EP2023339B1 - Audiodekoder mit geringer Verzögerung - Google Patents

Audiodekoder mit geringer Verzögerung Download PDF

Info

Publication number
EP2023339B1
EP2023339B1 EP07113397A EP07113397A EP2023339B1 EP 2023339 B1 EP2023339 B1 EP 2023339B1 EP 07113397 A EP07113397 A EP 07113397A EP 07113397 A EP07113397 A EP 07113397A EP 2023339 B1 EP2023339 B1 EP 2023339B1
Authority
EP
European Patent Office
Prior art keywords
model
distribution model
distribution
signal
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07113397A
Other languages
English (en)
French (fr)
Other versions
EP2023339A1 (de
Inventor
Willem Bastiaan Kleijn
Li Minyue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global IP Solutions GIPS AB
Global IP Solutions Inc
Original Assignee
Global IP Solutions GIPS AB
Global IP Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global IP Solutions GIPS AB, Global IP Solutions Inc filed Critical Global IP Solutions GIPS AB
Priority to AT07113397T priority Critical patent/ATE479182T1/de
Priority to EP07113397A priority patent/EP2023339B1/de
Priority to DE602007008717T priority patent/DE602007008717D1/de
Priority to US12/671,631 priority patent/US8463615B2/en
Priority to PCT/EP2008/057970 priority patent/WO2009015944A1/en
Publication of EP2023339A1 publication Critical patent/EP2023339A1/de
Application granted granted Critical
Publication of EP2023339B1 publication Critical patent/EP2023339B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/0017Lossless audio signal coding; Perfect reconstruction of coded audio signal by transmission of coding error
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/55Communication between hearing aids and external devices via a network for data exchange

