, a back electrode and an optional protective layer is provided. Thereafter, the three-dimensionally deformed film body can be back-injected with a plastic material to produce a support body.
  • a carrier layer of a freely deformable film material a deformation of the printed and provided with the other layers mentioned above film body can take place, being mentioned as the only deformation process in DE-A 102 34 031 deep drawing.
  • WO 03/037039 relates to a three-dimensional electroluminescent display comprising a main body and an electroluminescent device.
  • the electroluminescent device consists of a foil and an electroluminescent device, the surface of the foil facing the electroluminescent device being provided with motifs to be displayed.
  • the electroluminescent device comprises a front electrode and a back electrode, between which a dielectric is located.
  • the front electrode is associated with the motif reproducing layer and integral with this.
  • a feed source is arranged, which contacts the electrodes of the electroluminescent device.
  • the main body is made of a suitable plastic, which can be advantageously processed in an injection molding process.
  • the electroluminescent device is first produced. Initially, the film is provided, which serves as a carrier for the electroluminescent device. Subsequently, the electroluminescent device is reshaped by being deep-drawn, embossed, hollow-embossed or stamped solid, wherein the deformation is preferably carried out by deep drawing. After the forming process (deep drawing), the main body is assigned to the rear side of the electroluminescent device, for example by injection-molding of the electroluminescent device with a material suitable for this purpose.
  • the object of providing a three-dimensionally deformed film element is achieved by a three-dimensionally deformed film element constructed from
  • component A comprising at least one cold-stretchable film material optionally provided with graphic representations
  • component CA a protective layer, component CA or a film, component CB,
  • the three-dimensionally deformed film element according to the invention can have further layers.
  • the three-dimensional film element according to the invention is characterized in that the at least one electroluminescent element applied to the carrier film and, if appropriate, the graphic representations which are present on the transparent carrier film are applied with exact position.
  • This is essential, since the three-dimensionally deformed film element according to the invention, e.g. to serve for the development of speedometer discs for land, water, and aircraft, with an exact positioning of the information symbols is important.
  • Such an exact positioning is achieved by providing a flat sheet member having the components A, B and C, which components are selected so that the flat sheet member can be three-dimensionally deformed by high-pressure isostatic deformation. It has surprisingly been found that such a three-dimensional deformation is possible by means of isostatic high-pressure deformation in the presence of an electroluminescent element which has the components BA, BB, optionally BC and BD.
  • the three-dimensionally deformed film elements according to the invention are sufficiently dimensionally stable for numerous applications, so that it is not necessary to back-inject the film element with a suitable plastic, as proposed in the aforementioned prior art.
  • the present invention therefore relates to a three-dimensionally deformed film element, constructed from the components A, B and C, wherein the three-dimensionally deformed film element has no molded substrate, in particular is not back-injected with a plastic.
  • the three-dimensional film element according to the invention contains an at least partially transparent carrier film, component A, of at least one cold-stretchable film material, which is optionally provided with graphic representations.
  • At least partially transparent carrier film are meant both transparent carrier films and those which are translucent, but not completely transparent
  • the carrier film is constructed according to the invention from at least one cold-stretchable film material
  • Film element can be carried out by high-pressure isostatic deformation at a process temperature below the softening temperature of component A.
  • Suitable cold-stretchable film materials are mentioned, for example, in EP-A 0 371 425. Both thermoplastic and thermoset at least partially transparent cold-stretchable film materials can be used , Preference is given to using cold-stretchable film materials which have little or no resilience at room and service temperature.
  • Particularly preferred sheet materials are selected from at least one material from the group consisting carbonates from poly-, preferably polycarbonates based on bisphenol A, such as those sold by Bayer Material Science AG Makrofol ® varieties, polyesters, esters in particular aromatic poly-, for example polyalkylene terephthalates, polyamides, for example PA 6 or PA 6,6 varieties, high-strength "aramids films", polyimides, such as those sold under the trade name Kapton ® films on the basis of poly (diphenyloxide pyromellitic imide), polyarylates, organic thermoplastic Cellulose esters, in particular their acetates, propionates and Acetobutyraten, for example, film materials from Bayer MaterialScience AG under the trade name Cellidor ® , and polyfluorohydrocarbons, in particular the known under the name FEB copolymers of tetrafluoroethylene and hexafluoropropylene, which in a transparent design are available.
  • Preferred sheet materials of the carrier film are selected from polycarbonates, for example those sold by Bayer Material Science AG Makrofol ® varieties, polyesters, particularly aromatic polyesters, such as polyalkylene terephthalates, and polyimides, for example, those sold under the trade name Kapton foils on the basis of poly (diphenyl oxide pyro-mellithimide).
  • polycarbonates for example those sold by Bayer Material Science AG Makrofol ® varieties
  • polyesters particularly aromatic polyesters, such as polyalkylene terephthalates
  • polyimides for example, those sold under the trade name Kapton foils on the basis of poly (diphenyl oxide pyro-mellithimide).
  • Very particularly preferred as film materials polycarbonates based on bisphenol A used in particular films with the label Bayfol ® CR (poly-carbonate / polybutylene terephthalate film), Makrofol ® TP or Makrofol ® DE Bayer MaterialScience AG.
  • the at least partially transparent carrier film used according to the invention can have satin-finished or rough surfaces on one side or high-gloss surfaces on both sides.
  • the layer thickness of the at least partially transparent carrier film used according to the invention is generally from 40 to 2000 ⁇ m. At higher layer thicknesses, the sudden deformation that is performed in the high-pressure isostatic deformation often causes embrittlement of the material. Preference is given to using a carrier film having a layer thickness of 50 to 500 ⁇ m, particularly preferably 100 to 400 ⁇ m, very particularly preferably 150 to 375 ⁇ m.
  • the at least partially transparent carrier film is provided with graphic representations. These can be information symbols, so that, for example, letters, numbers, symbols or pictograms are visible on the surface of the three-dimensionally deformed film element.
  • the graphic design is preferably a graphic design for printing technology, in particular one Color printing.
  • the carrier film used according to the invention is provided with graphic representations in the form of opaque or translucent color imprints. These color imprints can be made by any method known to those skilled in the art, for example by screen printing, offset lithography, screen printing, rotary printing, gravure printing or flexographic printing, all of which are well known and known in the art.
  • the graphic design is preferably carried out by ink application by means of screen printing, since by screen printing pigmented colors can be applied with high layer thickness and good formability.
  • the inks used for the graphic design must be sufficiently deformable under the conditions of isostatic high pressure deformation.
  • Suitable colors in particular screen printing inks, are known to the person skilled in the art.
  • paints with a plastic color carrier, for example based on polyurethane can be used.
  • These screen printing inks have excellent adhesion to the film material of the carrier film used according to the invention.
  • Particular preference is given to using screen printing inks based on aqueous dispersions of aliphatic polyurethanes.
  • Suitable colors are available, for example under the trade name AquaPress PR ® from Pröll, Weissenburg.
  • Other suitable screen printing inks are those resistant on the basis of high-temperature thermoplastics, in particular screen printing inks under the trade name Noriphan ® by Proell, Weissenburg.
  • the three-dimensionally deformed film element according to the invention contains at least one electroluminescent element applied to the carrier film as component B.
  • the electroluminescent element contains the following components
  • the electroluminescent element may have other components in addition to the above-mentioned components.
  • component BD between the back electrode, nents BE, and optionally a further insulation layer, component BD (or, if the insulation layer is not present, between the component BE and the component BC), further layers are present.
  • the component BD (or, if this is not present, to the component BC), a further structure comprising an at least partially transparent electrode, another layer containing at least one excitable by an electric field luminous substance, and optionally one connect another insulation layer. If necessary, this structure can be repeated once more, with the last component of the structure being connected to the back electrode, component BE.
  • Suitable electroluminescent elements are known to the person skilled in the art. Surprisingly, it has been found that film elements which have at least one electro-luminescent element used according to the invention can be deformed by means of high-pressure isostatic deformation, so that the three-dimensionally deformed film elements according to the invention can be obtained.
  • the at least one electroluminescent element used according to the invention is contacted with a current source.
  • the at least one electroluminescent element for this purpose has electrical connections which are guided to a side edge of the film element according to the invention and there by means of contacting aids with a
  • Suitable contacting aids are, for example, crimping,
  • the contacting of the electroluminescent element with a current source is effected by a plurality of lines which are connected to the above-mentioned contacting aids.
  • the conduits are generally made of a conductive material, for example copper, and may be manufactured by a stamping tool and process according to methods known in the art.
  • the leads may be screen printed traces of conductive pastes, for example paint, leading to the electrical terminals of the at least one electroluminescent element.
  • the electroluminescent element is operated with alternating current.
  • electroluminescent inverters EL inverters
  • Suitable EL inverters are known to the person skilled in the art and are commercially available.
  • EL inverters are used in the form of SMD (Surface Mounted Device) components.
  • SMD-EL inverters are also known to the person skilled in the art and are commercially available. The advantage of SMD-EL inverters is that they do not have wire connections but can be contacted by means of the polymer conductive adhesives known in the art with the electroluminescent element.
  • the EL inverters are thus fastened in the form of SMD components directly on the back of the film elements constructed from the components A, B and C, generally by means of polymer adhesive bonding techniques including the electrical contacting of the electroluminescent element wiring tracks , In this way, for example, 12 volts DC connection elements can be made at edges of the three-dimensionally deformed film element constructed of the components A, B and C.
  • small area electroluminescent arrays generally up to about 50 mm 2
  • HV850 EL-Lamp Driver SMD device In Sunnyvale, CA, with a H x B x D size of about 3 mm x 3mm x 1mm, in which case no additional inductor component is needed.
  • the electroluminescent elements used as component B in the three-dimensionally deformed film element according to the invention are generally thick-film electroluminescent elements which are operated with alternating current (thick-film AC-EL elements).
  • An advantage of these thick-film AC-EL elements is that relatively high voltages of generally greater than 100 volts peak-to-peak, preferably greater than 100 volts peak-to-140 volts peak-to-peak, at several hundreds of Hz up into the kHz range (1000 Hz), preferably 250 Hz to 800 Hz, more preferably 250 Hz to 500 Hz, and when forming the layer containing at least one excitable by an electric field luminous substance, component BC, (dielectric layer) virtually none ohmic power loss is given.
  • the electrical conductivity of the electrodes (components BA and BE) should therefore be as uniform as possible, but no particular current load occurs.
  • well-conductive busbars are used to reduce voltage drops.
  • the operation of the electroluminescent elements (component B) used in the film element according to the invention takes place at a brightness of 10 cd / m 2 to 500 cd / m 2 , preferably 10 cd / m 2 to 100 cd / m 2 .
  • a brightness of 10 cd / m 2 to 500 cd / m 2 preferably 10 cd / m 2 to 100 cd / m 2 .
  • lifespan half-lives of generally about 2,000 hours can be achieved.
  • the operation of such electroluminescent elements with an AC voltage with harmonic waveform is preferable. It should be transient voltage pulses are avoided.
  • the switching on and off process is preferably designed such that no excessive voltage pulses damage the layer containing at least one excitable by an electric field luminous substance (dielectric) and optionally also damage individual luminous substances (electroluminophores).
  • the reduction of the brightness with the lifetime, the so-called half-life, ie the time until the decrease to half the initial brightness, can be compensated by readjusting the power supply, or optionally by readjusting the frequency.
  • both the decrease in the capacitance of the electroluminescent element can be used for readjustment, as well as an external photodiode, which measures the electroluminescent emission. With the change in frequency, the emission color of the electroluminescent emission can also be influenced in certain areas.
  • the three-dimensionally deformed film element according to the invention may contain an LED element in addition to the at least one electroluminescent element. It is preferably an SMD LED element. Suitable LED elements are known to the person skilled in the art and are commercially available.
  • Another object of the present invention is therefore a three-dimensionally deformed film element constructed from the components A, B and C and additionally at least one LED element, preferably at least one SMD LED element, as component D, wherein the three-dimensionally deformed film element can be produced by High-pressure isostatic deformation of a flat film element composed of the components A, B, C and D at a process temperature below the softening temperature of the component A of the film element.
  • the SMD LED devices are arranged on the back side of the three-dimensionally deformed film elements constructed of the components A, B and C, e.g. by gluing by means of methods known to those skilled in the art.
  • LED elements usually have a point-like light emission of very high luminance and can therefore, for example, generate higher luminous intensities than flat electroluminescent elements behind a translucent and signal-effectively arranged indication field. Erfmdungs contemporary three-dimensionally deformed film elements having LED elements are therefore well used as an alarm signal element.
  • the translucent light fields are also provided in a further preferred embodiment by printing technology and / or dispensing technology by means of diffuser elements, so that the SMD LED element has a broad radiation characteristic and can be used as an optical signal for an alarm state, such as the display of an overtemperature or of too little oil or the failure of the ABS Brake system and the like.
