EP2019750A2 - Nanocomposites renforcés par des nanotubes de carbone - Google Patents

Nanocomposites renforcés par des nanotubes de carbone

Info

Publication number
EP2019750A2
EP2019750A2 EP07759819A EP07759819A EP2019750A2 EP 2019750 A2 EP2019750 A2 EP 2019750A2 EP 07759819 A EP07759819 A EP 07759819A EP 07759819 A EP07759819 A EP 07759819A EP 2019750 A2 EP2019750 A2 EP 2019750A2
Authority
EP
European Patent Office
Prior art keywords
epoxy
dwnts
mwnts
nanocomposites
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07759819A
Other languages
German (de)
English (en)
Other versions
EP2019750A4 (fr
Inventor
Dongsheng Mao
Zvi Yaniv
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Nanotech Holdings Inc
Original Assignee
Applied Nanotech Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/693,454 external-priority patent/US8129463B2/en
Application filed by Applied Nanotech Holdings Inc filed Critical Applied Nanotech Holdings Inc
Publication of EP2019750A2 publication Critical patent/EP2019750A2/fr
Publication of EP2019750A4 publication Critical patent/EP2019750A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • CNTs carbon nanotubes
  • SWNTs single wall CNTs
  • DWNTs double wall CNTs
  • MWNTs multi-wall CNTs
  • CNTs From unique electronic properties and a thermal conductivity higher than that of diamond to mechanical properties where the stiffness, strength and resilience exceeds that of any current material, CNTs offer tremendous opportunity for the development of fundamental new material systems.
  • exceptional mechanical properties of CNTs E > 1.0 TPa and tensile strength of 50 GPa
  • low density 1-2.0 g/cm 3
  • CNT-reinforced composite materials Eric W. Wong, Paul E. Sheehan, Charles M. Lieber, "Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes", Science 277, 1971(1997).
  • CNTs are the strongest material known on earth.
  • SWNTs and DWNTs have even more promising as reinforcing materials for composites because of their higher surface area and higher aspect ratio.
  • Table 1 lists surface area and aspect ratio of SWNTs, DWNTs, and MWNTs.
  • Fig. 1 illustrates a process for manufacturing epoxy/CNT nanocomposites
  • Fig. 2 illustrates a graph showing the flexural strength of epoxy nanocomposites
  • Fig. 3 illustrates a graph showing the flexural modulus of epoxy nanocomposites.
  • a combination of MWNTs (herein, MWNTs have more than 2 walls) and DWNTs significantly improves the mechanical properties of polymer nanocomposites.
  • a small amount of DWNTs reinforcment ( ⁇ lwt.%) significantly improves the flexural strength of epoxy matrix nanocomposites.
  • a same or similar amount of MWNTs reinforcement significantly improves the flexural modulus (stiffness) of epoxy matrix nanocomposites.
  • Both flexural strength and flexural modulus of the MWNTs and DWNTs-coreinforced epoxy nanocomposites are further improved compared with same amount of either DWNTs or MWNTs-reinforced epoxy nanocomposites.
  • SWNTs may also work instead of DWNTs.
  • other thermoset polymers may also work.
  • Epoxy resin bisphenol-A was obtained from Arisawa Inc., Japan.
  • the hardener (dicyandiamide) was obtained from the same company which was used to cure the epoxy nanocomposites.
  • Both DWNTs and MWNTs were obtained from Nanocyl, Inc., Belgium.
  • Those CNTs were functionalized with amino (-NH 2 ) functional groups.
  • Amino-functionalized CNTs may help to improve the bonding between the CNTs and epoxy molecular chairs which can further improve the mechanical properties of the nanocomposites.
  • pristine CNTs or functionalized by other ways may also work (e.g., pellets obtained from Arkema Co., Japan (product name: RILSAN BMV-P20 PAI l).
  • Clay was provided by Southern Clay Products, U.S. (product name: Cloisite ® series 93A). It is a natural montmorillonite modified with a ternary ammonium salt.
  • the elastomer was styrene/ethylene butylenes/styrene (SEBS) purchased from Kraton Inc., U.S. (product name: G1657).
  • FIG. 1 illustrates a schematic diagram of a process flow to make epoxy/CNT nanocomposites. All ingredients were dried in a vacuum oven at 7O 0 C for at least 16 hours to fully eliminate moisture. CNTs were put in acetone 101 and dispersed by a micro-fluidic machine is step 102 (commercially available from Microfluidics Co.). The micro-fluidic machine uses high- pressure streams that collide at ultra-high velocities in precisely defined micron-sized channels. Its combined forces of shear and impact act upon products to create uniform dispersions. The CNT/acetone was then formed as a gel 103 resulting in the CNTs well dispersed in the acetone solvent. However, other methods, such as an ultrasonication process may also work.
  • a surfactant may be also used to disperse CNTs in solution.
  • Epoxy was then added in step 104 to the CNT/acetone gel to create an epoxy/CNT/acetone solution 105, which was followed by an ultrasonication process in a bath at 7O 0 C for 1 hour (step 106) to create an epoxy/CNT/acetone suspension 107.
  • the CNTs were further dispersed in epoxy in step 108 using a stirrer mixing process at 7O 0 C for half an hour at a speed of 1,400 rev/min. to create an epoxy/CNT/acetone gel 109.
  • a hardener was than added in step 110 to the epoxy/CNT/acetone gel 109 at a ratio of 4.5 wt.
  • Table 2 shows the mechanical properties (flexural strength and flexural modulus) of the epoxies made using the process flow of Fig. 1 to make epoxy/CNT nanocomposites.
  • the flexural strength of epoxy/DWNTs is higher than that of epoxy/MWNTs at the same loading of CNTs, while the flexural modulus of epoxy/DWNTs is lower than that of epoxy/MWNTs at the same loading of CNTs, as shown in Fig. 3.
  • Both the flexural strength and flexural modulus of epoxy/DWNTs (0.5wt.%)/MWNTs (0.5wt.%) are higher than those of epoxy/DWNTs (lwt.%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Une combinaison de MWNT (les MWNT ayant plus de deux parois) et de DWNT améliore significativement les propriétés mécaniques de nanocomposites polymères. Une faible quantité de renforcement par DWNT (<1 % en poids) améliore significativement la résistance à la flexion des nanocomposites à matrice époxy. Une quantité identique ou similaire de renforcement par MWNT améliore significativement le module d'élasticité en flexion (la rigidité) des nanocomposites à matrice époxy. La résistance à la flexion et le module d'élasticité en flexion des nanocomposites époxy co-renforcés par des MWNT et des DWNT sont plus encore améliorés comparativement à la même quantité de nanocomposites époxy renforcés par des DWNT ou des MWNT. Dans ce système de nanocomposite époxy/DWNT/MWNT, des SWNT peuvent également être employés à la place des DWNT. Hormis l'époxy, d'autres polymères thermodurcis peuvent également convenir.
EP07759819A 2006-03-31 2007-03-30 Nanocomposites renforcés par des nanotubes de carbone Withdrawn EP2019750A4 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US78823406P 2006-03-31 2006-03-31
US81039406P 2006-06-02 2006-06-02
US81931906P 2006-07-07 2006-07-07
US11/693,454 US8129463B2 (en) 2006-03-31 2007-03-29 Carbon nanotube-reinforced nanocomposites
PCT/US2007/065630 WO2007115162A2 (fr) 2006-03-31 2007-03-30 Nanocomposites renforcés par des nanotubes de carbone

