EP2016277A1 - Solenoid valve with material armature connection - Google Patents

Solenoid valve with material armature connection

Info

Publication number
EP2016277A1
EP2016277A1 EP07726734A EP07726734A EP2016277A1 EP 2016277 A1 EP2016277 A1 EP 2016277A1 EP 07726734 A EP07726734 A EP 07726734A EP 07726734 A EP07726734 A EP 07726734A EP 2016277 A1 EP2016277 A1 EP 2016277A1
Authority
EP
European Patent Office
Prior art keywords
anchor bolt
armature
switching element
anchor
hydraulic switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07726734A
Other languages
German (de)
French (fr)
Other versions
EP2016277B1 (en
Inventor
Nestor Rodriguez-Amaya
Matthias Schnell
Friedrich Boecking
Markus Rueckle
Philippe Allio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2016277A1 publication Critical patent/EP2016277A1/en
Application granted granted Critical
Publication of EP2016277B1 publication Critical patent/EP2016277B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves

Definitions

  • DE 196 50 865 A1 relates to a solenoid valve whose armature is designed in several parts and has an armature disk and an anchor bolt.
  • the anchor bolt is guided in a slider.
  • a damping device is provided on the armature. With such a device exactly the required short switching times of the solenoid valve can be maintained.
  • the solenoid valve is intended for use in injection systems with a high-pressure accumulator injection system (common rail).
  • the anchor plate is guided on the anchor bolt.
  • the anchor plate is on the one hand acted upon by a return spring and on the other hand secured by a shim, which is inserted in a recess on the circumference of the anchor bolt.
  • an anchor assembly is proposed in which an anchor plate is fastened via a guide pin on the anchor bolt.
  • the guide bolt is guided in a slot formed on the guide section of the anchor plate on the anchor bolt, so that the anchor plate is received with play in relation to the circumferential surface of the anchor bolt.
  • Solenoid valves are used as actuators for cost and space reasons for high-pressure accumulator injection systems (common rail).
  • the magnetic circuit of a solenoid valve consists of a magnetic coil received within a magnetic core and an armature which is connected to the switching element to be moved. There are several possibilities for the connection between the armature and the switching element.
  • the anchor bolt of the anchor plate can be mounted via the previously mentioned securing disk. Due to the inevitable play between the lock washer, a recess in the end face of the anchor plate and the recess made on the circumference of the anchor bolt for receiving the lock washer, there are adverse effects on the dynamics of the solenoid valve.
  • a possibility of connecting a two-part armature assembly between anchor plate and anchor bolt is also given by a cohesive joining method such as welding or gluing.
  • the disadvantages of these connection options are on the one hand the cumbersome assembly, on the other hand in the low achievable strength and finally in the limited accuracy in which such a connection can be made.
  • the formation of the anchor assemblies from two separate assemblies, namely anchor plate and anchor bolt is generally the advantage that the materials for the magnetic circuit, d. H. the material of the anchor plate and the material of the sealing function, which takes over the anchor bolt, can be optimally selected to the particular requirement. Therefore, it is desirable, taking into account the above-described boundary conditions, to use two-piece anchor assemblies that are selected according to the respective functions, optimally with regard to the material.
  • an armature plate belonging to the magnetic circuit of the solenoid valve is formed by means of the MIM technique (Metal Injection Molding).
  • MIM technique Metal Injection Molding
  • at least one recess in the form of a groove or groove are attached to the circumference of an anchor bolt, for example, or on the circumference of a hydraulic switching element in the region of the connection point with the anchor plate.
  • the recesses can be made in the region of the opening of the anchor plate, which are penetrated by the anchor bolt or by the hydraulic switching element, complementary to the outer geometry of the circumference of the anchor bolt or the hydraulic switching element.
  • the geometry on the outer peripheral surface of the anchor bolt or the hydraulic switching element can be easily manufactured in the output part with low tolerances.
  • the residual air gap required for solenoid valves can be set in the MIM tool and is created during metal injection molding, ie during the injection of a melt of a metallic material, without the need for reworking such as regrinding to adjust the residual air gap the end face of the anchor plate are required when it is joined to the anchor bolt or the hydraulic switching element via the MIM method.
  • the armature plate is formed as part of the magnetic circuit with respect to the end face, which is usually designed plan, the anchor bolt or the hydraulic switching element reset, so that a step between the end face of the anchor plate passing through the anchor bolt and the hydraulic switching element results, which defines the residual air gap between the end face of the armature plate opposite the magnetic core and the front of the magnetic core opposite the armature plate.
  • the material of the anchor bolt or the hydraulic switching element can be optimally selected according to the wear point.
  • a magnetic material is preferably selected in order to apply high magnetic forces and to avoid eddy current losses.
  • openings or recesses can be formed in arbitrary geometry to reduce the mass and for flow optimization, which can be formed without reworking the anchor plate.
  • About such openings or recesses in a fuel injector from a pressure-relieved control chamber diverted control volume flow to a low-pressure side return without major flow resistance, in the event that the inventively proposed solenoid valve is used on a fuel injector whose receiving the solenoid valve cavity as a low-pressure return to the Abêtung used from the control room diverted fuel tax amount.
  • connection between the anchor bolt or a hydraulic switching element and the integrally formed armature plate produced by means of the MIM method absorbs the acceleration forces which occur when the hydraulic switching element or the anchor bolt engages with the closing element received upon impact with the seat.
  • acceleration forces occurring can have a plurality of recesses, grooves or a collar or multiple frets or a geometry with undercut on the anchor bolt or on the hydraulic switching element and complementary thereto on the inner circumferential surface of the anchor plate passing through opening or Be formed bore so that the acceleration forces are reliably absorbed.
  • the use of the MIM method advantageously allows the formation of a metallic component made of a metallic material, on a component which is made of a different material, so that the individual components to be joined together, taking into account each optimized, adapted to the application branch material properties can be selected.
  • FIGS. 2.1, 2.2, 2.3 and 2.4 show different variants of the MIM connection of the armature assembly
  • FIG. 3 shows the use of the armature assembly proposed according to the invention on an outwardly opening valve (A-valve),
  • FIG. 4 shows the use of the inventively proposed MIM connection within an armature assembly on a sleeve valve.
  • FIG. 1 shows a pressure balanced 2/2 valve with which a fuel injector can be actuated and whose armature assembly has an armature plate and an armature bolt or a hydraulic shifting element and the armature plate is formed on the armature bolt by means of an MIM connection.
  • a fuel injector 10 shown here only partially has an injector body 12.
  • the fuel injector 10 includes a solenoid valve 14.
  • the solenoid valve 14 includes a magnet pot 16 in which a solenoid coil 22 is received.
  • the magnet pot 16 is traversed by a passage opening 18, which serves to receive a closing spring 20.
  • Below the magnet pot 16 is an armature assembly 24 which includes an anchor plate 26.
  • the anchor plate 26 may either be integrally formed on an anchor bolt or formed on a hydraulic switching element 28. The attachment between the anchor plate 26 and the anchor bolt 28 and the hydraulic switching element 28 takes place by way of a MIM connection 30 (Metal-Injected Molding).
  • the anchor bolt 28 or the hydraulic switching element 28 of the armature assembly 24 is received in a bore 32 of the injector body 12.
  • the anchor plate 26 of the armature assembly 24 is connected to a hydraulic switching element 28
  • the lower end face of the hydraulic switching element 26 cooperates with a seat 36 formed in the injector body 12.