  • Suitable diffuser elements are known to the person skilled in the art and are commercially available.
  • the electroluminescent element used according to the invention has an at least partially transparent electrode.
  • an "at least partially transparent” electrode is to be understood as meaning an electrode which may be completely transparent, or an electrode which may be translucent, but not completely transparent.
  • the at least partially transparent electrode is generally a planar electrode which is composed of one or more electrically conductive materials on an inorganic or organic basis.
  • Suitable at least partially transparent electrodes which can be used according to the invention are all electrodes known to the person skilled in the art for the production of electroluminescent elements which are not damaged by the deformation for producing the three-dimensionally deformed film element according to the invention by means of isostatic high pressure deformation.
  • ITO indium-tin-oxide
  • the at least partially transparent electrode used according to the invention is thus selected from the group consisting of ITO print layers, ATO (antimony tin oxide) screen printing layers, non-ITO screen printing layers (the term "non ITO” encompassing all screen printing layers which do not, indium-tin-oxide (ITO) based), i.e.
  • intrinsically conductive polymer layers typically nanoscale electrically conductive pigments, for example, the ATO screen printing pastes with the designations 7162E or 7164 from DuPont, intrinsically conductive polymer systems such as Orgacon ® system Agfa, the Baytron ® poly (3,4-ethylenedioxythiophene) system from HC Starck GmbH, (conductive polymer PEDT polyethylene-dioxythiophene) as an organic metal designated Ormecon system of conductive coating or ink systems from Panipol Oy and optionally with highly flexible binders, for example based on PU (polyurethanes), PMMA (Po methyl methacrylate), PVA (polyvinyl alcohol), modified polyaniline. Is preferably used as material of the at least partially transparent electrode of the electric luminescence element Baytron ® poly (3,4-ethylene dioxythiophene) system from HC Starck GmbH.
  • the at least partially transparent electrode of the electroluminescent element is connected directly to the optionally provided with graphic representations at least partially transparent carrier film.
  • the electroluminescent element used according to the invention contains, in addition to the at least partially transparent electrode, component BA, a layer containing at least one luminous substance which can be excited by an electric field as component BC.
  • the layer is generally applied to an optionally present first insulation layer, component BB, or, if this layer is not present, to the at least partially transparent electrode.
  • the luminous substance (luminophore) in the layer (component BC) which can be excited by an electric field is preferably ZnS, which is generally doped with phosphorus.
  • the layer (component BC) is a dielectric material.
  • This material may be, for example, ZnS, generally doped with phosphorus, or a mixture of ZnS, generally doped with phosphorus (as a luminous substance), BaTiO 3 and highly flexible binders, for example those based on PU, PMMA, PVA.
  • the electroluminescent element according to the invention may comprise an insulating layer as component BC which is generally applied to the layer containing at least one luminous substance which can be excited by an electric field.
  • Suitable material for an insulating layer is, for example, barium titanate (BaTiO ß).
  • the at least one electroluminescent element used according to the invention contains a back electrode, component BD. This is generally applied to the insulating layer, if present. If no insulation layer is present, the back electrode is applied to the layer containing at least one excitable by an electric field luminous substance.
  • the back electrode as in the case of the at least partially transparent electrode, is a planar electrode which, however, does not have to be transparent or at least partially transparent.
  • This is generally constructed of electrically conductive materials on an inorganic or organic basis, wherein preferably those materials are used which are not damaged when using the high-pressure isostatic forming process for producing the three-dimensionally deformed film element according to the invention.
  • Suitable electrodes are therefore in particular polymeric electrically conductive coatings.
  • the coatings already mentioned above with regard to the at least partially transparent electrode can be used.
  • it is possible to use those polymeric, electrically conductive coatings which are known to the person skilled in the art and which are not at least partially transparent.
  • Suitable materials of the back electrode are thus preferably selected from the group consisting of metals such as silver, carbon, ITO screen printing layers, ATO screen printing layers, non-ITO screen printing layers, that is to say intrinsically conductive polymeric systems usually nanoscale electrically conductive pigments, for example ATO-S iebdging- pastes with the designation 7162E or 7164 from DuPont, intrinsically conductive polymer systems such as Orgacon ® system from Agfa, the Baytron ® poly (3,4-ethylenedioxythiophene) - System of HC Starck GmbH, the Ormecon system known as organic metal (PEDT conductive polymer polyethylenedioxythiophene), conductive coating and printing ink systems of Panipol Oy and optionally with highly flexible binders, for example based on PU (polyurethanes), PMMA (polymethyl methacrylate), PVA (polyvinyl alcohol), modified polyaniline, wherein the aforementioned materials for improving the electrical conductivity can be added to
  • the production of the electroluminescent element can be effected, for example, by application of the individual layers by the so-called thick-layer method known in the prior art.
  • the application of the layers of the electroluminescent element to the carrier film is carried out by methods known to the person skilled in the art.
  • the connection of the electroluminescent element to the carrier film is generally carried out by direct application, for example by screen printing, onto the carrier film.
  • the three-dimensionally deformed film element according to the invention contains a protective layer, component CA, in order to avoid destruction of the electroluminescent element or the optionally present graphical representations.
  • Suitable materials of the protective layer are known to the person skilled in the art.
  • Suitable protective layers CA include high temperature resistant protective coatings such as protective coatings which contain polycarbonates and binders, for example Noriphan ® HTR from Pröll, Weissenburg.
  • the three-dimensionally deformed film element according to the invention may comprise a film, component CB, in addition to the components A and B instead of the protective layer, component CA.
  • Suitable films are the films mentioned as carrier films (component A).
  • the foil may e.g. be applied by lamination or gluing.
  • the three-dimensionally deformed film element according to the invention is constructed by isostatic high-pressure deformation of a flat film element of the components A, B and C at a process temperature below the softening temperature of the component A of
  • a suitable isostatic high pressure forming process is, for example mentioned in EP-A 0 371 425.
  • the inventive construction of the components A, B and C, which are described above, ensures that a three-dimensional deformation of the flat sheet member by isostatic high pressure deformation without damaging the individual components of the film element, in particular without affecting the lamp function of the electroluminescent element , can be done.
  • the layers (components A, B and C) in the film element according to the invention are tuned so that short circuits are avoided.
  • the protective layer, component C, on the back causes a crack-free deformation is possible. Since a flat film element constructed from the elements A, B and C is deformed by high-pressure isostatic deformation, it is of particular importance that a good adhesion of the individual layers of the film element is ensured. Good adhesion is ensured by the composition of the individual layers (components A, B and C), in particular by the use of highly flexible binders in the layers, e.g. Binders based on PU, PMMA, PVA, in particular PU, guaranteed.
  • the composition of the layers (components A, B and C) not only ensures excellent adhesion of the layers to one another but also a stretchability required for carrying out high-pressure isostatic deformation.
  • the three-dimensionally deformed film element according to the invention is characterized by high-pressure isostatic deformation, as e.g. in EP-A 0 371 425, can be produced.
  • Another object of the present invention is therefore a method for producing a three-dimensionally deformed film element comprising
  • component A of at least one cold-stretchable film material, which is optionally provided with graphic representations
  • Component B containing the following components
  • component BD optionally a further insulating layer, component BD, be) a return electrode, component BE,
  • component CA a protective layer, component CA or a film, component CB, and
  • step ii) high-pressure isostatic deformation of the planar film element obtained in step i) at a process temperature below the softening temperature of the component A of the film element.
  • the components A, B and C have the meanings already mentioned above.
  • the three-dimensionally deformed film element according to the invention may optionally contain further layers.
  • planar film element can be produced according to methods known to the person skilled in the art.
  • the production of the flat film element in step i) comprises the following steps:
  • the preparation of the transparent carrier film in step ia) is carried out according to methods known to the person skilled in the art. Furthermore, suitable carrier films are commercially available.
  • the application of graphical representations on the carrier film can also be carried out by methods known in the art, for example by screen printing, offset lithography, rotary printing, gravure, inkjet, pad printing, laser printing or flexographic printing, which are all common and known in the art.
  • the graphic design preferably takes place by means of ink application by means of screen printing.
  • a multiple printing for example a double printing, can take place.
  • a multiple printing for example a double printing, can take place.
  • the individual Prints are generally used as reference marks or three-point edge registration.
  • step ib) The application of the electroluminescent element to the optionally printed carrier film in step ib) can likewise be carried out by methods known to the person skilled in the art.
  • the connection of the electroluminescent element to the carrier film can be carried out by means known to the person skilled in the art, generally by direct application, for example by screen printing, onto the carrier film, as already mentioned above.
  • step ic the protective layer or the film is likewise applied to the at least one electroluminescent element by methods known to the person skilled in the art, preferably likewise by screen printing.
  • the insulating layers are also preferably applied by screen printing.
  • An advantage of the film element according to the invention is that all layers of the film element are selected so that they can be applied by screen printing.
  • the isostatic high-pressure deformation in step ii) is preferably carried out in accordance with the process mentioned in EP-A 0 371 425, wherein a process temperature is chosen which is below the softening temperature of the component A of the film element.
  • the planar sheet member obtained in step i) composed of components A, B and C is subjected to a fluid pressure medium and isostatically deformed at a working temperature, the deformation being at a working temperature below the softening temperature of the material of the support sheet (Component A) and under a pressure medium pressure of generally> 20 bar, preferably> 100 bar, more preferably from 200 to 300 bar is made.
  • the deformation of the film material generally takes place within a few seconds of the cycle time, preferably within a time span of ⁇ 10 seconds, particularly preferably within a time span of ⁇ 5 seconds. Deformations of 100% to 200% can be achieved without the appearance of visually disturbing stress whitening.
  • the isostatic high-pressure forming is generally at least 5 0 C, preferably at least 1O 0 C, particularly preferably at least 2O 0 C and more below the softening temperature of component A of the film element.
  • the softening temperature of most preferably used as the material of the at least partially transparent carrier film polycarbonates based on bisphenol A (for example Makrofol ® - foil) is located approximately at or above 15O 0 C. It is possible that the isostatic high-pressure forming of film elements such Polycarbonate films as carrier films, is carried out at room temperature.
  • the isostatic high pressure deformation due to the other components inter alia due to the graphic Dar- positions, which are preferably carried out by means of color printing, at working temperatures between 80 and 13O 0 C, if as the film material of the support film polycarbonates based on bisphenol A, as mentioned above, be used.
  • the processing temperature in step ii) with knowledge of the softening temperature of the material for a person skilled in the art can be easily determined.
  • Suitable devices for carrying out the high-pressure isostatic deformation for producing the three-dimensionally deformed film element according to the invention are mentioned, for example, in EP-A 0 371 425.
  • the three-dimensionally deformed film element obtained after step ii) can be brought into a final desired contour, e.g. by trimming, punching or lasering.
  • Suitable methods and apparatuses for bringing the film element into its final contour, e.g. by punching, trimming or lasing, are known in the art.
  • punching, trimming or lasering is done with high precision, e.g. a suitable method of pruning is precision cutting.
  • the three-dimensionally deformed film element according to the invention can be used in numerous applications. Suitable applications are, for example, the use of the three-dimensionally deformed film element according to the invention for the formation of display elements such as a tachograph disc for land-water and aircraft, for the formation of seatbelt trims or warning panels in land watercraft and aircraft and for training warning signs in buildings, for training of housing elements for mobile electronic devices, such as a mobile phone or a remote control and housing elements for stationary electronic devices such as a printer, copier, PC, notebook or a small or large home appliance or to form a keyboard.
  • display elements such as a tachograph disc for land-water and aircraft
  • seatbelt trims or warning panels in land watercraft and aircraft and for training warning signs in buildings
  • housing elements for mobile electronic devices such as a mobile phone or a remote control
  • housing elements for stationary electronic devices such as a printer, copier, PC, notebook or a small or large home appliance or to form a keyboard.
  • FIG. 1 shows a schematic section A-B through a not yet three-dimensional deformed film element (3) in the region of a speedometer disk (15).
  • FIG. 2 shows a schematic section A-B through a three-dimensionally deformed film element (3) in the region of a speedometer disk (15).
  • FIG. 3 a schematic representation of an exemplary stamped or trimmed (5) deformed three-dimensional film element according to the invention (3D-EL-HDVF) (I)
  • FIG. 4 shows a schematic representation of an exemplary three-dimensionally deformed film element (3 D-EL-HDVF) according to the invention (1) with 3 EL elements (2, 15, FIG.
  • FIG. 5 shows a schematic representation of an exemplary 3D-EL-HDVF element (1) with three EL elements (2, 15, 16) and surface-mounted SMD-EL inverter elements (10),
  • FIG. 6 shows a schematic representation of an exemplary 3D-EL-HDVF element (1) with two EL elements (2, 15, 16) and surface-mounted SMD-EL inverter elements (10) and an SMD LED element (13).
