EP2028256B1 - Schmieröle mit verbesserter Reibungsstabilität - Google Patents

Schmieröle mit verbesserter Reibungsstabilität Download PDF

Info

Publication number
EP2028256B1
EP2028256B1 EP08104153.5A EP08104153A EP2028256B1 EP 2028256 B1 EP2028256 B1 EP 2028256B1 EP 08104153 A EP08104153 A EP 08104153A EP 2028256 B1 EP2028256 B1 EP 2028256B1
Authority
EP
European Patent Office
Prior art keywords
friction
oils
oil
fluid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08104153.5A
Other languages
English (en)
French (fr)
Other versions
EP2028256A3 (de
EP2028256A2 (de
Inventor
Kerry Lynn c/o Infineum USA L.P. Cogen
Keith R. c/o Infineum USA L.P. Gorda
Joe R. c/o Infineum USA L.P. Noles Jr.
Raymond F. c/o Infineum USA L.P. Watts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Publication of EP2028256A2 publication Critical patent/EP2028256A2/de
Publication of EP2028256A3 publication Critical patent/EP2028256A3/de
Application granted granted Critical
Publication of EP2028256B1 publication Critical patent/EP2028256B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/048Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution, non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • C10M149/22Polyamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition

Definitions

  • This invention relates to a lubricating oil composition having excellent friction stability, particularly power transmitting fluids such as automatic transmission fluids (hereinafter referred to as "ATFs”), continuously variable transmission fluids (“CVTFs”), and double clutch transmission fluids (“DCTFs”), and more particularly having excellent frictional characteristics during high speed clutch engagements.
  • ATFs automatic transmission fluids
  • CVTFs continuously variable transmission fluids
  • DCTFs double clutch transmission fluids
  • the transmissions to which this invention is applicable are those transmissions that contain a lubricated wet clutch that is used under conditions of high energy dissipation.
  • These types of applications include the clutches in an automatic transmission used to accomplish ratio or speed changes; wet starting clutches in automatic, continuously variable or double clutch transmissions; or clutches used in torque vectoring or interaxle differential applications.
  • These clutches can be characterized as having high differential speed between the two members of the clutch and high energy dissipation in the "engagement" or "lock up" of the clutch.
  • a common goal of automobile builders is to produce vehicles that are more durable and perform more reliably over their service life.
  • One aspect of increased durability and reliability is to produce vehicles that need a minimum of repairs during their service life.
  • a second aspect is to have vehicles that perform consistently throughout this "lifetime”.
  • In the case of automatic transmissions not only should the transmission not fail during the lifetime of the vehicle, but its shift characteristics should not perceptibly change over this period. Since shift characteristics of automatic transmissions are heavily dependent on the frictional characteristics of the ATF, the fluid needs to have very stable frictional performance with time, and therefore mileage. This aspect of ATF performance is known as friction stability.
  • friction stability is known as friction stability.
  • many vehicle builders are moving to "fill-for-life" automatic transmission fluids; this trend further increases the need for friction stability of the ATF, since the fluid will no longer be replaced at 15,000 to 50,000 mile service intervals.
  • a common method for determining the friction durability of an ATF is through the use of an SAE #2 friction test machine.
  • This machine simulates the high speed engagement of a clutch by using the clutch as a brake, thereby absorbing a specified amount of energy.
  • the energy of the system is chosen to be equivalent to the energy absorbed by the clutch in completing one shift in the actual vehicle application.
  • the machine uses a specified engagement speed, normally 3600 rpm, and a calculated inertia to provide the required amount of energy to the test clutch and fluid.
  • the clutch is lubricated by the fluid being evaluated, and each deceleration (i.e., braking) of the system is termed one cycle. To evaluate friction stability many cycles are run consecutively.
  • Friction control in a power transmission fluid such as an ATF, CVTF or DCTF is primarily the function of the friction modifiers in the fluid.
  • the thermal and oxidative stresses under which such fluids are used in the transmissions lead to additive degradation and thereby changes in fluid properties. Oxidation or thermal destruction of the friction modifiers is often first seen in the fluid as rising static friction. Rising static friction causes abrupt shifts which vehicle occupants can feel as a jerk or lurch as the shift completes. Rising static friction is a common mode of failure of power transmission fluids. In some circumstances, however, oxidation of friction modifiers can transform them into more active species. In these situations static friction can actually decrease during service.