Definitions

  • the present invention relates generally to methods and devices for encoding and decoding audio signals.
  • the present invention relates to coders and decoders for reducing bit rate variations during the encoding and decoding procedures of speech signals.
  • Coding of a digital audio signal is commonly based on the use of a signal model to reduce bit rate (also called “rate” in the following) and maintain high signal quality.
  • a signal model enables the transformation of data to new data that are more amenable to coding or the definition of a distribution of the digital audio signal, which distribution can be used in coding.
  • the signal model may be used for linear prediction, which removes dependencies among samples of the digital audio signal (a method called linear predictive encoding).
  • the signal model may be used to provide a probability distribution of a signal segment of the digital audio signal to a quantizer, thereby facilitating the computation of the quantizer which operates either directly on the signal or on a unitary transform of the signal (method called adaptive encoding).
  • Delay is an important factor in many applications of coding of audio signals.
  • the delay is particularly critical.
  • backward signal analysis backward adaptive encoding
  • signal reconstruction in the following.
  • Coding methods are commonly divided into two classes, namely variable-rate coding, which corresponds to constrained-entropy quantization, and fixed-rate coding, which corresponds to constrained-resolution quantization.
  • the behaviour of these two coding methods can be analysed for the so-called high-rate case, which is often considered to be a good approximation of the low-rate case.
  • a constrained-resolution quantizer minimizes the distortion under a fixed-rate constraint, which, at high rate, results generally in non-uniform cell sizes.
  • a constrained-entropy quantizer minimizes the distortion under an average rate (the quantization index entropy) constraint.
  • the instant rate varies over time, which, at high-rate, generally results in an uncountable set of quantization cells of uniform size and shape while redundancy removal is left to lossless coding.
  • constrained-entropy quantization provides a (nearly) constant distortion, which is especially beneficial when the signal model or probabilistic signal model is not optimal.
  • a non-optimal probabilistic signal model leads also to an increase in bit rate in the case of constrained-entropy coding.
  • constrained-resolution quantization leads to an increased distortion while keeping a constant rate when the probabilistic signal model is not optimal.
  • speech and audio signals display so-called transitions, at which the optimal probabilistic signal model would change abruptly. If the model is not updated immediately at a transition, the quality of the encoding degrades in the constrained-resolution case (increased distortion) while the bit rate increases in the constrained-entropy case.
  • the problem at transitions is particularly significant when the probabilistic signal model is updated by a backward signal analysis.
  • the problem at transitions leads to error propagation since the signal reconstruction is inaccurate because the signal model is inaccurate, and the signal model is inaccurate because the signal reconstruction is inaccurate. Thus, it takes a relatively long time for the coder to retrieve a good signal quality.
  • constrained-entropy quantization there is little error propagation but the bit rate increases significantly at abrupt transitions (resulting in bit rate peaks).
  • US patent application 2007/0016418 discloses using either a fixed or an adaptive entropy coding.
  • An object of the present invention is to wholly or partly overcome the above disadvantages and drawbacks of the prior art and to provide improved methods and devices for encoding and decoding audio signals.
  • the present invention provides methods and apparatus enabling to reduce bit rate variation, such as bit rate peaks, when coding an input signal based on variable-rate quantization while maintaining a high average compression rate.
  • the methods and apparatus provided by the present invention enable to reduce the propagation of errors caused by packet loss or channel errors, in particular in audio coding of input signal based on fixed-rate quantization, while maintaining high average compression rate.
  • a method for encoding an input signal is provided in accordance with appended claim 1.
  • an apparatus for encoding an input signal is provided in accordance with appended claim 16.
  • a method for decoding a bit stream of coded data is provided in accordance with appended claim 36.
  • an apparatus for decoding a bit stream of coded data is provided in accordance with appended claim 46.
  • a computer readable medium is provided in accordance with appended claim 58.
  • a computer readable medium is provided in accordance with appended claim 59.
  • An advantage of the present invention is to remove bit rate peaks associated with transitions in audio coding for constrained-entropy encoding without increasing the average bit rate significantly.
  • the present invention is based on an insight that the rate increases at transitions because of the non-optimality of the probabilistic signal model obtained with backward adaptation (or backward adaptive encoding).
  • quantizers are designed based on a probabilistic signal model, their performance varies with the accuracy of the model.
  • the optimal model for a given distortion is the model that provides the lowest bit rate.
  • the probabilistic signal model used in backward adaptive encoding is generally not the probabilistic signal model leading to the lowest bit rate, which results in significant rate peaks at transitions.
  • the present invention is advantageous since flexibility is introduced in the determination of the probabilistic signal model using a low rate of side information.
  • This flexibility is introduced by encoding a current signal segment of the input signal using a combined distribution model obtained by adding at least one first distribution model and at least one fixed distribution model, to which distribution models weighting coefficients are affected.
  • the first distribution model is associated with model parameters extracted from a reconstructed signal generated from past signal segments of the input signal.
  • the probabilistic signal model or combined distribution model used to encode the current signal segment takes into account past signal segments of the input signal and is also based on other signal models.
  • weighting coefficients affected to the first and the fixed distribution models may be selected for minimizing an estimated code length for the current signal segment.
  • the probabilistic model or combined distribution model comprises a sum of probability distributions, which is also referred to as a sum of distribution models, each multiplied by a coefficient. At least one of the distribution models is obtained based on the past coded signal. Good or optimal values for the coefficients may be computed by a modeller.
  • the probabilistic model is preferably based on at least one of the following: i) a distribution model generated based on a reconstructed signal (which can be available at both the encoder and the decoder), ii) information stored at both the encoder and the decoder (for example a fixed distribution model characteristic of the input signal), and iii) transmitted information.
  • the combined distribution model or probabilistic model may be created by combining, in a manner specified in information transmitted from the encoder to the decoder, a distribution based on a reconstructed signal and one or more fixed distribution models known at both the encoder and the decoder.
  • the combined distribution model may be a mixture model further including at least one adaptive distribution model selected in response to the model parameters extracted from the reconstructed signal, to which adaptive distribution model a weighting factor is affected. This is advantageous since one more component is included in the combined distribution model, thereby increasing the flexibility of the signal model.
  • the combined distribution model is selected from a plurality of combined distribution models in response to a code length of a subsegment of the current signal segment and a code length used for describing the distribution model of the reconstructed signal.
  • the plurality of combined distribution models may be obtained by varying the values of a set of weighting coefficients associated with a particular signal model.
  • the proposed signal representation i.e. the combined distribution model, decreases the code length for the signal segments or blocks near transitions for backward adaptive encoding and may also decrease the average rate because the probabilistic signal model is closer to optimal.
  • the information concerning the values of the weighting coefficients may be transmitted as side information in the form of one or more quantization indices.
  • the information about the combined distribution model may be transmitted in the form of a model index, which will then be used at a decoder or apparatus for decoding the transmitted data or stored at the encoder.
  • the weighting coefficients may be biased for minimizing the propagation of errors caused by packet loss and channel errors.
  • the weighting coefficient affected to the first distribution model may be biased towards a value of zero or compared to a threshold value below which it is set to zero.
  • An advantage of the present invention is to provide methods and devices for encoding and decoding audio signals that present low delay, low bit rate in average and low rate variations.
  • the present invention is suitable for both constrained-resolution quantization and constrained-entropy quantization.
  • the invention has broad applications for audio coding, in particular coding based on variable bit rate. It is applicable to low delay audio coding, where backward model adaptation is often selected to reduce the bit rate. Low delay coding is applicable in, for example, a scenario where the listener perceives an audio signal both through an acoustic path and through a communication network or for inter-ear communication for hearing aids, where delay affects spatial perception.
  • Fig. 1 shows an apparatus or system 10 for encoding an input signal 120, such as a digital audio signal or speech signal.