  • FIG. 1 shows a schematic section A-B through a not yet three-dimensionally deformed film element (3) in the region of a speedometer disk (15).
  • the various printed layers (4) are not shown in greater detail since this printing technology corresponds to the state of the art.
  • FIG. 2 shows a schematic section A-B through a three-dimensionally deformed film element (3) in the region of a speedometer disk (15).
  • the various printed layers (4) are not shown in greater detail since this printing technology corresponds to the state of the art.
  • FIG. 3 shows a schematic representation of an exemplary stamped or trimmed (5) deformed inventive film element (3D-EL-HDVF).
  • the contour (5) in the trimmed or stamped state will usually be slightly smaller than the printing-technical contour (5) in Figure 2.
  • Such 3D EL-HDVF elements (1) must be deformed very precisely, and the graphic design must be carried out accurately, since, for example, a hole will be made in the center, through which a pointer element is guided, which indicates the respective speed.
  • the backlighting is according to the invention by means of electroluminescent (EL) elements (2).
  • EL electroluminescent
  • FIG. 4 shows a schematic representation of an exemplary 3D-EL-HDVF element (1) with three electroluminescent (EL) elements (2, 15, 16).
  • the pressure-technically produced EL elements (2) are used in place of the hitherto customary backlighting technique according to the prior art only in those places where a graphical translucent review is desired (15, 16).
  • the various electroluminescent elements (2) are produced in accordance with the prior art, and the electrical connections (6, 7) to the connected terminals (8, 9) are also carried out according to the prior art , Suitable methods are already mentioned above.
  • An essential advantage over the three-dimensionally deformed film elements produced according to the prior art is that the at least partially transparent electrode of the electroluminescent element survives the isostatic high-pressure deformation process without the formation of hair cracks and without delamination, which is achieved by the preferred use of suitable polymer printable and electrically conductive layers is achieved.
  • suitable materials for producing the at least partially transparent electrode of the electroluminescent element are already mentioned above.
  • An essential aspect is a good adhesion of the at least partially transparent electrode of the electroluminescent element to the at least partially transparent carrier film and the other layers of the electroluminescent element, as already mentioned above.
  • FIG. 5 shows a schematic representation of an exemplary 3D-EL-HDVF element (1) with three EL elements (2, 15, 16) and surface-mounted SMD-EL inverter elements (10). Due to the availability of very small and flat components, such as the HV850 EL-Lamp Driver from Supertex, Inc. in Sunnyvale, CA, USA, with a design size H x W x D of about 3 mm x 3 mm x 1 mm These can be simply mechanically and electrically mounted on the back of 3D-EL-HDVF elements (1) using SMD technologies.
  • HV850 EL-Lamp Driver from Supertex, Inc. in Sunnyvale, CA, USA
  • 3D-EL-HDVF element (1) can be supplied directly to the contacts (8, 9) with a DC power supply of, for example, 3 volts or 12 volts.
  • 6 shows a schematic representation of an exemplary 3D-EL-HDVF element (1) with two EL elements (2, 15, 16) and surface-mounted SMD-EL inverter elements (10) and an SMD LED element (13). demonstrated.
  • Such glass beads with a refractive index of generally 1.6 to 1.9 and above can achieve additional scattering effect and thus an increase in the signal effect.
  • the optimum glass bead diameter and the optimum refractive index must be matched to the selected polymers of the printing ink binders.
  • the glass beads can, as already mentioned, be mixed with translucent printing inks (eg red or green or yellow or blue inks), but they can also be additionally incorporated in a colorless transparent printing layer.
  • SMD Surface-mounted device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Ein dreidimensional verformtes Folienelement herstellbar durch isostatische Hochdruckverformung, ein Verfahren zur Herstellung des erfindungsgemäßen dreidimensional verformten Folienelements und die Verwendung des erfindungsgemäßen dreidimensional verformten Folienelements zur Ausbildung von Anzeigelementen wie einer Tachoscheibe für Land-, Wasser-, und Luftfahrzeuge, zur Ausbildung von Sicherheitsgurtblenden oder Warnhinweisblenden in Land-, Wasser-, und Luftfahrzeugen und Warnhinweisblenden in Gebäuden und zur Ausbildung von Gehäuseelementen für mobile und stationäre Elektronikgeräte und zur Ausbildung einer Tastatur.

Description

3D-EL-HDVF Element und Herstellungsverfahren und Anwendung
Die vorliegende Erfindung betrifft ein dreidimensional verformtes Folienelement herstellbar durch isostatische Hochdruckverformung, ein Verfahren zur Herstellung des erfmdungsgemäßen dreidimensional verformten Folienelements und die Verwendung des erfmdungsgemäßen dreidimen- sional verformten Folienelements zur Ausbildung von Anzeigenelementen wie einer Tachoscheibe für Land-, Wasser- und Luftfahrzeuge, zur Ausbildung von Sicherheitsgurtblenden oder Warnhinweisblenden in Land-, Wasser- und Luftfahrzeugen und Warnhinweisblenden in Gebäuden und zur Ausbildung von Gehäuseelementen für mobile und stationäre Elektronikgeräte und zur Ausbildung einer Tastatur.
Im Stand der Technik sind Elektrolumineszenz-Leuchtflächen für mobile oder stationäre elektronische Geräte bekannt. Solche Elektrolumineszenz-Leuchtflächen werden üblicherweise als Einbauteile zur Hinterleuchtung von Anzeigevorrichtungen und Bedienelementen eingesetzt. Übliche Elektrolumineszenz-Leuchtflächen weisen eine Polyesterfolie als Trägermaterial auf mit einer im Sputterverfahren aufgedampften elektrisch leitenden weitgehend transparenten Schicht. Daneben enthalten solche Elektrolumineszenz-Leuchtflächen im Allgemeinen weitere Schichten, z.B. Schutzschichten. Da diese im Stand der Technik zur Herstellung von Elektrolumineszenz-Leucht- flächen eingesetzten Schichten häufig einen spröden Charakter haben, bzw. einem Verformprozess mit hohen Temperaturen nicht standhalten, sind die herkömmlichen Anzeigevorrichtungen im Allgemeinen eben ausgebildet, was z.B. bei Gegenständen, die dreidimensionale Geometrien auf- weisen, zu einer Beeinträchtigung der Wahrnehmbarkeit von Informationsangaben und der Bedienbarkeit führen kann.
Im Stand der Technik wurden daher bereits dreidimensionale Elektrolumineszenzanzeigen vorgeschlagen.
DE-A 44 30 907 betrifft eine dreidimensionale Elektrolumineszenzanzeige mit einer durch- sichtigen Scheibe, einer auf mindestens einer Seite der Scheibe aufgebrachten lichtdurchlässigen Schicht, mindestens einer neben der lichtdurchlässigen Schicht aufgebrachten Elektrolumineszenz- Lampe und einem an die Elektrolumineszenz-Lampe und die Scheibe angeformten Substrat zur Bildung einer ganzstückigen dreidimensionalen Elektrolumineszenz-Anzeige. Die Herstellung der dreidimensionalen Elektrolumineszenz-Anzeige erfolgt ausgehend von einer vorgeformten Scheibe. Es ist jedoch weiterhin erwähnt, dass die Scheibe auch nachgeformt sein kann, d.h., dass die dreidimensionale Elektrolumineszenzanzeige vor der Anformung des Substrats durch gebräuchliche Verfahren geformt wird. DE-A 44 30 907 enthält jedoch keine weiteren Informationen bezüglich geeigneter gebräuchlicher Verfahren. DE-A 102 34 031 betrifft eine Elektrolumineszenz-Leuchtfläche, die den Aufbau eines Kondensators mit zwei parallel liegenden Elektroden aufweist, von denen zumindest eine transparent ausgebildet ist, mit einer durch ein elektrisches Feld erregbaren Leuchtsubstanz, die zwischen den Elektroden angeordnet ist. Die Elektro lumineszenz-Leuchtfläche enthält des Weiteren eine mit Informationsangaben versehene Trägerschicht, die aus einem frei verformbaren Folienmaterial oder aus einem Hartmaterial, das eine dreidimensional verformte Oberfläche aufweist, gefertigt ist, wobei die Trägerschicht kongruent entsprechend ihrer Verformung zumindest im Bereich ihrer Informationsangaben eine Beschichtung mit einer ersten elektrisch leitfähigen Schicht, einer Pigmentschicht, einer Isolations- und Reflexionsschicht, einer Deckelektrode sowie einer optio- nalen Schutzschicht aufweist. Die Herstellung der Elektrolumineszenz-Leuchtfläche erfolgt dadurch, dass zunächst die Trägerschicht aus dem frei verformbaren Folienmaterial oder aus einem Hartmaterial, das vorher in eine dreidimensional verformte Oberflächenform gebracht wurde, mit Informationsangaben bedruckt wird und anschließend mit einer ersten elektrisch leitfähigen Schicht, einer Pigmentschicht, einer Isolations- und Reflexionsschicht, einer Back-Elektrode sowie einer optionalen Schutzschicht versehen wird. Danach kann der dreidimensional verformte Folienkörper mit einem Kunststoffmaterial hinterspritzt werden, um einen Tragkörper herzustellen. Bei Einsatz einer Trägerschicht aus einem frei verformbaren Folienmaterial kann eine Verformung des bedruckten und mit den weiteren vorstehend genannten Schichten versehenen Folienkörpers erfolgen, wobei als einziger Verformungsvorgang in DE-A 102 34 031 das Tiefziehen erwähnt ist.
WO 03/037039 betrifft eine dreidimensionale Elektrolumineszenzanzeige, die einen Hauptkörper und eine Elektrolumineszenzeinrichtung umfasst. Die Elektrolumineszenz-einrichtung besteht aus einer Folie und einer Elektrolumineszenzvorrichtung, wobei die der Elektrolumineszenzvorrich- tung zugewandte Fläche der Folie mit anzuzeigenden Motiven versehen ist. Die Elektrolumineszenzvorrichtung umfasst eine Frontelektrode und eine Rückelektrode, zwischen welchen sich ein Dielektrikum befindet. Die Frontelektrode ist der das Motiv wiedergebenden Schicht zugeordnet und mit dieser einstückig. Innerhalb der Fläche der Elektrolumineszenzeinrichtung ist eine Speisequelle angeordnet, welche die Elektroden der Elektrolumineszenzeinrichtung kontaktiert. Der Hauptkörper ist aus einem geeigneten Kunststoff, der sich vorteilhafterweise in einem Spritzgießprozess verarbeiten lässt. Zur Herstellung der dreidimensionalen Elektrolumineszenz- anzeige wird zunächst die Elektrolumineszenzeinrichtung hergestellt. Dabei wird zunächst die Folie bereitgestellt, die als Träger für die Elektrolumineszenzvorrichtung dient. Anschließend wird die Elektrolumineszenzeinrichtung umgeformt, indem sie tiefgezogen, geprägt, hohlgeprägt oder massiv geprägt wird, wobei die Umformung bevorzugt durch Tiefziehen erfolgt. Nach der Umformung (Tiefziehen) wird der Hauptkörper der Rückseite der Elektrolumineszenzeinrichtung zugeordnet, z.B. durch Hinterspritzen der Elektrolumineszenzeinrichtung mit einem dazu geeigneten Material. Bei der Herstellung von dreidimensionalen Elektrolumineszenz-Leuchtflächen, die bevorzugt gedruckte Informationssymbole aufweisen, ist es wichtig, dass das Elektrolumineszenz-Element, sowie die gegebenenfalls vorhandenen gedruckten Informationssymbole positionsgenau und verzugsfrei erhalten bleiben, bzw. der Verzug konstant ist, so dass er durch Zerrdruck ausgeglichen werden kann. Dies ist bei den üblichen Kaltverformungsverfahren wie Tiefziehen bzw. Prägen nicht sicher gewährleistet.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung eines dreidimensional verformten Folienelements, dass mindestens ein Elektrolumineszenz-Element aufweist und gegebenenfalls mit graphischen Darstellungen versehen ist, wobei dass mindestens eine Elektrolumineszenz-Element sowie gegebenenfalls die graphischen Darstellungen positionsgenau auf dem dreidimensional verformten Folienelement aufgebracht sind.
Die Aufgabe der Bereitstellung eines dreidimensional verformten Folienelements wird gelöst durch ein dreidimensional verformtes Folienelement aufgebaut aus
a) einer zumindest teilweise transparenten Trägerfolie, Komponente A, aus mindestens einem kalt-reckbaren Folienmaterial, das gegebenenfalls mit graphischen Darstellungen versehen ist,
b) mindestens einem auf die Trägerfolie aufgebrachten Elektrolumineszenz-Element, Komponente B, enthaltend die folgenden Komponenten
ba) eine zumindest teilweise transparente Elektrode, Komponente BA,
bb) gegebenenfalls eine erste Isolationsschicht, Komponente BB,
bc) eine Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, Komponente BC,
bd) gegebenenfalls eine weitere Isolationsschicht, Komponente BD,
be) eine Rückelektrode, Komponente BE,
c) einer Schutzschicht, Komponente CA oder einer Folie, Komponente CB,
herstellbar durch isostatische Hochdruckverformung eines ebenen Folienelements aufgebaut aus den Komponenten A, B und C bei einer Verfahrenstemperatur unterhalb der Erweichungstemperatur der Komponente A des Folienelements. Neben den genannten Schichten (Komponenten A, B und C) kann das erfindungsgemäße dreidimensional verformte Folienelement weitere Schichten aufweisen.
