EP2032820A1 - Procédé et dispositif pour contrôler une turbosoufflante à gaz d'échappement - Google Patents

Procédé et dispositif pour contrôler une turbosoufflante à gaz d'échappement

Info

Publication number
EP2032820A1
EP2032820A1 EP07729728A EP07729728A EP2032820A1 EP 2032820 A1 EP2032820 A1 EP 2032820A1 EP 07729728 A EP07729728 A EP 07729728A EP 07729728 A EP07729728 A EP 07729728A EP 2032820 A1 EP2032820 A1 EP 2032820A1
Authority
EP
European Patent Office
Prior art keywords
turbocharger
transducer
speed
sound transducer
rchgekennzeichnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07729728A
Other languages
German (de)
English (en)
Inventor
Rudolf Bierl
Martin Lesser
Andreas Meyer
Frank Steuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2032820A1 publication Critical patent/EP2032820A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/14Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • F02D2041/285Interface circuits between sensors and control unit the sensor having a signal processing unit external to the engine control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines

Definitions

  • the present invention relates to a method and an apparatus for monitoring an exhaust gas turbocharger of an internal combustion engine.
  • the power output of the internal combustion engine depends on the ratio of fuel mass to air mass.
  • the measurement of a respective air mass is carried out with an air mass sensor which sits in the intake tract of the combustion ⁇ engine.
  • Many modern Verbrennungskraftma ⁇ machines are now equipped with a turbocharger, which causes pre-compression of the air mass.
  • a respective exhaust gas stream is deprived of energy for pre-compression of the air mass flow through a turbine running in the exhaust gas stream with mechanically-coupled fresh air compressor, so that, for example, a diesel engine no longer acts as a naturally aspirated engine but as a supercharged engine with supercharged air pressures of up to 1.5 or 2.5 bar with significant increase in performance and reduced emissions.
  • turbocharger By using a turbocharger on the one hand increases the torque of an internal combustion engine, on the other hand but also the thermal load of the internal combustion engine, which is why engine block, cylinder heads, cylinder head gaskets, bearings, cylinders, connecting rods, valves, pistons and other engine components and the subsequent drive train for this additional stress must be designed accordingly.
  • the higher power also requires a correspondingly larger cooling system for cooling the engine and the La ⁇ deluft.
  • exhaust gas turbines Even become red-hot after driving under high load.
  • Can ⁇ chen such a strong thermal and mechanical stress of a component, the rotational speeds of up to 200,000 revolutions per minute Errei, makes a separate monitoring.
  • turbochargers Because with the use of turbochargers in modern motor vehicles, a considerable amount of stimulation is still triggered, which complicates damage diagnosis. Modern fully ⁇ electronic diagnostic systems act here by evaluating the speed of a turbocharger to monitor its function supportive. To determine a turbocharger speed, however, an extra developed sensor is provided. This sensor must withstand extremely adverse conditions, in particular high temperatures and high pressures, reliably detecting the blades of the turbocharger wheel and calculating the speed signal with downstream electronics. This sensor must be mounted directly on the turbocharger.
  • a turbocharger in a start-up / acceleration process as a transient operating state, can generate an insufficient boost pressure for the fresh air, so that a short-term negative pressure arises in the intake system.
  • a turbocharger When accelerating from low speeds out first missing the right amount of exhaust gas to produce the desired boost pressure. Only with increasing speed, a sufficiently strong exhaust gas flow is provided to cause a charge to a required degree. This lack of power at low speeds is commonly referred to as a "turbo lag". Accordingly, the charging of the fresh air flow through the turbocharger begins with a sudden gas input delayed, since only a sufficient Abgasström must adjust.
  • an apparatus for surveil ⁇ distinguished monitoring an exhaust gas turbocharger is characterized in that it comprises a formed for receiving a speed-dependent turbocharger operating noise sound transducer which is connected to electronics for frequency analysis of the output of a turbocharger speed signal.