  • the input signal 120 is processed on a segment-by-segment (block-by-block) basis.
  • a signal model suitable for encoding a current signal segment of the input signal 120 in an encoder 119 is provided by a modeller 113, also called probabilistic modeller 113 in the following.
  • the signal model output from the modeller 113 is also called probabilistic model or combined distribution model in the following and corresponds to a probabilistic model of the joint distribution of the signal samples or segments.
  • the modeller 113 obtains the combined distribution model by adding at least one first distribution model and at least one fixed distribution model, each of the distribution models being multiplied by a weighting coefficient.
  • the first distribution model is associated with model parameters extracted by an extracting means 118 from a reconstructed signal 121, which reconstructed signal 121 is the output of the signal quantizer 104 processed optionally by a reconstructing means or post-processing means 117 to approximate past segments of the input signal 120.
  • the modeller 113 obtains the combined distribution model by combining at least one first distribution model based on the reconstructed signal 121 and one or more fixed distribution models. Examples of a reconstructing means 117 and an extracting means 118 will be described in more detail with reference to Fig. 2 . The structure of the modeller 113 will be explained in more detail with reference to Fig. 5 .
  • the encoding of the current segment of the input signal 120 is performed at the encoder 119 which uses the combined distribution model output from the modeller 113.
  • the encoded signal or sequence of coded data output by the encoder 119 is provided to a multiplexer 116, which generates a bit stream 124.
  • information about the combined distribution model is also provided to the multiplexer 116 and included in the bit stream 124.
  • the input signal 120 may be pre-processed by a pre-processing means 125, which addresses perceptual and blocking (segmentation) effects.
  • the pre-processing means 125 will be explained in more detail with reference to Fig. 2 .
  • the pre-processing means 125 and the post-processing means 117 form a matching pair. If no pre-processing means and post-processing means are used, the output of the quantizer 104 is the quantized speech signal itself.
  • the encoder 119 includes a quantizer 104 and a first codeword generator 109.
  • the quantizer 104 generates indices and the first codeword generator 109 converts a sequence of these indices into codewords. Each codeword may correspond to one or more indices.
  • the quantizer 104 can be either a constrained-resolution quantizer, a constrained-entropy quantizer or any other kind of quantizer. For the purpose of illustration, a constrained-resolution quantizer and a constrained-entropy quantizer are discussed. In the case of constrained-resolution quantization, the number of allowed reconstruction (dequantized) points is fixed and the quantizer 104 is dependent on the combined distribution model, i.e.
  • the quantizer 104 operates using the combined distribution model.
  • the first codeword generator 109 generates one codeword per index, and all codewords have the same length in bits.
  • all quantization cells have a fixed size, thereby facilitating the quantization.
  • the size of the quantization cells can be scaled with the variance of the combined distribution model created by the modeller 113 in order to scale the expected distortion with the input signal 120 or can be fixed in order to obtain a fixed distortion.
  • the first codeword generator 109 operates using the combined distribution model and generates codewords of unequal length or codewords that describe many indices.
  • the probability of the indices is estimated based on the combined distribution model provided by the modeller 113 in order to generate codewords having minimal average length per index.
  • the first codeword generator 109 is set to achieve an encoding having an average rate that is close to the entropy of the indices (which corresponds to a method called entropy coding, also called lossless coding), for which the well-known Huffman or arithmetic coding techniques can be used.
  • the weighting coefficients affected to each of the distribution models are selected by the modeller 113 for minimizing a code length or estimated code length corresponding to the current signal segment.
  • the manner of combining the distribution model based on the reconstructed signal 121 of the input signal 120 with the fixed distribution model characteristic of the input signal 120 is specified by a model index 123.
  • information about the combined distribution model such as the weighting coefficients affected to each of the distribution models (the first and fixed distribution models), is specified in the model index 123.
  • the model index 123 may be encoded in a second codeword generator 100 and provided to the multiplexer 116 to be included in the bit stream 124. If the lossless coding is used for the first codeword generator 109, it is then preferable to use the same technique for the second codeword generator 100.
  • the bit stream 124 includes the encoded signal or sequence of coded data and the information about the combined distribution model used to encode the current signal segment, i.e. the model index 123.
  • the bit stream 124 may then be transmitted to a decoder 30, which will be described with reference to Fig. 3 , or stored at the apparatus 10 for encoding.
  • the model index may be transmitted as side information in the form of a coded model index specifying at least the weighting coefficients.
  • Fig. 2 shows a system or apparatus 20 for encoding an input signal 120, such as a digital audio signal or speech signal, which apparatus 20 is equivalent to the apparatus 10 described with reference to Fig. 1 except that examples of a pre-processing means 125, a reconstructing means 117 and an extracting means 118 are illustrated in more detail.
  • the apparatus 20, as well as the apparatus 10, may be used as a backward adaptive, variable rate, low delay audio coder.
  • the apparatus 20 for encoding operates also on a block-by-block basis.
  • the input signal 120 or digital audio signal 120 may be sampled at 16000 Hz, and a typical block size would be 0.25 ms, or 4 samples.
  • the processing steps of the encoder may be summarized as: (1) perceptual weighting, (2) two-stage decorrelation, (3) constrained-entropy quantization, and (4) entropy coding.
  • the extracting means 118 includes a linear predictive (LP) analyzer 110 performing a linear predictive analysis (equivalent to a particular estimation method of autoregressive model parameters) of the most recent segment of a reconstructed signal 121 generated from past segments of the input signal 120 in the reconstructing means 117.
  • the prediction order may be set to 32, thereby capturing some of the spectral fine-structure of the input signal 120.
  • the LP analyzer 110 it is preferable for the LP analyzer 110 to operate on the reconstructed signal 121 because no delay is required for the analysis.
  • a signal similar to the reconstructed signal 121 can also be available at a decoder, such as the decoders 30 or 40 that will be described with reference to Figs.
  • the reconstructed signal 121 which is input to the LP analyzer 110 may be first windowed using an asymmetric window as defined in ITU-T Recommendation G.728.
  • the autocorrelation function for the windowed signal is computed and the predictor coefficients may be computed using e.g. the well-known split Levinson algorithm.
  • a ( z ) the transfer function of the prediction-error filter corresponding to the set of prediction coefficients extracted by the LP analyzer 110. That is,
  • a ( z ) 1 - a 1 z -1 ⁇ - a k z - k
  • a 1 , ⁇ , a k are the predictor coefficients and k is the predictor order that is advantageously set to 32.
  • the operation of the pre-processing means 125 is now described in more detail.
  • the signal i.e. the current signal segment
  • the filtered signal segment may then be corrected by a first correcting means or adder 114 that subtracts a (closed-loop) zero-input response that is described in more detail below, transformed in a transformer 102 and normalized by a normalization means 103.
  • the normalized signal segment may be quantized in the quantizer 104 of the encoder 119 before it enters the reconstructing means 117. It is to be noted that the first correcting means 114 and the normalization means 103 are optional elements of the pre-processing means 125.
  • the perceptual weighting filter 101 transforms the digital audio signal 120 from a signal domain to a "perceptual" domain, in which minimizing the squared error of quantization approximates minimizing the perceptual distortion.
  • This filter is computed in perceptual weighting adaptation 111.
  • these scalars ⁇ 1 and ⁇ 2 may be set to 0.9 and 0.7, respectively.
  • the next two processing steps of the pre-processing means 125 shown in Fig. 2 are a prediction of the segment and a transform of the segment, which both aim at decorrelation, thereby forming a two-stage decorrelation.
  • a first stage is based on linear prediction and a second stage is based on a unitary transform.
  • An advantage provided by linear prediction is the possibility to remove long-range correlations independently of the block length.
  • a transform can not remove correlations over separations longer than the block length.
  • long blocks imply long delay.
  • An advantage of transform coding, when based on a unitary transform is that the shape of the quantization cells is not affected by the transform.
  • the prediction step is carried out by a linear predictor or response computer 107 and the first correcting means or adder 114.
  • the linear prediction of the perceptually weighted signal from the past reconstructed perceptually weighted signal by the linear predictor 107 corresponds to the computation of the zero-input response 122.
  • the zero-input response is the zero input response of a cascade of the inverse of the prediction-error filter and the perceptual weighting filter (see equation (1)): W ( z )/ A ( z ).
  • the first correcting means or adder 114 then performs a subtraction of zero-input response 122 for the current signal block or segment. The subtraction of the zero-input response is aimed at removing correlations between adjacent signal blocks (segments).
  • H U ⁇ ⁇ ⁇ V , where U and V are unitary matrices, and ⁇ is a diagonal matrix. This operation is performed in the SVD 112.