Das erfindungsgemäße dreidimensionale Folienelement zeichnet sich dadurch aus, dass das mindestens eine auf die Trägerfolie aufgebrachte Elektrolumineszenz-element sowie die gegebe- nenfalls auf der transparenten Trägerfolie vorhandenen grafischen Darstellungen positionsgenau aufgebracht sind. Dies ist wesentlich, da das erfindungsgemäße dreidimensional verformte Folienelement z.B. zur Ausbildung von Tachoscheiben für Land-, Wasser-, und Luftfahrzeuge dienen soll, wobei eine exakte Positionierung der Informationssymbole wichtig ist. Eine solche exakte Positionierung wird dadurch erreicht, dass ein ebenes Folienelement bereitgestellt wird, das die Komponenten A, B und C aufweist, wobei diese Komponenten so ausgewählt sind, dass das ebene Folienelement durch isostatische Hochdruckverformung dreidimensional verformt werden kann. Es wurde überraschenderweise gefunden, dass eine solche dreidimensionale Verformung mittels isostatischer Hochdruckverformung in Anwesenheit eines Elektrolumineszenz-Elements, das die Komponenten BA, BB, gegebenenfalls BC und BD aufweist, möglich ist.
Die erfindungsgemäßen dreidimensional verformten Folienelemente sind für zahlreiche Anwendungszwecke hinreichend formstabil, so dass ein Hinterspritzen des Folienelements mit einem geeigneten Kunststoff, wie in dem vorstehend genannten Stand der Technik vorgeschlagen, nicht erforderlich ist. In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung daher ein dreidimensional verformtes Folienelement, aufgebaut aus den Komponenten A, B und C, wobei das dreidimensional verformte Folienelement kein angeformtes Substrat aufweist, insbesondere nicht mit einem Kunststoff hinterspritzt ist.
Komponente A
Das erfindungsgemäße dreidimensionale Folienelement enthält eine zumindest teilweise transparente Trägerfolie, Komponente A, aus mindestens einem kalt-reckbaren Folienmaterial, das gegebenenfalls mit grafischen Darstellungen versehen ist.
Unter einer „zumindest teilweise transparenten Trägerfolie" sind sowohl transparente Trägerfolien zu verstehen als auch solche, die durchscheinend, jedoch nicht vollständig transparent sind. Die Trägerfolie ist erfindungsgemäß aus mindestens einem kalt-reckbaren Folienmaterial aufgebaut. Dies ist erforderlich, damit eine Herstellung des dreidimensional verformten Folienelements durch isostatische Hochdruckverformung bei einer Verfahrenstemperatur unterhalb der Erweichungstemperatur der Komponente A durchgeführt werden kann. Geeignete kalt-reckbare Folienmaterialien sind zum Beispiel in EP-A 0 371 425 genannt. Es können sowohl thermoplastische als auch duroplastische zumindest teilweise transparente kalt-reckbare Folienmaterialen eingesetzt werden. Bevorzugt werden kalt-reckbare Folienmaterialen eingesetzt, die bei Raum- und Gebrauchstemperatur ein geringes oder kein Rückstellvermögen aufweisen. Besonders bevorzugte Folienmaterialien sind ausgewählt aus mindestens einem Material aus der Gruppe bestehend aus PoIy- carbonaten, bevorzugt Polycarbonaten auf Basis von Bisphenol A, beispielsweise die von Bayer Material Science AG vertriebenen Makrofol®-Sorten, Polyestern, insbesondere aromatischen PoIy- estern, beispielsweise Polyalkylenterephthalaten, Polyamiden, beispielsweise PA 6- oder PA 6,6- Sorten, hochfesten „Aramide-Folien", Polyimiden, beispielsweise die unter der Handelsbezeichnung Kapton® vertriebenen Folien auf der Basis von Poly-(diphenyloxid-pyromellith-imid), Polyarylaten, organischen thermoplastischen Celluloseestern, insbesondere deren Acetaten, Propionaten und Acetobutyraten, beispielsweise Folienmaterialen von Bayer MaterialScience AG unter der Handelsbezeichnung Cellidor®, und Polyfluorkohlenwasserstoffen, insbesondere die unter der Bezeichnung FEB bekannten Copolymerisate aus Tetrafluorethylen und Hexafluor- propylen, die in transparenter Ausführungsform verfügbar sind. Bevorzugte Folienmaterialien der Trägerfolie sind ausgewählt aus Polycarbonaten, beispielsweise die von Bayer MaterialScience AG vertriebenen Makrofol®-Sorten, Polyestern, insbesondere aromatischen Polyestern, beispielsweise Polyalkylenterephthalaten, und Polyimiden, beispielsweise die unter der Handelsbezeichnung Kapton vertriebenen Folien auf der Basis von Poly-(diphenyloxid-pyro- mellith-imid). Ganz besonders bevorzugt werden als Folienmaterialien Polycarbonate auf der Basis von Bisphenol A eingesetzt, insbesondere Folien mit der Bezeichnung Bayfol® CR (PoIy- carbonat/Polybutylenterephthalat-Folie), Makrofol® TP oder Makrofol® DE der Bayer MaterialScience AG.
Die erfindungsgemäß eingesetzte zumindest teilweise transparente Trägerfolie kann einseitig satinierte, bzw. raue Oberflächen oder beidseitig hochglänzende Oberflächen aufweisen. Die Schichtdicke der erfindungsgemäß eingesetzten zumindest teilweise transparenten Trägerfolie beträgt im Allgemeinen 40 bis 2000 μm. Bei höheren Schichtdicken bewirkt die schlagartige Umformung, die bei der isostatischen Hochdruckverformung durchgeführt wird, häufig eine Versprödung des Materials. Bevorzugt wird eine Trägerfolie mit einer Schichtdicke von 50 bis 500 μm eingesetzt, besonders bevorzugt 100 bis 400 μm, ganz besonders bevorzugt 150 bis 375 μm.
In einer bevorzugten Ausführungsform - in Abhängigkeit von der Anwendung des erfmdungs- gemäßen dreidimensional verformten Folienelements - ist die zumindest teilweise transparente Trägerfolie mit graphischen Darstellungen versehen. Dabei kann es sich um Informationssymbole handeln, so dass auf der Oberfläche des dreidimensional verformten Folienelements beispielsweise Buchstaben, Zahlen, Symbole oder Piktogramme sichtbar sind. Bei der graphischen Gestaltung handelt es sich bevorzugt um eine drucktechnische graphische Gestaltung, insbesondere um einen Farbaufdruck. In einer besonders bevorzugten Ausführungsform ist die erfindungsgemäß eingesetzte Trägerfolie mit graphischen Darstellungen in Form von deckenden oder transluzenten Farbaufdrucken versehen. Diese Farbaufdrucke können nach beliebigen, dem Fachmann bekannten, Verfahren erfolgen, zum Beispiel durch Siebdruck, Offset-Lithographie, Serigraphie, Rotationsdruck, Tiefdruck oder Flexodruck, die alle gebräuchlich und im Stand der Technik bekannt sind. Bevorzugt erfolgt die graphische Gestaltung durch Farbauftrag mittels Siebdruck, da mittels Siebdruck pigmentierte Farben mit hoher Schichtstärke und guter Verformbarkeit aufgetragen werden können.
Die zur graphischen Gestaltung eingesetzten Druckfarben müssen unter den Bedingungen der isostatischen Hochdruckverformung ausreichend verformbar sein. Geeignete Farben, insbesondere Siebdruckfarben, sind dem Fachmann bekannt. Es können zum Beispiel Farben mit einem plastischen Farbträger, beispielsweise auf Polyurethanbasis, eingesetzt werden. Diese Siebdruckfarben weisen eine hervorragende Haftung zu dem Folienmaterial der erfmdungsgemäß eingesetzten Trägerfolie auf. Besonders bevorzugt werden Siebdruckfarben basierend auf wässrigen Dispersionen von aliphatischen Polyurethanen eingesetzt. Geeignete Farben sind zum Beispiel unter dem Handelsnamen AquaPress PR® von Pröll, Weissenburg erhältlich. Weitere geeignete Siebdruckfarben sind solche auf Basis von Hochtemperatur beständigen Thermoplasten, insbesondere Siebdruckfarben mit dem Handelsnamen Noriphan® von Pröll, Weissenburg.
Komponente B
Das erfindungsgemäße dreidimensional verformte Folienelement enthält mindestens ein auf die Trägerfolie aufgebrachtes Elektrolumineszenz-Element als Komponente B.
Das Elektrolumineszenz-Element enthält die folgenden Komponenten
ba) eine zumindest teilweise transparente Elektrode, Komponente BA,
bb) gegebenenfalls eine erste Isolationsschicht, Komponente BB,
bc) eine Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, Komponente BC,
bd) gegebenenfalls eine weitere Isolationsschicht, Komponente BD,
be) eine Rückelektrode, Komponente BE.
Das Elektrolumineszenz-Element kann zusätzlich zu den vorstehend genannten Komponenten weitere Komponenten aufweisen. Beispielsweise können zwischen der Rückelektrode, Kompo- nente BE, und der gegebenenfalls einen weiteren Isolationsschicht, Komponente BD (bzw., falls die Isolationsschicht nicht vorhanden ist, zwischen der Komponente BE und der Komponente BC), weitere Schichten vorliegen. Dabei kann sich an die Komponente BD (bzw., falls diese nicht vorliegt, an die Komponente BC) ein weiterer Aufbau umfassend eine zumindest teilweise transpa- rente Elektrode, eine weitere Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, und gegebenenfalls eine weitere Isolationsschicht anschließen. Dieser Aufbau kann sich gegebenenfalls noch einmal wiederholen, wobei die letzte Komponente des Aufbaus an die Rückelektrode, Komponente BE, anschließt.
Geeignete Elektrolumineszenz-Elemente sind dem Fachmann bekannt. Überraschenderweise wurde gefunden, dass Folienelemente, die mindestens ein erfindungsgemäß eingesetztes Elektro- Iuminesenz-Element aufweisen mittels einer isostatischen Hochdruckverformung verformt werden können, so dass die erfindungsgemäßen dreidimensional verformten Folienelemente erhalten werden können.
Dem Fachmann ist bekannt, dass das erfindungsgemäß eingesetzte mindestens eine Elektro- lumineszenz-Element mit einer Stromquelle kontaktiert ist. Im Allgemeinen weist das mindestens eine Elektrolumineszenz- Element dazu elektrische Anschlüsse auf, die an einen Seitenrand des erfindungsgemäßen Folienelements geführt werden und dort mittels Kontaktierhilfen mit einer
Stromquelle kontaktiert werden. Geeignete Kontaktierhilfen sind zum Beispiel Crimpen,
Klemmen, elektrisch leitender Kleber, Schrauben und andere dem Fachmann bekannte Mittel. Die Ansteuerung des Elektrolumineszenz-Elements kann in herkömmlicher dem Fachmann bekannter
Weise erfolgen.
Die Kontaktierung des Elektrolumineszenz-Elements mit einer Stromquelle erfolgt durch eine Mehrzahl von Leitungen, die mit den vorstehend genannten Kontaktierhilfen verbunden sind. Die Leitungen sind im Allgemeinen aus einem leitfähigen Material, zum Beispiel Kupfer, hergestellt und können mit einem Stanzwerkzeug und -Vorgang gemäß im Stand der Technik bekannten Verfahren hergestellt werden. Alternativ können die Leitungen in Siebdruck hergestellte Spuren leitfähiger Pasten, zum Beispiel Farbe, sein, die zu den elektrischen Anschlüssen des mindestens einen Elektrolumineszenz-Elements führen.
