EP2009387B1 - Steuerverfahren zur Auslösung eines Angriffsmoduls und Vorrichtung zur Umsetzung eines solchen Verfahrens - Google Patents

Steuerverfahren zur Auslösung eines Angriffsmoduls und Vorrichtung zur Umsetzung eines solchen Verfahrens Download PDF

Info

Publication number
EP2009387B1
EP2009387B1 EP08290608.2A EP08290608A EP2009387B1 EP 2009387 B1 EP2009387 B1 EP 2009387B1 EP 08290608 A EP08290608 A EP 08290608A EP 2009387 B1 EP2009387 B1 EP 2009387B1
Authority
EP
European Patent Office
Prior art keywords
attack module
attack
action
terrestrial reference
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08290608.2A
Other languages
English (en)
French (fr)
Other versions
EP2009387A1 (de
Inventor
Thierry Bredy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexter Munitions SA
Original Assignee
Nexter Munitions SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexter Munitions SA filed Critical Nexter Munitions SA
Publication of EP2009387A1 publication Critical patent/EP2009387A1/de
Application granted granted Critical
Publication of EP2009387B1 publication Critical patent/EP2009387B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/40Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • F41G7/346Direction control systems for self-propelled missiles based on predetermined target position data using global navigation satellite systems, e.g. GPS, GALILEO, GLONASS
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/006Proximity fuzes; Fuzes for remote detonation for non-guided, spinning, braked or gravity-driven weapons, e.g. parachute-braked sub-munitions

Definitions

  • the technical field of the invention is that of devices for controlling the triggering of a driver module having at least one determined direction of action.
  • attack module having a given direction of action is meant a projectile which acts in a preferential manner in a given direction of space.
  • the patent EP-0800054 describes a projectile comprising an explosive charge whose operation is triggered following the detection by a sensor carried by the projectile of laser radiation reflected by a target.
  • This laser radiation comes from a target designator positioned in the field, the targeted target being previously marked.
  • the aim here is to ensure the precise attack of targets camouflaged or equipped with decoys. This ensures a surgical strike of the targets while avoiding as much collateral damage as possible
  • the patent EP-1617165 describes a method for guiding and / or piloting a projectile towards a target. According to this method, a guide law is implemented in which a variation as a function of time of the angle between the line of sight vector and a projection of the magnetic field vector in the guide plane (plane of the line vectors) is used. aiming range and projectile velocity). The proposed concept therefore requires the presence of a target detector or devometer embedded in the projectile to determine the line of sight in a reference linked to the projectile.
  • the initiation of this charge projects a sheaf of fragments in a given direction which is the axis of the charge.
  • the chips scatter slightly around the projection axis and result in an impact surface on a target that has a given area (depending on the charge / target distance).
  • the patent EP1045222 describes such a load projecting splinters in a given direction.
  • the projectiles thus having a determined direction of action are particularly interesting because they allow a control of the risk zone. Collateral damage can be minimized, only the targeted target is in principle destroyed.
  • attack modules thus make it possible to limit the effects to a well-defined sector which was not the case with conventional projectiles, for example explosive artillery shells that generate splinters in all the directions of the surrounding space. the axis of the shell.
  • attack modules having a determined direction of action is however that it is necessary to orient them towards the desired target.
  • Projectiles are thus known that are brought into contact with or near the target, either by direct fire (shell-shaped shells fired in tight fire without guidance) or by indirect fire.
  • a target sensor for example an infrared sensor
  • the object of the invention is to propose a device for triggering an attack module (such as a projectile) making it possible to increase the control of the risk zone.
  • an attack module such as a projectile
  • the device according to the invention can be implemented with projectiles devoid of control means and also lacking target detection means, which reduces the susceptibility of these projectiles to jamming or masking.
  • the device nevertheless ensures these projectiles a perfect control of the dimensions of the risk zone.
  • the invention can also be implemented in a projectile which is already equipped with detection means.
  • the invention makes it possible to provide an additional firing condition that leads to improving the overall control of the efficiency zone of the driving modules.