  • the matrix U forms a model-based Karhunen-Loève transform (KLT) for the signal x .
  • KLT is enacted by multiplying the transpose of U on x .
  • variable-rate (constrained-entropy) coding it is preferable to use uniform quantization, which is optimal in the high-rate limit.
  • uniform quantization For any particular average rate, a fixed scalar quantizer with uniform quantization step size may be used. The selection of scalar quantization is preferable since, asymptotically with increasing rate, the performance loss will not be more than 0.25 bit per sample over infinite-dimension vector quantization.
  • either the average rate or the average distortion may be set as a constraint.
  • the distortion may be set to a constant value equal to an average distortion.
  • the average distortion is determined by the step size of the uniform scalar quantizer, which facilitates usage of the apparatus for encoding since one simply selects a step size.
  • the average distortion is 1/12 of the square step size.
  • the average-rate constraint requires that the combined distribution model is accurate.
  • it is preferable to use a distortion constraint. Varying the value of the distortion constraint and measuring the resulting average rate over a range of distortions allows the selection of a desired bit rate with a certain numerical precision (distortion).
  • the first codeword generator 109 may be an entropy coder based on an arithmetic coding method.
  • the entropy coder receives the probability density of the symbols, i.e. the combined distribution model, from the probabilistic modeller 113, the quantized signal values and the quantization step size from the quantizer 104. It is preferable to use an arithmetic coding since it is possible to compute the codeword of a single quantized signal vector s using the combined distribution model without the need of computing other codewords. Thus, if the distribution changes, it is not necessary to update the entire set of all possible codewords in the method of the present invention. This contrasts with Huffman coding where it is most natural to compute the entire set of codewords and store them in a table.
  • a cumulative probability function or cumulative distribution is used.
  • the cumulative probability function of each transformed sample suffices for this purpose.
  • the quantization values are ordered and the ordering normally coincides with the index values, which are normally selected to be positive consecutive integers.
  • the cumulative distribution is the sum of the probabilities of the quantization values having an index equal or inferior to m. If the model probability function is selected to be of a simple form, as it generally is the case, then the summation can be replaced by an analytic integration, thereby reducing the computational effort.
  • the arithmetic coding method can be generalized to the vector quantization case, which usually is associated with a truncation of the region of support.
  • the arithmetic coder buffer depth can be bound using standard methods (e.g., a non-existing source symbol is introduced to enact a flushing of the buffer).
  • the output of the first codeword generator 109 and the model index 123 output from the second codeword generator 100 are multiplexed in the multiplexer 116 into a bit stream 124.
  • This bit stream 124 may be transmitted to a receiver, such as a decoder, or stored at the apparatus 10 or 20 for encoding.
  • the multiplexing should be done in such a way that the decoder is able to distinguish between the bits describing the model and the bits describing the data.
  • the signal samples and the model index each have fixed codeword length, this is a simple alternation of sets of codewords for a set of signal samples with codewords for a model index.
  • arithmetic coding this is most conveniently done by combining the first codeword generator 109 and the second codeword generator 100 into a single codeword generator and interlacing the parameters to be encoded as input to the combined codeword generator.
  • signal segments are coded by the arithmetic code as a single codeword (i.e, with an end-of-sequence termination) by the first codeword generator 109, alternated by the corresponding independent encoding of a set of model indices (also with an end-of-sequence termination) by the second codeword generator 100.
  • the model index is used for the model index and arithmetic coding is used for the signal samples, and each fixed-length codeword for the model index is inserted as soon as the encoding of a corresponding signal segment of samples is completed in the sense that the the signal segment of samples can be decoded from the bitstream.
  • the third method results in an arithmetic code for the signal samples that is interlaced with model index samples, without requiring additional bits for separating the bitstreams containing information for the dequantizer 204 and the modeller 213.
  • the reconstructed signal 121 is formed by processing the quantized segments produced by the quantizer 104 in the reconstructing means 117, which reconstructing means 117 includes components performing the inverse operations of the components of the pre-processing means 125.
  • the reconstructing means 117 may include a denormalization means 105 for performing a denormalization of the signal segment, an inverse transformer 106 for applying an inverse transform to the denormalized signal segment, a second correcting means or adder 115 that adds back the zero-input response to the inversely transformed signal segment, and an inverse weighting filter 108 for applying an inverse filter to the corrected signal segment.
  • the reconstruction operators may also be updated from the reconstructed signal 121. It is to be noted that the normalization means and the correcting means are optional components of the reconstructed means 117.
  • a decoder or apparatus 30 for decoding will now be described in accordance with an embodiment of the present invention.
  • Fig. 3 shows a decoder or apparatus 30 for decoding a bit stream 124 of coded data which may be received from the coder or apparatus 10 or 20 for encoding described with reference to Figs. 1 or 2 , respectively.
  • the bit stream is received by a demultiplexer 214 that splits the bit stream in information about a combined distribution model and a bit stream corresponding to a current sequence of coded data, i.e. quantization indices for a current signal segment of the input signal 120, pre-processed by the pre-processing means 125 such as described with reference to Figs. 1 and 2 .
  • the current sequence of coded data is provided to a decoder 219, which uses a combined distribution model provided by a modeller 213 in order to output a sequence of decoded data.
  • the quantization indices input in the decoder 219 specify quantized subsegments.
  • the modeller 213 obtains the combined distribution model by adding at least one first distribution model with which model parameters are associated and at least one fixed distribution model.
  • the model parameters are extracted by an extracting means 218 from an existing part of a reconstructed signal 221 which corresponds to past sequences of the bit stream 124.
  • the reconstructed signal 221 is generated by a reconstructing means 217 which will be described in more detail with reference to Fig. 4 in the following.
  • the information about the combined distribution model which may be received in the form of a model index, includes at least weighting coefficients and is provided to the modeller 213.
  • the modeller 213 can then affect the weighting coefficients to the corresponding distribution models (the first and fixed distribution models) in accordance with the model index 223 for obtaining the combined distribution model.
  • the extracting means 218 allows the probabilistic modeller 213 to create a combined distribution model in a similar manner as the extracting means 118 described with reference to Figs. 1 or 2 .
  • the decoder 219 includes a first codeword interpreter 209, which outputs quantization indices, and a dequantizer 204, which outputs the sequence of decoded data, i.e. the quantized current signal segment.
  • the dequantizer computes the quantized data from the quantization indices.
  • the reconstructing means 217 performs the inverse process of the pre-processing means 125 described with reference to Figs. 1 or 2 on a segment-by-segment basis, thereby rendering a reconstructed signal 221 in response to the sequence of decoded data provided by the dequantizer 204.
  • the reconstructed signal 221 can then output a part of the reconstructed signal 221 from the current sequence of decoded data, thereby the reconstructed signal 221 is continuously updated.
  • a second codeword interpreter 200 may be arranged between the demultiplexer 214 and the modeller 213 in order to decode the coded model index or coded information about the combined distribution model and provide this information or model index to the modeller 213.
  • the model index specifies information about the combined distribution model and in particular a set of weighting coefficients.
  • the modeller provides a combined distribution model 424 to the first codeword interpreter 209 and/or to the dequantizer 204.
  • the combined distribution model specifies the set of reconstruction points used in the dequantizer 204.
  • the first codeword interpreter 209 provides the index for a particular point and this point is then determined in the dequantizer 204.
  • the set of reconstruction points of the constrained-resolution quantizer is spaced with a spacing that is the inverse of the local density of reconstruction points as computed by standard high-rate quantization theory based on the combined distribution model 424 provided by the modeller 213.
  • the index information is used to determine the correct quantization index in the first codeword interpreter 209 using the combined distribution model provided by the modeller 213.
  • This quantization index is then used in the dequantizer 204 to select one of the reconstruction points of the uniform constrained-entropy quantizer.
  • the reconstruction points of the dequantizer 204 are identical to the reconstruction points of the quantizer 104, and it could be considered that the dequantizer 204 is identical to a component of the quantizer 104.
  • Fig. 4 shows a system or apparatus 40 for decoding a bit stream 124 of coded data, which apparatus 40 is equivalent to the apparatus 30 described with reference to Fig. 3 except that examples of a reconstructed means 217 and an extracting means 218 are illustrated in more detail.