  • the invention is therefore based on the finding that at operating speeds of 200,000 to about 400,000 revolutions per minute turbocharger equipped with up to 17 turbine blades in its normal operating speed range a very high-frequency operating noise emitted.
  • This Railge ⁇ is therefore commonly referred to as turbocharger whistling noise reduction. From one or more dominant frequencies within a sound spectrum emitted by a turbocharger, a respective current turbocharger speed can be determined. This is done for example in an electronics for frequency analysis, which then outputs a turbocharger speed signal.
  • an ultrasonic transducer is used as a sound transducer. It has been found, the frequencies of an emitted by a turbocharger sound spectrum above the threshold of human hearing of about 16 kHz in Ultraschallbe ⁇ that are rich from 20 kHz, from which a respective current turbocharger speed is determined.
  • An electronics downstream of the sound transducer comprises a frequency analysis unit.
  • This frequency analysis unit identi fied ⁇ preferably based on a fast Fourier transfor mation ⁇ or FFT, followed by band-pass filtering a frequency band of a supercharger operating noise and determines therefrom a respective current turbocharger speed.
  • a turbocharger speed determination according to the invention is arranged in a particularly preferred embodiment of the present invention on the basis of a sound evaluation together with an air mass sensor in the intake of an internal combustion engine.
  • An air mass sensor can work as a mass flow sensor according to a thermal principle, wherein a release of heat output of a heated sensor wire compared to a thermally insulated sensor wire is evaluated via a resistance bridge circuit as a measure of a respective flow rate.
  • Figure 1 is a block diagram of a device for measuring the speed of a turbocharger using two standard ultrasonic transducers of an ultrasonic air mass sensor and
  • FIG. 2 shows a block diagram of a further embodiment for measuring the speed of a turbocharger and an ultrasonic air mass sensor when using an additional ultrasonic transducer with subsequent evaluation as a block diagram in a representation analogous to that of Figure 1.
  • FIG. 1 shows a simplified Blockdia ⁇ gram of a device 1 for measuring the speed of a symbolically reproduced exhaust turbocharger 2.
  • This device 1 is arranged in an air inlet duct 3 of an internal combustion engine not shown and working ⁇ tet using two standardized Sound transducers 4, 5 of an ultrasonic air mass sensor 6.
  • the ultrasonic air mass sensor 6 operates in the present embodiment according to one disclosed in EP 0535364 Al publica ⁇ lished methods for determining an air mass in HO- flow velocities.
  • sound waves 7 are emitted in the ultrasonic range of the first transducer 4 under control by an electronic unit 8. They pass through the through which a strong air flow, air intake passage 3 on a path ⁇ to increase the path length and thereby improving the measurement accuracy at an angle relative to the transverse sectional plane of the air inlet duct 3 ge ⁇ is prone.
  • the sound waves 7 impinge on the second acoustic transducer 5, the received as the ultrasonic detector
  • Sound waves 7 converts into an electrical output signal ai.
  • This electrical signal ai is returned to the electronics 8 for air mass measurement.
  • the receiving transducer 5 is designed very broadband in the ultrasonic range.
  • the sound transducer 5 next to the sound waves emitted by the transducer 4 7 on the much lower frequency and yet located in the ultrasonic range sound waves 9 detect and convert, these sound waves 9 are generated by the operation of the turbocharger 2 and in their frequency characteristic of a respectively current turbocharger speed are.
  • a respective measurement result of the second sound transducer 5 is evaluated in two ways below, as also indicated in the drawing: an output signal of the emp ⁇ scavenging transducer 5 is divided ai and a low frequency component of a 2 to a higher frequency component.
  • the ⁇ se shares ai, a 2 are supplied to separate units for electrical processing.
  • a much higher-frequency component which has been emitted at a predetermined frequency by the first converter 4, is forwarded to the evaluation electronics 8 for determining an air mass.
