EP2024634A1 - Method for controlling a glow plug in a diesel engine - Google Patents

Method for controlling a glow plug in a diesel engine

Info

Publication number
EP2024634A1
EP2024634A1 EP07764556A EP07764556A EP2024634A1 EP 2024634 A1 EP2024634 A1 EP 2024634A1 EP 07764556 A EP07764556 A EP 07764556A EP 07764556 A EP07764556 A EP 07764556A EP 2024634 A1 EP2024634 A1 EP 2024634A1
Authority
EP
European Patent Office
Prior art keywords
glow plug
gradient
temperature
limit
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07764556A
Other languages
German (de)
French (fr)
Other versions
EP2024634B1 (en
Inventor
Markus Kernwein
Olaf Toedter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Ludwigsburg GmbH
Original Assignee
Beru AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beru AG filed Critical Beru AG
Publication of EP2024634A1 publication Critical patent/EP2024634A1/en
Application granted granted Critical
Publication of EP2024634B1 publication Critical patent/EP2024634B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/025Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/023Individual control of the glow plugs

Definitions

  • the invention relates to a method for controlling a glow plug in a diesel engine.
  • FIG. 1 shows the block diagram of a glow plug control unit 1 for performing a method which from the article "The electronically controlled glow system ISS for diesel engines", published in DE-Z MTZ Motortechnische Zeitschrift 61, (2000) 10, pp. 668-675
  • This control device comprises a microprocessor 2 with integrated digital-to-analog converter, a number of MOSFET power semiconductors 3 for switching on and off an equal number of glow plugs 4, an electrical interface 5 for connection to a motor control unit 6 and an internal power supply 7 for the microprocessor 2 and for the interface 5.
  • the internal power supply 7 has via the "terminal 15" of a vehicle connection to a vehicle battery.
  • the microprocessor 2 controls the power semiconductors 3, reads their status information and communicates via the electrical interface 5 with the engine control unit 6.
  • the interface 5 makes an adjustment of the signals required for communication between the engine control unit 6 and the microprocessor 2.
  • the power supply 7 supplies a stable voltage for the microprocessor 2 and for the interface 5.
  • the control unit 1 supplies the glow plugs 4 with a heating voltage, the z. B. 11 volts to as soon as possible, the ignition temperature - it is about 860 0 C - to exceed and reach the steady temperature, which should accept the glow plug after the ignition of the engine and maintain until the engine has reached its normal operating temperature.
  • the microprocessor 2 controls the power semiconductors 3 by a method of pulse width modulation, with the result that the voltage from the electrical system, which is supplied to the power semiconductors 3 via the "terminal 30" of the vehicle is modulated so that the desired voltage is applied to the glow plugs on a time average.
  • the ignition temperature and the steady-state temperature should be reached as quickly as possible.
  • a temperature of 1000 0 C, starting from a cold engine (eg 0 0 C) is reached after about 2s.
  • Such a rapid increase in temperature can not end abruptly. Therefore, it comes to an overshoot, ie, the temperature rises despite lowering the effective voltage of z. B. 11 volts to 6 volts on the steady temperature and reaches a maximum, which is typically a few tens of degrees to about 200 0 C above the target steady-state temperature, and then drop to the steady-state temperature.
  • the time of heating a glow plug from the cold starting point to exceeding the steady-state temperature is also referred to as preheating time or preheating phase.
  • the glow plug in the preheating phase with a predetermined energy in the form of electrical energy.
  • the energy and the time it is supplied will determine how quickly the glow plug glow tip temperature will increase and, together with the glow plug output temperature, also affect how high the glow peak temperature of the glow plug Glow plug fails.
  • a danger point is the achievement of a too high temperature, in particular as a consequence of a too high overshoot in the temperature course.
  • Another danger point arises from the unavoidable thermal inertia of the glow plug and from the fact that glow plugs are composed of materials with different thermal inertia, namely materials with different heat capacity and different thermal conductivity. Therefore, temperature differences occur in the glow plug, in particular in boundary regions between different materials, which generate mechanical stresses which are greater, the greater the temperature differences, and the temperature differences are greater, the faster the temperature changes. The mechanical stresses that occur in each preheat phase can damage the glow plug and / or shorten its life.
  • DE 102 47 042 B3 proposes to model the thermal behavior of the glow plug when it is heated by a physical model, for. Example, by a capacitor which is designed so that it stores a supplied electrical energy with similar dynamics as the glow plug, which converts the energy supplied to it during heating electrical energy into heat and stores.
  • the physical model of the glow plug is according to the teaching of DE 102
  • 47 042 B3 realized in the control unit for the glow plug and parallel to the heating of the glow plug supplied with a small current. If it is a capacitor, then this is designed so that its state of charge is proportional to the temperature of the glow plug. In the controller, instead of the temperature of the glow plug, the state of charge of the capacitor is monitored and, assuming that its state of charge corresponds to the temperature of the glow plug, the glow plug is controlled according to the state of charge.
  • the disadvantage here is that the result of this method can not be better than the physical model.
  • the temperature development of the glow plug depends on many factors: fluctuations in the supply voltage, the fluctuations in the glow plug resistance, the installation conditions of the glow plug in the engine, the engine temperature, the operating condition of the engine, in particular the engine speed, the injection quantity, from the engine load and finally the aging condition of the glow plug.
  • the cooling conditions prevailing in the engine can not or only with difficulty be considered in such a physical model.
  • 48 391 B3 therefore proposes that the cooling conditions by a mathematical Model replicate. This should in particular make it possible to make a statement about the temperature development of a glow plug when the engine has been switched off and is to be restarted. If, in such a case, the glow plug is still warm, it must not be charged with the same energy as in the case of a cold start, because otherwise the glow plug could get too hot and be damaged.
  • a glow plug in a diesel engine in particular in the preheating phase, is controlled by measuring the time gradient of an electrical quantity occurring at the glow plug, comparing it with a limit value and changing the effective electrical supply voltage of the glow plug when passing the limit value.
  • the invention avoids the difficulties encountered by those skilled in the art in attempting to control the temperature of a glow plug directly or by incorporating a physical or mathematical model of the glow plug by dispensing with the temperature of the glow plug or the temperature of the glow plug to model the replicated size of a physical model. Rather, according to the invention, the time gradient of an electrical quantity which occurs at the glow plug and is temperature-dependent is determined and compared with one or more limit values. • The gradient of a temperature-dependent electrical measurand can be determined without knowing the absolute magnitude of the temperature. This considerably simplifies the measuring task.
  • the method according to the invention is largely independent of production-related variations in the resistance of the glow plugs. •
  • the steepness of the temperature rise of the glow plug of a glow plug which becomes a risk to the glow plug if it is too large and prevents the diesel engine from starting quickly if it is too small, is directly reflected in the gradient of the temperature-dependent electrical quantity , which is measured on the glow plug. As a result, can be read directly from the gradient, how fast the glow plug is heated and how much the glow plug is charged by the heating process.
  • the load can be reduced immediately by reducing the effective voltage supplied to the glow plug.