  • a hydraulic chamber 40 into which, for example, a pressure relief line 38 is provided for pressure relief of an injection valve of the fuel injector 10 actuated control chamber.
  • the anchor plate 26 which is integrally formed on the circumference of the anchor bolt 28 or a hydraulic switching element 28, attracted by the magnetic coil 22 and the seat 36 on the lower end face of the anchor bolt 28 and der Hydraulikschaltimplantations 28 open. This results in a pressure relief of the hydraulic chamber 40, so that a control amount via the discharge line 38, the hydraulic chamber 40 and the open seat 36 in a low-pressure side return 34 of the injector 12 can flow.
  • the armature assembly 24 is pressed into the seat 36 by the closing spring 20 enclosed by the magnet pot 16, so that the flow connection between the relief chamber discharging the control chamber 38 and the low-pressure side return 34 through the closed seat 36 is interrupted in the injector 12.
  • FIGS. 2.1, 2.2, 2.3 and 2.4 show variants of the MIM connection within an armature assembly.
  • FIG. 2.1 shows that the anchor bolt 28 or the hydraulic shift element 28 has a circumference 52.
  • the armature disk 36 of the anchor hole 24 is formed on the periphery 52 of the anchor bolt 28 and the hydraulic switching element 28.
  • there is an outer contour 44 In the area in which the armature disk 36 of the anchor hole 24 is formed on the periphery 52 of the anchor bolt 28 and the hydraulic switching element 28, there is an outer contour 44.
  • a positive connection 46 of the anchor plate 26 with the anchor bolt 28 or the hydraulic switching element 28 results in a positive connection 46 of the anchor plate 26 with the anchor bolt 28 or the hydraulic switching element 28.
  • a positive connection 46 is produced by the formation of the anchor plate 26 on the anchor bolt 28 or the hydraulic switching element 28 when forming the anchor plate 26.
  • the armature plate 26 of the armature assembly 24 is formed on the periphery 52 of the anchor bolt 28 and the hydraulic switching element 28, that between the end face 50 of the armature disk 26 and the end face of the anchor bolt 28 and the hydraulic switching element 28, a supernatant 48 results the residual air gap between the end face 50 of the armature disk 26 and the lower end face of the magnet coil 22 enclosed by the magnetic core 16 is defined.
  • the anchor plate 26 is formed by means of the MIM method to form a MIM connection 30 on the anchor bolt 28, wherein the Nachbearbeitungsaufwand takes a minimum.
  • FIG. 2.2 shows an alternative embodiment variant of the MIM connection of an armature assembly 24.
  • a circumferential groove 54 runs on the circumference 52 of the anchor bolt 28 or of the hydraulic shift element 28.
  • a projection 56 is formed during the formation of the anchor plate 26, a projection 56.
  • a projection 48 which in the installed state of the armature assembly 24 forms the residual air gap between the end face 50 of FIG Anchor plate 26 and the end face of the magnetic cup 16 enclosed magnetic coil 22 defined.
  • FIG. 2.3 shows a further embodiment variant of an armature assembly having an MIM connection.
  • a collar 58 is embodied on the circumference 52 of the anchor bolt 28 or of the hydraulic shift element 28.
  • the raised collar 58 protruding beyond the circumference 52 of the anchor bolt 28 or the hydraulic shift element 28 forms a correspondingly configured recess on the inside of the anchor plate 26 when the anchor plate 26 is formed.
  • FIG. 2.4 shows a variant embodiment of the armature assembly proposed according to the invention, in which at least one undercut 60 is made on the circumference 52 of the armature bolt 28 or of the hydraulic shifting element 28.
  • the undercut 60 on the periphery 52 of the anchor bolt 28 and the hydraulic switching element 28 is in the molding of the anchor plate 26 by means of the MIM method of the material from which the anchor plate 26 is made, surrounded.
  • a form-fitting connection 46 is formed between the anchor plate 26 and the anchor bolt 28 or the hydraulic shift element 28, which also withstands high acceleration forces.
  • the embodiment variants of the armature assembly 24 shown in FIGS. 2.1 to 2.4 are all characterized by an MIM connection 30 between the armature plate 26 and the armature bolt 28 or the hydraulic shifting element 28.
  • the outer contouring 44 of the circumference 52 of the anchor bolt 28 or of the hydraulic shift element 28 can be easily manufactured in the output part of the low demands on the tolerances.
  • the formation of the residual air gap is adjusted by appropriate dimensioning of the supernatant 48 between the end face 50 of the anchor plate 26 and the end face of the anchor bolt 28 and the hydraulic switching element 28 in the MIM tool and the MIM process, ie the injection or the introduction of a liquid metallic Material, produced during the manufacture of the MIM connection 30 during the molding of the anchor plate 26.
  • the armature plate 26 to be formed on the anchor bolt 28 or of the hydraulic shift element 28 is optimally selected with regard to the magnetic properties of the material.
  • these can be provided with passage openings, through holes or recesses with which, on the one hand, a reduction in the mass of the anchor plate 26 can be achieved. bar and with which on the other hand, a flow of taxed from the control room tax amount can be optimized.
  • FIG. 3 shows the armature assembly proposed according to the invention on an outwardly opening valve (A-valve).
  • the fuel injector 10 in the injector head 12 comprises, in which the solenoid valve 14 is accommodated.
  • the armature assembly 24 as shown in FIG. 3 comprises the armature plate 26, which is positively connected to the armature bolt 28 or the hydraulic shifting element 28 via an MIM connection 30.
  • a seat surface is formed, which cooperates with the seat 36 of the injector 12.
  • the armature assembly 24 as shown in Figure 3 opens when energized, the magnetic coil 22, which is surrounded by the magnet pot 16, to the outside.
  • a circumferential taper 66 is formed on the circumference 52 of the anchor bolt 28 or of the hydraulic shift element 28, in the region of which the relief line 38 opens for pressure relief of a control chamber, not shown in FIG. 3 but formed in the injector body 12.
  • the control volume flows via the relief line 38, the cavity formed by the circumferential taper 66 on the circumference of the anchor bolt 28 and the hydraulic switching element 28 and the opened seat 36, respectively low-pressure return 34 from.
  • Another return over the guide leakage is located at the lower end of the bore 32 in the injector body 12, in which the anchor bolt 28 and the hydraulic switching element 28 is guided narrow tolerances.
  • FIG. 3 also shows that the upper end face of the anchor bolt 28 or of the hydraulic shift element 28 cooperates with a stop 62 which limits the opening stroke of the armature assembly 24.
  • the stroke stop 62 is formed on the lower end side of the magnet pot 16.
  • FIG. 4 shows a further embodiment variant of the armature assembly proposed according to the invention on a sleeve valve.
  • the illustration according to FIG. 4 shows the fuel injector 10, which has a sleeve valve for depressurizing a relief line 38 of a control chamber in the injector body 12.
  • the armature assembly 24 includes in this embodiment, a valve sleeve 68 which is joined to the anchor plate 26 via a MIM connection 30. Within the valve sleeve 38 is acted upon by the closing spring 20 cylindrical valve body 70th added. About the closing spring 20 of the cylindrically shaped valve body 70 is acted upon.
  • the end face 50 of the armature plate 26 is tightened, so that the valve sleeve 68 lifts off from the seat 36 on the upper side of the injector body 12.
  • an orifice 74 of the discharge line 38 of the control chamber formed in the injector body 12 is depressurized, since a biting edge 76, which is formed on the lower end face of the valve sleeve 68, is lifted off the plan side of the injector body 12.
  • the discharge point 74 of the discharge channel 38 may, for example, open into a dome-shaped elevation 72 on the plan side of the injector body 12 of the fuel injector 10 according to the embodiment in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to a method for production of an armature assembly (24) and an armature assembly (24). The armature assembly (24) is of application in a solenoid VALVE (14) for operation of a fuel injector (10). The solenoid valve (14) comprises an energisable solenoid coil (22). An outer moulding (44; 54, 58, 60) is provided on The circumference (52) of an armature pin (28) or a hydraulic switch element (28). An armature plate (26) is produced in the region of The outer moulding (44; 54, 58, 60) by means of The MIM method (Metal Injected Molding).