  • a comparatively low frequency and the turbo ⁇ loader 2 forth derived ultrasonic frequency portion is in the Signal component a 2 for frequency analysis to an electronics 10 forwarded.
  • a current turbocharger speed is determined by appropriate mathematical algorithms Filtermetho ⁇ and from the recorded frequency spectrum, a Fast-Fourier transformation is applied for determining a characteristic frequency of the turbocharger speed in the present case to a bandpass filtering.
  • the downstream of the transducer 5 electronics 10 thus includes a frequency analysis unit for identifying a frequency band of a turbocharger operating noise and then on ⁇ building determining a respective current turbocharger speed as the output signal A.
  • FIG. 2 shows a block diagram of another exemplary form for measuring the speed of a turbocharger and an ultra sound ⁇ air mass sensor.
  • This device operates using an additional ultrasonic transducer 11 with subsequent evaluation electronics and is shown as a block diagram in a representation analogous to that of Figure 1.
  • the formed for receiving a speed-dependent turbocharger operating noise transducer 11 is provided as a separate component in the Lufteinlasska ⁇ nal. 3 Again, this is an ultrasonic transducer based on a piezoelectric material.
  • this sound transducer 11 is tuned comparatively narrowband in its operating frequency to the frequencies to be expected, which are caused by the respective operating speeds of the turbocharger 2.
  • a possible frequency range can range from speeds below 100,000 to about 450,000 revolutions per ⁇ Mi nute and more are expected 5 up to 17 turbo blades as.
  • approximate frequencies of the fundamental frequencies from 8 kHz to more than 113 kHz and easily measurable harmonics, for example, at the third harmonic or three times the frequency of 24 kHz to 0.35 MHz are to be expected.
  • a nominal speed range and the number of turbo blades already Depending on the application, a more or less narrow-band range for the operating frequency of the sound transducer 5 can be selected in the mentioned lower ultrasonic range.
  • Figure 2 this results in accordance with a certain apparatus additional effort by the provision of an additional separate sound transducer 11 in the air inlet duct 3, however, an overall simpler evaluation processing the electrical measurement signals, as in particular no Fre ⁇ quenzaufspaltung an output signal into two portions ai , a 2 is to be provided.
  • the two ultrasonic transducers 3, 4 for the air mass measurement must have an operating frequency which is significantly above the operating frequency and thus, for example, also a center frequency of the ultrasonic transducer 11, which is provided for the turbocharger speed measurement.
  • turbocharger speed sensing can be installed at that position at the well-known mass air flow sensors are installed.
  • the ultrasonic sensors 4, 5, 11 generally have the advantage that they are comparatively insensitive to temperature, dirt and pressure, for example in quartz converter designs.
  • such sensors are much cheaper to produce or available as standard components, as would be the case with a now to be saved turbocharger speed sensor known design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Supercharger (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour contrôler une turbosoufflante à gaz d'échappement d'un moteur à combustion interne. Afin de produire un procédé économique et de fonctionnement fiable ainsi qu'un dispositif correspondant pour le contrôle d'une turbosoufflante à gaz d'échappement, un transducteur acoustique (5, 11) réalisé pour recevoir un bruit de fonctionnement de la turbosoufflante dépendant du régime, est connecté selon l'invention à un système électronique (10) pour l'analyse de la fréquence afin de fournir un signal de régime de la turbosoufflante. (Fig.1)
EP07729728A 2006-06-13 2007-05-31 Procédé et dispositif pour contrôler une turbosoufflante à gaz d'échappement Ceased EP2032820A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006027422.9A DE102006027422B4 (de) 2006-06-13 2006-06-13 Verfahren und Vorrichtung zum Überwachen eines Abgasturboladers
PCT/EP2007/055325 WO2007144274A1 (fr) 2006-06-13 2007-05-31 Procédé et dispositif pour contrôler une turbosoufflante à gaz d'échappement