  • the reconstructed means 217 is equivalent to the reconstructed means 117 described with reference to Fig. 2 and may include a denormalization means 205, an inverse transformer 206 such as an inverse KLT transformer 206, a correcting means or adder 215, a response computer 207 and an inverse weighting filter 218.
  • the extracting means 218 is equivalent to the extracting means 118 described with reference to Fig. 2 and may include a LP analyser 210, a perceptual weighting adaptation means 211 and an SVD 212.
  • FIG. 5 An example of a modeller 113 of the apparatus 10 or 20 for encoding, such as described with reference to Figs. 1 or 2 , will now be described with reference to Fig. 5 .
  • the probabilistic modeller 113 determines a probabilistic model or combined distribution model for the quantization indices.
  • the probabilistic model is based on the autoregressive signal model corresponding to the linear prediction coefficients estimated by the LP analyzer 110 and the perceptual weighting computed in adaptation 115.
  • the entropy coder 109 can define the code words that are to be transmitted or stored.
  • the optimal description length used to describe the current signal segment with a particular probabilistic model can be estimated via a summation of the code length of the quantized signal and the length used for describing the model.
  • the resulting length called description length in the following, can be used as a means for selecting the model.
  • Equation (8) clearly illustrates the effect of reverse waterfilling, i.e. a component p Si
  • the probability density model used in the present invention is a mixture (weighted sum) of a backward adapted probability density and one or more other component probability densities.
  • Each joint probability density model is a mixture model resulting in a combined distribution model.
  • the distribution models may share the same mixture components, wherein only the weights or weighting coefficients of the components vary, as illustrated in the following equation: ⁇ j p s j
  • M i p s
  • ⁇ k 1 K w ik ⁇ p s
  • M i ) represents a probability distribution, the sum of the weights or weighting coefficients is equal to unity.
  • the set of weights or weighting coefficients forms a probability distribution for the component probability densities.
  • two or three component probability densities may be used.
  • the combined distribution model is obtained by adding at least one first distribution model with which the model parameters extracted from the reconstructed signal 121 are associated and at least one fixed distribution model. Weighting coefficients are affected to and multiplied by each of these distribution models. The sum of these weighted distribution models results in the combined distribution model.
  • the combined distribution model is obtained by adding at least one first Gaussian distribution model generatated in the first distribution generator 303 based on the autoregressive model parameters extracted from the reconstructed signal 121, at least one fixed uniform distribution model generated in the second distribution generator 301 and at least one adaptive uniform distribution model generated in the adaptive distribution generator 302, selected in response to the extracted autoregressive model parameters.
  • weighting coefficients are affected to and multiplied by each of the corresponding distribution models for a summation.
  • any arbitrary number of component probability densities may be used.
  • a quantized version of the weighting coefficients or a weigth vector representing the weighting coefficients is transmitted or is stored together with the sequence of coded data.
  • a constrained-entropy quantization procedure may be used to quantize the weight vectors in order to optimize performance.
  • the quantizer weight vectors have a low bit rate, it is reasonable to use a constrained-resolution quantizer for the weight vectors even when constrained-entropy coding is used for the signal segments. In this case the number L ( M i ) in equation (8) is fixed.
  • three component distribution densities generated in a first 303, a second 301 and a third 302 generator, are weighted and summed before the resulting mixture density function, i.e. the combined distribution model, is used to estimate the description length in a description length estimator 305.
  • the estimator 305 receives a segment of the preprocessed quantized signal 321 from the codeword generator 109, comprising the set of scalars s j for equation (8).
  • the first generator 303 may generate a Gaussian distribution model obtained from the model parameters through the SVD operator 112.
  • the model parameters are associated with the Gaussian model and may represent the variance of the Gaussian distribution.
  • the second generator 301 may generate a fixed distribution model, which may be a uniform distribution with a range that equals the range of the digital representation of the input signal 120.
  • the third generator 302 may generate an adaptive distribution model selected in response to the model parameters extracted from the reconstructed signal 121.
  • the distribution model generated by the third generator 302 may be a uniform distribution which is adaptive with a range corresponding to 12 times the range of the standard deviation of the corresponding Gaussian distribution generated by the first generator 301.
  • the uniform distribution components remove precision problems associated with the Gaussian density.
  • one of the distribution models is adapted for large deviation and one of the other models is adapted for small deviation.
  • the weight vectors and codewords are affected to the distribution models by a weight codebook 304.
  • the probabilistic modeller 113 searches through every entry or set of values of weighting coefficients of the weight codebook 304 and selects the set of weighting coefficients leading to the shortest description length. Then, the combined distribution model 324 which corresponds to the sum of the different distribution models generated by the generators 301-303, each of the model being multiplied by its respective weighting coefficient, is sent to the entropy coder 109.
  • the probabilistic modeller 213 receives the model index 223 and generates the combined distribution model 424 used by the first codeword interpreter 209 and the dequantizer 204.
  • the modeller 213 is equivalent to the modeller 113 described with reference to Fig. 5 except that the modeller 213 of the apparatus for decoding does not include a description length estimator.
  • the modeller 213 includes a first generator 403 for generating a first Gaussian distribution model based on the autoregressive model parameters, a second generator 401 for generating a fixed distribution model and may further include a third generator 402 for generating an adaptive uniform distribution model selected in response to the autoregressive model parameters. These model parameters are extracted by the extracting means 218 from the reconstructed signal 221 generated by the reconstructing means 217.
  • the first distribution model 403 may be a Gaussian distribution model and the extracted model parameters provided by the extracting means 218 are parameters of the Gaussian distribution model.
  • the fixed distribution model may be a uniform signal model, which is characteristic of the input signal 120.
  • weighting coefficients are affected to each of these distribution models in accordance with the model index 223 decoded by the second codeword interpreter 200.
  • backward adaptive encoding enables to reduce bit rate
  • this type of encoding may present poor robustness against channel errors in the form of bit errors and/or packet loss.
  • One of the reasons may be that the reconstructed signal segment is used for analysis. This type of error will be referred to as error propagation through analysis in the following.
  • Another reason may be that the subtraction of the zero-input response propagates past signal errors. This type of errors decays if the filters are stable and will be referred to as error propagation through filtering in the following.
  • the set of weighting coefficients ⁇ w i 1 , ⁇ , w ik ⁇ determines whether the mixture probabilistic model, i.e. the combined distribution model with weight index i , is dependent on the backward adaptation probabilistic density, i.e. the distribution model generated by the first generator 403. If the weighting coefficient for a probabilistic density is zero for a time segment longer than the window length of the backward adaptive analysis, then the error propagation through analysis is stopped.
  • the threshold values can be adapted, either in real-time or off-line, such that a desired level of robustness is achieved. It is noted that as the quality of the reconstructed signal 121 does not vary with the combined distribution model used (the rate does), the bias can be enacted both during background or foreground signals.
  • a plurality of fixed probabilistic signal models (distribution models) that are commonly seen in the input signal 120 may be introduced as components of the combined distribution model in addition to the fixed distribution model generated in by the third generators 302 and 402.
  • Error propagation through filtering is generally a lesser problem.
  • Most common methods used to estimate autoregressive model parameters through linear-predictive analysis lead to stable filters, which implies that errors in the contributions of the zero-input response decay without additional effort.
  • a channel is particularly poor, it can be ensured that the zero-input response decays more rapidly by e.g. considering the zero-input response as a summation of responses to previous individual blocks. For each block the response can then be windowed, so that it has a finite support and, therefore, does not ring beyond a small number of samples. When this is done consistently at the encoder and the decoder, then error propagation through filtering is significantly diminished.
  • a computer readable medium having computer executable instructions for carrying out, when run on a processing unit, each of the steps of the method for encoding described above is provided, and a computer readable medium having computer executable instructions for carrying out, when run on a processing unit, each of the steps of the method for decoding described above is provided.