Description

Beschreibungdescription
Titeltitle
Magnetventil mit stoffschlüssiger AnkerverbindungSolenoid valve with integral anchor connection
Stand der TechnikState of the art
DE 196 50 865 Al bezieht sich auf ein Magnetventil, dessen Magnetanker mehrteilig ausgebildet ist und eine Ankerscheibe sowie einen Ankerbolzen aufweist. Der Ankerbolzen ist in einem Gleitstück geführt. Um ein Nachschwingen der Ankerscheibe nach einem Schließen des Magnetventils zu vermeiden, ist am Magnetanker eine Dämpfungseinrichtung vorgesehen. Mit einer solchen Einrichtung sind exakt die erforderlichen kurzen Schaltzeiten des Magnetventils einhaltbar. Das Magnetventil ist bestimmt zur Anwendung bei Einspritzanlagen mit einem Hochdruckspeichereinspritzsystem (Common-Rail). Als nächste Lösung aus DE 196 50 865 Al ist die Ankerplatte am Ankerbolzen geführt. Die Ankerplatte ist einer- seits durch eine Rückholfeder beaufschlagt und andererseits durch eine Einstellscheibe gesichert, die in einer Ausnehmung am Umfang des Ankerbolzens eingelegt ist.DE 196 50 865 A1 relates to a solenoid valve whose armature is designed in several parts and has an armature disk and an anchor bolt. The anchor bolt is guided in a slider. In order to avoid ringing of the armature disk after closing the solenoid valve, a damping device is provided on the armature. With such a device exactly the required short switching times of the solenoid valve can be maintained. The solenoid valve is intended for use in injection systems with a high-pressure accumulator injection system (common rail). As the next solution from DE 196 50 865 Al, the anchor plate is guided on the anchor bolt. The anchor plate is on the one hand acted upon by a return spring and on the other hand secured by a shim, which is inserted in a recess on the circumference of the anchor bolt.
Gemäß der Lösung aus DE 199 32 781 Al wird eine Ankerbaugruppe vorgeschlagen, bei der eine Ankerplatte über einen Führungsbolzen am Ankerbolzen befestigt wird. Der Füh- rungsbolzen ist in einem am Führungsabschnitt der Ankerplatte am Ankerbolzen ausgebildeten Langloch geführt, so dass die Ankerplatte in Bezug Umfangsfiäche Oberfläche des Ankerbolzens spielbehaftet aufgenommen ist.According to the solution of DE 199 32 781 Al an anchor assembly is proposed in which an anchor plate is fastened via a guide pin on the anchor bolt. The guide bolt is guided in a slot formed on the guide section of the anchor plate on the anchor bolt, so that the anchor plate is received with play in relation to the circumferential surface of the anchor bolt.
Magnetventile werden als Aktor aus Kosten- und Bauraumgründen an Hochdruckspei- chereinspritzsystemen (Common-Rail) eingesetzt. Der Magnetkreis eines Magnetventils besteht aus einer innerhalb eines Magnetkerns aufgenommenen Magnetspule und einem Anker, der mit dem zu bewegenden Schaltelement verbunden ist. Für die Verbindung zwischen dem Anker und dem Schaltelement bestehen mehrere Möglichkeiten. Gemäß DE 196 50 865 Al kann der Ankerbolzen der Ankerplatte über die bereits erwähnte Sicherungs- scheibe montiert werden. Aufgrund des unvermeidlichen Spiels zwischen der Sicherungsscheibe, einer Ausnehmung in der Stirnseite der Ankerplatte sowie der am Umfang des Ankerbolzens gefertigten Ausnehmung zur Aufnahme der Sicherungsscheibe, ergeben sich nachteilige Auswirkungen auf die Dynamik des Magnetventils. Bei einteilig ausgebildeten Ankerbaugruppen, bei denen die Ankerplatte und der Ankerbolzen aus ein und demselben Werkstoff gefertigt werden, besteht der Nachteil, dass der ausgewählte Werkstoff einen Kompromiss zwischen zu beachtenden Verschleißanforderungen und der Magnetkreisauslegung des Magnetkreises darstellt. Formschlüssige zweiteilige Lösungen einer Ankerbaugruppe, bei der die Ankergruppe eine relativ zum Ankerbolzen bewegbare Ankerplatte aufweist, liegen im Aufpressen der Ankerplatte auf den Ankerbolzen oder in der Herstellung einer Schälniet- Verbindung zwischen der Ankerplatte und der Um- fangsfiäche des Ankerbolzens. Der Nachteil dieser Lösung liegt in den hohen Anforderun- gen an die Feingeometrie der Bauteile Ankerplatte und Ankerbolzen vor den formschlüssigen Verbindungen. Eine Verbindungsmöglichkeit einer zweiteiligen Ankerbaugruppe zwischen Ankerplatte und Ankerbolzen ist auch durch ein stoffschlüssiges Fügeverfahren wie zum Beispiel das Schweißen oder das Kleben gegeben. Die Nachteile dieser Verbindungsmöglichkeiten liegen einerseits in der umständlichen Montage, andererseits in der geringen erzielbaren Festigkeit sowie schließlich in der nur beschränkten Genauigkeit, in der eine solche Verbindung hergestellt werden kann.Solenoid valves are used as actuators for cost and space reasons for high-pressure accumulator injection systems (common rail). The magnetic circuit of a solenoid valve consists of a magnetic coil received within a magnetic core and an armature which is connected to the switching element to be moved. There are several possibilities for the connection between the armature and the switching element. According to DE 196 50 865 A1, the anchor bolt of the anchor plate can be mounted via the previously mentioned securing disk. Due to the inevitable play between the lock washer, a recess in the end face of the anchor plate and the recess made on the circumference of the anchor bolt for receiving the lock washer, there are adverse effects on the dynamics of the solenoid valve. In one-piece anchor assemblies in which the anchor plate and the anchor bolt are made of one and the same material, there is the disadvantage that the selected material is a compromise between wear requirements to be observed and the magnetic circuit design of the magnetic circuit. Positive-fit two-part solutions of an armature assembly in which the armature group has an armature plate which can be moved relative to the armature pin lie in pressing the armature plate onto the armature bolt or in the production of a peel-off connection between the armature plate and the peripheral surface of the armature pin. The disadvantage of this solution lies in the high demands on the fine geometry of the components anchor plate and anchor bolt in front of the positive connections. A possibility of connecting a two-part armature assembly between anchor plate and anchor bolt is also given by a cohesive joining method such as welding or gluing. The disadvantages of these connection options are on the one hand the cumbersome assembly, on the other hand in the low achievable strength and finally in the limited accuracy in which such a connection can be made.
Bei zweiteilig ausgebildeten Ankerbaugruppen, d. h. der Ausbildung der Ankerbaugruppen aus zwei separaten Baugruppen, nämlich Ankerplatte und Ankerbolzen, besteht im Allge- meinen der Vorteil, dass die Werkstoffe für den Magnetkreis, d. h. der Werkstoff der Ankerplatte und der Werkstoff der Dichtfunktion, welche der Ankerbolzen übernimmt, auf die jeweilige Anforderung optimal ausgewählt werden können. Deswegen wird angestrebt, unter Berücksichtigung der oben stehend geschilderten Randbedingungen, zweiteilige Ankerbaugruppen einzusetzen, die den jeweiligen Funktionen entsprechend, optimal hinsichtlich des Werkstoffes ausgewählt sind.For two-part anchor assemblies, d. H. the formation of the anchor assemblies from two separate assemblies, namely anchor plate and anchor bolt, is generally the advantage that the materials for the magnetic circuit, d. H. the material of the anchor plate and the material of the sealing function, which takes over the anchor bolt, can be optimally selected to the particular requirement. Therefore, it is desirable, taking into account the above-described boundary conditions, to use two-piece anchor assemblies that are selected according to the respective functions, optimally with regard to the material.
Offenbarung der ErfindungDisclosure of the invention
Erfindungsgemäß wird vorgeschlagen, zwischen einem Ankerbolzen oder einem Schaltele- ment, welches eine pneuhydraulische Verbindung unmittelbar freigibt oder verschließt, eine zum Magnetkreis des Magnetventils gehörende Ankerplatte im Wege der MIM-Technik (Metal-Injection Molding) auszubilden. Dazu werden am Umfang eines Ankerbolzens zum Beispiel oder am Umfang eines hydraulischen Schaltelementes im Bereich der Verbindungsstelle mit der Ankerplatte zum Beispiel mindestens eine Ausnehmung in Gestalt einer Rille oder Nut angebracht. Die Ausnehmungen können im Bereich der Öffnung der Ankerplatte, welche vom Ankerbolzen bzw. vom hydraulischen Schaltelement durchsetzt werden, komplementär zur Außengeometrie des Umfangs des Ankerbolzens oder des hydraulischen Schaltelementes gefertigt werden. Die Geometrie an der Außenumfangsfläche des Ankerbolzens bzw. des hydraulischen Schaltelementes kann einfach im Ausgangsteil mit geringen Anforderungen an die Toleranzen hergestellt werden. Der bei Magnetventilen hinsichtlich der Funktion erforderliche Rest- luftspalt kann im MIM- Werkzeug eingestellt werden und entsteht während des Metal- Injection Molding, d. h. während des Einspritzens einer Schmelze eines metallischen Materials, ohne dass erforderliche Nacharbeiten wie zum Beispiel ein Nachschleifen zur Einstellung des Restluftspaltes an der Stirnseite der Ankerplatte erforderlich sind, wenn diese mit dem Ankerbolzen oder dem hydraulischen Schaltelement über das MIM- Verfahren gefügt ist. Idealerweise wird die Ankerplatte als Bestandteil des Magnetkreises in Bezug auf die Stirnseite, die