  • the effective electrical voltage supplied to the glow plug may still increase in the current preheat phase, thereby achieving the ignition temperature and in further consequence, the achievement of the steady-state temperature of the glow plug can be accelerated without damage to the glow plug, because the monitoring of the gradient with respect to an upper limit value prevents excessive loading of the glow plug.
  • the method according to the invention is suitable for optimizing the heating up of the glow plugs by operating them in the vicinity of a predetermined load limit.
  • the course of the gradient of a temperature-dependent electrical variable makes it possible to estimate which end temperature would be reached if no control action were taken in the course of the heating process.
  • Such information can z. B. can be obtained by comparing the temporal evolution of the gradient with a reference curve showing the temporal evolution of the gradient, which was recorded with a glow plug of the same type under realistic installation conditions.
  • one can compare the course of the gradient with the course of the gradient of a heated under ideal conditions glow plug and reduce the effective supply voltage when the observed gradient can expect a too high end temperature, or temporarily increase the supply voltage when the observed gradient contrast to a low end temperature is expected.
  • the heating process of the glow plug can not only be dampened or delayed, but can also be completely broken off in order to avoid greater damage. In this case, the driver may be warned that something is wrong with a glow plug and may also be told which glow plug it is.
  • the invention obtains useful information about the course of the heating process of a glow plug from the temporal gradient of a temperature-dependent electrical measured variable.
  • the electrical resistance of the glow plug can be observed and its gradient can be determined.
  • the resistance can be determined by measuring the available vehicle electrical system voltage in conjunction with an independent current measurement.
  • the voltage drop occurring at the supply line to the glow plug is preferably taken into account in order to obtain a measurement result which essentially depends only on the resistance of the heating conductor or the heating conductor provided in the glow plug, but not on the supply line resistance. How to consider the lead resistance in the measurement is disclosed in DE 10 2006 010 082 A1, to which express reference is therefore made.
  • Modern Stahlglühkerzen with short heating time have a concentrated on the glow plug tip combination of heating coil and sensor coil, wherein the resistance of the heating coil has a smaller temperature coefficient than the resistance of the control coil, which z. B. may have a PTC characteristic.
  • the gradient of electrical resistance is greatest with a cold glow plug. As the temperature rises, it drops and goes to zero, when the temperature of the glow plug goes through its maximum, it becomes negative when the glow plug temperature drops again and approaches zero, as the temperature of the glow plug approaches steady-state temperature.
  • the limitation of the maximum of the gradient of the resistance is the easiest way to limit the slope of the temperature rise. The easiest way to do this is to reduce the effective supply voltage of the glow plug when the gradient exceeds a predetermined limit.
  • the effective supply voltage for the glow plug may be increased accordingly to accelerate the heating.
  • Another possibility to carry out the method according to the invention is to observe the current consumption of the glow plug, because it is temperature-dependent on the temperature dependence of the electrical resistance of the glow plug. The power consumption is greatest with a cold glow plug, then drops until the glow plug is at its maximum temperature and then rises again slightly until the glow plug approaches its steady-state temperature. As a result, the gradient of the current is initially negative, rising during the preheat phase of the glow plug, going through zero when the resistance of the glow plug is at its maximum, and then approaching zero from positive values as well the temperature of the glow plug approaches its steady-state steady-state temperature. In order to be independent of the sign of the gradient, one can use the absolute value of the gradient for comparison with limit values. The limit values can be formed from empirical values.
  • the course of the gradient of the electrical resistance as well as the course of the gradient of the electrical current can be compared with a reference curve. If the observed time course of the gradient is steeper than the reference curve, this can be counteracted by a reduction in the effective supply voltage of the glow plug, whereas in cases where the observed course of the gradient of the current intensity is shallower than the reference curve, the effective supply voltage for the glow plug can be temporarily increased to accelerate the heating of the glow plug.
  • a rough hedge of the glow plugs can be achieved by defining a single limit for the gradient of the electrical resistance or for the gradient of the electrical current consumption in order to limit the steepness of the temperature increase upwards absolutely.
  • the limitation is effective in the lower temperature range of the preheating phase.
  • the height of the achievable temperature can be controlled independently of a controlling intervention in the effective supply voltage to avoid exceeding limit values by supplying a predetermined energy to the glow plug in the preheating phase. This mainly determines the achievable temperature ture, wherein the period of time over which the energy is supplied, somewhat extended, if an initially too steep rise in temperature should be braked by the inventive method, whereas the preheat phase shortens when due to falling below a lower limit of the gradient, the effective supply voltage should be raised.
  • the limit value is changed over the course of the preheating phase, so that the steepness of the temperature increase can be controlled not only at the beginning of the preheating phase but during the entire preheating phase.
  • the steps may be determined on a timebase basis, but may also be related to the change in electrical resistance or to the change in electrical current consumption or to the progress of the energy supply, the latter possibility being particularly preferred because it divides the preheat phase into intervals same energy supply automatically means that the adaptation of the limit values takes place the more quickly, the steeper the temperature increase is.
  • the gradients are preferably measured periodically recurring. The shorter the period, the more perfect the control becomes. Conveniently, the gradient is determined at least 20 times per second, preferably at least 30 times per second.
  • the frequency of the pulse width modulation, with which the effective supply voltage is adjusted is preferably an integer multiple of the frequency with which the gradient determination takes place; Particularly preferred is a method in which the two frequencies coincide. This allows synchronization of the timing of the gradient determination with the current supply in the pulse width modulation at the power supply.
  • An advantage of the invention is that it is even possible to regulate the gradient of the electrical resistance or the electrical current consumption to a desired value, which can be derived from the ideal temperature profile of an ideal glow plug. In this way, you can approach the ideal as best as possible with the real temperature curve of the real glow plug.
  • the ideal temperature profile of an ideal glow plug can be stored in the control unit for the glow plug, eg. In the memory of a microprocessor or microcontroller which controls the power supply of the glow plug and the determination of the measured values for the gradient determination, which compares the gradients with the limit values and, depending on the result of the comparison, adapts the effective voltage with which the glow plug is supplied.
  • the limit values can be stored in the memory of the microprocessor or microcontroller, in particular as a series of discrete limit values distributed over the course of the preheat phase, from which the microprocessor or microcontroller selects each one which belongs at the time within the respective preheat phase, for which the gradient was determined.
  • the attached Figure 2 shows an example of a typical profile of the temperature of a glow plug and the associated gradients of the gradient of Glühkerzenwider- estate and the current flowing through the glow plug and examples of the choice of limits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