Claims (59)

  1. Verfahren zum Codieren eines Eingangssignals (120), wobei das Verfahren die folgenden Schritte enthält:
    Erzeugen eines rekonstruierten Signals (121) aus früheren codierten Signalsegmenten des Eingangssignals (120);
    Extrahieren von Modellparametern aus dem rekonstruierten Signal (121);
    Addieren mindestens eines ersten Verteilungsmodells, dem die extrahierten Modellparameter zugeordnet werden, und mindestens eines festen Verteilungsmodells, wobei jedem dieser Verteilungsmodelle Gewichtungskoeffizienten beigeordnet werden, um ein kombiniertes Verteilungsmodell zu erhalten;
    Codieren eines aktuellen Signalsegments des Eingangssignals (120) zu einer Sequenz codierter Daten unter Verwendung des kombinierten Verteilungsmodells; und
    Erzeugen eines Bitstromes (124), der die Sequenz codierter Daten und Informationen über das kombinierte Verteilungsmodell, das dem aktuellen Signalsegment entspricht, enthält.
  2. Verfahren nach Anspruch 1, wobei die Informationen über das kombinierte Verteilungsmodell als Nebeninformationen in Form eines Modellindex' codiert werden, der mindestens die Gewichtungskoeffizienten spezifiziert.
  3. Verfahren nach Anspruch 1 oder 2, wobei die Gewichtungskoeffizienten im Hinblick auf die Minimierung einer geschätzten Codelänge für das aktuelle Signalsegment ausgewählt werden.
  4. Verfahren nach einem der vorangehenden Ansprüche, wobei der Schritt des Codierens die folgenden Schritte enthält:
    Quantisieren des aktuellen Signalsegments unter Verwendung des kombinierten Verteilungsmodells; und
    Codieren des quantisierten aktuellen Signalsegments zu der Sequenz codierter Daten.
  5. Verfahren nach einem der Ansprüche 1-3, wobei der Schritt des Codierens die folgenden Schritte enthält:
    Quantisieren des aktuellen Signal segments; und
    Codieren des quantisierten aktuellen Signalsegments zu der Sequenz codierter Daten unter Verwendung des kombinierten Verteilungsmodells.
  6. Verfahren nach Anspruch 4 oder 5, wobei die Quantisierungszellengröße, die für den Schritt des Quantisierens eines bestimmten Satzes Abtastungen verwendet wird, konstant ist.
  7. Verfahren nach einem der vorangehenden Ansprüche, wobei das feste Verteilungsmodell ein gleichförmiges Verteilungsmodell ist.
  8. Verfahren nach einem der vorangehenden Ansprüche, wobei das erste Verteilungsmodell ein Gauss'sches Verteilungsmodell ist und die extrahierten Modellparameter Parameter für das Gauss'sche Verteilungsmodell sind.
  9. Verfahren nach einem der vorangehenden Ansprüche, wobei das kombinierte Verteilungsmodell ein Mischmodell ist, das des Weiteren mindestens ein adaptives Verteilungsmodell enthält, das in Reaktion auf die extrahierten Modellparameter ausgewählt ist, wobei diesem adaptiven Verteilungsmodell ein Gewichtungsfaktor beigeordnet wird, und wobei dieses gewichtete adaptive Verteilungsmodell zu dem ersten und dem festen gewichteten Verteilungsmodell addiert wird, um das kombinierte Verteilungsmodell zu erhalten.
  10. Verfahren nach einem der vorangehenden Ansprüche, wobei das kombinierte Verteilungsmodell aus mehreren kombinierten Verteilungsmodellen in Reaktion auf eine Codelänge eines Teilsegments des aktuellen Signalsegments und eine Codelänge, die zum Beschreiben des Verteilungsmodells des rekonstruierten Signals verwendet wird, ausgewählt wird.
  11. Verfahren nach einem der vorangehenden Ansprüche, wobei, vor dem Schritt des Erzeugens eines rekonstruierten Signals, das Verfahren die folgenden Schritte enthält:
    Anwenden eines perzeptiven Filters auf ein Signalsegment des Eingangssignals (120);
    Anwenden einer Transformation auf das gefilterte Signalsegment; und
    Quantisieren des transformierten und gefilterten Signalsegments.
  12. Verfahren nach Anspruch 11, wobei der Schritt des Erzeugens eines rekonstruierten Signals die folgenden Schritte enthält:
    Anwenden einer Umkehrtransformation auf das quantisierte Signalsegment; und
    Anwenden eines Umkehrgewichtungsfilters auf das umkehrtransformierte Signalsegment.
  13. Verfahren nach einem der vorangehenden Ansprüche, wobei die Gewichtungskoeffizienten so verzerrt werden, dass die Fehlerausbreitung minimiert wird.
  14. Verfahren nach einem der vorangehenden Ansprüche, wobei der dem ersten Verteilungsmodell beigeordnete Gewichtungskoeffizient zur Minimierung der Fehlerausbreitung in Richtung eines Wertes von null verzerrt wird.
  15. Verfahren nach einem der Ansprüche 1-13, wobei der dem ersten Verteilungsmodell beigeordnete Gewichtungskoeffizient mit einem Schwellenwert verglichen wird, unterhalb dessen der Gewichtungskoeffizient auf null gesetzt wird.
  16. Vorrichtung zum Codieren eines Eingangssignals (120), wobei die Vorrichtung Folgendes enthält:
    ein Rekonstruktionsmittel (117) zum Erzeugen eines rekonstruierten Signals (121) aus früheren codierten Signalsegmenten des Eingangssignals (120);
    ein Extrahiermittel (118) zum Extrahieren von Modellparametern aus dem rekonstruierten Signal (121);
    einen Modellbildner (113), der dafür geeignet ist, mindestens ein erstes Verteilungsmodell, das durch mindestens einen ersten Verteilungsgenerator (303) mit den Modellparametern erzeugt wurde, und mindestens ein festes Verteilungsmodell, das durch mindestens einen zweiten Verteilungsgenerator (301) erzeugt wurde, zu addieren, wobei ein Gewichtscodebuch (304) jedem dieser Verteilungsmodelle Gewichtungskoeffizienten beiordnet, um ein kombiniertes Verteilungsmodell zu erhalten;
    einen Codierer (119) zum Codieren eines aktuellen Signalsegments des Eingangssignals (120) zu einer Sequenz codierter Daten unter Verwendung des kombinierten Verteilungsmodells; und
    einen Multiplexer (116), der Informationen über das kombinierte Verteilungsmodell von dem Modellbildner (113) und die Sequenz codierter Daten von dem Codierer (119) zum Erzeugen eines Bitstromes (124), der dem aktuellen Signalsegment entspricht, empfängt.
  17. Vorrichtung nach Anspruch 16, wobei ein zweiter Codewortgenerator (100) Informationen über das kombinierte Verteilungsmodell als Nebeninformationen in Form eines Modellindex' codiert, der mindestens die Gewichtungskoeffizienten spezifiziert.
  18. Vorrichtung nach Anspruch 16 oder 17, wobei das Gewichtscodebuch (304) die Gewichtungskoeffizienten im Hinblick auf die Minimierung einer durch eine Schätzvorrichtung (305) geschätzten Codelänge auswählt.
  19. Vorrichtung nach einem der Ansprüche 16-18, wobei der Codierer (119) Folgendes enthält:
    einen Quantisierer (104) zum Quantisieren des aktuellen Signalsegments unter Verwendung des kombinierten Verteilungsmodells; und
    einen ersten Codewortgenerator (109) zum Codieren des quantisierten aktuellen Signalsegments zu der Sequenz codierter Daten.
  20. Vorrichtung nach einem der Ansprüche 16-18, wobei der Codierer (119) Folgendes enthält:
    einen Quantisierer (104) zum Quantisieren des aktuellen Signalsegments; und
    einen ersten Codewortgenerator (109) zum Codieren des quantisierten aktuellen Signalsegments zu der Sequenz codierter Daten unter Verwendung des kombinierten Verteilungsmodells.
  21. Vorrichtung nach Anspruch 19 oder 20, wobei der Quantisierer (104) ein skalarer Quantisierer ist.
  22. Vorrichtung nach einem der Ansprüche 19-21, wobei die Quantisierungszellengröße des Quantisierers (104) für einen bestimmten Satz Abtastungen konstant ist.
  23. Vorrichtung nach einem der Ansprüche 16-22, wobei das feste Verteilungsmodell des zweiten Verteilungsgenerators (301) ein gleichförmiges Verteilungsmodell ist.
  24. Vorrichtung nach einem der Ansprüche 16-23, wobei das erste Verteilungsmodell des ersten Verteilungsgenerators (303) ein Gauss'sches Verteilungsmodell ist und die extrahierten Modellparameter Parameter für das Gauss'sche Verteilungsmodell sind.
  25. Vorrichtung nach einem der Ansprüche 16-24, wobei der Modellbildner (113) des Weiteren mindestens einen adaptiven Verteilungsgenerator (302) zum Erzeugen eines adaptiven Verteilungsmodells enthält, das in Reaktion auf die extrahierten Modellparameter ausgewählt ist, wobei das Gewichtscodebuch (304) dem adaptiven Verteilungsmodell einen Gewichtungskoeffizienten beiordnet, und wobei der Modellbildner (113) das kombinierte Verteilungsmodell durch Addieren - wobei jedes der Verteilungsmodelle mit seinem entsprechenden Gewichtungskoeffizienten multipliziert wird - des adaptiven Verteilungsmodells zu dem ersten und dem festen Verteilungsmodell erhält.
  26. Vorrichtung nach einem der Ansprüche 16-25, wobei der Modellbildner (113) das kombinierte Verteilungsmodell aus mehreren kombinierten Verteilungsmodellen in Reaktion auf eine Codelänge eines Teilsegments des aktuellen Signalsegments und eine Codelänge, die zum Beschreiben des Verteilungsmodells des rekonstruierten Signals (121) verwendet wird, auswählt.
  27. Vorrichtung nach einem der Ansprüche 19-26, wobei das Eingangssignal (120) vor der Verarbeitung in dem Rekonstruktionsmittel (117) verarbeitet wird durch:
    ein perzeptives Gewichtungsfilter (101) zum Filtern eines Signalsegments;
    einen Transformator (102) zum Anwenden einer Transformation auf das gefilterte Signalsegment; und
    den Quantisierer (104) des Codierers (119) zum Quantisieren des transformierten Signalsegments.
  28. Vorrichtung nach Anspruch 27, wobei das Rekonstruktionsmittel (117) Folgendes enthält:
    einen Umkehrtransformator (106) zum Anwenden einer Umkehrtransformation auf das quantisierte Signalsegment; und
    ein Umkehrgewichtungsfilter (108) zum Anwenden eines Umkehrgewichtungsfilters auf das umkehrtransformierte Signalsegment.
  29. Vorrichtung nach Anspruch 28, die des Weiteren Folgendes enthält:
    ein erstes Korrekturmittel (114), das zwischen dem perzeptiven Gewichtungsfilter (101) und dem Transformator (102) angeordnet ist, um eine Subtraktion einer Nulleingangsantwort auf das gefilterte Signalsegment auszuführen; und
    ein zweites Korrekturmittel (115), das zwischen dem Umkehrtransformator (106) und dem Umkehrgewichtungsfilter (108) angeordnet ist, um eine Addition einer Nulleingangsantwort auf das umkehrtransformierte Signalsegment auszuführen.