Im Allgemeinen wird das Elektrolumineszenz-Element mit Wechselstrom betrieben. Um den Wechselstrom zu erzeugen, werden Elektrolumineszenz-Inverter (EL-Inverter) eingesetzt. Geeignete EL-Inverter sind dem Fachmann bekannt und kommerziell erhältlich. In einer bevorzugten Ausführungsform werden EL-Inverter in Form von SMD (Surface Mounted Device) Bauelementen eingesetzt. Geeignete SMD-EL-Inverter sind dem Fachmann ebenfalls bekannt und kommerziell erhältlich. Der Vorteil von SMD-EL-Invertern ist, dass diese keine Drahtanschlüsse aufweisen, sondern mittels dem Fachmann bekannten polymeren leitfähigen Klebern mit dem Elektrolumineszenz-Element kontaktiert werden können. In einer Weiterbildung der vorliegenden Erfindung werden die EL-Inverter somit in Form von SMD-Bauelementen direkt auf der Rückseite der Folienelemente aufgebaut aus den Komponenten A, B und C im Allgemeinen mittels poly- merer Haftverbindungstechniken inklusive der elektrischen Kontaktierung der Elektrolumineszenz- Element Verdrahtungsbahnen befestigt. Auf diese Weise können beispielsweise 12 Volt Gleichspannungsanschlusselemente an berandenden Kanten des dreidimensional verformten Folienelements aufgebaut aus den Komponenten A, B und C hergestellt werden.
Im Anschluss an die mechanische und elektrische Montage der SMD-EL-Inverter werden im Allgemeinen zusätzlich passivierende und haftverbessernde Vergussmassen, z.B. mittels einem Dispenser, appliziert.
Kleinflächige elektrolumineszierende Felder, im Allgemeinen bis etwa 50 mm2, können beispielsweise sehr effizient durch das SMD-Bauelement HV850 EL-Lamp-Driver von Supertex, Inc. In Sunnyvale, CA, USA mit einer Bauformgröße H x B x D von etwa 3 mm x 3mm x 1 mm betrieben werden, wobei in diesem Fall kein zusätzliches Induktionsspulenbauteil benötigt wird.
Bei den in dem erfindungsgemäßen dreidimensional verformten Folienelement als Komponente B eingesetzten Elektrolumineszenz-Elementen handelt es sich im Allgemeinen um Dickfilm-Elektro- lumineszenz-Elemente, die mit Wechselstrom betrieben werden (Dickfilm-AC-EL-Elemente). Ein Vorteil dieser Dickfilm-AC-EL-Elemente ist, dass relativ hohe Spannungen von im Allgemeinen größer 100 Volt-Spitze-Spitze, bevorzugt größer 100 Volt-Spitze-Spitze bis 140 Volt-Spitze- Spitze, bei mehreren 100 Hz bis in den kHz-Bereich (1000 Hz), bevorzugt 250 Hz bis 800 Hz, besonders bevorzugt 250 Hz bis 500 Hz, verwendet werden und bei Ausbildung der Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, Komponente BC, (dielektrische Schicht) praktisch keine ohmsche Verlustleistung gegeben ist. Die elektrische Leitfähigkeit der Elektroden (Komponenten BA und BE) sollte daher möglichst gleichmäßig sein, es tritt jedoch keine besondere Strombelastung auf. Bevorzugt werden allerdings gut leitende Busbars eingesetzt, um Spannungsabfälle zu reduzieren.
Im Allgemeinen erfolgt der Betrieb der in dem erfindungsgemäßen Folienelement eingesetzten Elektrolumineszenz-Elemente (Komponente B) bei einer Helligkeit von 10 cd/m2 bis 500 cd/m2, bevorzugt 10 cd/m2 bis 100 cd/m2. Dabei können bei Verwendung von mikroverkapselten ZnS- Elektroluminophoren in der Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, Lebensdauerhalbwertszeiten von im Allgemeinen etwa 2.000 Stunden erreicht werden. Grundsätzlich ist der Betrieb derartiger Elektrolumineszenz-Elemente mit einer Wechselspannung mit harmonischer Kurvenform zu bevorzugen. Es sollten transiente Spannungs- impulse vermieden werden. Speziell der Ein- und Ausschalt-Vorgang wird bevorzugt derart gestaltet, dass keine überhöhten Spannungsimpulse die Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz (Dielektrikum) schädigen und gegebenenfalls einzelne Leuchtsubstanzen (Elektroluminophore) ebenfalls schädigen. Die Reduktion der Hellig- keit mit der Lebensdauer, die so genannte Halbwertszeit, also jene Zeit bis zur Abnahme auf die Hälfte der Initialhelligkeit, kann durch Nachregelung der Spannungsversorgung, beziehungsweise gegebenenfalls durch Nachregelung der Frequenz, ausgeglichen werden. Dabei kann sowohl die Abnahme der Kapazität des Elektrolumineszenz-Elements für eine Nachregelung verwendet werden, als auch eine externe Photodiode, welche die Elektrolumineszenz-Emission misst. Mit der Veränderung der Frequenz kann auch in gewissen Bereichen die Emissionsfarbe der Elektrolumineszenz-Emission beeinflusst werden.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung kann das erfindungsgemäße dreidimensional verformte Folienelement zusätzlich zu dem mindestens einen Elektro- lumineszenz-Element ein LED Element enthalten. Bevorzugt handelt es sich um ein SMD-LED- Element. Geeignete LED-Elemente sind dem Fachmann bekannt und kommerziell erhältlich.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein dreidimensional verformtes Folienelement aufgebaut aus den Komponenten A, B und C und zusätzlich mindestens ein LED- Element, bevorzugt mindestens ein SMD-LED-Element, als Komponente D, wobei das dreidimensional verformte Folienelement herstellbar ist durch isostatische Hochdruckverformung eines ebenen Folienelements aufgebaut aus den Komponenten A, B, C und D bei einer Verfahrenstemperatur unterhalb der Erweichungstemperatur der Komponente A des Folienelementes.
Bevorzugt werden die SMD-LED Bausteine auf der Rückseite der dreidimensional verformten Folienelemente aufgebaut aus den Komponenten A, B und C angeordnet, z.B. durch Kleben mittels dem Fachmann bekannten Verfahren.
LED-Elemente weisen üblicherweise eine punktartige Lichtemission von sehr hoher Leuchtdichte auf und können daher z.B. hinter einem transluzent und signalwirksam angeordneten Hinweisfeld höhere Leuchtintensitäten als flächige Elektrolumineszenz-Elemente erzeugen. Erfmdungs gemäße dreidimensional verformte Folienelemente, die LED-Elemente aufweisen, sind daher gut als Alarmsignalelement verwendbar. Die transluzenten Leuchtfelder werden überdies in einer weiteren bevorzugten Ausführungsform drucktechnisch und/oder dispensertechnisch mittels Diffusorelementen versehen, so dass das SMD-LED Element eine breite Abstrahlcharakteristik aufweist und derart als optisches Signal für einen Alarmzustand verwendet werden kann, wie zum Beispiel die Anzeige einer Übertemperatur oder von zu wenig Öl oder den Ausfall des ABS- Bremssystems und dergleichen. Geeignete Diffusorelemente sind dem Fachmann bekannt und kommerziell erhältlich.
Das erfindungsgemäß eingesetzte Elektrolumineszenz-Element weist eine zumindest teilweise transparente Elektrode auf. Dabei ist unter einer „zumindest teilweise transparenten" Elektrode eine Elektrode zu verstehen, die vollständig transparent sein kann, oder eine Elektrode, die durchscheinend, jedoch nicht vollständig transparent, sein kann.
Die zumindest teilweise transparente Elektrode ist im Allgemeinen eine flächige Elektrode, die aufgebaut ist aus einem oder mehreren elektrisch leitfähigen Materialien auf anorganischer oder organischer Basis. Geeignete zumindest teilweise transparente Elektroden, die erfindungsgemäß eingesetzt werden können, sind alle dem Fachmann zur Herstellung von Elektrolumineszenz- Elementen bekannten Elektroden, die durch die Verformung zur Herstellung des erfmdungs- gemäßen dreidimensional verformten Folienelements mittels isostatischer Hockdruckverformung nicht beschädigt werden. Somit sind übliche im Stand der Technik erwähnte Indium-Zinn-Oxid (ITO)-Sputterschichten auf thermostabilisierten Polyesterfolien zwar grundsätzlich geeignet, jedoch nicht bevorzugt. Bevorzugt werden polymere elektrisch leitfähige gut transparente Beschichtungen bzw. designspezifische Siebdruckschichten verwendet.
Bevorzugt ist die erfindungs gemäß eingesetzte zumindest teilweise transparente Elektrode somit ausgewählt aus der Gruppe bestehend aus ITO-S iebdruckschichten, ATO (Antimon-Zinn-Oxid)- Siebdruckschichten, Non-ITO-Siebdruckschichten (wobei der Begriff „Non-ITO" alle Siebdruckschichten umfasst, die nicht auf Indium-Zinn-Oxid (ITO) basieren), das heißt intrinsisch leitfähigen polymeren Schichten mit üblicherweise nanoskaligen elektrischleitfähigen Pigmenten, beispielsweise die ATO-Siebdruckpasten mit den Bezeichnungen 7162E oder 7164 von DuPont, intrinsisch leitfähigen Polymersystemen wie dem Orgacon® System von Agfa, dem Baytron® PoIy- (3,4-ethylendioxythiophen)-System von H.C. Starck GmbH, dem als organisches Metall (PEDT- conductive polymer polyethylene-dioxythiophene) bezeichneten System von Ormecon, leitfähigen Beschichtungs- oder Druckfarbensystemen von Panipol OY und gegebenenfalls mit hochflexiblen Bindemitteln, zum Beispiel auf Basis von PU (Polyurethanen), PMMA (Polymethylmethacrylat), PVA (Polyvinylalkohol), modifiziertes Polyanilin. Bevorzugt wird als Material der zumindest teilweise transparenten Elektrode des Elektro lumineszenz-Elements Baytron® PoIy- (3,4-ethylen- dioxythiophen)-System von H.C. Starck GmbH eingesetzt.
Im Allgemeinen ist die zumindest teilweise transparente Elektrode des Elektrolumineszenz- Elements direkt mit der gegebenenfalls mit graphischen Darstellungen versehenen zumindest teilweise transparenten Trägerfolie verbunden. Das erfmdungsgemäß eingesetzte Elektrolumineszenz-Element enthält neben der zumindest teilweise transparenten Elektrode, Komponente BA, eine Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, als Komponente BC. Die Schicht ist im Allgemeinen auf eine gegebenenfalls vorliegende erste Isolationsschicht, Komponente BB, oder, falls diese Schicht nicht vorliegt, auf die zumindest teilweise transparente Elektrode, aufgebracht. Bei der durch ein elektrisches Feld anregbaren Leuchtsubstanz (Luminophor) in der Schicht (Komponente BC) handelt es sich bevorzugt um ZnS, das im Allgemeinen mit Phosphor dotiert ist.
Üblicherweise handelt es sich bei der Schicht (Komponente BC) um dielektrisches Material. Dieses Material kann beispielsweise ZnS, im Allgemeinen dotiert mit Phosphor, oder eine Mischung von ZnS, im Allgemeinen dotiert mit Phosphor (als Leuchtsubstanz), BaTiO3 und hochflexiblen Bindemitteln, zum Beispiel solchen auf Basis von PU, PMMA, PVA, sein.
Neben den Komponenten BA und BB kann das erfindungsgemäße Elektrolumineszenz-Element eine Isolationsschicht als Komponente BC enthalten, die im Allgemeinen auf die Schicht enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz aufgebracht ist. Geeignetes Material für eine Isolationsschicht ist zum Beispiel Bariumtitanat (BaTiOß).
Des Weiteren enthält das mindestens eine erfmdungsgemäß eingesetzte Elektrolumineszenz- Element eine Rückelektrode, Komponente BD. Diese ist im Allgemeinen auf die Isolationsschicht - wenn sie vorhanden ist - aufgebracht. Falls keine Isolationsschicht vorhanden ist, ist die Rückelektrode auf die Schicht enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz aufgebracht.
Bei der Rückelektrode handelt es sich - wie bei der zumindest teilweise transparenten Elektrode - um eine flächige Elektrode, die jedoch nicht transparent oder zumindest teilweise transparent sein muss. Diese ist im Allgemeinen aus elektrisch leitenden Materialien auf anorganischer oder organischer Basis aufgebaut, wobei bevorzugt solche Materialien eingesetzt werden, die bei Anwendung des isostatischen Hochdruckverformungsverfahrens zur Herstellung des erfindungsgemäßen dreidimensional verformten Folienelements nicht beschädigt werden. Geeignete Elektroden sind daher insbesondere polymere elektrisch leitfähige Beschichtungen. Dabei können die bereits vorstehend bezüglich der zumindest teilweise transparenten Elektrode genannten Beschichtungen eingesetzt werden. Daneben sind solche, dem Fachmann bekannten polymeren elektrisch leitfähigen Beschichtungen einsetzbar, die nicht zumindest teilweise transparent sind.