A method for controlling a glow plug in a diesel engine, in particular in the preheating phase, is described. According to the invention, it is provided that the time gradient of an electrical variable which varies according to the temperature of the glow plug is measured and compared with a threshold value, and when said time gradient exceeds or drops below the threshold value, the electric supply voltage of the glow plug is changed.

Description

Verfahren zum Steuern einer Glühkerze in einem Dieselmotor Method for controlling a glow plug in a diesel engine
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zum Steuern einer Glühkerze in einem Dieselmotor.The invention relates to a method for controlling a glow plug in a diesel engine.
Figur 1 zeigt das Blockschaltbild eines Glühkerzen-Steuergerätes 1 zum Durchführen eines Verfahrens, welches aus dem Aufsatz „Das elektronisch gesteuerte Glühsystem ISS für Dieselmotoren", veröffentlicht in der DE-Z MTZ Motortechnische Zeitschrift 61 , (2000) 10, S. 668-675, bekannt ist. Dieses Steuergerät enthält einen Mikroprozessor 2 mit integriertem Digital-Analog-Wandler, eine Anzahl MOSFET- Leistungshalbleiter 3 zum Ein- und Ausschalten einer gleichen Anzahl von Glühkerzen 4, eine elektrische Schnittstelle 5 zur Verbindung mit einem Motorsteuergerät 6 und eine interne Spannungsversorgung 7 für den Mikroprozessor 2 und für die Schnittstelle 5. Die interne Spannungsversorgung 7 hat über die "Klemme 15" eines Fahrzeuges Verbindung mit einer Fahrzeugbatterie. Der Mikroprozessor 2 steuert die Leistungshalbleiter 3 an, liest deren Statusinformationen und kommuniziert über die elektrische Schnittstelle 5 mit dem Motorsteuergerät 6. Die Schnittstelle 5 nimmt eine Anpassung der Signale vor, die zur Kommunikation zwischen dem Motorsteuergerät 6 und dem Mikroprozessor 2 benötigt werden. Die Spannungsversorgung 7 liefert eine stabile Spannung für den Mikroprozessor 2 und für die Schnittstelle 5.Figure 1 shows the block diagram of a glow plug control unit 1 for performing a method which from the article "The electronically controlled glow system ISS for diesel engines", published in DE-Z MTZ Motortechnische Zeitschrift 61, (2000) 10, pp. 668-675 This control device comprises a microprocessor 2 with integrated digital-to-analog converter, a number of MOSFET power semiconductors 3 for switching on and off an equal number of glow plugs 4, an electrical interface 5 for connection to a motor control unit 6 and an internal power supply 7 for the microprocessor 2 and for the interface 5. The internal power supply 7 has via the "terminal 15" of a vehicle connection to a vehicle battery. The microprocessor 2 controls the power semiconductors 3, reads their status information and communicates via the electrical interface 5 with the engine control unit 6. The interface 5 makes an adjustment of the signals required for communication between the engine control unit 6 and the microprocessor 2. The power supply 7 supplies a stable voltage for the microprocessor 2 and for the interface 5.
Wird der Dieselmotor kalt gestartet, dann versorgt das Steuergerät 1 die Glühkerzen 4 mit einer Aufheizspannung, die im zeitlichen Mittel z. B. 11 Volt beträgt, um möglichst rasch die Zündtemperatur - sie beträgt ca. 8600C - zu überschreiten und die Beharrungstemperatur zu erreichen, welche die Glühkerze nach dem Zünden des Motors annehmen und beibehalten soll, bis der Motor seine normale Betriebstemperatur erreicht hat.If the diesel engine started cold, then the control unit 1 supplies the glow plugs 4 with a heating voltage, the z. B. 11 volts to as soon as possible, the ignition temperature - it is about 860 0 C - to exceed and reach the steady temperature, which should accept the glow plug after the ignition of the engine and maintain until the engine has reached its normal operating temperature.
Für die Beharrungstemperatur ist ca. 1000° C ein typischer Wert. Um die Beharrungstemperatur beizubehalten, wird eine niedrigere Spannung als für das Aufheizen der Glühkerze benötigt; sie beträgt bei modernen Glühkerzen im zeitlichen Mittel typisch lediglich 5 Volt bis 6 Volt.For the steady temperature is about 1000 ° C is a typical value. In order to maintain the steady-state temperature, a lower voltage is needed than for the heating of the glow plug; It is typically only 5 volts to 6 volts for modern glow plugs in the time average.
Der Mikroprozessor 2 steuert die Leistungshalbleiter 3 durch ein Verfahren der Pulsweiten-Modulation, was zur Folge hat, dass die Spannung aus dem Bordnetz, welche den Leistungshalbleitern 3 über die "Klemme 30" des Fahrzeugs zugeführt wird, so moduliert wird, dass die gewünschte Spannung an den Glühkerzen im zeitlichen Mit- tel anliegt.The microprocessor 2 controls the power semiconductors 3 by a method of pulse width modulation, with the result that the voltage from the electrical system, which is supplied to the power semiconductors 3 via the "terminal 30" of the vehicle is modulated so that the desired voltage is applied to the glow plugs on a time average.
Die Zündtemperatur und die Beharrungstemperatur sollen so rasch wie möglich erreicht werden. Bei modernen Glühkerzen wird eine Temperatur von 10000C, ausgehend von einem kalten Motor (z. B. 00C) schon nach ca. 2s erreicht. Ein so rascher Temperaturanstieg kann nicht abrupt enden. Deshalb kommt es zu einem Überschwingen, d. h., die Temperatur steigt trotz Absenkens der effektiven Spannung von z. B. 11 Volt auf 6 Volt über die Beharrungstemperatur an und erreicht ein Maximum, welches typisch einige zehn Grad bis ca. 2000C über der angestrebten Beharrungstemperatur liegt, um dann auf die Beharrungstemperatur abzufallen. Die Zeit des Aufheizens einer Glühkerze vom kalten Ausgangspunkt bis zum Überschreiten der Beharrungstemperatur wird auch als Vorheizzeit oder Vorheizphase bezeichnet. Damit sie erreicht, aber nicht soweit überschritten wird, dass die Glüh- kerze Schaden nimmt oder ihre Lebensdauer beeinträchtigt wird, ist es bekannt, der Glühkerze in der Vorheizphase eine vorbestimmte Energie in Form von elektrischer Energie zuzuführen. Bei einem gegebenen Glühkerzentyp sind die Energie und die Zeitspanne, in welcher sie zugeführt wird, mitbestimmend dafür, wie rasch die Temperatur der Glühspitze der Glühkerze ansteigt, und sie beeinflussen zusammen mit der Ausgangstemperatur der Glühkerze auch, wie hoch der Überschwinger der Temperatur der Glühspitze der Glühkerze ausfällt.The ignition temperature and the steady-state temperature should be reached as quickly as possible. In modern glow plugs, a temperature of 1000 0 C, starting from a cold engine (eg 0 0 C) is reached after about 2s. Such a rapid increase in temperature can not end abruptly. Therefore, it comes to an overshoot, ie, the temperature rises despite lowering the effective voltage of z. B. 11 volts to 6 volts on the steady temperature and reaches a maximum, which is typically a few tens of degrees to about 200 0 C above the target steady-state temperature, and then drop to the steady-state temperature. The time of heating a glow plug from the cold starting point to exceeding the steady-state temperature is also referred to as preheating time or preheating phase. In order for it to be achieved, but not exceeded, to the extent that the glow plug is damaged or its service life is impaired, it is known to supply the glow plug in the preheating phase with a predetermined energy in the form of electrical energy. For a given type of glow plug, the energy and the time it is supplied will determine how quickly the glow plug glow tip temperature will increase and, together with the glow plug output temperature, also affect how high the glow peak temperature of the glow plug Glow plug fails.
Ein rascher Anstieg der Glühkerzentemperatur ist zwar wünschenswert, um einen Dieselmotor möglichst verzögerungsfrei starten zu können, bringt für die Glühkerze jedoch die Gefahr mit, dass sie überlastet wird und Schaden nimmt oder an Lebensdauer einbüßt. Ein Gefahrenpunkt ist das Erreichen einer zu hohen Temperatur, insbesondere als Folge eines zu hohen Überschwingers im Temperaturverlauf. Ein anderer Gefahrenpunkt ergibt sich aus der unvermeidlichen thermischen Trägheit der Glühkerze und aus der Tatsache, dass Glühkerzen aus Werkstoffen mit unterschied- licher thermischer Trägheit zusammengesetzt sind, nämlich aus Werkstoffen mit unterschiedlicher Wärmekapazität und unterschiedlicher Wärmeleitfähigkeit. Deshalb treten in der Glühkerze insbesondere in Grenzbereichen zwischen unterschiedlichen Werkstoffen Temperaturunterschiede auf, die mechanische Spannungen erzeugen, die umso größer sind, je größer die Temperaturunterschiede sind, und die Tempera- turunterschiede sind umso größer, je schneller sich die Temperatur ändert. Die mechanischen Spannungen, die in jeder Vorheizphase auftreten, können die Glühkerze schädigen und/oder ihre Lebensdauer verkürzen.Although a rapid increase in the glow plug temperature is desirable in order to be able to start a diesel engine as quickly as possible, the danger of the glow plug being that it is overloaded and takes damage or loses its service life is high. A danger point is the achievement of a too high temperature, in particular as a consequence of a too high overshoot in the temperature course. Another danger point arises from the unavoidable thermal inertia of the glow plug and from the fact that glow plugs are composed of materials with different thermal inertia, namely materials with different heat capacity and different thermal conductivity. Therefore, temperature differences occur in the glow plug, in particular in boundary regions between different materials, which generate mechanical stresses which are greater, the greater the temperature differences, and the temperature differences are greater, the faster the temperature changes. The mechanical stresses that occur in each preheat phase can damage the glow plug and / or shorten its life.