  • U.S patents 5,750,476 and 5,840,662 report that a combination of antioxidants, oil soluble phosphorus compounds, and specific low potency friction modifiers can confer outstanding friction durability to ATFs. These low potency friction modifiers are characterized by the fact that once a saturation concentration of the friction modifier is reached in the fluid, increasing the concentration causes no further reduction in the measured friction levels. Fluids can thus be treated with very high concentrations of these low potency friction modifiers to create a larger reservoir of additive in the oil and still exhibit satisfactory levels of friction. It is believed that as the low potency friction modifier molecules are consumed, through shearing or oxidation, there is always an ample concentration available to take their place on the friction surfaces. An oil-soluble phosphorus-containing compound must also be present to protect the system from wear.
  • Such friction modifiers show improved properties over existing solutions and provide a more cost-effective solution to the problem of friction durability in oils, especially in power transmission fluids.
  • US2003220206 discloses a lubricant composition which comprises a lubricant base oil and one or more compounds resulting from the modification of a specific succinimide, with one or more compounds selected from the group consisting of carboxylic acids and derivatives thereof, sulfuric compounds and triazoles.
  • the composition is used for automatic transmissions and/or continuously variable transmissions.
  • WO97/14773 A1 describes lubricating compositions containing a reaction product of a maleated bis(iso-octadecenyl succinimide) and TEPA.
  • the compositions are said to be suitable as automatic transmission fluids.
  • WO 99/11743 A1 describes lubricating compositions which contain an amine-containing friction modifier and an oil-soluble phosphorus : compound. The compositions are said to provide good friction stability.
  • this invention relates to a lubricating oil composition
  • a lubricating oil composition comprising a base lubricating oil, at least one oil soluble thioalkyl phosphite ester compound in an amount delivering from 5 to 5000 ppm of phosphorus into the oil and at least one polyalkylene polyamine-based friction modifier having the structure: In an amount of 0.1 to 10 weight percent in the composition.
  • the invention relates to the use of the composition of the first aspect in a power transmission.
  • This invention concerns a method for improving the friction stability of lubricating oils, without disadvantageously lowering the coefficients of friction. It comprises the combined use in the oil of a friction modifier derived from a defined polyalkylene polyamine and an oil-soluble source of phosphorus. This combination of additives provides outstanding friction stability to lubricating oils, especially transmission fluids.
  • While the benefits of this invention are contemplated to be applicable to a wide variety of lubricating oils wherein friction modifiers are usefully employed (e.g., crankcase engine oils, etc.), particularly preferred compositions are power transmitting fluids, especially automatic transmission fluids (ATFs), continuously variable transmission fluids (CVTFs) and double clutch transmission fluids (DCTFs).
  • ATFs automatic transmission fluids
  • CVTFs continuously variable transmission fluids
  • DCTFs double clutch transmission fluids
  • Examples of other, less preferred types of power transmitting fluids included within the scope of this invention are gear oils, hydraulic fluids, tractor fluids, universal tractor fluids and the like. These power transmitting fluids can be formulated with a variety of additional performance additives and in a variety of base oils.
  • the friction modifier used in the invention has the structure : which may suitably by formed by the acetylation of the reaction product of diethylene triamine and the requisite isomerised octadecenyl succinic anhydride. This material has been found to give especially good performance in the present invention.
  • the treat rate of the friction modifier is from 0.1 to 10, preferably 0.5 to 7, and most preferably from 1.0 to 5.0 weight percent in the lubricating oil composition.
  • a preferred oil soluble thioalkyl phosphite ester compound for example is as produced in U.S. 5,314,633 .
  • the most preferred compounds are as illustrated by Example G below.
  • the thioalkyl phosphite ester compound delivers from 5 to 5000 ppm phosphorus into the oil.
  • a preferred concentration range is from about 10 to about 1000 ppm of phosphorus in the finished oil and the most preferred concentration range is from about 50 to about 500 ppm.
  • EXAMPLE G An alkyl phosphite mixture was prepared by placing in a round bottom 4-neck flask equipped with a reflux condenser, a stirrer and a nitrogen bubbler, 194 grams (1.0 mole) of dibutyl hydrogen phosphite. The flask was flushed with nitrogen, sealed and the stirrer started. The dibutyl hydrogen phosphite was heated to 150°C under vacuum (-90 kPa) and 190 grams (1 mole) of hydroxylethyl-n-octyl sulfide was added through a dropping funnel over about one hour. During the addition approximately 35 ml of butanol was recovered in a chilled trap.