Publications (1)

Publication Number Publication Date
EP2032820A1 true EP2032820A1 (fr) 2009-03-11

Family

ID=38440241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07729728A Ceased EP2032820A1 (fr) 2006-06-13 2007-05-31 Procédé et dispositif pour contrôler une turbosoufflante à gaz d'échappement

Country Status (7)

Country Link
US (1) US8291752B2 (fr)
EP (1) EP2032820A1 (fr)
JP (1) JP2009540207A (fr)
KR (1) KR20090027210A (fr)
CN (1) CN101473122A (fr)
DE (1) DE102006027422B4 (fr)
WO (1) WO2007144274A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168688A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd 流体計測装置
US20090193896A1 (en) * 2008-01-31 2009-08-06 Lawrence M Rose Turbocharger rotational speed sensor
US8161744B2 (en) * 2008-03-04 2012-04-24 Deere & Company Internal combustion engine with turbocharger surge detection and control
DE102011007031A1 (de) * 2011-04-08 2012-10-11 Robert Bosch Gmbh Verfahren zur Diagnose eines Aufladesystems von Verbrennungsmotoren
US8661876B2 (en) * 2011-05-06 2014-03-04 General Electric Company Apparatus, system, and method for testing a turbocharger
US9448133B2 (en) 2011-05-06 2016-09-20 General Electric Company Apparatus, system, and method for testing a turbocharger
DE102012211425A1 (de) * 2012-07-02 2014-01-23 Robert Bosch Gmbh Verfahren zur Bestimmung einer Drehzahl eines Verdichters
CN103575541B (zh) * 2013-10-12 2016-02-24 广西玉柴机器股份有限公司 电控发动机试验输出装置
CN104596929B (zh) * 2013-10-31 2017-06-23 国际商业机器公司 确定空气质量的方法及设备
DE102014102321A1 (de) 2014-02-23 2015-08-27 Kompressorenbau Bannewitz Gmbh Verfahren für eine Notfallprozedur im Fehlerfall an einer zweistufigen Abgasturboaufladung einer Verbrennungskraftmaschine und Zweistufige Abgasturboladeranordnung zur Durchführung des Verfahrens
FR3034871B1 (fr) * 2015-04-10 2017-04-28 Peugeot Citroen Automobiles Sa Procede de caracterisation d’un champ de vitesses d’un ecoulement d’air suite a la decharge d’un systeme de suralimentation de moteur a combustion interne
WO2017005269A1 (fr) * 2015-07-03 2017-01-12 Kamstrup A/S Système de surveillance de réseau de service public
US10151731B2 (en) * 2015-11-13 2018-12-11 The Boeing Comapny Ultrasonic system for nondestructive testing
ITUB20159294A1 (it) * 2015-12-23 2017-06-23 Magneti Marelli Spa Metodo per determinare la velocita' istantanea di rotazione di un turbocompressore in un motore a combustione interna sovralimentato
US11053875B2 (en) 2016-02-10 2021-07-06 Garrett Transportation I Inc. System and method for estimating turbo speed of an engine
JP6669637B2 (ja) * 2016-11-25 2020-03-18 ヤンマー株式会社 内燃機関の診断装置および診断方法、並びに、内燃機関の制御装置および制御方法
PL3367072T3 (pl) * 2017-02-24 2019-06-28 Sick Engineering Gmbh Ultradźwiękowy pomiar przepływu

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861211A (en) * 1974-03-25 1975-01-21 Us Navy Ultra-low flow velocity current meter
DE2828937A1 (de) 1978-06-30 1980-01-10 Siemens Ag Vorrichtung zum messen von stroemungsgeschwindigkeiten mit hilfe von ultraschallschwingungen
DE3605958A1 (de) * 1986-02-25 1987-09-03 Fraunhofer Ges Forschung Vorrichtung zum erfassen und beheben von abloeseschwingungen an verdichterschaufeln
DE4104179A1 (de) * 1991-02-12 1992-08-13 Iav Motor Gmbh Ingenieurgesell Sensor zur messung hochfrequenter koerperschallwellen in verbrennungsmotoren, insbesondere otto-motoren
EP0535364A1 (fr) * 1991-09-30 1993-04-07 Siemens Aktiengesellschaft Procédé de mesure ultrasonique avec haute résolution et sans ambiguité de la vitesse d'écoulement d'un fluide
SE500813C2 (sv) * 1993-01-22 1994-09-12 Ase Autotest Ab Förfarande för mätning av varvtalet på turboaggregat för motorer
JP3642354B2 (ja) 1995-05-30 2005-04-27 富士電機ホールディングス株式会社 水車の異常診断装置
DE19708302A1 (de) * 1996-08-12 1998-09-03 Rolf Kistner Drehzahlmessung durch Ultraschallerfassung
DE19818124C2 (de) * 1998-04-23 2001-09-13 Daimler Chrysler Ag Vorrichtung zur Drehzahlerfassung von Turboladern
DE10007013B4 (de) 2000-02-16 2009-04-16 Robert Bosch Gmbh Vorrichtung zur Begrenzung der Drehzahl eines Abgasturboladers
DE10012926C2 (de) * 2000-03-16 2002-01-31 Daimler Chrysler Ag Sensoreinrichtung zur Strömungsmessung, Vorrichtung zur Durchströmung mit einem Medium und Verfahren zur Bestimmung von Strömungsparametern
JP2003097281A (ja) 2001-09-21 2003-04-03 Toyota Motor Corp ターボチャージャーの回転数計測方法及びターボチャージャー
DE10237416A1 (de) * 2002-08-16 2004-02-26 Daimlerchrysler Ag Betriebsverfahren für einen Verdichter
DE102004010263A1 (de) * 2004-03-03 2005-09-22 Daimlerchrysler Ag Verfahren und Vorrichtung zur Drehzahlerfassung von Turboladern
DE102004029857A1 (de) 2004-06-19 2006-01-05 Volkswagen Ag Verfahren und Anordnung zum Betreiben eines Turboladers
JP2006184036A (ja) 2004-12-27 2006-07-13 Nissan Motor Co Ltd 超音波式流体計測方法および装置
GB0700148D0 (en) * 2007-01-05 2007-02-14 Cummins Turbo Tech Ltd A method and apparatus for detecting the rotational speed of a rotary member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007144274A1 *