Deshalb besteht der Wunsch, die Temperatur der Glühkerze zu regeln. Bisher gelingt das allenfalls in der sogenannten Nachheizphase, wenn die Glühkerze nach dem Starten des Motors ihre Beharrungstemperatur annehmen und beibehalten soll. In der Nachheizphase droht jedoch keine Überlastung der Glühkerze, wie sie in der Vorheizphase droht. Um die Temperatur der Glühkerze in der Vorheizphase regeln zu können, müsste man zunächst die Temperatur messen. Dafür kommt praktisch nur eine Messung über den temperaturabhängigen elektrischen Widerstand der Glühkerze in Frage. Der Glühkerzenwiderstand unterliegt jedoch fertigungsbedingt deutlichen statistischen Streuungen, die die Aussagekraft einer Widerstandsmessung für die Glühkerzentemperatur einschränken. Es kommt hinzu, dass die Kürze der Aufheizphase und die Steilheit des Temperaturanstieges die Temperaturmessung und eine daraufhin erfolgende Steuerung der Temperatur zusätzlich erschweren. Die Streuung der Widerstandswerte und die Dynamik des Temperaturanstiegs sind zusammengenommen eine denkbar schlechte Voraussetzung für eine Regelung der Temperatur in der Vorheizphase.Therefore, there is a desire to control the temperature of the glow plug. So far, this succeeds at most in the so-called reheating phase, when the glow plug after starting the engine should assume and maintain their steady-state temperature. However, in the reheating phase, there is no danger of overloading the glow plug, as it threatens in the preheating phase. To be able to control the temperature of the glow plug in the preheat phase, one would first have to measure the temperature. This comes in handy only one measurement on the temperature-dependent electrical resistance of the glow plug in question. However, the glow plug resistance is subject to production-related significant statistical variations, which limit the significance of a resistance measurement for the glow plug temperature. In addition, the shortness of the heating-up phase and the steepness of the temperature increase make it even more difficult to measure the temperature and then control the temperature. The scattering of the resistance values and the dynamics of the temperature rise together are a very poor prerequisite for a regulation of the temperature in the preheating phase.
Angesichts dieser Schwierigkeiten schlägt die DE 102 47 042 B3 vor, das thermische Verhalten der Glühkerze bei ihrer Aufheizung durch ein physikalisches Modell abzubilden, z. B. durch einen Kondensator, welcher so ausgebildet ist, dass er eine ihm zugeführte elektrische Energie mit ähnlicher Dynamik speichert wie die Glühkerze, welche die ihr bei Aufheizen zugeführte elektrische Energie in Wärme wandelt und speichert. Das physikalische Modell der Glühkerze wird nach der Lehre der DE 102In view of these difficulties, DE 102 47 042 B3 proposes to model the thermal behavior of the glow plug when it is heated by a physical model, for. Example, by a capacitor which is designed so that it stores a supplied electrical energy with similar dynamics as the glow plug, which converts the energy supplied to it during heating electrical energy into heat and stores. The physical model of the glow plug is according to the teaching of DE 102
47 042 B3 im Steuergerät für die Glühkerze verwirklicht und parallel zur Beheizung der Glühkerze mit einem kleinen Strom versorgt. Handelt es sich um einen Kondensator, dann ist dieser so ausgelegt, dass sein Ladezustand proportional zur Tempe- ratur der Glühkerze ist. Im Steuergerät wird anstelle der Temperatur der Glühkerze der Ladezustand des Kondensators überwacht und unter der Annahme, dass sein Ladezustand der Temperatur der Glühkerze entspricht, die Glühkerze entsprechend dem Ladezustand gesteuert. Nachteilig dabei ist, dass das Ergebnis dieses Verfahrens nicht besser sein kann als das physikalische Modell. Die Temperaturentwick- lung der Glühkerze hängt jedoch von vielen Faktoren ab: Von Schwankungen der Versorgungsspannung, von statistischen Schwankungen des Glühkerzenwiderstandes, von den Einbaubedingungen der Glühkerze im Motor, von der Motortemperatur, vom Betriebszustand des Motors, insbesondere von der Motordrehzahl, von der Einspritzmenge, von der Motorlast und schließlich auch vom Alterungszustand der Glühkerze.47 042 B3 realized in the control unit for the glow plug and parallel to the heating of the glow plug supplied with a small current. If it is a capacitor, then this is designed so that its state of charge is proportional to the temperature of the glow plug. In the controller, instead of the temperature of the glow plug, the state of charge of the capacitor is monitored and, assuming that its state of charge corresponds to the temperature of the glow plug, the glow plug is controlled according to the state of charge. The disadvantage here is that the result of this method can not be better than the physical model. The temperature development of the glow plug, however, depends on many factors: fluctuations in the supply voltage, the fluctuations in the glow plug resistance, the installation conditions of the glow plug in the engine, the engine temperature, the operating condition of the engine, in particular the engine speed, the injection quantity, from the engine load and finally the aging condition of the glow plug.
Insbesondere die im Motor herrschenden Abkühlbedingungen lassen sich in einem solchen physikalischen Modell nicht oder nur schwierig berücksichtigen. Die DE 103In particular, the cooling conditions prevailing in the engine can not or only with difficulty be considered in such a physical model. The DE 103
48 391 B3 schlägt deshalb vor, die Abkühlbedingungen durch ein mathematisches Modell nachzubilden. Dadurch soll insbesondere eine Aussage über die Temperaturentwicklung einer Glühkerze ermöglicht werden, wenn der Motor abgestellt wurde und neu gestartet werden soll. Ist in einem solchen Fall die Glühkerze nämlich noch warm, darf sie nicht mit derselben Energie wie im Falle eines Kaltstarts beaufschlagt werden, weil die Glühkerze sonst zu heiß werden und Schaden nehmen könnte.48 391 B3 therefore proposes that the cooling conditions by a mathematical Model replicate. This should in particular make it possible to make a statement about the temperature development of a glow plug when the engine has been switched off and is to be restarted. If, in such a case, the glow plug is still warm, it must not be charged with the same energy as in the case of a cold start, because otherwise the glow plug could get too hot and be damaged.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Weg aufzuzeigen, wie Glühkerzen in einem Dieselmotor rasch aufgeheizt werden können, ohne zu riskieren, dass sie durch zu schnelles oder zu hohes Aufheizen Schaden nehmen. Diese Aufgabe wird durch ein Verfahren mit den im Patentanspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.It is an object of the present invention to provide a way to rapidly heat glow plugs in a diesel engine without risking damage from overheating or overheating. This object is achieved by a method having the features specified in claim 1. Advantageous developments of the invention are the subject of the dependent claims.
Erfindungsgemäß wird eine Glühkerze in einem Dieselmotor, insbesondere in der Vorheizphase, gesteuert, indem der zeitliche Gradient einer an der Glühkerze temperaturabhängig auftretenden elektrischen Größe gemessen, mit einem Grenzwert verglichen und beim Passieren des Grenzwertes die effektive elektrische Versorgungsspannung der Glühkerze geändert wird.According to the invention, a glow plug in a diesel engine, in particular in the preheating phase, is controlled by measuring the time gradient of an electrical quantity occurring at the glow plug, comparing it with a limit value and changing the effective electrical supply voltage of the glow plug when passing the limit value.
Diese Vorgehensweise hat wesentliche Vorteile:This procedure has significant advantages:
• Die Erfindung umgeht die Schwierigkeiten, die sich dem Fachmann entgegenstellen, wenn er versucht, die Temperatur einer Glühkerze direkt oder unter Einbeziehung eines physikalischen oder mathematischen Modells der Glühkerze zu regeln, indem sie darauf verzichtet, die Temperatur der Glühkerze oder eine der Temperatur der Glühkerze nachgebildete Größe eines physikalischen Modells zu bestimmen. Vielmehr wird erfindungsgemäß der zeitliche Gradient einer elektrischen Größe, die an der Glühkerze auftritt und temperaturabhängig ist, bestimmt und mit einem oder mehreren Grenzwerten verglichen. • Der Gradient einer temperaturabhängigen elektrischen Messgröße kann bestimmt werden, ohne dass man die absolute Größe der Temperatur kennen müsste. Das vereinfacht die Messaufgabe ganz wesentlich.The invention avoids the difficulties encountered by those skilled in the art in attempting to control the temperature of a glow plug directly or by incorporating a physical or mathematical model of the glow plug by dispensing with the temperature of the glow plug or the temperature of the glow plug to model the replicated size of a physical model. Rather, according to the invention, the time gradient of an electrical quantity which occurs at the glow plug and is temperature-dependent is determined and compared with one or more limit values. • The gradient of a temperature-dependent electrical measurand can be determined without knowing the absolute magnitude of the temperature. This considerably simplifies the measuring task.
• Das erfindungsgemäße Verfahren ist weitgehend unabhängig von fertigungsbedingten Streuungen des Widerstandes der Glühkerzen. • Die Steilheit des Temperaturanstiegs der Glühspitze einer Glühkerze, die für die Glühkerze zu einem Risiko wird, wenn sie zu groß ist und die einen schnellen Start des Dieselmotors verhindert, wenn sie zu klein ist, bildet sich unmittelbar in dem Gradienten der temperaturabhängigen elektrischen Größe ab, welche an der Glüh- kerze gemessen wird. Infolge dessen kann aus dem Gradienten unmittelbar abgelesen werden, wie schnell die Glühkerze aufgeheizt wird und wie stark die Glühkerze durch den Aufheizvorgang belastet wird.The method according to the invention is largely independent of production-related variations in the resistance of the glow plugs. • The steepness of the temperature rise of the glow plug of a glow plug, which becomes a risk to the glow plug if it is too large and prevents the diesel engine from starting quickly if it is too small, is directly reflected in the gradient of the temperature-dependent electrical quantity , which is measured on the glow plug. As a result, can be read directly from the gradient, how fast the glow plug is heated and how much the glow plug is charged by the heating process.
• Erreicht oder überschreitet der Gradient eine vorgegebene Belastungsgrenze, kann die Belastung sofort verringert werden, indem die effektive elektrische Spannung, mit welcher die Glühkerze versorgt wird, herabgesetzt wird.• If the gradient reaches or exceeds a specified load limit, the load can be reduced immediately by reducing the effective voltage supplied to the glow plug.