  • the determination of the orientation of the direction of action relative to the fixed terrestrial reference will be performed by measuring the orientation of the drive module with respect to at least two components of the Earth's magnetic field, the components of the Earth's magnetic field. otherwise known in the fixed terrestrial reference.
  • a target / target module distance from the coordinates of the target in the fixed terrestrial frame, programmed before firing or on trajectory, and measurements of the coordinates of the attack module in the reference frame.
  • fixed terrestrial measurements made on a trajectory by a satellite positioning system or transmitted to the driving module from a platform provided with tracking means.
  • the coordinates of the attack / target module vector calculated from the preprogrammed target coordinates as well as from the target coordinates, are calculated on a trajectory and in a fixed terrestrial reference. of those measured of the drive module and determined by means of a triaxial magnetic compass the orientation of the direction of action of the drive module in a fixed terrestrial reference.
  • the coefficients of a matrix of passage of a reference linked to the driving module towards the fixed terrestrial reference will be calculated, these components being calculated by associating, for the points of the trajectory considered, the measurement of the components of the terrestrial magnetic field in a reference frame linked to the driving module and the values of the components of the magnetic field in the terrestrial frame, the latter values being known and preprogrammed in the driving module, the calculation indetermination being raised by the determination of at least one direction in the terrestrial reference of one of the axes of a reference linked to the attack module.
  • a determination of the orientation of the direction of action in the fixed terrestrial reference will be made from the measurement of the components of the magnetic field in a horizontal plane, which plane is defined by two magnetic sensors carried by the driving module, the orientation of the direction of action with respect to this plane being otherwise known as well as the orientation of the field magnetic in the fixed terrestrial reference.
  • target detection means at the level of the driving module and the triggering of the attack module will only be triggered if the authorization conditions are fulfilled and a target is otherwise detected.
  • the invention also relates to a device for controlling the triggering of an attack module having at least one determined direction of action, and implementing such a method.
  • This device is characterized in that it comprises means for storing the coordinates of at least one target in a fixed terrestrial reference, means for measuring the coordinates of the drive module in the fixed terrestrial reference, as well as calculation means making it possible to determine, on a trajectory, the orientation of the direction of action of the driving module in the fixed terrestrial reference, the means ensuring the triggering of the driving module being coupled to the calculation means so as not to allow such a trigger that if the direction of action is oriented toward the target.
  • the means for measuring the coordinates of the driver module in the fixed terrestrial fixture may include a GPS receiver and / or a location data receiver transmitted from a remote platform.
  • the device may comprise at least two fixed magnetic sensors for determining the orientation of the direction of action of the driver module with respect to the Earth's magnetic field, memory means also providing the components of the Earth's magnetic field in the terrestrial reference fixed.
  • the device When it is more particularly suited to a projectile having a non-vertical trajectory, the device is characterized in that the driving module incorporates at least three magnetic sensors and memory means making it possible to know the values of the terrestrial magnetic field in a reference frame. fixed earth for the different points of the trajectory, calculation means making it possible to determine from the different values of the earth magnetic field, the orientation of the reference linked to the driving module with respect to the terrestrial reference as well as the coordinates of the vector module attack / target in a fixed terrestrial reference, and those of the direction of action of the attack module.
  • the device When it is more particularly adapted to a driving module intended to be dispersed over a terrain zone by a carrier and animated after dispersion of a downward movement along a substantially vertical axis as well as a rotational movement about this vertical axis (the direction of action is also inclined relative to the vertical axis of a given angle), the device is characterized in that the drive module comprises at least two magnetic sensors arranged along two axes of a reference linked to the driving module, the two axes defined by these sensors thus determining a plane which will be perpendicular to the expected vertical fall axis, the orientation of the direction of action of the driving module with respect to this horizontal plane being known.
  • the figure 1 shows a weapon system or shooting platform 1 (here a self-propelled artillery) which sends a projectile 2 to a target 3 in order to destroy it.