  • additives known in the art may be added to the lubricating oil of the invention, or included in the additive composition of the invention.
  • additives include dispersants, antiwear agents, corrosion inhibitors, detergents, extreme pressure additives, and the like. They are typically disclosed in, for example, " Lubricant Additives” by C. V. Smallheer and R. Kennedy Smith, 1967, pp. 1-11 and U.S. Patent 4,105,571 .
  • additive Broad
  • Wt.% Preferred
  • Wt.% VI Improvers 1 - 12 1 - 4 Corrosion Inhibitor 0.01 - 3 0.02 - 1 Dispersants 0.10 - 10 2 - 5
  • Antifoaming Agents 0.001 - 5 0.001 - 0.5
  • Detergents 0.01 - 6 0.01 - 3
  • Antiwear Agents 0.001 - 5 0.2 - 3
  • Pour Point Depressants 0.01 - 2 0.01 - 1.5 Seal
  • Swellants 0.1 - 8 0.5 - 5 Lubricating Oil Balance Balance Balance
  • Suitable dispersants include long chain (i.e. greater than forty carbon atoms) substituted hydrocarbyl succinimides and hydrocarbyl succinamides, mixed ester/amides of long chain (i.e. greater than forty carbon atoms) hydrocarbyl-substituted succinic acid, hydroxyesters of such hydrocarbyl-substituted succinic acid, and Mannich condensation products of long chain (i.e. greater than forty carbon atoms) hydrocarbyl-substituted phenols, formaldehyde and polyamines. Mixtures of such dispersants can also be used.
  • the preferred dispersants are the long chain alkenyl succinimides. These include acyclic hydrocarbyl substituted succinimides formed with various amines or amine derivatives such as are widely disclosed in the patent literature. Use of alkenyl succinimides which have been treated with an inorganic acid of phosphorus (or an anhydride thereof) and a boronating agent are also suitable for use in the compositions of this invention as they are much more compatible with elastomeric seals made from such substances as fluoro-elastomers and silicon-containing elastomers.
  • Polyisobutenyl succinimides formed from polyisobutenyl succinic anhydride and an alkylene polyamine such as triethylene tetramine or tetraethylene pentamine wherein the polyisobutenyl substituent is derived from polyisobutene having a number average molecular weight in the range of 500 to 5000 (preferably 800 to 2500) are particularly suitable.
  • Dispersants may be post-treated with many reagents known to those skilled in the art. (see, e.g., U.S. Pat. Nos. 3,254,025 , 3,502,677 and 4,857,214 ).
  • the additive combinations of this invention may be combined with other desired lubricating oil additives to form a concentrate.
  • the active ingredient (a.i.) level of the concentrate will range from 20 to 90%, preferably from 25 to 80%, most preferably from 35 to 75 weight percent of the concentrate.
  • the balance of the concentrate is a diluent typically comprised of a lubricating oil or solvent.
  • Lubricating oils useful in this invention are derived from natural lubricating oils, synthetic lubricating oils, and mixtures thereof. In general, both the natural and synthetic lubricating oil will each have a kinematic viscosity ranging from about 1 to about 100 mm 2 /s (cSt) at 100°C, although typical applications will require each oil to have a viscosity ranging from about 2 to about 8 mm 2 /s (cSt) at 100°C.
  • Natural lubricating oils include animal oils, vegetable oils (e.g., castor oil and lard oil), petroleum oils, mineral oils, and oils derived from coal or shale.
  • the preferred natural lubricating oil is mineral oil.
  • Suitable mineral oils include all common mineral oil basestocks. This includes oils that are naphthenic or paraffinic in chemical structure. Oils that are refined by conventional methodology using acid, alkali, and clay or other agents such as aluminum chloride, or they may be extracted oils produced, for example, by solvent extraction with solvents such as phenol, sulfur dioxide, furfural, dichlordiethyl ether, etc. They may be hydrotreated or hydrofined, dewaxed by chilling or catalytic dewaxing processes, or hydrocracked. The mineral oil may be produced from natural crude sources or be composed of isomerized wax materials or residues of other refining processes.
  • the mineral oils will have kinematic viscosities of from 2.0 mm 2 /s (cSt) to 8.0 mm 2 /s (cSt) at 100°C.
  • the preferred mineral oils have kinematic viscosities of from 2 to 6 mm 2 /s (cSt), and most preferred are those mineral oils with viscosities of 3 to 5 mm 2 /s (cSt) at 100°C.
  • Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as oligomerized, polymerized, and interpolymerized olefins [e.g., polybutylenes, polypropylenes, propylene, isobutylene copolymers, chlorinated polylactenes, poly(1-hexenes), poly(1-octenes), poly-(1-decenes), etc., and mixtures thereof]; alkylbenzenes [e.g., dodecyl-benzenes, tetradecylbenzenes, dinonyl-benzenes, di(2-ethylhexyl)benzene, etc.]; polyphenyls [e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.]; and alkylated diphenyl ethers, alkylated diphenyl sulf
  • Synthetic lubricating oils also include alkylene oxide polymers, interpolymers, copolymers, and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc.