Publications (2)

Publication Number Publication Date
EP2019750A2 true EP2019750A2 (fr) 2009-02-04
EP2019750A4 EP2019750A4 (fr) 2009-09-02

Family

ID=40149864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07759819A Withdrawn EP2019750A4 (fr) 2006-03-31 2007-03-30 Nanocomposites renforcés par des nanotubes de carbone

Country Status (5)

Country Link
EP (1) EP2019750A4 (fr)
JP (1) JP2009532531A (fr)
KR (1) KR20090025194A (fr)
CA (1) CA2647727A1 (fr)
WO (1) WO2007115162A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303234B2 (ja) * 2008-09-30 2013-10-02 日本ケミコン株式会社 高密度カーボンナノチューブ集合体及びその製造方法
EP2228406A1 (fr) 2009-03-13 2010-09-15 Bayer MaterialScience AG Propriétés mécaniques améliorées d'époxy remplies avec des nanotubes de carbone fonctionnalisés
IT1396918B1 (it) 2009-11-03 2012-12-20 Polimeri Europa Spa Procedimento per la preparazione di nanopiastrine grafeniche ad elevata disperdibilita' in matrici polimeriche a bassa polarita' e relative composizioni polimeriche
EP2553007A4 (fr) * 2010-03-26 2014-11-19 Univ Hawaii Résines renforcées par des nanomatériaux et matériaux apparentés
DE102010040040A1 (de) * 2010-08-31 2012-03-01 Sgl Carbon Se Verstärktes Epoxidharz
WO2013133941A1 (fr) * 2012-03-06 2013-09-12 Applied Nanotech Holdings, Inc. Nanocomposites renforcés par des nanotubes de carbone
US20160160001A1 (en) * 2014-11-06 2016-06-09 Northrop Grumman Systems Corporation Ultrahigh loading of carbon nanotubes in structural resins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012171A2 (fr) * 2003-07-28 2005-02-10 William Marsh Rice University Fonctionnalisation des parois laterales de nanotubes de carbone a l'aide d'organosilanes pour des composites a base de polymeres
WO2005028174A2 (fr) * 2003-06-16 2005-03-31 William Marsh Rice University Fabrication de composites de polymeres epoxydes renforces par des nanotubes de carbone a l'aide de nanotubes de carbone fonctionnalises