Also Published As

Publication number Publication date
US8291752B2 (en) 2012-10-23
DE102006027422B4 (de) 2014-02-06
WO2007144274A1 (fr) 2007-12-21
CN101473122A (zh) 2009-07-01
KR20090027210A (ko) 2009-03-16
US20100000309A1 (en) 2010-01-07
DE102006027422A1 (de) 2007-12-27
JP2009540207A (ja) 2009-11-19

Similar Documents

Publication Publication Date Title
DE102006027422B4 (de) Verfahren und Vorrichtung zum Überwachen eines Abgasturboladers
KR101574668B1 (ko) 동압 판독값에 기초하여 엔진 파라미터를 추정하는 방법 및 시스템
CN101163870B (zh) 用于具有马达驱动型增压器的内燃发动机的控制设备
CN102330595B (zh) 用于确定内燃机中的增压器的旋转速度的方法
EP2122143B1 (fr) Dispositif d'indication et procédé de détermination d'un paramètre moteur
WO2006005662A1 (fr) Turbocompresseur à gaz d'échappement
WO2009033597A1 (fr) Procédé et dispositif de mesure d'émissions sur des moteurs
EP2059662A1 (fr) Actionneur de soupape de décharge pour un turbocompresseur à gaz d'échappement
DE102008011342A1 (de) Verfahren zur Diagnose von Turboladern für Verbrennungskraftmaschinen
US9121862B2 (en) Method and device for measuring the rotational speed of a turbocompressor, and motor vehicle
CN101206159A (zh) 监测汽车的功能部件的方法
DE102015213825A1 (de) Verfahren und Vorrichtung zur Dynamiküberwachung eines Luftfüllungssystems einer Brennkraftmaschine
DE102011007031A1 (de) Verfahren zur Diagnose eines Aufladesystems von Verbrennungsmotoren
Chiong et al. Steady-state, transient and WLTC drive-cycle experimental performance comparison between single-scroll and twin-scroll turbocharger turbine
Taglialatela-Scafati et al. Use of vibration signal for diagnosis and control of a four-cylinder diesel engine
KR20080106972A (ko) 배기가스 터보차저의 컴프레서를 제어하기 위한 방법 및 장치
DE10056431A1 (de) Verfahren und Vorrichtung zur Diagnose des Strömungswiderstands im Ansaugtrakt von Brennkraftmaschinen
DE10111775B4 (de) Verfahren und Vorrichtung zur Bestimmung der Gasaustrittstemperatur der Turbine eines Abgasturboladers eines Kraftfahrzeugs
Capobianco et al. Turbocharger turbine performance under steady and unsteady flow: test bed analysis and correlation criteria
EP1887328A1 (fr) Débitmètre à ultrasons monté coaxialement
WO2008125442A1 (fr) Procédé de mesure de débit d'air et capteur de débit d'air
EP2126539B1 (fr) Procédé et dispositif pour tester un turbomoteur
DE10358462B4 (de) Vorrichtung und Verfahren zur Ermittlung des Verschmutzungsgrades einer Luftfiltereinheit für einen Kraftfahrzeug-Verbrennungsmotor
DE102012213961A1 (de) Vorrichtung zur Bestimmung einer Drehzahl eines Verdichters einer Brennkraftmaschine
Nybäck Exhaust pressure based misfire detection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090406

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR HU IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100619