Geeignete Materialien der Rückelektrode sind somit bevorzugt ausgewählt aus der Gruppe bestehend aus Metallen wie Silber, Kohlenstoff, ITO-Siebdruckschichten, ATO-S iebdruck- schichten, Non-ITO-Siebdruckschichten, das heißt intrinsisch leitfähigen polymeren Systemen mit üblicherweise nanoskaligen elektrisch leitfähigen Pigmenten, beispielsweise ATO-S iebdruck- pasten mit der Bezeichnung 7162E oder 7164 von DuPont, intrinsisch leitfähigen Polymersystemen wie dem Orgacon® System von Agfa, dem Baytron® Poly-(3,4-ethylendioxythiophen)- System von H. C. Starck GmbH, dem als organisches Metall ( PEDT conductive polymer poly- ethylene-dioxythiophene) bezeichneten System von Ormecon, leitfähigen Beschichtungs- und Druckfarbensystemen von Panipol Oy und gegebenenfalls mit hochflexiblen Bindemitteln, zum Beispiel auf Basis von PU (Polyurethanen), PMMA (Polymethylmethacrylat), PVA (Polyvinyl- alkohol), modifiziertes Polyanilin, wobei die vorstehend genannten Materialien zur Verbesserung der elektrischen Leitfähigkeit mit Metallen wie Silber oder Kohlenstoff versetzt werden können und/oder mit einer Lage aus diesen Materialien ergänzt werden können.
Die Herstellung des Elektrolurnineszenz-Elements kann beispielsweise durch Aufbringung der einzelnen Schichten durch das im Stand der Technik bekannte so genannte Dickschichtverfahren erfolgen.
Die Aufbringung der Schichten des Elektrolumineszenz-Elements auf die Trägerfolie erfolgt nach dem Fachmann bekannten Verfahren. Die Verbindung des Elektrolumineszenz-Elements mit der Trägerfolie erfolgt im Allgemeinen durch direkte Aufbringung, zum Beispiel durch Siebdruck, auf die Trägerfolie.
Komponente C
Neben den Komponenten A und B enthält das erfindungsgemäße dreidimensional verformte Folienelement eine Schutzschicht, Komponente CA, um eine Zerstörung des Elektrolumineszenz- Elements bzw. der gegebenenfalls vorhandenen graphischen Darstellungen zu vermeiden. Geeignete Materialien der Schutzschicht sind dem Fachmann bekannt. Geeignete Schutzschichten CA sind z.B. hochtemperaturbeständige Schutzlacke wie Schutzlacke, die Polycarbonate und Bindemittel enthalten, z.B. Noriphan® HTR von Pröll, Weißenburg.
Je nach Anwendung kann das erfmdungsgemäße dreidimensional verformte Folienelement neben den Komponenten A und B anstelle der Schutzschicht, Komponente CA, eine Folie, Komponente CB, aufweisen. Geeignete Folien sind die als Trägerfolien (Komponente A) genannten Folien. Die Folie kann z.B. durch Laminieren oder Kleben aufgebracht werden.
Das erfindungsgemäße dreidimensional verformte Folienelement ist durch isostatische Hoch- druckverformung eines ebenen Folienelements aufgebaut aus den Komponenten A, B und C bei einer Verfahrenstemperatur unterhalb der Erweichungstemperatur der Komponente A des
Folienelements herstellbar. Ein geeignetes isostatisches Hochdruckverformungsverfahren ist z.B. in EP-A 0 371 425 erwähnt. Durch den erfindungsgemäßen Aufbau aus den Komponenten A, B und C, die vorstehend beschrieben sind, ist gewährleistet, dass eine dreidimensionale Verformung des ebenen Folienelements mittels isostatischer Hochdruckverformung ohne Beschädigung der einzelnen Komponenten des Folienelements, insbesondere ohne Beeinträchtigung der Lampen- funktion des Elektrolumineszenz-Elements, erfolgen kann.
Die Schichten (Komponenten A, B und C) in dem erfindungs gemäßen Folienelement sind so abgestimmt, dass Kurzschlüsse vermieden werden. Die Schutzschicht, Komponente C, auf der Rückseite bewirkt, dass eine rissfreie Verformung möglich ist. Da ein ebenes Folienelement aufgebaut aus den Elementen A, B und C mittels isostatischer Hochdruckverformung verformt wird, ist es von besonderer Bedeutung, dass eine gute Haftung der einzelnen Schichten des Folieelements gewährleistet ist. Die gute Haftung ist durch die Zusammensetzung der einzelnen Schichten (Komponenten A, B und C), insbesondere durch den Einsatz von hochflexiblen Bindemitteln in den Schichten, z.B. Bindemitteln auf Basis von PU, PMMA, PVA, insbesondere PU, gewährleistet. Die Zusammensetzung der Schichten (Komponenten A, B und C) gewährleistet nicht nur eine hervorragende Haftung der Schichten untereinander sondern auch eine zur Durchführung der isostatischen Hochdruckverformung erforderlichen Dehnfähigkeit.
Das erfindungsgemäße dreidimensional verformte Folienelement ist durch isostatische Hochdruckverformung, wie sie z.B. in EP-A 0 371 425 offenbart ist, herstellbar. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung eines dreidimensional verformten Folienelements umfassend
i) Herstellung eines ebenen Folienelements aufgebaut aus
a) einer zumindest teilweise transparenten Trägerfolie, Komponente A, aus mindestens einem kalt-reckbarem Folienmaterial, das gegebenenfalls mit graphischen Darstellungen versehen ist,
b) mindestens einem auf die Trägerfolie aufgebrachten Elektrolumineszenz-Element,
Komponente B, enthaltend die folgenden Komponenten
ba) eine zumindest teilweise transparente Elektrode, Komponente BA,
bb) gegebenenfalls eine erste Isolationsschicht, Komponente BB,
bc) eine Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, Komponente BC,
bd) gegebenenfalls eine weitere Isolationsschicht, Komponente BD, be) eine Rückelektrode, Komponente BE,
c) einer Schutzschicht, Komponente CA oder einer Folie, Komponente CB, und
ii) isostatische Hochdruckverformung des in Schritt i) erhaltenen ebenen Folienelements bei einer Verfahrenstemperatur unterhalb der Erweichungstemperatur der Komponente A des Folienelements.
Die Komponenten A, B und C weisen die bereits vorstehend genannten Bedeutungen auf. Neben den Komponenten A, B und C kann das erfindungsgemäße dreidimensional verformte Folienelement gegebenenfalls weitere Schichten enthalten.
Schritt i)
Das ebene Folienelement kann gemäß dem Fachmann bekannten Verfahren hergestellt werden.
In einer bevorzugten Ausführungsform umfasst die Herstellung des ebenen Folienelements in Schritt i) die folgenden Schritte:
ia) Bereitstellung einer transparenten Trägerfolie, Komponente A, und gegebenenfalls bedrucken der transparenten Trägerfolie mit graphischen Darstellungen,
ib) Aufbringen des Elektrorumineszenz-Elements auf die gegebenenfalls bedruckte Trägerfolie,
ic) Aufbringen der Schutzschicht oder der Folie auf das Elektrolumineszenz-Element;
wobei zwischen den Schritten ia) und ib) und/oder den Schritten ib) und ic) jeweils gegebenenfalls eine Isolationsschicht aufgebracht werden kann.
Die Herstellung der transparenten Trägerfolie in Schritt ia) erfolgt gemäß dem Fachmann bekannten Verfahren. Des Weiteren sind geeignete Trägerfolien kommerziell erhältlich. Die Aufbringung von graphischen Darstellungen auf die Trägerfolie kann ebenfalls nach dem Fachmann bekannten Verfahren erfolgen, zum Beispiel durch Siebdruck, Offset-Lithographie, Rotationsdruck, Tiefdruck, InkJet, Tampondruck, Laserdruck oder Flexodruck, die alle gebräuchlich und im Stand der Technik bekannt sind. Bevorzugt erfolgt die graphische Gestaltung durch Farbauftrag mittels Siebdruck.
Um eine komplette Abdeckung ohne kleinste durchsichtige Fehlstellen zu erhalten, kann ein Mehrfachdruck, zum Beispiel ein Zweifachdruck erfolgen. Für die Positionierung der einzelnen Drucke werden im Allgemeinen Referenzmarken oder eine Dreipunktkantenregistrierung verwendet.
Das Aufbringen des Elektrolumineszenz-Elements auf die gegebenenfalls bedruckte Trägerfolie in Schritt ib) kann ebenfalls nach dem Fachmann bekannten Verfahren erfolgen. Die Verbindung des Elektrolumineszenz-Elements mit der Trägerfolie kann durch dem Fachmann bekannte Mittel, im Allgemeinen durch direkte Aufbringung, zum Beispiel durch Siebdruck, auf die Trägerfolie erfolgen, wie vorstehend bereits erwähnt wurde.
In Schritt ic) wird die Schutzschicht oder die Folie ebenfalls nach dem Fachmann bekannten Verfahren auf das mindestens eine Elektrolumineszenz-Element aufgebracht, bevorzugt ebenfalls mittels Siebdruck.
Die Isolationsschichten werden ebenfalls bevorzugt mittels Siebdruck aufgebracht.
Ein Vorteil des erfindungsgemäßen Folienelements ist, dass alle Schichten des Folienelements so ausgewählt sind, dass sie durch Siebdruck aufgebracht werden können. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgen das gegebenenfalls durchgeführte Bedrucken der transparenten Trägerfolie mit graphischen Darstellungen in Schritt ia), das Aufbringen des Elektrolumineszenz-Elements auf die gegebenenfalls bedruckte Trägerfolie in Schritt ib), und das Aufbringen der Schutzschicht der der Folie auf das Elektrolumineszenz-Element in Schritt ic) mittels Siebdruck.
Schritt ii)
Die isostatische Hochdruckverformung in Schritt ii) erfolgt bevorzugt gemäß dem in EP-A 0 371 425 genannten Verfahren, wobei eine Verfahrenstemperatur gewählt wird, die unterhalb der Erweichungstemperatur der Komponente A des Folienelements liegt.
Im Allgemeinen wird das ebene Folienelement, das in Schritt i) erhalten wird, aufgebaut aus den Komponenten A, B und C, bei einer Arbeitstemperatur mit einem fluiden Druckmittel beaufschlagt und isostatisch verformt, wobei die Verformung bei einer Arbeitstemperatur unterhalb der Erweichungstemperatur des Materials der Trägerfolie (Komponente A) und unter einem Druckmitteldruck von im Allgemeinen >20 bar, bevorzugt >100 bar, besonders bevorzugt von 200 bis 300 bar vorgenommen wird. Die Verformung des Folienmaterials erfolgt im Allgemeinen innerhalb von wenigen Sekunden Taktzeit, bevorzugt innerhalb einer Zeitspanne von <10 Sekunden, besonders bevorzugt innerhalb einer Zeitspanne von <5 Sekunden. Dabei können Verformungen von 100% bis 200% erreicht werden, ohne Auftreten von optisch störendem Weißbruch. In einer bevorzugten Ausführungsform erfolgt die isostatische Hochdruckverformung im Allgemeinen wenigstens 50C, bevorzugt wenigstens 1O0C, besonders bevorzugt wenigstens 2O0C und mehr unterhalb der Erweichungstemperatur der Komponente A des Folienelements. Die Erweichungstemperatur von besonders bevorzugt als Material der zumindest teilweise transparenten Trägerfolie eingesetzten Polycarbonaten auf Basis von Bisphenol A (zum Beispiel Makrofol®- Folien) liegt etwa bei oder oberhalb von 15O0C. Es ist möglich, dass die isostatische Hochdruckverformung von Folienelementen, die solche Polycarbonatfolien als Trägerfolien aufweisen, bei Zimmertemperatur durchgeführt wird. Bevorzugt erfolgt die isostatische Hochdruckverformung aufgrund der weiteren Komponenten, unter anderem aufgrund der graphischen Dar- Stellungen, die bevorzugt mittels Farbaufdruck erfolgen, bei Arbeitstemperaturen zwischen 80 und 13O0C, wenn als Folienmaterial der Trägerfolie Polycarbonate auf Basis von Bisphenol A, wie vorstehend erwähnt, eingesetzt werden. Bei dem Einsatz von Trägerfolien aus anderen Materialien kann die Verarbeitungstemperatur in Schritt ii) bei Kenntnis der Erweichungstemperatur des Materials für den Fachmann problemlos ermittelt werden.
Geeignete Vorrichtungen zur Durchführung der isostatischen Hochdruckverformung zur Herstellung des erfindungsgemäßen dreidimensional verformten Folienelements sind zum Beispiel in EP-A 0 371 425 genannt.
Das im Anschluss an Schritt ii) erhaltene dreidimensional verformte Folienelement kann in eine endgültige gewünschte Kontur gebracht werden, z.B. durch Beschneiden, Ausstanzen oder Lasern. Geeignete Verfahren und Vorrichtungen, um das Folienelement in seine endgültige Kontur zu bringen, z.B. durch Ausstanzen, Beschneiden oder Lasern, sind dem Fachmann bekannt. Im Allgemeinen erfolgt das Ausstanzen, Beschneiden oder Lasern mit hoher Präzision, wobei z.B. ein geeignetes Verfahren zum Beschneiden das Präzisionsschneiden ist.