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241070B2 (ja) * 2002-02-12 2009-03-18 東レ株式会社 樹脂組成物およびその製造方法
JP4196567B2 (ja) * 2002-02-14 2008-12-17 東レ株式会社 炭素繊維強化樹脂組成物、成形材料およびその成形品
JP4931168B2 (ja) * 2005-01-06 2012-05-16 国立大学法人名古屋大学 高純度2層〜5層カーボンナノチューブの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028174A2 (fr) * 2003-06-16 2005-03-31 William Marsh Rice University Fabrication de composites de polymeres epoxydes renforces par des nanotubes de carbone a l'aide de nanotubes de carbone fonctionnalises
WO2005012171A2 (fr) * 2003-07-28 2005-02-10 William Marsh Rice University Fonctionnalisation des parois laterales de nanotubes de carbone a l'aide d'organosilanes pour des composites a base de polymeres

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007115162A2 *

Also Published As

Publication number Publication date
WO2007115162A2 (fr) 2007-10-11
JP2009532531A (ja) 2009-09-10
EP2019750A4 (fr) 2009-09-02
CA2647727A1 (fr) 2007-10-11
WO2007115162A3 (fr) 2008-07-31
KR20090025194A (ko) 2009-03-10

Similar Documents

Publication Publication Date Title
Puglia et al. Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’and ‘nano’scale
JP5568553B2 (ja) カーボンナノチューブ強化ナノコンポジット
Norhakim et al. Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites
US8129463B2 (en) Carbon nanotube-reinforced nanocomposites
Prolongo et al. Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment
WO2007115162A2 (fr) Nanocomposites renforcés par des nanotubes de carbone
Salam et al. Improvement in mechanical and thermo-mechanical properties of epoxy composite using two different functionalized multi-walled carbon nanotubes
JP4231916B2 (ja) 炭素繊維複合樹脂材料の製造方法
Ervina Efzan et al. A review on effect of nanoreinforcement on mechanical properties of polymer nanocomposites
Kumar et al. Effect of nanomaterials on tribological and mechanical properties of polymer nanocomposite materials
Chow et al. Epoxy/multiwall carbon nanotube nanocomposites prepared by sonication and planetary mixing technique
CN101432137A (zh) 碳纳米管加强的纳米复合物
Kumar et al. Tensile, torsional and bending behavior of multi-walled carbon nanotube reinforced polyurethane composites
Sekar et al. Carbon nanotubes: A reliable additive for the natural fiber-reinforced composites
Naderi et al. Fracture surface and mechanical properties of epoxy composites
Pal et al. Rubber blend nanocomposites
US20120220695A1 (en) Carbon Nanotube Reinforced Nanocomposites
Demircan et al. Tensile and flexural properties of MWCNT-COOH and hBN integrated polyamide 66/short glass fiber composites
Anand et al. Structural composites hybridized with nanofillers: An overview
Kermani et al. Recent advances in carboxylated butadiene rubber nanocomposites: effect of carbon nanotube and graphene oxide
Rana et al. Mechanical properties of epoxy reinforced with homogeneously dispersed carbon nanofibre
Albadrany et al. Preparation of novel nanocomposites using the Ultra-sonication technique
Ramesh et al. Influences of functionalized multiwalled carbon nanotube on the tensile and flexural properties of okra cellulose nanofibers/epoxy nanocomposites
Arman et al. Mechanical, Thermal Stability and Water Absorption Properties of Recycled Thermoplastic Blend Nanocomposites: Comparison of Nanoclay and Carbon Nanotube
WO2013133941A1 (fr) Nanocomposites renforcés par des nanotubes de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081028

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: YANIV, ZVI

Inventor name: MAO, DONGSHENG

A4 Supplementary search report drawn up and despatched

Effective date: 20090805

RIC1 Information provided on ipc code assigned before grant

Ipc: C08J 5/00 20060101ALI20090730BHEP

Ipc: B32B 27/04 20060101ALI20090730BHEP

Ipc: B32B 27/38 20060101AFI20081103BHEP

17Q First examination report despatched

Effective date: 20091008

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001