  • This class of synthetic oils is exemplified by: polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide; the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-polyisopropylene glycol ether having an average molecular weight of 1000, diphenyl ether of polypropylene glycol having a molecular weight of 1000 - 1500); and mono- and poly-carboxylic esters thereof (e.g., the acetic acid esters, mixed C 3 -C 8 fatty acid esters, and C 12 oxo acid diester of tetraethylene glycol).
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoethers, propylene glycol, etc.).
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebasic acid with two moles of tetraethylene glycol and two moles of 2-ethyl-hexanoic acid, and the like.
  • a preferred type of oil from this class of synthetic oils is adipates of C 4 to C 12 alcohols.
  • Esters useful as synthetic lubricating oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylolpropane pentaerythritol, dipentaerythritol, tripentaerythritol, and the like.
  • Silicon-based oils (such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils) comprise another useful class of synthetic lubricating oils. These oils include tetra-ethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-2-ethylhexyl) silicate, tetra-(p-tert-butylphenyl) silicate, hexa-(4-methyl-2-pentoxy)-disiloxane, poly(methyl)-siloxanes and poly(methylphenyl) siloxanes, and the like.
  • oils include tetra-ethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-2-eth
  • Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, and diethyl ester of decylphosphonic acid), polymeric tetra-hydrofurans, poly- ⁇ -olefins, and the like.
  • liquid esters of phosphorus-containing acids e.g., tricresyl phosphate, trioctyl phosphate, and diethyl ester of decylphosphonic acid
  • polymeric tetra-hydrofurans e.g., polymeric tetra-hydrofurans, poly- ⁇ -olefins, and the like.
  • the lubricating oils may be derived from refined, rerefined oils, or mixtures thereof.
  • Unrefined oils are obtained directly from a natural source or synthetic source (e.g., coal, shale, or tar sands bitumen) without further purification or treatment.
  • Examples of unrefined oils include a shale oil obtained directly from a retorting operation, a petroleum oil obtained directly from distillation, or an ester oil obtained directly from an esterification process, each of which is then used without further treatment.
  • Refined oils are similar to the unrefined oils except that refined oils have been treated in one or more purification steps to improve one or more properties.
  • Suitable purification techniques include distillation, hydrotreating, dewaxing, solvent extraction, acid or base extraction, filtration, and percolation, all of which are known to those skilled in the art.
  • Rerefined oils are obtained by treating used oils in processes similar to those used to obtain the refined oils. These rerefined oils are also known as reclaimed or reprocessed oils and are often additionally processed by techniques for removal of spent additives and oil breakdown products.
  • Suitable lubricating oils are those basestocks produced from oligomerization of natural gas feed stocks or isomerization of waxes. These basestocks can be referred to in any number of ways but commonly they are known as Gas-to-Liquid (GTL) or Fischer-Tropsch base stocks.
  • GTL Gas-to-Liquid
  • Fischer-Tropsch base stocks Fischer-Tropsch base stocks
  • the lubricating oil is a mixture of natural and synthetic lubricating oils (i.e., partially synthetic)
  • the choice of the partial synthetic oil components may widely vary, however, particularly useful combinations are comprised of mineral oils and poly- ⁇ -olefins (PAO), particularly oligomers of 1-decene.
  • PAO poly- ⁇ -olefins
  • a modification of the Ford MERCON® friction test (MERCON® Automatic Transmission Fluid Specification for Service, dated September 1, 1992. Section 3.8) was chosen to demonstrate the friction durability of the fluids of the invention.
  • the Ford test stresses friction durability by using a low volume of fluid, and high test energy per cycle. Repeated dissipation of this high energy into this small volume of test fluid for 10,000 cycles is a strenuous evaluation of the fluid's ability to maintain constant frictional characteristics.
  • Friction material Borg Warner 6100 (not grooved)
  • Test temperature 115°C
  • Total test cycles 10,000 Cycles per minute: 3 Total energy per cycle: 20,400 J Piston apply pressure: 275 kPa Static friction measurement: Speed: 4.37 rpm Apply pressure: 275 kPa Static friction: Measured after 2 sec of rotation
  • test fluids were blended using exactly the same base lubricating oils, dispersants, anti-oxidants, and viscosity modifiers.
  • the test blends contained the most preferred source of oil soluble phosphorus (Example G above), prepared as described in U.S. 5,314, 633 .
  • Into each fluid was added 3.0 mass percent of the friction modifier as follows:
  • compositions of the test fluids and a summary of the test results are given in Table Ibelow.
  • Example B Flud A
  • Example C has a decrease in static friction of 0.013 over the period of 500 to 10,000 cycles.
  • the fluids containing the products of the invention, the products of Examples C and D exhibit lower changes in static friction : for Fluid B, a decrease of 0.002 and for Fluid C, a decrease of 0.003.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Claims (2)