Das erfindungsgemäße dreidimensional verformte Folienelement kann in zahlreichen Anwen- düngen eingesetzt werden. Geeignete Anwendungen sind zu Beispiel die Verwendung des erfindungsgemäßen dreidimensional verformten Folienelements zur Ausbildung von Anzeigenelementen wie einer Tachoscheibe für Land- Wasser- und Luftfahrzeuge, zur Ausbildung von Sicherheitsgurtblenden oder Warnhinweisblenden in Land- Wasser- und Luftfahrzeugen und zur Ausbildung von Warnhinweisblenden in Gebäuden, zur Ausbildung von Gehäuseelementen für mobile Elektronikgeräte, beispielsweise einem Mobiltelefon oder einer Fernbedienung und Gehäuseelementen für stationäre Elektronikgeräte wie einem Drucker, Kopierer, PC, Notebook oder einem kleinen oder großen Haushaltsgerät oder zur Ausbildung einer Tastatur.
Einige Ausführungsbeispiele der Erfindung werden nachfolgend anhand von Figuren näher beschrieben. Dabei zeigen:
Figur 1: Einen schematischen Schnitt A-B durch ein noch nicht dreidimensionales verformtes Folienelement (3) im Bereich einer Tachoscheibe (15)
Figur 2: Einen schematischen Schnitt A-B durch ein dreidimensional verformtes Folien- element (3) im Bereich einer Tachoscheibe (15)
Figur 3: Eine schematische Darstellung eines beispielhaften ausgestanzten bzw. beschnittenen (5) verformten erfindungs gemäßen dreidimensionalen Folienelements (3D-EL-HDVF) (I )
Figur 4: Eine schematische Darstellung eines beispielhaften erfindungsgemäßen dreidimen- sional verformten Folienelements (3 D-EL-HDVF) (1) mit 3 EL-Elementen (2, 15,
16)
Figur 5: Eine schematische Darstellung eines beispielhaften 3D-EL-HDVF Elementes (1) mit drei EL-Elementen (2, 15, 16) und oberflächenmontierten SMD-EL-Inverter Elementen (10),
Figur 6: eine schematische Darstellung eines beispielhaften 3D-EL-HDVF Elementes (1) mit zwei EL-Elementen (2, 15, 16) und oberflächenmontierten SMD-EL-Inverter Elementen (10) und einem SMD-LED Element (13).
In Figur 1 wird ein schematischer Schnitt A-B durch ein noch nicht dreidimensional verformtes Folienelement (3) im Bereich einer Tachoscheibe (15) aufgezeigt. Der Einfachheit halber sind die diversen Druckschichten (4) nicht näher detailliert dargestellt, da diese Drucktechnologie dem Stand der Technik entspricht.
In Figur 2 wird ein schematischer Schnitt A-B durch ein dreidimensional verformtes Folienelement (3) im Bereich einer Tachoscheibe (15) aufgezeigt. Der Einfachheit halber sind die diversen Druckschichten (4) nicht näher detailliert dargestellt, da diese Drucktechnologie dem Stand der Technik entspricht.
In Figur 3 wird eine schematische Darstellung eines beispielhaften ausgestanzten bzw. beschnittenen (5) verformten erfϊndungsgemäßen Folienelements (3D-EL-HDVF) aufgezeigt. Die Kontur (5) wird im beschnittenen bzw. gestanzten Zustand üblicherweise etwas kleiner sein als die drucktechnische Kontur (5) in Figur 2. In diesem Beispiel wird eine Tachometeranzeige (15) und eine Treibstoff-Füllstands-Anzeige (16) zur Erläuterung der Erfindung verwendet. Derartige 3D- EL-HDVF-Elemente (1) müssen sehr präzise verformt werden, und die graphische Gestaltung muss exakt ausgeführt werden, da beispielsweise mittig ein Loch gefertigt werden wird, durch das ein Zeigerelement geführt wird, der die jeweilige Geschwindigkeit anzeigt. Die Hinterleuchtung erfolgt erfmdungsgemäß mit Hilfe von Elektrolumineszenz (EL)-Elementen (2).
In Figur 4 wird eine schematische Darstellung eines beispielhaften 3D-EL-HDVF-Elements (1) mit drei Elektrolumineszenz (EL)-Elementen (2, 15, 16) aufgezeigt. Die drucktechnisch hergestellten EL-Elemente (2) werden an Stelle der bisher üblichen Hinterleuchtungstechnik nach dem Stand der Technik nur an jenen Stellen gebraucht, wo eine graphische transluzente Durchsicht gewünscht wird (15, 16). Die Herstellung der verschiedenen Elektrolumineszenz-Elemente (2) (Elektrolumineszenz-Felder) erfolgt dabei nach dem Stand der Technik, und die Herausführung der elektrischen Anschlüsse (6, 7) zu den berandeten Anschlüssen (8, 9) erfolgt ebenfalls nach dem Stand der Technik. Geeignete Verfahren sind bereits vorstehend genannt. Ein wesentlicher Vorteil gegenüber den gemäß dem Stand der Technik hergestellten dreidimensional verformten Folienelementen besteht darin, dass die zumindest teilweise transparente Elektrode des Elektro- lumineszenz-Elements den isostatischen Hochdruckverformungsprozess ohne Bildung von Haarrissen und ohne Delamination übersteht, was durch die bevorzugte Verwendung von geeigneten polymeren druckbaren und elektrisch leitfähigen Schichten erreicht wird. Geeignete Materialien zur Herstellung der zumindest teilweise transparenten Elektrode des Elektrolumineszenz-Elements sind bereits vorstehend genannt. Ein wesentlicher Aspekt ist ein guter Haftverbund der zumindest teilweise transparenten Elektrode des Elektrolumineszenz-Elements zu der zumindest teilweise transparenten Trägerfolie und den anderen Schichten des Elektrolumineszenz-Elements, wie bereits vorstehend erwähnt wurde.
In Figur 5 wird eine schematische Darstellung eines beispielhaften 3D-EL-HDVF Elementes (1) mit drei EL-Elementen (2, 15, 16) und oberflächenmontierten SMD-EL-Inverter Elementen (10) gezeigt. Durch die Verfügbarkeit von sehr kleinen und flachen Bauteilen, wie beispielsweise dem HV850 EL-Lamp-Driver der Firma Supertex, Inc. in Sunnyvale, CA, USA, mit einer Bauformgröße H x B x D von etwa 3 mm x 3 mm x 1 mm können diese einfach mittels SMD- Technologien mechanisch und elektrisch auf die Rückseite von 3D-EL-HDVF Elementen (1) montiert werden. Auch wenn derartige EL-Inverter normativ nur für den Betrieb von etwa 50 mm2 EL-Fläche mit wenigen 10 cd/m2 Leuchtdichte entwickelt wurden, so eignen sich diese Bauteile doch sehr gut für die direkte und an das EL-Elernent unmittelbar benachbarte Montage. Somit fallen störende lange Zuleitungen (6, 7) zu EL-Elementen weg und das 3D-EL-HDVF Element (1) kann direkt an den Kontakten (8, 9) mit einer Gleichspannungsversorgung von zum Beispiel 3 Volt oder 12 Volt versorgt werden. In Figur 6 wird eine schematische Darstellung eines beispielhaften 3D-EL-HDVF Elementes (1) mit zwei EL-Elementen (2, 15, 16) und oberflächenmontierten SMD-EL-Inverter Elementen (10) und einem SMD-LED Element (13) aufgezeigt. Da EL-Elemente (2) bei hoher Flächenhelligkeit eine reduzierte Lebensdauer aufweisen, kann es gegebenenfalls sinnvoll sein, bestimmte Leucht- felder mit der Anforderung an hohe Signalwirkung punktuell wesentlich heller zu beleuchten. Da des Weiteren SMD-LED-Elemente (13) ebenso einfach montiert und kontaktiert werden können, wie SMD-EL-Inverter Elemente (10), wurde gefunden, dass die Kombination von EL-Elementen und LED Elementen eine sehr einfache und effiziente Technologie darstellt. In Figur 6 wird das drucktechnische Symbol für einen leeren Tank nicht durch ein EL-Element (2) sondern durch die SMD-LED (13) hinterleuchtet. Für eine zusätzliche Erhöhung der Signalwirkung können kleine Glasperlen von wenigen Mikrometer-Durchmesser, also von 1 μm bis 20 μm, bevorzugt 1 bis 5 mm, in die bevorzugt verwendete transluzente Siebdruckfarbe gemischt werden. Derartige Glasperlen mit einem Brechungsindex von im Allgemeinen 1,6 bis 1,9 und darüber können zusätzliche Streuwirkung und damit eine Erhöhung der Signalwirkung erzielen. Der optimale Glasperlen- durchmesser und der optimale Brechungsindex müssen auf die gewählten Polymere der Druckfarbenbindemittel abgestimmt werden. Die Glasperlen können, wie bereits erwähnt, mit transluzenten Druckfarben (z.B. roten oder grünen oder gelben oder blauen Druckfarben) gemischt werden, sie können jedoch ebenso in eine farblos transparenten Druckschicht zusätzlich eingebaut werden.
Bezugszeichenliste
1 mittels isostatischer Hochdruckverformung dreidimensional geformtes und graphisch gestaltetes Kunststoff-Folienelement mit zumindest einem integrierten zinksulfidischen Elektrolumineszenzelement (3D-EL-HDVF-Element)
Elektrolumineszenz (EL)-Element
ursprünglich ebenes und kalt-reckbares Folienelement
kalt-reckbare graphische Drucke
Kontur (berandeter Beschnitt bzw. Ausstanzung bzw. Laserung) ,7 elektrische Anschlüsse eines EL-Elements ,9 berandete Seite mit den elektrischen Anschlüssen 0 Surface-Mounted-Device (SMD)-EL-Inverter Element: typisch Niederspannungsgleichstrom von wenigen VoIt-DC in typisch > 60 Volt-Spitze-Spitze Wechselspannung von einigen 100 Hz 1 ,12 elektrische Anschlüsse 3 SMD-LED-Element
4 Referenzmarken
5 Tachoscheiben-Bereich 6 Treibstoff-Füllstands-Anzeige

Claims

Patentansprüche
1. Dreidimensional verformtes Folienelement aufgebaut aus
a) einer zumindest teilweise transparenten Trägerfolie, Komponente A, aus mindestens einem kalt-reckbaren Folienmaterial, das gegebenenfalls mit graphischen Darstellungen versehen ist,
b) mindestens einem auf die Trägerfolie aufgebrachten Elektrolumineszenz-Element, Komponente B, enthaltend die folgenden Komponenten
ba) eine zumindest teilweise transparente Elektrode, Komponente BA,
bb) gegebenenfalls eine erste Isolationsschicht, Komponente BB,
bc) eine Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, Komponente BC,
bd) gegebenenfalls eine weitere Isolationsschicht, Komponente BD,
be) eine Rückelektrode, Komponente BE,
c) einer Schutzschicht, Komponente CA oder einer Folie, Komponente CB,
herstellbar durch isostatische Hochdruckverformung eines ebenen Folienelements aufgebaut aus den Komponenten A, B und C bei einer Verfahrenstemperatur unterhalb der Erweichungstemperatur der Komponente A des Folienelementes.
2. Dreidimensional verformtes Folienelement nach Anspruch 1, dadurch gekennzeichnet, dass das Folienmaterial der Trägerfolie ausgewählt ist aus mindestens einem Material aus- gewählt aus der Gruppe bestehend aus Polycarbonaten, Polyestern, Polyamiden, PoIy- imiden, Polyarylaten, organischen thermoplastischen Celluloseestern und Polyfiuorkohlen- wasserstoffen, bevorzugt Polycarbonaten, Polyestern und Polyimiden.
3. Dreidimensional verformtes Folienelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trägerfolie mit graphischen Darstellungen in Form von deckenden oder transluzenten Farbaufdrucken versehen ist.
4. Dreidimensional verformtes Folienelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das mindestens eine Elektrolumineszenz-Element elektrische An- schlüsse aufweist, die an einen Seitenrand des Folienelements geführt werden, und dort mittels Kontaktierhilfen mit einer Stromquelle kontaktiert werden.
5. Dreidimensional verformtes Folienelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das mindestens eine Elektrolumineszenz-Element mittels Wechsel- ström betrieben wird und der Wechselstrom mittels eines SMD-EL-Inverters erzeugt wird.
6. Dreidimensional verformtes Folienelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Folienelement zusätzlich zu den Komponenten A, B und C mindestens ein LED-Element, bevorzugt mindestens ein SMD-LED-Element, als Komponente D aufweist.