  • This projectile 2 constitutes an attack module having a determined direction of action W H which here forms an angle with the axis 19 of the projectile 2.
  • the latter follows a ballistic trajectory 5 and it also turns around its axis.
  • FIG. 1 a fixed terrestrial reference 4 of XYZ axes.
  • the coordinates of the firing platform 1 are X w Y w Z w
  • the coordinates of the projectile 2 are X p Y p Z p
  • those of the target 3 are X t Y t Z t .
  • point coordinates target, platform, projectile
  • the targeted targets have a certain ground surface and that the target point corresponds for example to the center of gravity of the real target.
  • the coordinates of the projectile are for example those of its center of gravity or those of the focus of its military head.
  • the driver module 2 incorporates a device 6 for controlling its tripping. This device ensures that the trigger will intervene only when optimal conditions are met, conditions to limit collateral damage.
  • the attack module 2 may include one or more formed charges (not shown) which will be projected in the direction of action W H. It may also include a load projecting a sheaf of splinters in the mean direction W H.
  • a burst charge projects splinters in a substantially conical sheaf centered on this direction of action.
  • the principles to be described can be easily adapted to the determination of the surfaces reached at ground level and to the comparison of this theoretically achieved surface with the global footprint (known and programmed) of a target to be treated.
  • the pyrotechnic means ensuring the end effect are not the subject of the present invention and will not be described in detail.
  • the figure 2 schematically represents the structure of the control device 6.
  • This device essentially comprises calculation means 7 which incorporate different calculation modules made in the form of algorithms stored in memories or registers.
  • calculation means 7 are connected to means 20 for triggering the firing of the pyrotechnic charge of the driver module 2 (for example an electronic fuse causing the initiation of a detonator). These known means are not the subject of the present invention and will therefore not be described in detail.
  • the control device 6 also comprises memory means or registers (incorporated in the calculation means 7) for storing the coordinates X t Y t Z t of at least one target 3 in the fixed terrestrial reference 4.
  • the coordinates of the target or targets 3 are introduced into the calculation means 7 from an appropriate interface 8. They are provided by a programming means 9 which is integral with the shooting platform 1.
  • a transmitter means 10 integral with the platform 1 for example a radio signal transmitter.
  • the interface 8 will then include a receiving antenna (not shown).
  • the device 6 also comprises means 11 making it possible to measure the X p Y p Z p coordinates of the driving module in the reference frame terrestrial fixed 4.
  • These means 11 may be constituted by a receiver of a satellite positioning system (or GPS).
  • the GPS receiver embedded in the projectile 2 can be replaced by a simple receiver 12 of signals supplied by a transmitter 10 (identical or different from that previously described) and integral with the platform 1. This transmitter 10 will then be coupled to a trajectory means 13 also secured to the platform 1.
  • the device according to the invention also comprises fixed magnetic sensors 14 (for example magneto resistors). These sensors make it possible to measure the components of the Earth's magnetic field along two or three axes of a marker linked to the projectile 2.
  • calculation means 7 also comprise memory means or registers for memorizing the components of the terrestrial magnetic field H in a fixed terrestrial reference 4 and in all points of the trajectory provided for the projectile 2.
  • the magnetic field H thus has, in this reference linked to the projectile, the three components H Xm , H Ym and H Zm which are measured along the trajectory 5.
  • the same magnetic field H has also in the fixed terrestrial reference 4, positioned at the point G of the trajectory 5, components H X , H Y and H Z.
  • the vector Vt is the velocity vector of the projectile 2 on its trajectory 5.
  • the components of this vector in the fixed reference frame 4 as well as the coordinates of the point G at which the projectile 2 is located are known thanks to the positioning means 11 (or to the means tracking).
  • the calculation means 7 can therefore at any time calculate, in the fixed reference frame 4, the coordinates of the vector ⁇ which connects the attack module. 2 to target 3 (vector whose standard expresses the distance from the attack module to the target).
  • the vector W H which is the one defining the direction of action of the projectile (or module of attack) 2.