  1. Schmierölzusammensetzung, die Basisschmieröl, mindestens eine öllösliche Thioalkylphosphitesterverbindung, in einer Menge, die in dem Öl 5 bis 5.000 ppm Phosphor bereitstellt, und mindestens ein Reibungsmodifizierungsmittel auf Basis von Polyalkylpolyamin mit der Struktur:
    Figure imgb0004
    in einer Menge von 0.1 bis 10 Gew.-% in der Zusammensetzung umfasst.
  2. Verwendung einer Zusammensetzung gemäß Anspruch 1 in einer Kraftübertragung.
EP08104153.5A 2007-06-29 2008-05-29 Schmieröle mit verbesserter Reibungsstabilität Active EP2028256B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/770,966 US20090005277A1 (en) 2007-06-29 2007-06-29 Lubricating Oils Having Improved Friction Stability

Publications (3)

Publication Number Publication Date
EP2028256A2 EP2028256A2 (de) 2009-02-25
EP2028256A3 EP2028256A3 (de) 2012-06-20
EP2028256B1 true EP2028256B1 (de) 2019-08-28

Family

ID=39865086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08104153.5A Active EP2028256B1 (de) 2007-06-29 2008-05-29 Schmieröle mit verbesserter Reibungsstabilität

Country Status (7)