• Zeigt der Gradient hingegen an, dass der Temperaturanstieg, den er widerspiegelt, ohne Schaden für die Glühkerze größer sein könnte, dann kann die effektive elektrische Spannung, mit welcher die Glühkerze versorgt wird, noch in der laufenden Vorheizphase erhöht und dadurch das Erreichen der Zündtemperatur und in weite- rer Folge das Erreichen der Beharrungstemperatur der Glühkerze ohne Schaden für die Glühkerze beschleunigt werden, denn die Überwachung des Gradienten gegenüber einem oberen Grenzwert verhindert eine zu starke Belastung der Glühkerze.On the other hand, if the gradient indicates that the temperature rise it reflects could be greater without damage to the glow plug, then the effective electrical voltage supplied to the glow plug may still increase in the current preheat phase, thereby achieving the ignition temperature and in further consequence, the achievement of the steady-state temperature of the glow plug can be accelerated without damage to the glow plug, because the monitoring of the gradient with respect to an upper limit value prevents excessive loading of the glow plug.
• Das erfindungsgemäße Verfahren eignet sich zur Optimierung des Aufheizvorgan- ges der Glühkerzen, indem diese in der Nähe einer vorgegebenen Belastungsgrenze betrieben werden.The method according to the invention is suitable for optimizing the heating up of the glow plugs by operating them in the vicinity of a predetermined load limit.
• Der Verlauf des Gradienten einer temperaturabhängigen elektrischen Größe ermöglicht eine Abschätzung, welche Endtemperatur erreicht werden würde, wenn in den Verlauf des Aufheizvorganges nicht steuernd eingegriffen würde. Eine solche Information kann z. B. dadurch gewonnen werden, dass man die zeitliche Entwicklung des Gradienten mit einer Referenzkennlinie vergleicht, die die zeitliche Entwicklung des Gradienten zeigt, welche mit einer Glühkerze gleichen Typs unter wirklichkeitsgetreuen Einbaubedingungen aufgenommen wurde. Insbesondere kann man den Verlauf des Gradienten mit dem Verlauf des Gradienten einer unter idealen Bedingungen aufgeheizten Glühkerze vergleichen und die effektive Versorgungsspannung reduzieren, wenn der beobachtete Gradient eine zu hohe Endtemperatur erwarten lässt, bzw. die Versorgungsspannung zeitweise anheben, wenn der beobachtete Gradient demgegenüber eine zu niedrige Endtemperatur erwarten lässt. • In Extremfällen kann aufgrund einer Gradientenbestimmung der Aufheizvorgang der Glühkerze nicht nur gedämpft oder verzögert, sondern auch vollständig abgebrochen werden, um größeren Schaden zu vermeiden. In diesem Fall kann der Fahrer gewarnt werden, dass mit einer Glühkerze etwas nicht stimmt, und es kann ihm auch mitgeteilt werden, welche Glühkerze es betrifft.• The course of the gradient of a temperature-dependent electrical variable makes it possible to estimate which end temperature would be reached if no control action were taken in the course of the heating process. Such information can z. B. can be obtained by comparing the temporal evolution of the gradient with a reference curve showing the temporal evolution of the gradient, which was recorded with a glow plug of the same type under realistic installation conditions. In particular, one can compare the course of the gradient with the course of the gradient of a heated under ideal conditions glow plug and reduce the effective supply voltage when the observed gradient can expect a too high end temperature, or temporarily increase the supply voltage when the observed gradient contrast to a low end temperature is expected. • In extreme cases, due to a gradient determination, the heating process of the glow plug can not only be dampened or delayed, but can also be completely broken off in order to avoid greater damage. In this case, the driver may be warned that something is wrong with a glow plug and may also be told which glow plug it is.
Die Erfindung gewinnt eine nützliche Information über den Verlauf des Heizvorgangs einer Glühkerze aus dem zeitlichen Gradienten einer temperaturabhängigen elektrischen Messgröße. Als elektrische Größe, welche von der Temperatur abhängt, kann der elektrische Widerstand der Glühkerze beobachtet und sein Gradient bestimmt werden. Der Widerstand kann durch Messen der zur Verfügung stehenden Bordnetzspannung in Verbindung mit einer unabhängigen Strommessung bestimmt werden. Dabei wird vorzugsweise der an der Zuleitung zur Glühkerze auftretende Spannungsabfall berücksichtigt, um ein Messergebnis zu erhalten, welches im wesentli- chen nur vom Widerstand des bzw. der in der Glühkerze vorgesehenen Heizleiter abhängt, nicht aber vom Zuleitungswiderstand. Wie man den Zuleitungswiderstand bei der Messung berücksichtigen kann, ist in der DE 10 2006 010 082 A1 offenbart, auf weiche deswegen ausdrücklich verwiesen wird.The invention obtains useful information about the course of the heating process of a glow plug from the temporal gradient of a temperature-dependent electrical measured variable. As an electrical quantity, which depends on the temperature, the electrical resistance of the glow plug can be observed and its gradient can be determined. The resistance can be determined by measuring the available vehicle electrical system voltage in conjunction with an independent current measurement. In this case, the voltage drop occurring at the supply line to the glow plug is preferably taken into account in order to obtain a measurement result which essentially depends only on the resistance of the heating conductor or the heating conductor provided in the glow plug, but not on the supply line resistance. How to consider the lead resistance in the measurement is disclosed in DE 10 2006 010 082 A1, to which express reference is therefore made.
Moderne Stahlglühkerzen mit kurzer Aufheizzeit haben eine auf die Glühkerzenspitze konzentrierte Kombination aus Heizwendel und Sensorwendel, wobei der Widerstand der Heizwendel einen kleineren Temperaturkoeffizienten hat als der Widerstand der Regelwendel, welcher z. B. eine PTC-Charakteristik haben kann. Der Gradient des elektrischen Widerstandes ist bei kalter Glühkerze am größten. Mit steigender Tem- peratur fällt er ab und durchläuft den Wert Null, wenn die Temperatur der Glühkerze ihr Maximum durchläuft, wird negativ wenn die Glühkerzentemperatur wieder abfällt und nähert sich dem Wert Null an, so wie sich die Temperatur der Glühkerze der Beharrungstemperatur annähert. Die Begrenzung des Maximums des Gradienten des Widerstandes ist die einfachste Möglichkeit, die Steilheit des Temperaturanstiegs zu begrenzen. Das geschieht am einfachsten dadurch, dass die effektive Versorgungsspannung der Glühkerze herabgesetzt wird, wenn der Gradient einen vorgegebenen Grenzwert überschreitet. Umgekehrt kann in Fällen, in denen der beobachtete Gradient unterhalb eines Grenzwertes liegt, die effektive Versorgungsspannung für die Glühkerze entsprechend angehoben werden, um das Aufheizen zu beschleunigen. Eine andere Möglichkeit, das erfindungsgemäße Verfahren durchzuführen, besteht darin, die Stromaufnahme der Glühkerze zu beobachten, denn auch sie ist über die Temperaturabhängigkeit des elektrischen Widerstandes der Glühkerze temperatur- abhängig. Die Stromaufnahme ist bei kalter Glühkerze am größten, fällt dann ab, bis die Glühkerze ihr Temperaturmaximum durchläuft und steigt dann wieder leicht an, bis sich die Glühkerze ihrer Beharrungstemperatur annähert. Infolgedessen ist der Gradient des Stroms zu Beginn negativ, steigt während der Vorheizphase der Glühkerze an, durchläuft den Wert Null, wenn der Widerstand der Glühkerze sein Maxi- mum durchläuft, und nähert sich dann von positiven Werten her dem Wert Null an, so wie sich die Temperatur der Glühkerze ihrer gleich bleibenden Beharrungstemperatur annähert. Um vom Vorzeichen des Gradienten unabhängig zu sein, kann man den Absolutwert des Gradienten zum Vergleich mit Grenzwerten heranziehen. Die Grenzwerte lassen sich aus Erfahrungswerten bilden.Modern Stahlglühkerzen with short heating time have a concentrated on the glow plug tip combination of heating coil and sensor coil, wherein the resistance of the heating coil has a smaller temperature coefficient than the resistance of the control coil, which z. B. may have a PTC characteristic. The gradient of electrical resistance is greatest with a cold glow plug. As the temperature rises, it drops and goes to zero, when the temperature of the glow plug goes through its maximum, it becomes negative when the glow plug temperature drops again and approaches zero, as the temperature of the glow plug approaches steady-state temperature. The limitation of the maximum of the gradient of the resistance is the easiest way to limit the slope of the temperature rise. The easiest way to do this is to reduce the effective supply voltage of the glow plug when the gradient exceeds a predetermined limit. Conversely, in cases where the observed gradient is below a threshold, the effective supply voltage for the glow plug may be increased accordingly to accelerate the heating. Another possibility to carry out the method according to the invention is to observe the current consumption of the glow plug, because it is temperature-dependent on the temperature dependence of the electrical resistance of the glow plug. The power consumption is greatest with a cold glow plug, then drops until the glow plug is at its maximum temperature and then rises again slightly until the glow plug approaches its steady-state temperature. As a result, the gradient of the current is initially negative, rising during the preheat phase of the glow plug, going through zero when the resistance of the glow plug is at its maximum, and then approaching zero from positive values as well the temperature of the glow plug approaches its steady-state steady-state temperature. In order to be independent of the sign of the gradient, one can use the absolute value of the gradient for comparison with limit values. The limit values can be formed from empirical values.