  30. Vorrichtung nach Anspruch 28 oder 29, die des Weiteren Folgendes enthält:
    ein Normalisierungsmittel (103), das zwischen dem Transformator (102) und dem Quantisierer (104) angeordnet ist, um eine Normalisierung des transformierten Signalsegments auszuführen; und
    ein Denormalisierungsmittel (105), das zwischen dem Quantisierer (104) und dem Umkehrtransformator (106) angeordnet ist, um eine Denormalisierung des umkehrtransformierten Signalsegments auszuführen.
  31. Vorrichtung nach Anspruch 29 oder 30, die des Weiteren einen Antwortcomputer (107) zum Einspeisen einer Nulleingangsantwort in das Korrekturmittel (114, 115) enthält.
  32. Vorrichtung nach einem der Ansprüche 16-31, wobei das Extrahiermittel (118) einen linearen prädiktiven Analysator (110) enthält.
  33. Vorrichtung nach einem der Ansprüche 16-32, wobei der Modellbildner 113 die Gewichtungskoeffizienten zur Minimierung der Fehlerausbreitung verzerrt.
  34. Vorrichtung nach einem der Ansprüche 16-33, wobei der Modellbildner (113) die Auswahl der Gewichtungskoeffizienten der Verteilungsmodelle, die auf den früheren rekonstruierten Signalen basieren, zur Minimierung der Fehlerausbreitung in Richtung eines Wertes von null verzerrt.
  35. Vorrichtung nach einem der Ansprüche 16-34, wobei der Modellbildner 113 den Gewichtungskoeffizienten des ersten Verteilungsmodells mit einem Schwellenwert vergleicht, unterhalb dessen er den Gewichtungskoeffizienten auf null setzt.
  36. Verfahren zum Decodieren eines Bitstromes (124) codierter Daten, wobei das Verfahren die folgenden Schritte enthält:
    Extrahieren - aus dem Bitstrom (124) - einer aktuellen Sequenz codierter Daten und eines codierten Modellindex' (223), der Informationen über ein kombiniertes Verteilungsmodell enthält, wobei diese Informationen Gewichtungskoeffizienten enthalten;
    Extrahieren von Modellparametern aus einem bestehenden Teil eines rekonstruierten Signals (221), das früheren Sequenzen des Bitstromes (124) entspricht;
    Addieren mindestens eines ersten Verteilungsmodells, dem die Modellparameter zugeordnet sind, und mindestens eines festen Verteilungsmodells, wobei die Gewichtungskoeffizienten den entsprechenden Verteilungsmodellen gemäß dem Modellindex (223) beigeordnet werden, um ein kombiniertes Verteilungsmodell zu erhalten;
    Decodieren der aktuellen Sequenz codierter Daten zu einer aktuellen Sequenz decodierter Daten unter Verwendung des kombinierten Verteilungsmodells; und
    Erzeugen eines Teils des rekonstruierten Signals (221) aus der aktuellen Sequenz decodierter Daten.
  37. Verfahren nach Anspruch 36, wobei der Modellindex als Nebeninformationen empfangen wird.
  38. Verfahren nach Anspruch 36 oder 37, wobei das feste Verteilungsmodell ein gleichförmiges Verteilungsmodell ist.
  39. Verfahren nach einem der Ansprüche 36-38, wobei das erste Verteilungsmodell ein Gauss'sches Verteilungsmodell ist.
  40. Verfahren nach einem der Ansprüche 36-39, wobei das kombinierte Verteilungsmodell ein Mischmodell ist, das des Weiteren mindestens ein adaptives Verteilungsmodell enthält, das in Reaktion auf die Modellparameter ausgewählt wurde, wobei diesem adaptiven Verteilungsmodell ein Gewichtungsfaktor gemäß dem Modellindex (223) beigeordnet wird, und wobei dieses gewichtete adaptive Verteilungsmodell zu dem ersten und dem festen gewichteten Verteilungsmodell addiert wird, um das kombinierte Verteilungsmodell zu erhalten.
  41. Verfahren nach einem der Ansprüche 36-40, wobei der Schritt des Decodierens die folgenden Schritte enthält:
    Interpretieren eines Codewortes für die codierten Daten; und
    Dequantisieren der decodierten Daten auf der Basis des Codewortes.
  42. Verfahren nach einem der Ansprüche 36-41, das des Weiteren einen Schritt des Interpretierens eines Codewortes für den codierten Modellindex zum Extrahieren des Modellindex' enthält.
  43. Verfahren nach einem der Ansprüche 41 oder 42, wobei der Schritt des Erzeugens eines rekonstruierten Signals die folgenden Schritte enthält:
    Anwenden einer Umkehrtransformation auf die dequantisierten Daten; und
    Anwenden eines Umkehrgewichtungsfilters auf die umkehrtransformierten Daten.
  44. Verfahren nach Anspruch 43, wobei, zwischen dem Schritt des Dequantisierens und dem Schritt des Anwendens einer Umkehrtransformation, der Schritt des Erzeugens eines rekonstruierten Signals des Weiteren folgenden Schritt enthält:
    Durchführen einer Denormalisierung der dequantisierten Daten.
  45. Verfahren nach Anspruch 43 oder 44, wobei, zwischen dem Schritt des Anwendens einer Umkehrtransformation und dem Schritt des Anwendens eines Umkehrgewichtungsfilters, der Schritt des Erzeugens eines rekonstruierten Signals des Weiteren folgenden Schritt enthält:
    Korrigieren der Daten durch Durchführen einer Addition der Nulleingangsantwort auf die umkehrtransformierten Daten.
  46. Vorrichtung zum Decodieren eines Bitstromes (124) codierter Daten, wobei die Vorrichtung Folgendes enthält:
    einen Demultiplexer (214) zum Demultiplexieren des Bitstromes (124) in einer aktuellen Sequenz codierter Daten und eines Modellindex' (223), der Informationen über ein kombiniertes Verteilungsmodell enthält, wobei diese Informationen Gewichtungskoeffizienten enthalten;
    ein Extrahiermittel (218) zum Extrahieren von Modellparametern aus einem bestehenden Teil eines rekonstruierten Signals (221), das früheren Sequenzen des Bitstromes (124) entspricht;
    einen Modellbildner (213), der dafür geeignet ist, mindestens ein erstes Verteilungsmodell, das mit den extrahierten Modellparametern durch mindestens einen ersten Generator (403) erzeugt wurde, und mindestens ein festes Verteilungsmodell, das durch mindestens einen zweiten Generator (401) erzeugt wurde, zu addieren, wobei ein Gewichtscodebuch (404) die Gewichtungskoeffizienten den Verteilungsmodellen gemäß dem Modellindex (223) beiordnet, um ein kombiniertes Verteilungsmodell zu erhalten;
    einen Decodierer (219) zum Decodieren der aktuellen Sequenz codierter Daten zu einer aktuellen Sequenz decodierter Daten unter Verwendung des kombinierten Verteilungsmodells; und
    ein Rekonstruktionsmittel (217) zum Erzeugen eines Teils des rekonstruierten Signals (221) aus der aktuellen Sequenz decodierter Daten.
  47. Vorrichtung nach Anspruch 46, wobei ein Demultiplexer (214) den codierten Modellindex (223) als Nebeninformationen empfängt.
  48. Vorrichtung nach Anspruch 46 oder 47, wobei das feste Verteilungsmodell ein gleichförmiges Verteilungsmodell ist.
  49. Vorrichtung nach einem der Ansprüche 46-48, wobei das erste Verteilungsmodell ein Gauss'sches Verteilungsmodell ist und die extrahierten Modellparameter Parameter des Gauss'schen Verteilungsmodells sind.
  50. Vorrichtung nach einem der Ansprüche 46-49, wobei der Modellbildner (213) des Weiteren mindestens einen dritten Generator (402) zum Erzeugen mindestens eines adaptiven Verteilungsmodells mit den extrahierten Modellparametern enthält, wobei das Gewichtscodebuch dem adaptiven Verteilungsmodell einen Gewichtungskoeffizienten gemäß dem Modellindex (223) beiordnet, und wobei der Modellbildner (113) das kombinierte Verteilungsmodell durch Addieren - wobei jedes der Verteilungsmodelle mit seinem entsprechenden Gewichtungskoeffizienten multipliziert wird - des adaptiven Verteilungsmodells zu dem ersten und dem festen Verteilungsmodell erhält.
  51. Vorrichtung nach einem der Ansprüche 46-50, wobei der Decodierer (219) einen ersten Codewortinterpreter (209) und einen Dequantisierer (204) zum Decodieren der aktuellen Sequenz codierter Daten enthält.
  52. Vorrichtung nach einem der Ansprüche 46-51, die des Weiteren einen zweiten Codewortinterpreter (200) zum Interpretieren eines Codewortes, das dem codierten Modellindex entspricht, enthält.
  53. Vorrichtung nach einem der Ansprüche 51 oder 52, wobei das Rekonstruktionsmittel (217) Folgendes enthält:
    einen Umkehrtransformator (206) zum Anwenden einer Umkehrtransformation auf die dequantisierten Daten; und
    ein Umkehrgewichtungsfilter (208) zum Anwenden einer Umkehrgewichtung auf die umkehrtransformierten Daten.
  54. Vorrichtung nach Anspruch 53, wobei ein Denormalisierungsmittel (205) zwischen dem Dequantisierer (204) und dem Umkehrtransformator (206) zum Durchführen einer Denormalisierung der dequantisierten Daten angeordnet ist.
  55. Vorrichtung nach Anspruch 53 oder 54, wobei ein Korrekturmittel (215) zwischen dem Umkehrtransformator (206) und dem Umkehrgewichtungsfilter (208) zum Durchführen einer Addition einer Nulleingangsantwort auf die umkehrtransformierten Daten angeordnet ist.
  56. Vorrichtung nach Anspruch 55, die des Weiteren einen linearen Prädiktor (207) zum Einspeisen der Nulleingangsantwort in das Korrekturmittel (215) enthält.
  57. Vorrichtung nach einem der Ansprüche 46-56, wobei das Extrahiermittel (218) einen linearen prädiktiven Analysator (210) enthält.
  58. Computerlesbares Speichermedium mit durch einen Computer ausführbaren Instruktionen zum Durchführen eines jeden der Schritte des Verfahrens nach einem der Ansprüche 1-15, wenn sie in einer Prozessoreinheit ausgeführt werden.
  59. Computerlesbares Speichermedium mit durch einen Computer ausführbaren Instruktionen zum Durchführen eines jeden der Schritte des Verfahrens nach einem der Ansprüche 36-45, wenn sie in einer Prozessoreinheit ausgeführt werden.
EP07113397A 2007-07-30 2007-07-30 Audiodekoder mit geringer Verzögerung Active EP2023339B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT07113397T ATE479182T1 (de) 2007-07-30 2007-07-30 Audiodekoder mit geringer verzögerung
EP07113397A EP2023339B1 (de) 2007-07-30 2007-07-30 Audiodekoder mit geringer Verzögerung
DE602007008717T DE602007008717D1 (de) 2007-07-30 2007-07-30 Audiodekoder mit geringer Verzögerung
US12/671,631 US8463615B2 (en) 2007-07-30 2008-06-23 Low-delay audio coder
PCT/EP2008/057970 WO2009015944A1 (en) 2007-07-30 2008-06-23 A low-delay audio coder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07113397A EP2023339B1 (de) 2007-07-30 2007-07-30 Audiodekoder mit geringer Verzögerung