in der Regel plan ausgeführt ist, des Ankerbolzens bzw. des hydraulischen Schaltelementes zurückgesetzt ausgebildet, so dass sich eine Stufe zwischen der Stirnseite des die Ankerplatte durchsetzenden Ankerbolzens bzw. des hydraulischen Schaltelementes ergibt, welche den Restluftspalt zwischen der Stirnseite der dem Magnetkern gegenüberlie- genden Ankerplatte und der Stirn des der Ankerplatte gegenüberliegenden Magnetkerns definiert.According to the invention, between an anchor bolt or a switching element which directly releases or closes a pneumatic hydraulic connection, an armature plate belonging to the magnetic circuit of the solenoid valve is formed by means of the MIM technique (Metal Injection Molding). For this purpose, for example, at least one recess in the form of a groove or groove are attached to the circumference of an anchor bolt, for example, or on the circumference of a hydraulic switching element in the region of the connection point with the anchor plate. The recesses can be made in the region of the opening of the anchor plate, which are penetrated by the anchor bolt or by the hydraulic switching element, complementary to the outer geometry of the circumference of the anchor bolt or the hydraulic switching element. The geometry on the outer peripheral surface of the anchor bolt or the hydraulic switching element can be easily manufactured in the output part with low tolerances. The residual air gap required for solenoid valves can be set in the MIM tool and is created during metal injection molding, ie during the injection of a melt of a metallic material, without the need for reworking such as regrinding to adjust the residual air gap the end face of the anchor plate are required when it is joined to the anchor bolt or the hydraulic switching element via the MIM method. Ideally, the armature plate is formed as part of the magnetic circuit with respect to the end face, which is usually designed plan, the anchor bolt or the hydraulic switching element reset, so that a step between the end face of the anchor plate passing through the anchor bolt and the hydraulic switching element results, which defines the residual air gap between the end face of the armature plate opposite the magnetic core and the front of the magnetic core opposite the armature plate.
Der Werkstoff des Ankerbolzens bzw. des hydraulischen Schaltelementes kann nach Verschleißgesichtspunkten optimal ausgewählt werden. Für die Ankerplatte wird bevorzugt ein magnetischer Werkstoff gewählt, um hohe Magnetkräfte aufzubringen und Wirbelstromverluste zu vermeiden. In der Ankerplatte können Öffnungen oder Aussparungen in beliebig wählbarer Geometrie zur Verringerung der Masse und zur Strömungsoptimierung angeformt werden, die ohne Nachbearbeitung der Ankerplatte ausgebildet werden können. Über derartige Öffnungen oder Aussparungen kann in einem Kraftstoffinjektor aus einem dru- ckentlastbaren Steuerraum abgesteuertes Steuervolumen einem niederdruckseitigen Rücklauf ohne größere Strömungswiderstände zuströmen, für den Fall, dass das erfindungsgemäß vorgeschlagene Magnetventil an einem Kraftstoffinjektor eingesetzt wird, dessen das Magnetventil aufnehmender Hohlraum als niederdruckseitigen Rücklauf zur Absteuerung aus dem Steuerraum abgesteuerten Kraftstoffsteuermenge dient.The material of the anchor bolt or the hydraulic switching element can be optimally selected according to the wear point. For the anchor plate, a magnetic material is preferably selected in order to apply high magnetic forces and to avoid eddy current losses. In the anchor plate openings or recesses can be formed in arbitrary geometry to reduce the mass and for flow optimization, which can be formed without reworking the anchor plate. About such openings or recesses in a fuel injector from a pressure-relieved control chamber diverted control volume flow to a low-pressure side return without major flow resistance, in the event that the inventively proposed solenoid valve is used on a fuel injector whose receiving the solenoid valve cavity as a low-pressure return to the Absteuerung used from the control room diverted fuel tax amount.
Die im Wege des MIM- Verfahrens hergestellte Verbindung zwischen dem Ankerbolzen oder einem hydraulischen Schaltelement und der angeformten Ankerplatte nimmt die beim Auftreffen des hydraulischen Schaltelementes bzw. des Ankerbolzens mit daran aufgenommenem Schließelement, beim Auftreffen auf den Sitz auftretenden Beschleunigungskräfte auf. Je nach Herstellungsprozess und Beträge der auftretenden Beschleunigungskräfte können mehrere Ausnehmungen, Nuten oder ein Bund oder mehrere Bünde oder eine Geometrie mit Hinterschnitt am Ankerbolzen bzw. am hydraulischen Schaltelement und komplementär dazu an der inneren Mantelfläche der die Ankerplatte durchsetzenden Öffnung oder Bohrung ausgebildet werden, so dass die Beschleunigungskräfte zuverlässig aufgenommen werden. Der Einsatz des MIM- Verfahrens gestattet in vorteilhafter Weise das Ausbilden eines metallischen Bauteils aus einem metallischen Werkstoff, an einem Bauteil, welches aus einem davon verschiedenen Material gefertigt ist, so dass die miteinander zu fügenden Einzelbauteile unter Berücksichtigung jeweils optimierter, auf den Einsatzzweig abgestimmter Werkstoffeigenschaften ausgewählt werden können.The connection between the anchor bolt or a hydraulic switching element and the integrally formed armature plate produced by means of the MIM method absorbs the acceleration forces which occur when the hydraulic switching element or the anchor bolt engages with the closing element received upon impact with the seat. Depending on the manufacturing process and amounts of acceleration forces occurring can have a plurality of recesses, grooves or a collar or multiple frets or a geometry with undercut on the anchor bolt or on the hydraulic switching element and complementary thereto on the inner circumferential surface of the anchor plate passing through opening or Be formed bore so that the acceleration forces are reliably absorbed. The use of the MIM method advantageously allows the formation of a metallic component made of a metallic material, on a component which is made of a different material, so that the individual components to be joined together, taking into account each optimized, adapted to the application branch material properties can be selected.
Zeichnungdrawing
Figur 1 zeigt eine erste Ausführungsvariante der erfindungsgemäß vorgeschlagenen Verbindung in innerhalb einer Ankerbaugruppe an einem druckausgeglichenen 2=2 -Ventil,FIG. 1 shows a first embodiment variant of the connection proposed in accordance with the invention in an armature assembly on a pressure-balanced 2 = 2 valve,
Figuren 2.1, 2.2, 2.3 und 2.4 verschiedene Ausführungsvarianten der MIM- Verbindung der Ankerbaugruppe,FIGS. 2.1, 2.2, 2.3 and 2.4 show different variants of the MIM connection of the armature assembly;
Figur 3 der Einsatz der erfindungsgemäß vorgeschlagenen Ankerbaugruppe an einem nach außen öffnenden Ventil (A- Ventil),FIG. 3 shows the use of the armature assembly proposed according to the invention on an outwardly opening valve (A-valve),
Figur 4 der Einsatz der erfindungsgemäß vorgeschlagenen MIM- Verbindung innerhalb einer Ankerbaugruppe an einem Hülsenventil.FIG. 4 shows the use of the inventively proposed MIM connection within an armature assembly on a sleeve valve.
Ausführungsvariantenvariants
Der Darstellung gemäß Figur 1 ist ein druckausgeglichenes 2/2 -Ventil zu entnehmen, mit dem ein Kraftstoffinjektor betätigbar ist und dessen Ankerbaugruppe eine Ankerplatte und einen Ankerbolzen bzw. ein hydraulisches Schaltelement aufweist und die Ankerplatte mittels einer MIM- Verbindung am Ankerbolzen angeformt ist.The illustration according to FIG. 1 shows a pressure balanced 2/2 valve with which a fuel injector can be actuated and whose armature assembly has an armature plate and an armature bolt or a hydraulic shifting element and the armature plate is formed on the armature bolt by means of an MIM connection.
Der Darstellung gemäß Figur 1 ist entnehmbar, dass ein hier nur teilweise dargestellter Kraftstoffinjektor 10 einen Injektorkörper 12 aufweist. Der Kraftstoffinjektor 10 umfasst ein Magnetventil 14. Das Magnetventil 14 umfasst einen Magnettopf 16, in dem eine Magnetspule 22 aufgenommen ist. Der Magnettopf 16 wird von einer Durchgangsöffnung 18 durchzogen, die zur Aufnahme einer Schließfeder 20 dient. Unterhalb des Magnettopfes 16 befindet sich eine Ankerbaugruppe 24, die eine Ankerplatte 26 umfasst. Die Ankerplatte 26 kann entweder an einem Ankerbolzen angeformt oder an einem hydraulischen Schaltelement 28 angeformt sein. Die Befestigung zwischen der Ankerplatte 26 und dem Ankerbolzen 28 bzw. dem hydraulischen Schaltelement 28 erfolgt im Wege einer MIM- Verbindung 30 (Metal-Injected Molding).It can be inferred from the representation according to FIG. 1 that a fuel injector 10 shown here only partially has an injector body 12. The fuel injector 10 includes a solenoid valve 14. The solenoid valve 14 includes a magnet pot 16 in which a solenoid coil 22 is received. The magnet pot 16 is traversed by a passage opening 18, which serves to receive a closing spring 20. Below the magnet pot 16 is an armature assembly 24 which includes an anchor plate 26. The anchor plate 26 may either be integrally formed on an anchor bolt or formed on a hydraulic switching element 28. The attachment between the anchor plate 26 and the anchor bolt 28 and the hydraulic switching element 28 takes place by way of a MIM connection 30 (Metal-Injected Molding).