Der Verlauf des Gradienten des elektrischen Widerstandes kann ebenso wie der Verlauf des Gradienten des elektrischen Stroms mit einem Referenzverlauf verglichen werden. Wenn der beobachtete zeitliche Verlauf des Gradienten steiler ist als der Referenzverlauf, kann dem durch eine Verringerung der effektiven Versorgungs- Spannung der Glühkerze entgegengewirkt werden, wohingegen in Fällen, in denen der beobachtete Verlauf des Gradienten der Stromstärke flacher ist als der Referenzverlauf, die effektive Versorgungsspannung für die Glühkerze zeitweise erhöht werden kann, um die Erwärmung der Glühkerze zu beschleunigen.The course of the gradient of the electrical resistance as well as the course of the gradient of the electrical current can be compared with a reference curve. If the observed time course of the gradient is steeper than the reference curve, this can be counteracted by a reduction in the effective supply voltage of the glow plug, whereas in cases where the observed course of the gradient of the current intensity is shallower than the reference curve, the effective supply voltage for the glow plug can be temporarily increased to accelerate the heating of the glow plug.
Eine grobe Absicherung der Glühkerzen kann dadurch erreicht werden, dass man für den Gradienten des elektrischen Widerstandes bzw. für den Gradienten der elektrischen Stromaufnahme einen einzigen Grenzwert festlegt, um die Steilheit des Temperaturanstieges nach oben absolut zu begrenzen. Die Begrenzung ist im unteren Temperaturbereich der Vorheizphase wirksam.A rough hedge of the glow plugs can be achieved by defining a single limit for the gradient of the electrical resistance or for the gradient of the electrical current consumption in order to limit the steepness of the temperature increase upwards absolutely. The limitation is effective in the lower temperature range of the preheating phase.
Die Höhe der erreichbaren Temperatur kann man unabhängig von einem steuernden Eingriff in die effektive Versorgungsspannung zur Vermeidung des Überschreitens von Grenzwerten steuern, indem man der Glühkerze in der Vorheizphase eine vorbestimmte Energie zuführt. Diese bestimmt hauptsächlich die erreichbare Tempera- tur, wobei sich die Zeitspanne, über welche die Energie zugeführt wird, etwas verlängert, wenn ein anfänglich zu steiler Temperaturanstieg durch das erfindungsgemäße Verfahren gebremst werden sollte, wohingegen sich die Vorheizphase verkürzt, wenn wegen Unterschreitens einer unteren Grenze des Gradienten die effekti- ve Versorgungsspannung angehoben werden sollte.The height of the achievable temperature can be controlled independently of a controlling intervention in the effective supply voltage to avoid exceeding limit values by supplying a predetermined energy to the glow plug in the preheating phase. This mainly determines the achievable temperature ture, wherein the period of time over which the energy is supplied, somewhat extended, if an initially too steep rise in temperature should be braked by the inventive method, whereas the preheat phase shortens when due to falling below a lower limit of the gradient, the effective supply voltage should be raised.
Vorzugsweise wird nicht nur ein einziger Grenzwert für die Vorheizphase eingeführt, sondern der Grenzwert über den Verlauf der Vorheizphase verändert, so dass nicht nur zu Beginn der Vorheizphase, sondern während der gesamten Vorheizphase die Steilheit des Temperaturanstiegs kontrolliert werden kann. Das macht es möglich, die Aufheizzeit optimal kurz zu erhalten und/oder die Größe des Überschwingers der Temperatur der Glühkerze zu verringern, indem die Aufheizkurve der Glühkerze durch Einengen zwischen geeignete Grenzwerte des Gradienten geformt und einem idealen Verlauf angenähert wird.Preferably, not only a single limit value for the preheating phase is introduced, but the limit value is changed over the course of the preheating phase, so that the steepness of the temperature increase can be controlled not only at the beginning of the preheating phase but during the entire preheating phase. This makes it possible to obtain the heating time optimally short and / or to reduce the magnitude of the overshoot of the temperature of the glow plug by shaping the heating curve of the glow plug by narrowing between suitable limit values of the gradient and approximating an ideal course.
Am einfachsten passt man die Grenzwerte stufenförmig an, d. h., man setzt sie mit fortschreitender Vorheizphase schrittweise herab. In je mehr Schritte die Vorheizphase eingeteilt wird, desto genauer kann der Temperaturgradient kontrolliert und einem idealen Verlauf angepasst werden. Praktisch erhält man recht ordentliche Er- gebnisse, wenn man die Vorheizphase in drei bis sechs Intervalle einteilt und demgemäß drei bis sechs Grenzwerte für die obere Grenze des Gradienten festlegt. In entsprechender Weise können untere Grenzwerte für den Gradienten festgelegt werden, bei deren Unterschreiten die effektive Versorgungsspannung vorübergehend erhöht und dadurch die Erwärmung der Glühkerze beschleunigt werden kann.The easiest way to adjust the thresholds stepwise, d. h., It is set down gradually as the preheat phase progresses. The more steps the preheating phase is divided, the more accurately the temperature gradient can be controlled and adjusted to an ideal course. In practice, quite good results are obtained by dividing the preheat phase into three to six intervals and thus setting three to six upper limit limit values. In a corresponding manner, lower limit values for the gradient can be defined, below which the effective supply voltage can be temporarily increased and thus the heating of the glow plug can be accelerated.
Es gibt verschiedene Möglichkeiten, die Weite der Schritte zu wählen, in denen die Grenzwerte konstant gehalten werden. Die Schritte können auf Zeitbasis bestimmt werden, sie können aber auch auf die Veränderung des elektrischen Widerstandes oder auf die Veränderung der elektrischen Stromaufnahme oder auf den Fortschritt der Energiezufuhr bezogen werden, wobei die letztgenannte Möglichkeit besonders bevorzugt ist, weil sie bei Unterteilung der Vorheizphase in Intervalle gleicher Energiezufuhr automatisch dazu führt, dass die Anpassung der Grenzwerte umso kurzfristiger erfolgt, je steiler der Temperaturanstieg ist. Die Gradienten werden vorzugsweise periodisch wiederkehrend gemessen. Je kürzer die Periode ist, desto perfekter wird die Kontrolle. Zweckmäßigerweise wird der Gradient wenigstens 20 mal pro Sekunde, vorzugsweise wenigstens 30 mal pro Sekunde bestimmt. Die Frequenz der Impulsbreitenmodulation, mit welcher die effektive Versorgungsspannung eingestellt wird, beträgt vorzugsweise ein ganzzahliges Vielfaches der Frequenz, mit welcher die Gradientenbestimmung erfolgt; besonders bevorzugt ist ein Verfahren, in welchem die beiden Frequenzen übereinstimmen. Das ermöglicht eine Synchronisation der Zeitpunkte der Gradientenbestimmung mit der Stromzufuhr bei der Impulsbreitenmodulation bei der Spannungsversorgung.There are several ways to choose the width of the steps in which the limits are kept constant. The steps may be determined on a timebase basis, but may also be related to the change in electrical resistance or to the change in electrical current consumption or to the progress of the energy supply, the latter possibility being particularly preferred because it divides the preheat phase into intervals same energy supply automatically means that the adaptation of the limit values takes place the more quickly, the steeper the temperature increase is. The gradients are preferably measured periodically recurring. The shorter the period, the more perfect the control becomes. Conveniently, the gradient is determined at least 20 times per second, preferably at least 30 times per second. The frequency of the pulse width modulation, with which the effective supply voltage is adjusted, is preferably an integer multiple of the frequency with which the gradient determination takes place; Particularly preferred is a method in which the two frequencies coincide. This allows synchronization of the timing of the gradient determination with the current supply in the pulse width modulation at the power supply.
Ein Vorzug der Erfindung liegt darin, dass es sogar möglich ist, den Gradienten des elektrischen Widerstandes oder der elektrischen Stromaufnahme auf einen Sollwert zu regeln, der sich aus dem idealen Temperaturverlauf einer idealen Glühkerze ableiten lässt. Auf diese Weise kann man sich mit dem realen Temperaturverlauf der realen Glühkerze dem Ideal bestmöglich annähern. Der ideale Temperaturverlauf einer idealen Glühkerze kann im Steuergerät für die Glühkerze gespeichert werden, z. B. im Speicher eines Mikroprozessors oder Mikrocontrollers, welcher die Spannungsversorgung der Glühkerze und die Ermittlung der Messwerte für die Gradientenbestimmung steuert, die Gradienten mit den Grenzwerten vergleicht und abhängig vom Ergebnis des Vergleiches die effektive Spannung anpasst, mit welcher die Glühkerze versorgt wird. Die Grenzwerte können im Speicher des Mikroprozessors oder Mikrocontrollers abgelegt sein, insbesondere als eine über den Verlauf der Vorheizphase verteilte Folge von diskreten Grenzwerten, aus denen sich der Mikroprozessor bzw. Mikrocontroller jeweils denjenigen auswählt, der zu dem Zeitpunkt in- nerhalb der jeweiligen Vorheizphase gehört, für welchen der Gradient bestimmt wurde.An advantage of the invention is that it is even possible to regulate the gradient of the electrical resistance or the electrical current consumption to a desired value, which can be derived from the ideal temperature profile of an ideal glow plug. In this way, you can approach the ideal as best as possible with the real temperature curve of the real glow plug. The ideal temperature profile of an ideal glow plug can be stored in the control unit for the glow plug, eg. In the memory of a microprocessor or microcontroller which controls the power supply of the glow plug and the determination of the measured values for the gradient determination, which compares the gradients with the limit values and, depending on the result of the comparison, adapts the effective voltage with which the glow plug is supplied. The limit values can be stored in the memory of the microprocessor or microcontroller, in particular as a series of discrete limit values distributed over the course of the preheat phase, from which the microprocessor or microcontroller selects each one which belongs at the time within the respective preheat phase, for which the gradient was determined.
Die beigefügte Figur 2 zeigt beispielhaft einen typischen Verlauf der Temperatur einer Glühkerze und die zugehörigen Verläufe des Gradienten des Glühkerzenwider- Standes und des durch die Glühkerze fließenden Stroms sowie Beispiele für die Wahl von Grenzwerten. The attached Figure 2 shows an example of a typical profile of the temperature of a glow plug and the associated gradients of the gradient of Glühkerzenwider- estate and the current flowing through the glow plug and examples of the choice of limits.