  • This direction of action W H is a fixed data in the reference XmYmZm related to the projectile. This data is determined during the construction of the projectile 2. It is known, for a given projectile or attack module, how the magnetic sensors 14 are placed with respect to the military head and the direction of action of the projectile is also known. the military head with respect to the projectile body 2. The coordinates of the vector W H in the reference linked to the projectile 2 are incorporated in memory in the calculation means 7.
  • the orientation of this direction of action W H in the fixed terrestrial reference 4 will be determined on a trajectory.
  • the drive / target module distance which is the norm of the vector ⁇ , is also determined by calculation.
  • attack modules incorporating shaped charges or focussed flashes
  • the norm of the vector ⁇ is less than or equal to a programmed value which is the radius of action Ra for the drive module considered and which corresponds to a suitable distance for controlling the triggering with respect to a target.
  • the long range attack modules are for example those equipped with core generating charges.
  • the figure 4 is a logic diagram that summarizes the main steps of the method according to the invention.
  • Step A corresponds to the calculation of the coordinates of the vector ⁇ in the fixed terrestrial reference 4 (distance vector attack module / target).
  • the standard of this vector ⁇ will be calculated at the same stage.
  • Step B corresponds to calculating the coordinates of the vector W H (orientation of the direction of action) in the fixed terrestrial frame 4. This calculation implements steps which will be detailed later.
  • test C verifies the collinearity and the same direction of the vectors W H and ⁇ .
  • the test D satisfies (possibly) that the norm of the vector ⁇ is less than or equal to a reference value (radius of action Ra).
  • step E corresponds to the triggering authorization of the attack module 2.
  • step B will determine the orientation of the direction of action W H relative to the fixed terrestrial reference 4 by measuring the orientation of the module. 2 with respect to at least two components of the Earth's magnetic field.
  • Calculations of moving from a movable marker to a fixed marker implement the Euler angles which are well known to those skilled in the art. They intervene in the determination of the coefficients of a transition matrix T allowing the computation of the coordinates of points or vectors in the fixed reference frame from the known coordinates in the movable reference linked to the projectile 2.
  • H X H Y H Z T .
  • H Xm H Ym H Zm H X , H Y , H Z ) being the coordinates of the terrestrial magnetic field vector in the fixed coordinate system and (H Xm , H Ym , H Zm ) being the coordinates of this same vector in the reference linked to the projectile.
  • the coefficients of the matrix T depend, of course, on the attitude of the projectile 2 on trajectory, and therefore flight conditions. They vary on trajectory and must be determined in a continuous (or periodic) way.
  • these Euler angles and the coefficients of the transit matrix T are determined using inertial systems associating gyrometers and accelerometers, which are fragile and expensive equipments (which do not resist firing by a cannon).
  • the components of the Earth's magnetic field may be considered constant over the entire trajectory 5 of the projectile 2 and during flight time.
  • this indetermination will be solved by calculating the orientation of the axis GXm of the reference linked to the projectile 2.
  • the axis 19 of the projectile 2 itself will be chosen as axis GXm and a conventional flight mechanics calculation will be used to determine the orientation of this axis in the terrestrial reference frame 4.
  • the knowledge of the trajectory 5 and the speed Vt makes it possible to know the curvature of the trajectory and the acceleration to which the projectile 2 is subjected.
  • the latter also has an aerodynamic transfer function Fta which depends on its geometry. , its mass and its matrix of inertia and which is fixed to the construction.
  • the implementation of the aerodynamic and flight mechanics equations allows to determine the angle of incidence Inc which separates the vectors Vt and Gxm from the transfer function Fta and the components of the acceleration calculated on trajectory.
  • This angle Inc is a resultant angle of incidence which is measured in the plane of the vectors Vt and Gxm, plane which is perpendicular to the vector of instantaneous rotation of the projectile on its trajectory.
  • the figure 5 is a logic diagram that details step B corresponding to the calculation of the coordinates of the vector W H (orientation of the direction of action) in the fixed terrestrial reference 4.