Der Ankerbolzen 28 bzw. das hydraulische Schaltelement 28 der Ankerbaugruppe 24 ist in einer Bohrung 32 des Injektorkörpers 12 aufgenommen. Je nach Ausführungsvariante kann zum Beispiel für den Fall, dass die Ankerplatte 26 der Ankerbaugruppe 24 mit einem hyd- raulischen Schaltelement 28 verbunden ist, die untere Stirnseite des hydraulischen Schaltelementes 26 mit einem im Injektorkörper 12 ausgebildeten Sitz 36 zusammenwirken. Im Injektorkörper 12 befindet sich ein hydraulischer Raum 40, in den zum Beispiel eine Druckentlastungsleitung 38 zur Druckentlastung eines ein Einspritzventil des Kraftstoffinjektors 10 betätigenden Steuerraumes erfolgt.The anchor bolt 28 or the hydraulic switching element 28 of the armature assembly 24 is received in a bore 32 of the injector body 12. Depending on the embodiment variant, for example, in the event that the anchor plate 26 of the armature assembly 24 is connected to a hydraulic switching element 28, the lower end face of the hydraulic switching element 26 cooperates with a seat 36 formed in the injector body 12. In the injector body 12 there is a hydraulic chamber 40 into which, for example, a pressure relief line 38 is provided for pressure relief of an injection valve of the fuel injector 10 actuated control chamber.
Bei Bestromung des in Figur 1 dargestellten Kraftstoffinjektors 10 wird die Ankerplatte 26, die am Umfang des Ankerbolzens 28 oder eines hydraulischen Schaltelementes 28 angeformt ist, durch die Magnetspule 22 angezogen und der Sitz 36 an der unteren Stirnseite des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 geöffnet. Dadurch entsteht eine Druckentlastung des hydraulischen Raumes 40, so dass eine Steuermenge über die Entlastungsleitung 38, den hydraulischen Raum 40 und den geöffneten Sitz 36 in einen nieder- druckseitigen Rücklauf 34 des Injektors 12 abströmen kann.When energizing the fuel injector 10 shown in Figure 1, the anchor plate 26 which is integrally formed on the circumference of the anchor bolt 28 or a hydraulic switching element 28, attracted by the magnetic coil 22 and the seat 36 on the lower end face of the anchor bolt 28 and der Hydraulikschaltelementes 28 open. This results in a pressure relief of the hydraulic chamber 40, so that a control amount via the discharge line 38, the hydraulic chamber 40 and the open seat 36 in a low-pressure side return 34 of the injector 12 can flow.
Wird die Bestromung der Magnetspule 22 hingegen aufgehoben, so wird die Ankerbau- gruppe 24 durch die vom Magnettopf 16 umschlossene Schließfeder 20 in den Sitz 36 gedrückt, so dass die Strömungsverbindung zwischen der den Steuerraum entlastenden Entlastungsleitung 38 und den niederdruckseitigen Rücklauf 34 durch den geschlossenen Sitz 36 im Injektorkörper 12 unterbrochen ist.If, however, the energization of the magnetic coil 22 is removed, the armature assembly 24 is pressed into the seat 36 by the closing spring 20 enclosed by the magnet pot 16, so that the flow connection between the relief chamber discharging the control chamber 38 and the low-pressure side return 34 through the closed seat 36 is interrupted in the injector 12.
Den Darstellungen gemäß der Figuren 2.1, 2.2, 2.3 und 2.4 sind Ausführungsvarianten der MIM- Verbindung innerhalb einer Ankerbaugruppe zu entnehmen.The illustrations according to FIGS. 2.1, 2.2, 2.3 and 2.4 show variants of the MIM connection within an armature assembly.
Figur 2.1 ist entnehmbar, dass der Ankerbolzen 28 bzw. das hydraulische Schaltelement 28 einen Umfang 52 aufweist. In dem Bereich, in dem am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 die Ankerscheibe 36 der Ankerbohrung 24 angeformt wird, befindet sich eine Außenkonturierung 44. Je nach gewählter Konfiguration der Außenkonturierung 44 am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28, ergibt sich eine formschlüssige Verbindung 46 der Ankerplatte 26 mit dem Ankerbolzen 28 oder dem hydraulischen Schaltelement 28. Mit dem MIM- Verfahren wird bei Anformung der Ankerplatte 26 eine formschlüssige Verbindung 46 durch die Anformung der Ankerplatte 26 am Ankerbolzen 28 oder dem hydraulischen Schaltelement 28 erzeugt. Bevorzugt wird die Ankerplatte 26 der Ankerbaugruppe 24 so am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 angeformt, dass sich zwischen der Stirnseite 50 der Ankerscheibe 26 und der Stirnseite des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 ein Überstand 48 ergibt, der den Restluftspalt zwischen der Stirnseite 50 der Ankerscheibe 26 und der unteren Stirnseite der vom Magnetkern 16 umschlossenen Magnetspule 22 definiert.FIG. 2.1 shows that the anchor bolt 28 or the hydraulic shift element 28 has a circumference 52. In the area in which the armature disk 36 of the anchor hole 24 is formed on the periphery 52 of the anchor bolt 28 and the hydraulic switching element 28, there is an outer contour 44. Depending on the selected configuration of the outer contour 44 on the periphery 52 of the anchor bolt 28 and the hydraulic Switching element 28, results in a positive connection 46 of the anchor plate 26 with the anchor bolt 28 or the hydraulic switching element 28. With the MIM method, a positive connection 46 is produced by the formation of the anchor plate 26 on the anchor bolt 28 or the hydraulic switching element 28 when forming the anchor plate 26. Preferably, the armature plate 26 of the armature assembly 24 is formed on the periphery 52 of the anchor bolt 28 and the hydraulic switching element 28, that between the end face 50 of the armature disk 26 and the end face of the anchor bolt 28 and the hydraulic switching element 28, a supernatant 48 results the residual air gap between the end face 50 of the armature disk 26 and the lower end face of the magnet coil 22 enclosed by the magnetic core 16 is defined.
Während für die Ankerplatte 26 bevorzugt ein magnetischer Werkstoff gewählt wird, um hohe Magnetkräfte und geringe Wirbelstromverluste zu erhalten, wird der Werkstoff, aus dem der Ankerbolzen 28 bzw. das hydraulische Schaltelement 28 gefertigt wird, ein Werkstoff gewählt, der hinsichtlich eines optimalen Verschleißes optimiert ausgewählt ist. Die Ankerplatte 26 wird im Wege des MIM- Verfahrens unter Ausbildung einer MIM- Verbindung 30 am Ankerbolzen 28 angeformt, wobei der Nachbearbeitungsaufwand ein Minimum annimmt.While a magnetic material is preferably selected for the armature plate 26 in order to obtain high magnetic forces and small eddy current losses, the material from which the armature pin 28 and the hydraulic shifting element 28 are made is selected to be optimized for optimal wear is. The anchor plate 26 is formed by means of the MIM method to form a MIM connection 30 on the anchor bolt 28, wherein the Nachbearbeitungsaufwand takes a minimum.
Der Darstellung gemäß Figur 2.2 ist eine alternative Ausführungsvariante der MIM- Verbindung einer Ankerbaugruppe 24 zu entnehmen.The illustration according to FIG. 2.2 shows an alternative embodiment variant of the MIM connection of an armature assembly 24.
Aus der Darstellung gemäß Figur 2.2 geht hervor, dass am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 eine Umfangsnut 54 verläuft. Komplementär zur Tiefe der Umfangsnut 54 am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 bildet sich bei der Anformung der Ankerplatt 26 ein Vorsprung 56 aus. Nach dem Ausformen der Ankerplatte 26 ergibt sich zwischen dem Vorsprung 56 und der Umfangsnut 54 am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 die MIM- Verbindung 30. Diese Bauteile sind miteinander formschlüssig gefügt.From the illustration according to FIG. 2.2, it can be seen that a circumferential groove 54 runs on the circumference 52 of the anchor bolt 28 or of the hydraulic shift element 28. Complementary to the depth of the circumferential groove 54 on the circumference 52 of the anchor bolt 28 and the hydraulic switching element 28 is formed during the formation of the anchor plate 26, a projection 56. After the forming of the anchor plate 26 results between the projection 56 and the circumferential groove 54 on the periphery 52 of the anchor bolt 28 and the hydraulic switching element 28, the MIM connection 30. These components are joined together form-fitting manner.
Auch in der in Figur 2.2 dargestellten Ausführungsvariante der Ankerbaugruppe 24 befindet sich zwischen der Stirnseite 50 der Ankerplatte 26 und der Stirnseite des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 ein Überstand 48, welcher im montierten Zustand der Ankerbaugruppe 24 den Restluftspalt zwischen der Stirnseite 50 der Ankerplatte 26 und der Stirnseite der vom Magnettopf 16 umschlossenen Magnetspule 22 definiert.Also in the embodiment variant of the armature assembly 24 shown in FIG. 2.2, between the end face 50 of the armature plate 26 and the end face of the armature bolt 28 or the hydraulic shifting element 28 is a projection 48, which in the installed state of the armature assembly 24 forms the residual air gap between the end face 50 of FIG Anchor plate 26 and the end face of the magnetic cup 16 enclosed magnetic coil 22 defined.