Claims

Patentansprüche claims
1. Verfahren zum Steuern einer Glühkerze in einem Dieselmotor, insbesondere in der Vorheizphase, dadurch gekennzeichnet, dass der zeitliche Gradient einer an der Glühkerze temperaturabhängig auftretenden elektrischen Größe gemessen, mit einem Grenzwert verglichen und beim Über- oder Unterschreiten des Grenzwertes die elektrische Versorgungsspannung der Glühkerze geändert wird.1. A method for controlling a glow plug in a diesel engine, in particular in the preheating phase, characterized in that the time gradient of a temperature-dependent on the glow plug occurring electrical variable measured, compared with a limit and when exceeding or falling below the limit, the electrical supply voltage of the glow plug will be changed.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Gradient des elektrischen Widerstandes der Glühkerze bestimmt wird.2. The method according to claim 1, characterized in that the gradient of the electrical resistance of the glow plug is determined.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Gradient der Stromstärke des durch die Glühkerze fließenden Stromes bestimmt wird.3. The method according to claim 1, characterized in that the gradient of the current intensity of the current flowing through the glow plug is determined.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die effektive elektrische Versorgungsspannung der Glühkerze herabgesetzt wird, wenn der Absolutwert des Gradienten einen oberen Grenzwert überschreitet.4. The method of claim 2 or 3, characterized in that the effective electrical supply voltage of the glow plug is lowered when the absolute value of the gradient exceeds an upper limit.
5. Verfahren nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass die effektive elektrische Versorgungsspannung der Glühkerze erhöht wird, wenn der Absolutwert des Gradienten einen unteren Grenzwert unterschreitet.5. The method of claim 2, 3 or 4, characterized in that the effective electrical supply voltage of the glow plug is increased when the absolute value of the gradient falls below a lower limit.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens einer der Grenzwerte veränderbar ist.6. The method according to any one of the preceding claims, characterized in that at least one of the limit values is variable.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der wenigstens eine Grenzwert im Verlauf der Vorheizphase geändert wird.7. The method according to claim 6, characterized in that the at least one limit value is changed in the course of the preheating phase.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der wenigstens eine Grenzwert in Abhängigkeit von dem gemessenen elektrischen Widerstand und/oder in Abhängigkeit von der gemessenen Stromstärke verändert wird. 8. The method according to claim 6 or 7, characterized in that the at least one limit value is changed in dependence on the measured electrical resistance and / or in dependence on the measured current strength.
9. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der wenigstens eine Grenzwert zeitabhängig verändert wird.9. The method according to claim 6 or 7, characterized in that the at least one limit value is changed time-dependent.
10. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der we- nigstens eine Grenzwert in Abhängigkeit von der der Glühkerze fortschreitend zugeführten elektrischen Energie verändert wird.10. The method according to claim 6 or 7, characterized in that the at least one limit value is changed as a function of the glow plug continuously supplied electrical energy.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass der wenigstens eine Grenzwert im Verlauf der Vorheizphase stufenweise geän- dert wird.11. The method according to any one of claims 7 to 10, characterized in that the at least one limit value in the course of the preheating phase is changed stepwise.
12. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Gradient wenigstens im steilsten Abschnitt der Aufheizkurve der Glühkerze bestimmt wird.12. The method according to any one of the preceding claims, characterized in that the gradient is determined at least in the steepest portion of the heating curve of the glow plug.
13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Gradient im Verlauf der Vorheizphase wiederholt bestimmt wird.13. The method according to any one of the preceding claims, characterized in that the gradient is determined repeatedly during the preheating phase.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Gradient periodisch wiederkehrend bestimmt wird.14. The method according to claim 13, characterized in that the gradient is determined periodically recurring.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass der Gradient mindestens 20 mal pro Sekunde, vorzugsweise mindestens 30 mal pro Sekunde bestimmt wird.15. The method according to claim 14, characterized in that the gradient is determined at least 20 times per second, preferably at least 30 times per second.
16. Verfahren nach Anspruch 13, 14 oder 15, dadurch gekennzeichnet, dass die effektive Versorgungsspannung für die Glühkerze durch Impulsbreitenmodulation aus der Bordnetzspannung gewonnen wird und dass die Zeitpunkte, zu denen die Messungen zur Bestimmung des Gradienten durchgeführt werden, in Zeitfernstern liegen, in denen die Versorgungsspannung an der Glühkerze liegt.16. The method according to claim 13, 14 or 15, characterized in that the effective supply voltage for the glow plug is obtained by pulse width modulation from the vehicle electrical system voltage and that the times at which the measurements are carried out for determining the gradient lie in Zeitfernstern, in which the supply voltage is at the glow plug.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Zeitpunkte, zu denen die Messungen zur Bestimmung der Gradienten durchgeführt werden, mit der Periode der Impulsbreitenmodulation synchronisiert sind. 17. The method according to claim 16, characterized in that the times at which the measurements are carried out to determine the gradients are synchronized with the period of the pulse width modulation.
18. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Gradient auf einen Sollwert geregelt wird.18. The method according to any one of the preceding claims, characterized in that the gradient is regulated to a desired value.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass der Sollwert einer Soll-Kennlinie des Gradienten entnommen wird.19. The method according to claim 18, characterized in that the desired value of a desired characteristic of the gradient is taken.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Soll- Kennlinie in einem Steuergerät für die Glühkerze gespeichert ist.20. The method according to claim 19, characterized in that the desired characteristic is stored in a control device for the glow plug.
21. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Energie, die der Glühkerze in der Vorheizphase zugeführt wird, vorherbestimmt wird. 21. The method according to any one of the preceding claims, characterized in that the electrical energy which is supplied to the glow plug in the preheating phase is predetermined.
EP07764556.2A 2006-06-02 2007-05-31 Method for controlling a glow plug in a diesel engine Not-in-force EP2024634B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006025834A DE102006025834B4 (en) 2006-06-02 2006-06-02 Method for controlling a glow plug in a diesel engine
PCT/EP2007/004813 WO2007140922A1 (en) 2006-06-02 2007-05-31 Method for controlling a glow plug in a diesel engine

Publications (2)

Publication Number Publication Date
EP2024634A1 true EP2024634A1 (en) 2009-02-18
EP2024634B1 EP2024634B1 (en) 2014-10-01

Family

ID=38445660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07764556.2A Not-in-force EP2024634B1 (en) 2006-06-02 2007-05-31 Method for controlling a glow plug in a diesel engine

Country Status (6)

Country Link
US (1) US8976505B2 (en)
EP (1) EP2024634B1 (en)
JP (1) JP4944951B2 (en)
KR (1) KR101371397B1 (en)
DE (1) DE102006025834B4 (en)
WO (1) WO2007140922A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010194B4 (en) 2005-09-09 2011-06-09 Beru Ag Method and device for operating the glow plugs of a self-igniting internal combustion engine
US7631625B2 (en) * 2006-12-11 2009-12-15 Gm Global Technology Operations, Inc. Glow plug learn and control system
DE102008007397A1 (en) * 2008-02-04 2009-08-06 Robert Bosch Gmbh Method for monitoring at least one glow plug of an internal combustion engine and device for this purpose
DE102008007391A1 (en) * 2008-02-04 2009-08-06 Robert Bosch Gmbh Early failure detection on a glow plug supplied with a continuous train of voltage pulses
DE102008001403A1 (en) * 2008-04-28 2009-10-29 Robert Bosch Gmbh Method, control unit and system for restarting an internal combustion engine
US8423197B2 (en) * 2008-11-25 2013-04-16 Ngk Spark Plug Co., Ltd. Apparatus for controlling the energizing of a heater
US8912470B2 (en) 2009-07-01 2014-12-16 Robert Bosch Gmbh Method and device for controlling a glow plug
DE102009032959B4 (en) * 2009-07-14 2012-04-05 Beru Ag Method of operating a glow plug
JP5155964B2 (en) 2009-08-07 2013-03-06 日本特殊陶業株式会社 Glow plug energization control device and heat generation system
DE102009046438A1 (en) * 2009-11-05 2011-05-12 Robert Bosch Gmbh Method for controlling or controlling the temperature of a glow plug
JP5540841B2 (en) * 2010-04-05 2014-07-02 株式会社デンソー Glow plug energization control device
DE102011006790B4 (en) * 2010-04-05 2021-04-22 Denso Corporation CONTROL DEVICE FOR CONTROLLING A POWER SUPPLY TO A GLOW PLUG MOUNTED IN A DIESEL ENGINE
DE102010029047A1 (en) * 2010-05-18 2011-11-24 Robert Bosch Gmbh Method and device for reducing the temperature tolerance of glow plugs
DE102011004514A1 (en) * 2011-02-22 2012-08-23 Robert Bosch Gmbh Method and control unit for setting a temperature of a glow plug
US9528487B2 (en) * 2011-11-17 2016-12-27 Ford Global Technologies, Llc Starter motor control with pre-spin
DE102012102013B3 (en) * 2012-03-09 2013-06-13 Borgwarner Beru Systems Gmbh Method for controlling surface temperature of glow plug in internal combustion engine of motor car, involves changing effective voltage acting on plug based on deviation in plug temperature with respect to target temperature of plug surface
DE102012217787B3 (en) * 2012-09-28 2014-02-13 Robert Bosch Gmbh Method and device for diagnosing a device for determining the temperature of a component of an electrical unit
EP2940288A4 (en) * 2012-12-27 2018-01-10 Bosch Corporation Glow plug diagnosis method and device for controlling driving of vehicle glow plug
US9534575B2 (en) * 2013-07-31 2017-01-03 Borgwarner Ludwigsburg Gmbh Method for igniting a fuel/air mixture, ignition system and glow plug
JP6075247B2 (en) * 2013-08-29 2017-02-08 マツダ株式会社 Glow plug control device and glow plug temperature estimation method
RU2660979C1 (en) * 2017-04-17 2018-07-11 Олег Петрович Ильин Glow plug heating device
DE102017115946A1 (en) * 2017-07-14 2019-01-17 Borgwarner Ludwigsburg Gmbh Method for controlling the temperature of a glow plug
US11739693B2 (en) * 2020-11-18 2023-08-29 Pratt & Whitney Canada Corp. Method and system for glow plug operation
CN114263535B (en) * 2021-12-14 2023-11-14 西安现代控制技术研究所 Method for effectively improving ignition reliability of miniature turbojet engine