Publications (2)

Publication Number Publication Date
EP2023339A1 EP2023339A1 (de) 2009-02-11
EP2023339B1 true EP2023339B1 (de) 2010-08-25

Family

ID=38820333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07113397A Active EP2023339B1 (de) 2007-07-30 2007-07-30 Audiodekoder mit geringer Verzögerung

Country Status (4)

Country Link
EP (1) EP2023339B1 (de)
AT (1) ATE479182T1 (de)
DE (1) DE602007008717D1 (de)
WO (1) WO2009015944A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044898A1 (en) 2009-10-15 2011-04-21 Widex A/S Hearing aid with audio codec and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031255B2 (en) 2012-06-15 2015-05-12 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide low-latency audio
US9495968B2 (en) * 2013-05-29 2016-11-15 Qualcomm Incorporated Identifying sources from which higher order ambisonic audio data is generated
US10770087B2 (en) 2014-05-16 2020-09-08 Qualcomm Incorporated Selecting codebooks for coding vectors decomposed from higher-order ambisonic audio signals
CN112767956B (zh) * 2021-04-09 2021-07-16 腾讯科技(深圳)有限公司 音频编码方法、装置、计算机设备及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1355298B1 (de) * 1993-06-10 2007-02-21 Oki Electric Industry Company, Limited CELP Kodierer und Dekodierer
US6894628B2 (en) * 2003-07-17 2005-05-17 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Apparatus and methods for entropy-encoding or entropy-decoding using an initialization of context variables
US7599840B2 (en) * 2005-07-15 2009-10-06 Microsoft Corporation Selectively using multiple entropy models in adaptive coding and decoding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044898A1 (en) 2009-10-15 2011-04-21 Widex A/S Hearing aid with audio codec and method

Also Published As

Publication number Publication date
ATE479182T1 (de) 2010-09-15
DE602007008717D1 (de) 2010-10-07
EP2023339A1 (de) 2009-02-11
WO2009015944A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
US8463615B2 (en) Low-delay audio coder
US6721700B1 (en) Audio coding method and apparatus
US8463604B2 (en) Speech encoding utilizing independent manipulation of signal and noise spectrum
US6401062B1 (en) Apparatus for encoding and apparatus for decoding speech and musical signals
US7756350B2 (en) Lossless encoding and decoding of digital data
US8396706B2 (en) Speech coding
EP2301022B1 (de) Vorrichtung und verfahren zur lpc-filter-quantisierung mit mehreren referenzwerten
US8301441B2 (en) Speech coding
US6353808B1 (en) Apparatus and method for encoding a signal as well as apparatus and method for decoding a signal
US20060173677A1 (en) Audio encoding device, audio decoding device, audio encoding method, and audio decoding method
EP1806737A1 (de) Toncodierer und toncodierungsverfahren
KR20080049116A (ko) 오디오 코딩
EP2270774B1 (de) Verlustloser mehrkanaliger Audio-codec
KR100408911B1 (ko) 선스펙트럼제곱근을발생및인코딩하는방법및장치
EP0390975B1 (de) Zur Sprachqualitätsverbesserung geeignetes Kodiergerät unter Anwendung einer Doppelanlage zur Pulserzeugung
EP2023339B1 (de) Audiodekoder mit geringer Verzögerung
EP1921752B1 (de) Adaptive arithmetische Codierung und Decodierung von digitalen Daten
US20110137661A1 (en) Quantizing device, encoding device, quantizing method, and encoding method
EP1293968A2 (de) Quantisierung der Anregung in einem "noise-feedback" Kodierungssystem unter Verwendung von Korrelationstechnik
Kırbız et al. Perceptual coding-based informed source separation
WO2014198724A1 (en) Apparatus and method for audio signal envelope encoding, processing and decoding by splitting the audio signal envelope employing distribution quantization and coding
JP3099876B2 (ja) 多チャネル音声信号符号化方法及びその復号方法及びそれを使った符号化装置及び復号化装置
Averbuch et al. Speech compression using wavelet packet and vector quantizer with 8-msec delay
Hernandez-Gomez et al. High-quality vector adaptive transform coding at 4.8 kb/s
JPH0749700A (ja) Celp型音声復号器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007008717

Country of ref document: DE

Date of ref document: 20101007

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100825

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101125

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GLOBAL IP SOLUTIONS (GIPS) AB

Owner name: GLOBAL IP SOLUTIONS, INC.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007008717

Country of ref document: DE

Effective date: 20110526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007008717

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GOOGLE INC., US

Effective date: 20120626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120712 AND 20120718

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120809 AND 20120815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007008717

Country of ref document: DE

Owner name: GOOGLE, INC., MOUNTAIN VIEW, US

Free format text: FORMER OWNER: GLOBAL IP SOLUTIONS, INC., GLOBAL IP SOLUTIONS (GIPS) AB, , SE

Effective date: 20120725

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007008717

Country of ref document: DE

Owner name: GOOGLE, INC., MOUNTAIN VIEW, US

Free format text: FORMER OWNERS: GLOBAL IP SOLUTIONS, INC., SAN FRANCISCO, CALIF., US; GLOBAL IP SOLUTIONS (GIPS) AB, STOCKHOLM, SE

Effective date: 20120725

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007008717

Country of ref document: DE

Owner name: GOOGLE LLC (N.D.GES.D. STAATES DELAWARE), MOUN, US

Free format text: FORMER OWNERS: GLOBAL IP SOLUTIONS, INC., SAN FRANCISCO, CALIF., US; GLOBAL IP SOLUTIONS (GIPS) AB, STOCKHOLM, SE

Effective date: 20120725

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120823 AND 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150717

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007008717

Country of ref document: DE

Owner name: GOOGLE LLC (N.D.GES.D. STAATES DELAWARE), MOUN, US

Free format text: FORMER OWNER: GOOGLE, INC., MOUNTAIN VIEW, CALIF., US

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230727

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230727

Year of fee payment: 17