Figur 2.3 zeigt eine weitere Ausführungsvariante einer eine MIM- Verbindung aufweisenden Ankerbaugruppe. Gemäß dieser Ausführungsvariante ist am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 ein Bund 58 ausgeführt. Der erhaben über den Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 hervorstehende Bund 58 bildet beim Anformen der Ankerplatte 26 eine entsprechend konfigurierte Ausnehmung an der Innenseite der Ankerplatte 26. Auch in der in Figur 2.3 dargestellten Ausführungsvari- ante der Ankerbaugruppe 24 wird der Überstand 48 zwischen der Stirnseite des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 und der Stirnseite 50 der Ankerplatte 26 im MIM- Werkzeug eingestellt, so dass sich bei der Anformung der Ankerplatte 26 am Ankerbolzen 28 bzw. am hydraulischen Schaltelement 28 durch entsprechende Axialanordnung des Bundes 58 ein Restluftspalt zwischen der Ankerplatte 26 und der Magnetspule 22 ergibt.FIG. 2.3 shows a further embodiment variant of an armature assembly having an MIM connection. According to this embodiment, a collar 58 is embodied on the circumference 52 of the anchor bolt 28 or of the hydraulic shift element 28. The raised collar 58 protruding beyond the circumference 52 of the anchor bolt 28 or the hydraulic shift element 28 forms a correspondingly configured recess on the inside of the anchor plate 26 when the anchor plate 26 is formed. Also in the embodiment variant of the anchor assembly 24 shown in FIG Supernatant 48 set between the end face of the anchor bolt 28 and the hydraulic switching element 28 and the end face 50 of the anchor plate 26 in the MIM tool, so that in the formation of the anchor plate 26 on the anchor bolt 28 and the hydraulic switching element 28 by corresponding axial arrangement of the federal 58 results in a residual air gap between the armature plate 26 and the magnetic coil 22.
In Figur 2.4 ist eine Ausführungsvariante der erfindungsgemäß vorgeschlagenen Ankerbaugruppe dargestellt, bei welcher am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 mindestens ein Hinterschnitt 60 ausgeführt ist. Der Hinterschnitt 60 am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 wird beim Anformen der Ankerplatte 26 im Wege des MIM- Verfahrens vom Material, aus dem die Ankerplatte 26 hergestellt wird, umgeben. Es bildet sich eine formschlüssige Verbindung 46 zwischen der Ankerplatte 26 und dem Ankerbolzen 28 oder dem hydraulischen Schaltele- ment 28 aus, die auch hohen Beschleunigungskräften standhält.FIG. 2.4 shows a variant embodiment of the armature assembly proposed according to the invention, in which at least one undercut 60 is made on the circumference 52 of the armature bolt 28 or of the hydraulic shifting element 28. The undercut 60 on the periphery 52 of the anchor bolt 28 and the hydraulic switching element 28 is in the molding of the anchor plate 26 by means of the MIM method of the material from which the anchor plate 26 is made, surrounded. A form-fitting connection 46 is formed between the anchor plate 26 and the anchor bolt 28 or the hydraulic shift element 28, which also withstands high acceleration forces.
Die in den Figuren 2.1 bis 2.4 dargestellten Ausführungsvarianten der Ankerbaugruppe 24 zeichnen sich allesamt durch eine MIM- Verbindung 30 zwischen der Ankerplatte 26 und dem Ankerbolzen 28 bzw. dem hydraulischen Schaltelement 28 aus. Die äußere Konturie- rung 44 des Umfangs 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 kann einfach im Ausgangsteil die geringen Anforderungen an die Toleranzen hergestellt werden. Die Ausbildung des Restluftspaltes wird durch entsprechende Dimensionierung des Überstandes 48 zwischen der Stirnseite 50 der Ankerplatte 26 und der Stirnseite des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 im MIM- Werkzeug eingestellt und beim MIM-Prozess, d. h. dem Einspritzen oder dem Einbringen eines flüssigen metallischen Materials, im Rahmen der Herstellung der MIM- Verbindung 30 beim Anformen der Ankerplatte 26 erzeugt. Während der Werkstoff des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 hinsichtlich der Verschleißeigenschaften optimal ausgelegt ist, wird die am Ankerbolzen 28 bzw. des hydraulischen Schaltelementes 28 anzuformende Ankerplatte 26 hinsichtlich der magnetischen Eigenschaften des Werkstoffes optimiert gewählt. Wenn auch in den Figuren 2.1 bis 2.4 nicht dargestellt, kann zur Reduzierung der Masse der Ankerplatte 26 diese mit Durchgangsöffnungen, Durchgangsbohrungen oder Aussparungen versehen werden, mit der einerseits eine Verringerung der Masse der Ankerplatte 26 erziel- bar ist und mit denen andererseits ein Abfließen von aus dem Steuerraum abgesteuerter Steuermenge optimiert werden kann.The embodiment variants of the armature assembly 24 shown in FIGS. 2.1 to 2.4 are all characterized by an MIM connection 30 between the armature plate 26 and the armature bolt 28 or the hydraulic shifting element 28. The outer contouring 44 of the circumference 52 of the anchor bolt 28 or of the hydraulic shift element 28 can be easily manufactured in the output part of the low demands on the tolerances. The formation of the residual air gap is adjusted by appropriate dimensioning of the supernatant 48 between the end face 50 of the anchor plate 26 and the end face of the anchor bolt 28 and the hydraulic switching element 28 in the MIM tool and the MIM process, ie the injection or the introduction of a liquid metallic Material, produced during the manufacture of the MIM connection 30 during the molding of the anchor plate 26. While the material of the anchor bolt 28 and the hydraulic switching element 28 is optimally designed with respect to the wear characteristics, the armature plate 26 to be formed on the anchor bolt 28 or of the hydraulic shift element 28 is optimally selected with regard to the magnetic properties of the material. Although not shown in FIGS. 2.1 to 2.4, in order to reduce the mass of the anchor plate 26, these can be provided with passage openings, through holes or recesses with which, on the one hand, a reduction in the mass of the anchor plate 26 can be achieved. bar and with which on the other hand, a flow of taxed from the control room tax amount can be optimized.
Figur 3 zeigt die erfindungsgemäß vorgeschlagene Ankerbaugruppe an einem nach außen öffnenden Ventil (A- Ventil).FIG. 3 shows the armature assembly proposed according to the invention on an outwardly opening valve (A-valve).
Der Darstellung gemäß Figur 3 ist entnehmbar, dass der Kraftstoffinjektor 10 im Injektorkopf 12 umfasst, in dem das Magnetventil 14 aufgenommen ist. Die Ankerbaugruppe 24 gemäß der Darstellung in Figur 3 umfasst die Ankerplatte 26, die über eine MIM- Ver- bindung 30 mit dem Ankerbolzen 28 bzw. dem hydraulischen Schaltelement 28 formschlüssig verbunden ist. Am Umfang des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 ist eine Sitzfläche ausgebildet, die mit dem Sitz 36 des Injektorkörpers 12 zusammenwirkt. Die Ankerbaugruppe 24 gemäß der Darstellung in Figur 3 öffnet bei Bestromung der Magnetspule 22, die vom Magnettopf 16 umschlossen ist, nach außen. Hierzu ist am Umfang 52 des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 eine Umfangs- verjüngung 66 ausgebildet, in deren Bereich die Entlastungsleitung 38 zur Druckentlastung eines in Figur 3 nicht dargestellten, jedoch im Injektorkörper 12 ausgebildeten Steuerraumes mündet. Wird der Sitz 36 bei Bestromung der Magnetspule 22 und Aufwärtsbewegung der Ankerbaugruppe 24 geöffnet, strömt das Steuervolumen über die Entlastungsleitung 38, den durch die Umfangsverjüngung 66 am Umfang des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 gebildeten Hohlraum und den geöffneten Sitz 36, in den niederdrucksei- tigen Rücklauf 34 ab. Ein weiterer Rücklauf, über den Führungsleckage abgeführt wird, liegt am unteren Ende der Bohrung 32 im Injektorkörper 12, in dem der Ankerbolzen 28 bzw. das hydraulische Schaltelement 28 eng toleriert geführt ist. Der Ausführungsvariante gemäß Figur 3 lässt sich ferner entnehmen, dass die obere Stirnseite des Ankerbolzens 28 bzw. des hydraulischen Schaltelementes 28 mit einem Anschlag 62 zusammenwirkt, der den Öffnungshub der Ankerbaugruppe 24 begrenzt. In der Darstellung gemäß Figur 3 ist der Hubanschlag 62 an der unteren Stirnseite des Magnettopfes 16 ausgebildet.It can be seen from the illustration according to FIG. 3 that the fuel injector 10 in the injector head 12 comprises, in which the solenoid valve 14 is accommodated. The armature assembly 24 as shown in FIG. 3 comprises the armature plate 26, which is positively connected to the armature bolt 28 or the hydraulic shifting element 28 via an MIM connection 30. At the periphery of the anchor bolt 28 and the hydraulic switching element 28, a seat surface is formed, which cooperates with the seat 36 of the injector 12. The armature assembly 24 as shown in Figure 3 opens when energized, the magnetic coil 22, which is surrounded by the magnet pot 16, to the outside. For this purpose, a circumferential taper 66 is formed on the circumference 52 of the anchor bolt 28 or of the hydraulic shift element 28, in the region of which the relief line 38 opens for pressure relief of a control chamber, not shown in FIG. 3 but formed in the injector body 12. When the seat 36 is opened when the magnet coil 22 is energized and the armature assembly 24 is moved upwards, the control volume flows via the relief line 38, the cavity formed by the circumferential taper 66 on the circumference of the anchor bolt 28 and the hydraulic switching element 28 and the opened seat 36, respectively low-pressure return 34 from. Another return over the guide leakage is located at the lower end of the bore 32 in the injector body 12, in which the anchor bolt 28 and the hydraulic switching element 28 is guided narrow tolerances. The embodiment according to FIG. 3 also shows that the upper end face of the anchor bolt 28 or of the hydraulic shift element 28 cooperates with a stop 62 which limits the opening stroke of the armature assembly 24. In the illustration according to FIG. 3, the stroke stop 62 is formed on the lower end side of the magnet pot 16.