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1249667A (en) * 1970-05-21 1971-10-13 Cosiglio Naz Delle Ricerche An electronic ignition system for internal combustion engines
DE3119652A1 (en) * 1981-05-16 1983-01-27 Friedrich Hertel Kälte - Klimatechnik, 3521 Liebenau Device for air-conditioning walled-in spaces
JPS57191870A (en) * 1981-05-22 1982-11-25 Hitachi Ltd Flexible disk laminated body
JPS6053798B2 (en) * 1981-06-10 1985-11-27 株式会社ボッシュオートモーティブ システム Glow plug preheating control device
JPS58113580A (en) * 1981-12-28 1983-07-06 Isuzu Motors Ltd Control device for heating of preheated plug
JPS58172472A (en) * 1982-04-02 1983-10-11 Nippon Denso Co Ltd Detection of wire-breaking of heating element
JPS59108877A (en) * 1982-12-15 1984-06-23 Toyota Motor Corp Glow plug control device for diesel engine
JPS59108878A (en) * 1982-12-15 1984-06-23 Toyota Motor Corp Glow plug control device for diesel engine
JPS59128981A (en) * 1983-01-12 1984-07-25 Fujitsu Ten Ltd Blown-off detecting method of diesel engine glow plug
DE3319652A1 (en) * 1983-05-31 1984-12-06 Robert Bosch Gmbh, 7000 Stuttgart CONTROL OF AN INTERNAL COMBUSTION ENGINE WITH GLOW PLUGS
JPS6125971A (en) * 1984-07-16 1986-02-05 Fujitsu Ten Ltd Temperature control system of glow plug for diesel engine
US4858576A (en) * 1986-11-28 1989-08-22 Caterpillar Inc. Glow plug alternator control
JPS63266172A (en) * 1987-04-22 1988-11-02 Mitsubishi Electric Corp Glow plug control device for diesel engine
DE3713835A1 (en) * 1987-04-24 1988-11-03 Beru Werk Ruprecht Gmbh Co A METHOD AND DEVICE FOR QUICKLY HEATING AN ELECTRIC HEATING DEVICE
EP0315934B1 (en) * 1987-11-09 1994-01-19 Siemens Aktiengesellschaft Regulation method for the glow plug temperature in a diesel engine, and circuit therefor
EP0359848A1 (en) * 1988-09-20 1990-03-28 Siemens Aktiengesellschaft Device for preventing DC powered heating resistors from overheating
IT1223871B (en) * 1988-10-27 1990-09-29 Marelli Autronica CONTROL UNIT OF THE FUNCTIONING OF THE PRE-HEATING SPARK PLUGS OF A DIESEL ENGINE
JPH0932606A (en) * 1995-07-17 1997-02-04 Zexel Corp Fuel injection controller for diesel engine
JP2954005B2 (en) * 1995-10-17 1999-09-27 株式会社日工機械 Ignition heater
ES2145707B1 (en) * 1998-06-12 2001-03-01 Nagares Sa HEAD GLOW CONTROLLER FOR DIESEL ENGINES.
DE19903305C5 (en) * 1999-01-28 2012-01-26 Webasto Ag Method of flame monitoring in a vehicle heater
DE10025953C2 (en) * 2000-05-26 2002-04-18 Webasto Thermosysteme Gmbh Method for driving a glow plug to ignite a vehicle heater
DE10028073C2 (en) * 2000-06-07 2003-04-10 Beru Ag Method and circuit arrangement for heating a glow plug
DE10247042B3 (en) * 2002-10-09 2004-05-06 Beru Ag Method and device for controlling the heating of the glow plugs of a diesel engine
JP4453442B2 (en) * 2004-05-26 2010-04-21 いすゞ自動車株式会社 Engine control device
JP4419880B2 (en) * 2005-03-17 2010-02-24 株式会社デンソー Glow plug energization control method and apparatus
DE102006010194B4 (en) * 2005-09-09 2011-06-09 Beru Ag Method and device for operating the glow plugs of a self-igniting internal combustion engine
CN101268274B (en) * 2005-09-21 2010-12-01 贝鲁股份公司 Method for controlling a group of glow plugs in a diesel engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007140922A1 *

Also Published As

Publication number Publication date
KR101371397B1 (en) 2014-03-10
US20090316328A1 (en) 2009-12-24
US8976505B2 (en) 2015-03-10
JP4944951B2 (en) 2012-06-06
EP2024634B1 (en) 2014-10-01
DE102006025834B4 (en) 2010-05-12
DE102006025834A1 (en) 2007-12-06
JP2009539010A (en) 2009-11-12
WO2007140922A1 (en) 2007-12-13
KR20090015093A (en) 2009-02-11

Similar Documents

Publication Publication Date Title
EP2024634B1 (en) Method for controlling a glow plug in a diesel engine
EP1929151A1 (en) Method for controlling a group of glow plugs for a diesel engine
EP1852604B1 (en) Method for operating spark plugs in diesel engines
EP2012002B1 (en) Method for operating glow plugs in diesel engines
DE102006010083B4 (en) Method for driving a group of glow plugs in a diesel engine
EP1893869B1 (en) Method for controlling heater plug in diesel engines
WO2008110143A1 (en) Method and device for glowplug ignition control
EP2956584B1 (en) Method for heating a paver screed
EP3136539A1 (en) Method and device for the charging of batteries
DE102008007271A1 (en) Method for controlling at least one glow plug in an internal combustion engine and engine control unit
EP2678552B1 (en) Method and control device for adjusting a temperature of a glow plug
DE102006010082B4 (en) Method for driving a group of glow plugs in a diesel engine
DE102006010081B4 (en) Method for driving a group of glow plugs in a diesel engine
DE102016206108B4 (en) Method for operating a high-current load in an on-board network
EP1410479A1 (en) Method and device for controlling the charging of a motor vehicle battery
WO2010012344A1 (en) Method for supplying current to a glow plug
EP2218967B1 (en) Method and device for regulating the running time of a burner
DE102017109071B4 (en) Method of controlling the temperature of glow plugs
DE102012101999A1 (en) Method for operating ceramic glow plug of engine mounted in vehicle, involves making the product of strength of heating current to correspond to the root mean square (RMS) voltage of the target value of electric heating power
EP0809021A2 (en) Glow plug preheating control method and device for diesel engine
EP2199691B1 (en) Method and device for regulating a heat generation device
EP1000242A1 (en) Starting mode with a diesel engine and propulsion system with such an engine
DE19708430A1 (en) Method and device for controlling the glow process of a glow plug of a diesel engine
DE2840640C2 (en) Flame starting system
DE102017127302A1 (en) Charging an electric vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090429

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BORGWARNER BERU SYSTEMS GMBH

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 689670

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013496

Country of ref document: DE

Effective date: 20141113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007013496

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BORGWARNER LUDWIGSBURG GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007013496

Country of ref document: DE

Owner name: BORGWARNER LUDWIGSBURG GMBH, DE

Free format text: FORMER OWNER: BORGWARNER BERU SYSTEMS GMBH, 71636 LUDWIGSBURG, DE

Effective date: 20141216

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007013496

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

Effective date: 20141216

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141001

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150202

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150102

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013496

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

26N No opposition filed

Effective date: 20150702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007013496

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 689670

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001