  • the block F corresponds to the measurement by the positioning means 11, and in the terrestrial frame 4, coordinates of the vector Vt associated with the different points of the trajectory 5 located as well as calculation by derivation, (or else by determination of the radius curvature of the trajectory) accelerations to which the projectile is subjected.
  • the block G corresponds to the calculation of the coordinates in the fixed terrestrial reference 4 of the main axis of the projectile GXm. This calculation implements the calculations resulting from the block F as well as the aerodynamic transfer function (Fta) of the projectile 2.
  • the block H M corresponds to the measurement by the sensors 14 of the components of the magnetic field in the marker of the projectile 2.
  • the block H RT corresponds to the determination (by reading in memories or registers of the computer 7) of the components of the terrestrial magnetic field in the terrestrial reference point at the point considered on the trajectory.
  • this block is connected to the block F to remind that the memory of the data of the magnetic field must be read with reference to the coordinates of the point considered on the trajectory of the projectile (coordinates provided by the positioning means 11).
  • the T block is that of calculating the coefficients of the matrix T allowing the passage of a marker linked to the projectile to a fixed terrestrial reference.
  • the block W H corresponds to the computation of the coordinates of the direction of action vector W H with respect to the fixed terrestrial reference 4.
  • the invention may advantageously be implemented for an attack module which is dispersed over a terrain zone by a carrier, for example an artillery cargo shell, a drone or a rocket (not shown).
  • a carrier for example an artillery cargo shell, a drone or a rocket (not shown).
  • Such a drive module 15 is animated by a descent movement along a substantially vertical axis 16 and a rotational movement (speed ⁇ ) around this vertical axis of descent.
  • the direction of action W H is inclined relative to the vertical axis 16 of a given angle P which is fixed by construction.
  • (Xf, Yf, Zf) are the coordinates of the point of intersection with the ground of the action direction vector W H of the driving module 15. This point corresponds to the theoretical impact point 18 on the ground of the core or of the sheaf of splinters generated during the initiation of the attack module 15.
  • the coordinates of this vector in the terrestrial reference are easily calculated from the coordinates (Xp, Yp, Zp) of the driving module 15 (measured by the positioning means 11) and those (Xt, Yt, Zt) of the target 3 (programmed before shooting).
  • the standard of this vector ⁇ will be the value of a distance of attack / target module.
  • a test complementary to the collinearity measurement of the vectors W H and ⁇ may nevertheless be provided. This test will make it possible to verify that the value of the norm of the vector ⁇ is less than or equal to a predefined radius of action Ra.
  • a test could be made of the altitude at which the attack module is in relation to the ground (using an altimeter).
  • the vertical drop of the drive module significantly simplifies the implementation of the method according to the invention.
  • the drive module follows a vertical path and is not subject to any lateral acceleration. It is then easy to remove the indeterminacy in the calculation of the passage matrix T allowing to go from the reference linked to the driving module to the terrestrial reference. It is sufficient to consider that the axis GZm of the reference linked to the projectile is vertical. The coordinates of the axis GZm in the reference are easily known from the sole determination of the coordinates of the point G (given by the positioning means 11).
  • the figure 7 shows the drive module 15 and the positioning of two sensors 14 of the magnetic field.
  • the reference GXmYmZm linked to the driver module 15 has a privileged axis GZm which is the vertical axis.
  • the magnetic sensors 14 are arranged in the driving module 15 so as to materialize two directions GXm and GYm which define a horizontal plane during the fall of the driving module (plane perpendicular to the direction GZm).
  • the location of the direction of action W H with respect to the drive module 15, so compared to the sensors 14 is a fixed construction data.
  • the matrix of passage T allowing the change of reference is thus easily defined.
  • the determination is all the easier with the choice of a marker linked to the projectile and having a vertical axis and a horizontal plane, it is sufficient to know a single angle of Euler, the angle ⁇ of rotation to pass from the fixed terrestrial axis GX (centered at G to the driving module 15) to the axis GXm, in order to determine the orientation in the terrestrial reference of the driving module 15 (hence of its direction of action W H ) .