Figur 4 zeigt eine weitere Ausführungsvariante der erfindungsgemäß vorgeschlagenen Ankerbaugruppe an einem Hülsenventil.FIG. 4 shows a further embodiment variant of the armature assembly proposed according to the invention on a sleeve valve.
Der Darstellung gemäß Figur 4 ist der Kraftstoffinjektor 10 zu entnehmen, der zur Druckentlastung einer Entlastungsleitung 38 eines Steuerraumes im Injektorkörper 12 ein Hülsen- ventil aufweist. Die Ankerbaugruppe 24 umfasst in dieser Ausführungsvariante eine Ventilhülse 68, die mit der Ankerplatte 26 über eine MIM- Verbindung 30 gefügt ist. Innerhalb der Ventilhülse 38 ist ein über die Schließfeder 20 beaufschlagter zylindrischer Ventilkörper 70 aufgenommen. Über die Schließfeder 20 ist der zylindrisch ausgeführte Ventilkörper 70 beaufschlagt.The illustration according to FIG. 4 shows the fuel injector 10, which has a sleeve valve for depressurizing a relief line 38 of a control chamber in the injector body 12. The armature assembly 24 includes in this embodiment, a valve sleeve 68 which is joined to the anchor plate 26 via a MIM connection 30. Within the valve sleeve 38 is acted upon by the closing spring 20 cylindrical valve body 70th added. About the closing spring 20 of the cylindrically shaped valve body 70 is acted upon.
Bei Bestromung der Magnetspule 22 des Magnettopfes 16 wird die Stirnseite 50 der An- kerplatte 26 angezogen, so dass sich die Ventilhülse 68 vom Sitz 36 an der Oberseite des Injektorkörpers 12 abhebt. Dadurch wird eine Mündung 74 der Entlastungsleitung 38 des im Injektorkörper 12 ausgebildeten Steuerraumes druckentlastet, da eine Beißkante 76, die an der unteren Stirnfläche der Ventilhülse 68 ausgebildet ist, von der Planseite des Injektorkörpers 12 abgehoben ist. Die Mündungsstelle 74 des Entlastungskanals 38 kann zum Bei- spiel in einer domförmigen Erhebung 72 an der Planseite des Injektorkörpers 12 des Kraftstoffinjektors 10 gemäß der Ausführungsvariante in Figur 4 münden. Ist die Beißkante 76 der Ventilhülse 68 von der domförmigen Erhebung 72 zurückgestellt, strömt die aus dem Entlastungskanal 38 abströmende Steuermenge seitlich in Richtung eines niederdruckseiti- gen Rücklaufes 34 aus dem Injektorkörper 12 des Kraftstoffinjektors 10 ab. When the magnet coil 22 of the magnet cup 16 is energized, the end face 50 of the armature plate 26 is tightened, so that the valve sleeve 68 lifts off from the seat 36 on the upper side of the injector body 12. As a result, an orifice 74 of the discharge line 38 of the control chamber formed in the injector body 12 is depressurized, since a biting edge 76, which is formed on the lower end face of the valve sleeve 68, is lifted off the plan side of the injector body 12. The discharge point 74 of the discharge channel 38 may, for example, open into a dome-shaped elevation 72 on the plan side of the injector body 12 of the fuel injector 10 according to the embodiment in FIG. If the biting edge 76 of the valve sleeve 68 is set back from the dome-shaped elevation 72, the control quantity flowing out of the relief channel 38 flows laterally in the direction of a low-pressure side return 34 out of the injector body 12 of the fuel injector 10.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einer Ankerbaugruppe (24) für ein Magnetventil (14), welches eine bestrombare Magnetspule (22) enthält, mit nachfolgenden Verfahrensschrit- ten:1. A method for producing an armature assembly (24) for a solenoid valve (14), which contains an energizable solenoid coil (22), with the following procedural steps:
a) am Umfang (52) eines Ankerbolzens (28) oder eines hydraulischen Schaltelementes (28) wird eine Außenkonturierung (44; 54, 58, 60) erzeugt,a) an outer contouring (44, 54, 58, 60) is produced on the circumference (52) of an anchor bolt (28) or of a hydraulic shifting element (28),
b) im Bereich der Außenkonturierung (44, 54, 58, 60) wird eine Ankerplatte (26) imb) in the region of the outer contouring (44, 54, 58, 60) is an anchor plate (26) in
Wege des MIM- Verfahrens (Metal-Injected Molding) ausgebildet.Forms of the MIM method (Metal-Injected Molding) trained.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass gemäß Verfahrensschritt a) am Umfang (52) des Ankerbolzens (28) oder des hydraulischen Schaltelementes (28) mindestens eine Nut (54) oder eine Rille ausgebildet werden.2. The method according to claim 1, characterized in that according to step a) on the circumference (52) of the anchor bolt (28) or the hydraulic switching element (28) at least one groove (54) or a groove are formed.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass gemäß Verfahrensschritt a) am Umfang (52) des Ankerbolzens (28) oder des hydraulischen Schaltelementes (28) mindestens ein Bund (58) oder ein Hinterschnitt (60) ausgeführt wird.3. The method according to claim 1, characterized in that according to step a) at the periphery (52) of the anchor bolt (28) or the hydraulic switching element (28) at least one collar (58) or an undercut (60) is executed.
4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass gemäß Verfahrensschritt b) zwischen dem Material der Ankerscheibe (26) und der Außenkonturierung (44; 54, 58, 60) des Umfangs (52) des Ankerbolzens (28) oder des hydraulischen Schaltelementes (28) eine formschlüssige Verbindung erzeugt wird.4. The method according to claim 1, characterized in that according to method step b) between the material of the armature disc (26) and the outer contouring (44; 54, 58, 60) of the circumference (52) of the anchor bolt (28) or the hydraulic switching element ( 28) a positive connection is generated.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass gemäß Verfahrensschritt b) zwischen der Stirnseite des Ankerbolzens (28) oder des hydraulischen Schaltelementes (28) und einer Stirnseite (50) der Ankerplatte (26) ein einem Restluftspalt definierender Überstand (48) erzeugt wird.5. The method according to claim 1, characterized in that according to step b) between the end face of the anchor bolt (28) or the hydraulic switching element (28) and an end face (50) of the anchor plate (26) generates a residual air gap defining overhang (48) becomes.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass gemäß Verfahrensschritt b) in der Ankerscheibe (26) Durchgangsöffnungen oder Aussparungen erzeugt werden.6. The method according to claim 1, characterized in that according to step b) in the armature disc (26) through holes or recesses are generated.
7. Ankerbaugruppe (24) für ein Magnetventil (14) mit einer Ankerplatte (26) und einem Ankerbolzen (28) oder einem hydraulischen Schaltelement (28), dadurch gekennzeichnet, dass die Ankerplatte (26) im Bereich einer Außenkonturierung (44; 54, 58, 60) am Umfang (52) des Ankerbolzens (28) oder des hydraulischen Schaltelementes (28) im Wege des MIM- Verfahrens angeformt ist. 7. An armature assembly (24) for a solenoid valve (14) with an armature plate (26) and an anchor bolt (28) or a hydraulic shift element (28), characterized in that the armature plate (26) in the region of an outer contouring (44; 58, 60) on the circumference (52) of the anchor bolt (28) or the hydraulic switching element (28) by means of the MIM method is formed.
8. Ankerbaugruppe (24) gemäß Anspruch 7, dadurch gekennzeichnet, dass der Umfang (52) des Ankerbolzens (28) oder des hydraulischen Schaltelementes (28) mindestens eine Rille oder mindestens eine nutförmige Vertiefung (54) aufweist.8. An armature assembly (24) according to claim 7, characterized in that the periphery (52) of the anchor bolt (28) or the hydraulic switching element (28) has at least one groove or at least one groove-shaped recess (54).
9. Ankerbaugruppe (24) gemäß Anspruch 7, dadurch gekennzeichnet, dass am Umfang (52) des Ankerbolzens (28) oder des hydraulischen Schaltelementes (28) mindestens eine, erhaben über den Umfang (52) hervorstehende Erhebung (58, 60) ausgeführt ist.9. An armature assembly (24) according to claim 7, characterized in that at the periphery (52) of the anchor bolt (28) or the hydraulic switching element (28) at least one raised above the circumference (52) protruding elevation (58, 60) is executed ,
10. Ankerbaugruppe (24) gemäß Anspruch 7, dadurch gekennzeichnet, dass die Ankerplatte (26) aus einem magnetischen Werkstoff und der Ankerbolzen (28) oder das hydraulische Schaltelement (28) aus einem verschleißoptimierten Material gefertigt sind. 10. An armature assembly (24) according to claim 7, characterized in that the armature plate (26) made of a magnetic material and the anchor bolt (28) or the hydraulic switching element (28) are made of a wear-optimized material.
EP07726734A 2006-05-04 2007-03-09 Solenoid valve with material armature connection Not-in-force EP2016277B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006020689A DE102006020689A1 (en) 2006-05-04 2006-05-04 Solenoid valve with integral anchor connection
PCT/EP2007/052211 WO2007128605A1 (en) 2006-05-04 2007-03-09 Solenoid valve with material armature connection