7. Dreidimensional verformtes Folienelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die zumindest teilweise transparente Elektrode des Elektro- lumineszenz-Elements eine flächige Elektrode ist, aufgebaut aus einem elektrisch leitenden Material ausgewählt aus der Gruppe bestehend aus ITO-Siebdruckschichten, ATO-Sieb- druckschichten, Non-ITO-Siebdruckschichten, intrinsisch leitfähigen Polymersystemen, bevorzugt Baytron® von H. C. Starck GmbH.
8. Dreidimensional verformtes Folienelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schicht enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz ZnS, im Allgemeinen dotiert mit Phosphor, als Leuchtsubstanz enthält.
9. Dreidimensional verformtes Folienelement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Rückelektrode des Elektrolumineszenz-Elements eine flächige Elektrode ist, aufgebaut aus elektrisch leitfähigen Materialien ausgewählt aus der Gruppe bestehend aus Metallen wie Silber, Kohlenstoff, ITO-Siebdruckschichten, ATO-Sieb- druckschichten, Non-ITO-Siebdruckschichten, intrinsisch leitfähigen Polymersystemen, bevorzugt Baytron® von H. C. Starck GmbH, wobei die Materialien zwecks Verbesserung der elektrischen Leitfähigkeit mit Metallen wie Silber oder Kohlenstoff versetzt sein können und/oder mit einer Lage aus diesen Materialien ergänzt werden können.
10. Verfahren zur Herstellung eines dreidimensional verformten Folienelements umfassend
i) Herstellung eines ebenen Folienelements aufgebaut aus a) einer zumindest teilweise transparenten Trägerfolie, Komponente A, aus mindestens einem kalt-reckbaren Folienmaterial, das gegebenenfalls mit graphischen Darstellungen versehen ist,
b) mindestens einem auf die Trägerfolie aufgebrachten Elektrolumineszenz- Element, Komponente B, enthaltend die folgenden Komponenten
ba) eine zumindest teilweise transparente Elektrode, Komponente BA,
bb) gegebenenfalls eine erste Isolationsschicht, Komponente BB,
bc) eine Schicht, enthaltend mindestens eine durch ein elektrisches Feld anregbare Leuchtsubstanz, Komponente BC,
bd) gegebenenfalls eine weitere Isolationsschicht, Komponente BD,
be) eine Rückelektrode, Komponente BE,
c) einer Schutzschicht, Komponente CA oder einer Folie, Komponente CB,
ii) isostatische Hochdruckverformung des in Schritt i) erhaltenen ebenen Folienelements bei einer Verfahrenstemperatur unterhalb der Erweichungstemperatur der Komponente A des Folienelements.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Herstellung des ebenen Folienelement in Schritt i) die folgenden Schritte umfasst:
ia) Bereitstellung einer transparenten Trägerfolie und gegebenenfalls Bedrucken der transparenten Trägerfolie mit graphischen Darstellungen,
ib) Aufbringen des mindestens einen Elektrolumineszenz-Elements auf die gegebenenfalls bedruckte Trägerfolie
ic) Aufbringen der Schutzschicht oder Folie auf das mindestens eine Elektro- lumineszenz-Element;
wobei zwischen den Schritten ia) und ib) und/oder den Schritten ib) und ic) jeweils gegebenenfalls eine Isolationsschicht aufgebracht werden kann.
12. Verwendung eines dreidimensional verformten Folienelements nach einem der Ansprüche 1 bis 9 oder hergestellt nach Anspruch 10 oder 1 1 zur Ausbildung von Anzeigenelementen wie einer Tachoscheibe für Land-, Wasser- und Luftfahrzeuge, zur Ausbildung von Sicher- heitsgurtblenden oder Warnhinweisblenden in Land-, Wasser- und Luftfahrzeugen, zur Ausbildung von Warnhinweisblenden in Gebäuden und zur Ausbildung von Gehäuseelementen für mobile Elektronikgeräte oder stationäre Elektronikgeräte oder einem kleinen oder großen Haushaltsgerät oder zur Ausbildung einer Tastatur.
EP07765656A 2006-07-01 2007-06-27 3d-el-hdvf element und herstellungsverfahren und anwendung Withdrawn EP2036063A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006031315A DE102006031315A1 (de) 2006-07-01 2006-07-01 3D-EL-HDVF Element und Herstellungsverfahren und Anwendung
PCT/EP2007/056401 WO2008003621A1 (de) 2006-07-01 2007-06-27 3d-el-hdvf element und herstellungsverfahren und anwendung

Publications (1)

Publication Number Publication Date
EP2036063A1 true EP2036063A1 (de) 2009-03-18

Family

ID=38465807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07765656A Withdrawn EP2036063A1 (de) 2006-07-01 2007-06-27 3d-el-hdvf element und herstellungsverfahren und anwendung

Country Status (6)

Country Link
US (1) US20090236984A1 (de)
EP (1) EP2036063A1 (de)
KR (1) KR101466159B1 (de)
DE (2) DE102006031315A1 (de)
TW (1) TWI517755B (de)
WO (1) WO2008003621A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006057653A1 (de) * 2006-12-07 2008-06-26 Lyttron Technology Gmbh EL-Element enthaltend eine semitransparente Metallfolie und Herstellungsverfahren und Anwendung
DE102006059203A1 (de) * 2006-12-13 2008-06-19 Lyttron Technology Gmbh Biegbares 3D-EL-HDFV Element und Herstellungsverfahren und Anwendung
US20100299978A1 (en) 2007-08-27 2010-12-02 Bayer Materialscience Ag Marking having electroluminescent lighting effect, method for the production thereof
DE202008008318U1 (de) 2008-06-20 2009-10-29 Schott Ag Verbundsubstratelement
DE102008050564B4 (de) 2008-09-22 2011-01-20 Curt Niebling Formwerkzeug und Verfahren zur Hochdruckumformung eines einlagigen oder mehrlagigen Schichtstoffes
DE102009048334A1 (de) 2009-10-06 2011-04-21 Curt Niebling 3D-Folienteil und Verfahren zu seiner Herstellung
EP2335905A1 (de) 2009-12-17 2011-06-22 Bayer MaterialScience AG Verfahren zur Herstellung eines tiefgezogenen Folienteils aus thermoplastischem Kunststoff
DE102010005865A1 (de) * 2009-12-18 2011-06-22 Franz Binder GmbH & Co Elektrische Bauelemente KG, 74172 Verfahren zur Herstellung eines zur Lichtemission aktivierbaren Bauteils
EP2338664A1 (de) 2009-12-23 2011-06-29 Bayer MaterialScience AG Verfahren zur Herstellung eines verformten Folienteils aus thermoplastischem Kunststoff
DE102010021892B4 (de) 2010-05-28 2014-03-20 Curt Niebling jun. Verfahren und Vorrichtung zur Kaschierung eines 3D-Trägerteils mit einem Schichtstoff
US20130171903A1 (en) 2012-01-03 2013-07-04 Andrew Zsinko Electroluminescent devices and their manufacture
US9642212B1 (en) 2015-06-11 2017-05-02 Darkside Scientific, Llc Electroluminescent system and process
DE102015012242B4 (de) 2015-09-18 2019-06-19 Leonhard Kurz Stiftung & Co. Kg Verfahren und Vorrichtung zur Herstellung eines mit einem Schichtstoff kaschierten 3D-Substrates
DE102016004047B4 (de) 2016-04-04 2017-10-19 Niebling Gmbh Verfahren und Formwerkzeug zur Warmumformung eines ebenen thermoplastischen Schichtstoffes
EP3491657A4 (de) 2016-07-28 2020-08-05 Darkside Scientific, LLC Elektrolumineszentes system und verfahren
CN106205420B (zh) * 2016-07-29 2018-10-23 东莞市卓翼新材料科技有限公司 一种广告字及其制作方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909692A (en) * 1957-06-14 1959-10-20 Gen Electric Field enhanced luminescence system
DE58909087D1 (de) * 1988-12-01 1995-04-13 Bayer Ag Verfahren zur Herstellung tiefgezogener Kunststoff-Formteile.
DE3905177B4 (de) * 1989-02-20 2004-12-02 Bayer Materialscience Ag Formwerkzeug zum Verformen einer Kunststoffolie, insbesondere einer bedruckten Kunststoffolie
EP0678216B1 (de) * 1992-12-16 2003-03-19 Durel Corporation Elektrolumineszente lampvorrichtungen und ihre herstellung
US5780965A (en) * 1993-12-09 1998-07-14 Key Plastics, Inc. Three dimensional electroluminescent display
DE19717740C2 (de) * 1997-04-26 2001-07-05 Schoenberg & Cerny Gmbh Wien Kunststoff-Formkörper mit integriertem optoelektronischem Leuchtfeld und Verfahren zu seiner Herstellung
US6771019B1 (en) * 1999-05-14 2004-08-03 Ifire Technology, Inc. Electroluminescent laminate with patterned phosphor structure and thick film dielectric with improved dielectric properties
US6637906B2 (en) * 2001-09-11 2003-10-28 Recot, Inc. Electroluminescent flexible film for product packaging
SI1446985T1 (sl) * 2001-10-24 2009-02-28 Lyttron Technology Gmbh Tridimenzionalni elektroluminiscenčni prikazovalnik
DE10234031A1 (de) * 2002-02-13 2003-08-28 Albea Kunststofftechnik Gmbh & Elektrolumineszenz-Leuchtfläche
GB2397372A (en) * 2003-01-15 2004-07-21 Paul David Sherring Electroluminescent position indicators for helmets
DE102005038680A1 (de) * 2004-08-17 2006-02-23 Volkswagen Ag Dreidimensionales Bauteil eines Kraftfahrzeugs und Kraftfahrzeug mit einem solchen Bauelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008003621A1 *

Also Published As

Publication number Publication date
KR101466159B1 (ko) 2014-12-01
KR20090027228A (ko) 2009-03-16
DE102006031315A1 (de) 2008-01-17
TW200810594A (en) 2008-02-16
DE202007018691U1 (de) 2009-03-19
WO2008003621A1 (de) 2008-01-10
TWI517755B (zh) 2016-01-11
DE102006031315A8 (de) 2008-08-28
US20090236984A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
EP2036063A1 (de) 3d-el-hdvf element und herstellungsverfahren und anwendung
DE102006057653A1 (de) EL-Element enthaltend eine semitransparente Metallfolie und Herstellungsverfahren und Anwendung
DE19717740C2 (de) Kunststoff-Formkörper mit integriertem optoelektronischem Leuchtfeld und Verfahren zu seiner Herstellung
EP2189042A1 (de) Kennzeichen mit elektrolumineszenz-leuchteffekt, verfahren zu dessen herstellung
EP1236584B1 (de) Wert- und Sicherheitserzeugnis mit Lumineszenzelement
DE69216788T2 (de) Anzeigevorrichtung mit elektrolumineszenter Beleuchtung
EP2191695A1 (de) Elektrolumineszenz-anordnung auf textilen materialien
EP2163136A1 (de) Anorganisches dickfilm-ac elektrolumineszenzelement mit zumindest zwei einspeisungen und herstellverfahren und anwendung
DE102020119072A1 (de) Beleuchtbare fahrzeugbaugruppe und beleuchtungsverfahren für eine fahrzeugbaugruppe
DE10257352A1 (de) Einrichtungselement mit selbstleuchtenden Sichtflächen und Verfahren zur Herstellung
DE102020119544A1 (de) Beleuchtbare fahrzeugbaugruppe und beleuchtungsverfahren für eine fahrzeugbaugruppe
EP3520098B1 (de) Destruktionslose integration von elektronik
EP1738614B1 (de) Mehrfarb-elektrolumineszenz-element
DE102006059203A1 (de) Biegbares 3D-EL-HDFV Element und Herstellungsverfahren und Anwendung
EP2215892A1 (de) Mindestens einschichtiges anorganisches dickfilm-ac elektrolumineszenz-system mit unterschiedlich konturierten und weitgehend transparenten leitschichten, verfahren zu dessen herstellung und dessen verwendung
EP2395572A1 (de) Schichtaufbau umfassend elektrotechnische Bauelemente
DE102009017669A1 (de) Druckerzeugnis, umfassend mindestens ein Elektrolumineszenz-Element
DE10234031A1 (de) Elektrolumineszenz-Leuchtfläche
DE102018221351A1 (de) Verfahren zum Bereitstellen einer Beleuchtungseinrichtung und Kraftfahrzeug mit einer Beleuchtungseinrichtung
WO2004088365A1 (de) Selbstleuchtendes kfz-kennzeichen
EP2221173A1 (de) Elektrolumineszierender Folienverbund mit einem Schutzfolienlaminat
WO2012004295A1 (de) Sicherheits- und/oder wertdokument enthaltend eine elektrolumineszenz-anordnung
EP1152643B1 (de) Anzeigevorrichtung mit mindestens einer elektrolumineszierenden Fläche
AT12550U1 (de) Leuchtkörper sowie verfahren zu dessen herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EFL HOLDINGS TECH B.V.

17Q First examination report despatched

Effective date: 20141119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105