Country Link
US (1) US20090005277A1 (de)
EP (1) EP2028256B1 (de)
JP (1) JP5541850B2 (de)
KR (1) KR101545743B1 (de)
CN (1) CN101343591B (de)
CA (1) CA2635151C (de)
SG (2) SG148979A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076809B2 (en) * 2009-01-26 2011-12-13 Baker Hughes Incorporated Additives for improving motor oil properties
CN104388147B (zh) 2009-02-18 2018-01-09 路博润公司 作为润滑剂中的摩擦改性剂的草酸双酰胺或酰胺‑酯
EP2398873B1 (de) * 2009-02-18 2017-04-05 The Lubrizol Corporation Aminderivate als reibungsmodifizierer in schmierstoffen
JP5575815B2 (ja) 2009-02-18 2014-08-20 ザ ルブリゾル コーポレイション 潤滑剤中の摩擦調整剤としてのアミン誘導体
US9006156B2 (en) 2009-05-13 2015-04-14 The Lubrizol Corporation Imides and bis-imides as friction modifiers in lubricants
JP5642360B2 (ja) * 2009-06-16 2014-12-17 シェブロンジャパン株式会社 潤滑油組成物
JP5385830B2 (ja) 2010-03-16 2014-01-08 Jx日鉱日石エネルギー株式会社 潤滑油添加剤および潤滑油組成物
CN103534341B (zh) 2011-05-12 2015-12-09 路博润公司 作为润滑剂添加剂的芳族酰亚胺和酯
KR101526769B1 (ko) * 2013-12-30 2015-06-05 현대자동차주식회사 연비를 개선시키는 자동변속기용 윤활유 조성물
US20170015931A1 (en) * 2015-07-16 2017-01-19 Infineum International Limited Method of improving vehicle transmission operation through use of specific lubricant compositions
EP3736318B1 (de) 2019-05-09 2022-03-09 Infineum International Limited Getriebeflüssigkeitszusammensetzung für verbesserten verschleissschutz
CN111019736B (zh) * 2019-11-15 2022-04-15 山西潞安矿业(集团)有限责任公司 一种无硫磷型有机摩擦改进剂及其制备方法
US11685874B2 (en) 2019-12-16 2023-06-27 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
US11384311B2 (en) 2019-12-16 2022-07-12 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
US11365273B2 (en) 2019-12-16 2022-06-21 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
US11441094B2 (en) 2020-10-02 2022-09-13 Jatco Ltd Rejuvenation and/or extension of the lifetime of frictional performance in transmission fluids
US11905488B2 (en) 2020-10-16 2024-02-20 Infineum International Limited Transmission fluid compositions for hybrid and electric vehicle applications
KR20230122146A (ko) 2020-12-24 2023-08-22 인피늄 인터내셔날 리미티드 공중합체 주쇄 및 공중합체 아암을 갖는 열 반응성브러시 중합체
CN115584293B (zh) * 2021-07-06 2023-09-15 中国石油化工股份有限公司 润滑油摩擦改进剂及其制备方法和应用
EP4194531A1 (de) 2021-12-09 2023-06-14 Infineum International Limited Borierte detergenzien und ihre schmieranwendungen

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568876A (en) * 1949-11-14 1951-09-25 Socony Vacuum Oil Co Inc Reaction products of n-acylated polyalkylene-polyamines with alkenyl succinic acid anhydrides
US3087936A (en) * 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
GB1054093A (de) * 1963-06-17
US3382172A (en) 1966-05-18 1968-05-07 Chevron Res Alkenyl succinic acids as antiwear agents
US4105571A (en) * 1977-08-22 1978-08-08 Exxon Research & Engineering Co. Lubricant composition
EP0074724A3 (de) * 1981-09-03 1984-08-01 The Lubrizol Corporation Acylierte Imidazoline und diese enthaltende Brennstoff- und Schmiermittelzusammensetzungen
US4839073A (en) * 1987-05-18 1989-06-13 Exxon Chemical Patents Inc. Polyolefinic succinimide polyamine alkyl acetoacetate and substituted acetate adducts as compatibilizer additives in lubricating oil compositions
US5314633A (en) * 1988-06-24 1994-05-24 Exxon Chemical Patents Inc. Low pressure derived mixed phosphorous- and sulfur- containing reaction products useful in power transmitting compositions and process for preparing same
US4857214A (en) * 1988-09-16 1989-08-15 Ethylk Petroleum Additives, Inc. Oil-soluble phosphorus antiwear additives for lubricants
US5441656A (en) * 1994-02-10 1995-08-15 Ethyl Petroleum Additives, Inc. Automatic transmission fluids and additives therefor
US5750476A (en) * 1995-10-18 1998-05-12 Exxon Chemical Patents Inc. Power transmitting fluids with improved anti-shudder durability
CA2227305C (en) * 1995-10-18 2003-06-17 Exxon Chemical Patents, Inc. Lubricating oils of improved friction durability
US5916852A (en) * 1997-09-02 1999-06-29 Exxon Chemical Patents Inc. Power transmission fluids with improved friction break-in
CN1222593C (zh) * 1998-08-20 2005-10-12 国际壳牌研究有限公司 可用于液压液中的润滑油组合物
JP4123601B2 (ja) * 1998-10-22 2008-07-23 新日本石油株式会社 潤滑油組成物
US6225266B1 (en) * 1999-05-28 2001-05-01 Infineum Usa L.P. Zinc-free continuously variable transmission fluid
JP4015355B2 (ja) * 2000-09-29 2007-11-28 新日本石油株式会社 潤滑油組成物
JP2003138285A (ja) * 2001-11-02 2003-05-14 Nippon Oil Corp 自動車用変速機油組成物
JP2005068370A (ja) 2003-08-27 2005-03-17 Chevron Texaco Japan Ltd 潤滑油組成物および潤滑油添加剤
US7361629B2 (en) * 2004-03-10 2008-04-22 Afton Chemical Corporation Additives for lubricants and fuels
US20060079412A1 (en) * 2004-10-08 2006-04-13 Afton Chemical Corporation Power transmission fluids with enhanced antishudder durability and handling characteristics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR101545743B1 (ko) 2015-08-19
CN101343591B (zh) 2013-03-27
KR20090004532A (ko) 2009-01-12
CA2635151C (en) 2015-08-11
CA2635151A1 (en) 2008-12-29
EP2028256A3 (de) 2012-06-20
JP5541850B2 (ja) 2014-07-09
JP2009013408A (ja) 2009-01-22
CN101343591A (zh) 2009-01-14
US20090005277A1 (en) 2009-01-01
SG182148A1 (en) 2012-07-30
SG148979A1 (en) 2009-01-29
EP2028256A2 (de) 2009-02-25