Publications (2)

Publication Number Publication Date
EP2016277A1 true EP2016277A1 (en) 2009-01-21
EP2016277B1 EP2016277B1 (en) 2009-10-07

Family

ID=38197996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07726734A Not-in-force EP2016277B1 (en) 2006-05-04 2007-03-09 Solenoid valve with material armature connection

Country Status (6)

Country Link
EP (1) EP2016277B1 (en)
JP (1) JP5748405B2 (en)
CN (1) CN101438050B (en)
AT (1) ATE445097T1 (en)
DE (2) DE102006020689A1 (en)
WO (1) WO2007128605A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001122A1 (en) * 2008-04-10 2009-10-15 Robert Bosch Gmbh Solenoid valve without residual air gap disc
US8083206B2 (en) * 2008-07-08 2011-12-27 Caterpillar Inc. Precision ground armature assembly for solenoid actuator and fuel injector using same
DE102009007675A1 (en) * 2009-02-05 2010-08-19 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Valve arrangement for a magnetic valve comprises components formed as one-piece
AT508049B1 (en) * 2009-03-17 2016-01-15 Bosch Gmbh Robert DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE
DE102009060028A1 (en) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 magnetic valve
DE102010002845A1 (en) * 2010-03-15 2011-09-15 Robert Bosch Gmbh Fuel injector
DE102012204302A1 (en) * 2012-03-19 2013-09-19 Robert Bosch Gmbh Overmolded component with a sealing labyrinth
CN107829837A (en) * 2017-10-30 2018-03-23 龙口龙泵燃油喷射有限公司 A kind of fuel jet electronic mechanism of high pressure common rail injector

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118424A1 (en) * 1981-05-05 1982-11-18 Gebrüder Sulzer AG, 8401 Winterthur "ELECTRO-LIFT MAGNET TO CONTROL THE MOVEMENT OF A NOZZLE NEEDLE IN A FUEL INJECTION VALVE"
US5427319A (en) * 1994-03-24 1995-06-27 Siemens Automotive L.P. Fuel injector armature assembly
DE4415850A1 (en) * 1994-05-05 1995-11-09 Bosch Gmbh Robert Valve needle for an electromagnetically actuated valve
US5570842A (en) * 1994-12-02 1996-11-05 Siemens Automotive Corporation Low mass, through flow armature
DE19712590A1 (en) * 1997-03-26 1998-10-01 Bosch Gmbh Robert Electromagnetically actuated valve
DE19751847A1 (en) * 1997-11-22 1999-05-27 Bosch Gmbh Robert Fuel injection valve
JP4277158B2 (en) * 2000-04-11 2009-06-10 株式会社デンソー Solenoid valve and fuel injection device using the same
JP2003244869A (en) * 2002-02-20 2003-08-29 Sumitomo Electric Ind Ltd Magnetic member and its manufacturing method
JP4082929B2 (en) * 2002-05-21 2008-04-30 株式会社日立製作所 Fuel injection valve
JP2004190781A (en) * 2002-12-11 2004-07-08 Aisan Ind Co Ltd Valve element for solenoid valve, and manufacturing method for the same
JP4007591B2 (en) * 2002-12-18 2007-11-14 株式会社豊田中央研究所 Integrally molded composite member, manufacturing method thereof, and electromagnetic drive device
JP2005036929A (en) * 2003-07-17 2005-02-10 Advics:Kk Movable iron core with valve shaft of solenoid valve and its manufacturing method
JP4702945B2 (en) * 2003-09-17 2011-06-15 日立粉末冶金株式会社 Sintered movable iron core and manufacturing method thereof
US20060101641A1 (en) * 2004-11-15 2006-05-18 Borgwarner Inc. Armature pin and method for assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007128605A1 *

Also Published As

Publication number Publication date
CN101438050B (en) 2011-06-08
WO2007128605A1 (en) 2007-11-15
CN101438050A (en) 2009-05-20
DE102006020689A1 (en) 2007-11-08
DE502007001689D1 (en) 2009-11-19
ATE445097T1 (en) 2009-10-15
EP2016277B1 (en) 2009-10-07
JP5748405B2 (en) 2015-07-15
JP2009535585A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
EP2016277B1 (en) Solenoid valve with material armature connection
EP2176576B1 (en) Solenoid valve
EP1431567B1 (en) Fuel injection valve for internal combustion engines
EP3655641B1 (en) Injector for injecting fuel
WO2009121646A1 (en) Solenoid valve with multiple-part armature without armature guide
WO2013000642A1 (en) Control valve for controlling a fuel injector, and a fuel injector
WO2009068414A9 (en) Ball-valve operated fuel injector
WO2000028205A1 (en) Fuel injection valve for internal combustion engines
EP3036430B1 (en) Device for a high-pressure pump for a motor vehicle
DE102008005523A1 (en) fuel injector
DE102008040680A1 (en) Fuel injector
EP1327065B1 (en) Electromagnetic valve-actuated control module for controlling fluid in injection systems
EP2314860B1 (en) Fuel injector
EP1382839B1 (en) Armature assembly for fuel injectors
DE102010030429A1 (en) Injector i.e. common-rail injector, for injecting fuel into combustion chamber of internal combustion engine, has seat surface whose sealing seat is formed at armature, and valve element formed in ball shape
DE102009029009A1 (en) Injector for injecting fuel
WO2019016399A1 (en) Device for controlling an injector
EP2185808B1 (en) Fuel injection valve for internal combustion engines
DE10220717A1 (en) Solenoid valve, in particular quantity control valve for fuel systems of internal combustion engines
EP2204570B1 (en) Fuel injector
DE102008001601A1 (en) Fuel injector and manufacturing process
WO2017108343A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
WO2017097498A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
DE102007012706A1 (en) Valve for fuel injectors
DE102008040074A1 (en) Solenoid valve for controlling an injection valve of a fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007001689

Country of ref document: DE

Date of ref document: 20091119

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100208

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100207

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

26N No opposition filed

Effective date: 20100708

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100309

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 445097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120309

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190321

Year of fee payment: 13

Ref country code: FR

Payment date: 20190326

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190520

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007001689

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200309