Similar Documents

Publication Publication Date Title
EP2028256B1 (de) Schmieröle mit verbesserter Reibungsstabilität
EP0856042B1 (de) Automatische getriebe mit getriebeflussigkeit mit verbesserter reibungdauerhaftigkeit
EP1344814B1 (de) Schmieren eine CVT Übertragung mit einer Kraftübertragungsflüssigkeit
EP1015531B1 (de) Kraftübertragungsflüssigkeiten mit verbessertem reibungs-anlaufverhalten
EP0988357B1 (de) Kraftübertragunsflüssigkeiten mit verbesserten viskometrischen und schwingungsdämpfenden eigenschaften
EP0858497A1 (de) Flüssigkeiten für automatisches getriebe mit einer verbesserten übertragungsleistung
EP2028257B1 (de) Verwendung einer borhaltigen Additivzusammensetzung in Schmierölen zur Verbesserung der Reibungsstabilität
EP0796310B1 (de) Synergistische antioxydans-systemen
EP3118285B1 (de) Verfahren zur verbesserung des fahrzeuggetriebebetriebs durch verwendung von spezifischen schmiermittelzusammensetzungen
KR20040084862A (ko) 2 식 기어 윤활 제형
EP1017768B2 (de) Verfahren zur verbesserung der schwingungsdämpfung von kraftübertragungsflüssigkeiten
US20040224858A1 (en) Low sulfur, low ash, and low phosphorus lubricant additive package using overbased calcium phenate
US5308522A (en) Stress activated high load additives for lubricant compositions
AU2008202852A1 (en) Lubricating oils having improved friction stability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080529

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C10N 30/06 20060101ALN20120514BHEP

Ipc: C10N 40/04 20060101ALN20120514BHEP

Ipc: C10M 169/04 20060101AFI20120514BHEP

Ipc: C10M 141/10 20060101ALI20120514BHEP

17Q First examination report despatched

Effective date: 20120709

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10N 30/06 20060101ALN20190410BHEP

Ipc: C10M 141/10 20060101ALI20190410BHEP

Ipc: C10M 169/04 20060101AFI20190410BHEP

Ipc: C10N 40/04 20060101ALN20190410BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10M 169/04 20060101AFI20190502BHEP

Ipc: C10N 40/04 20060101ALN20190502BHEP

Ipc: C10N 30/06 20060101ALN20190502BHEP

Ipc: C10M 141/10 20060101ALI20190502BHEP

INTG Intention to grant announced

Effective date: 20190517

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190517

INTG Intention to grant announced

Effective date: 20190517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1172401

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008061020

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1172401

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008061020

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230412

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230412

Year of fee payment: 16