  • Two magnetic sensors 14 are sufficient to calculate the value of the angle ⁇ n formed by the projection N of the magnetic field vector with the axis GXm.
  • figure 8 shows how it is possible to easily calculate the orientation of the action direction W H and check the conditions allowing to allow or not the triggering of the driver module.
  • the figure 8 thus shows the different vectors in projection in the horizontal plane. It has been arbitrarily chosen to confuse the axis GXm of the reference linked to the driving module 15 with the projection W HN of the direction of action W H on this plane.
  • ⁇ r is the angle that makes (in the horizontal plane) the projection N of the magnetic field vector H with respect to the axis GX of the fixed reference. This value is deducted from coordinates of the magnetic field in the terrestrial frame as preprogrammed for the considered point G of the trajectory. We see that it would be possible in this case to simply memorize in the calculation means 7 only the angles ⁇ r and not the complete components of the magnetic field vector.
  • the angle ⁇ n formed by the projection N of the magnetic field vector with the axis GXm is measured using the sensors 14.
  • the vector ⁇ N (projection of the vector connecting the driving module 15 to the target 3) is easily determined from the coordinates Xp, Yp of the driving module (given by the positioning means 11 and those Xt, Yt of Target 3 (preprogrammed).
  • ⁇ NOT 2 xt - xp 2 + yt - yp 2
  • the shooting accuracy obtained is remarkable while the driving module 15 is completely devoid of target detection means.
  • the method according to the invention can be implemented for a driver module that is already provided with target detection means, for example an infrared sensor.
  • step E of the figure 4 will be followed by another test which will correspond to the verification of the presence of a target having the expected infrared characteristics (such a detection means is conventional and already implemented today).
  • the method according to the invention does not itself control the triggering of the attack module but it brings an additional condition to the simple target detection.
  • the examples described have referred to the determination of a direction of action W H whose intersection at ground level is punctual. It is of course possible, in particular when the drive module incorporates a chip load, to determine, in addition to the mean orientation of the vector W H , the value of the ground level surface that is covered by the sheaf. splinters. This surface is easy to calculate by introducing into the projectile the value of the opening angle of the cone of the generated sheaf (solid angle centered on the direction W H ).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Claims (13)

  1. Verfahren zum Steuern der Auslösung eines Angriffsmoduls (2,15), wie beispielsweise ein Projektil (2), wobei das Angriffsmodul wenigstens eine festgelegte Wirkungsrichtung (WH) besitzt, wobei die Wirkungsrichtung eine Richtung des vom Angriffsmodul erzeugten Wegschleuderns eines Kerns, eines Strahls oder einer Garbe von Splittern ist, wobei das Verfahren durch die folgenden Schritte gekennzeichnet ist:
    - Vor Abschuss oder auf der Flugbahn werden Koordinaten von mindestens einem Ziel (3) in einem festen, terrestrischen Koordinatensystem (4) programmiert,
    - auf der Flugbahn wird mindestens eine Festlegung einer Ausrichtung der sogenannten Wirkungsrichtung (WH) in dem festen, terrestrischen Koordinatensystem (4) vorgenommen,
    - die Auslösung des Angriffsmoduls (2,15) wird nur ermöglicht, wenn sich die sogenannte Ausrichtung der sogenannte Wirkungsrichtung (WH) in der Richtung des Ziels (3) befindet.
  2. Verfahren zum Steuern der Auslösung eines Angriffsmoduls nach Anspruch 1, dadurch gekennzeichnet, dass die Festlegung der Ausrichtung der Wirkungsrichtung (WH) in Bezug auf das feste, terrestrische Koordinatensystem (4) dadurch erfolgt, dass die Ausrichtung des Angriffsmoduls (2,15) in Bezug auf mindestens zwei Komponenten des Erdmagnetfeldes gemessen wird, wobei die Komponenten des Erdmagnetfeldes außerdem im festen, terrestrischen Koordinatensystem (4) bekannt sind.
  3. Verfahren zum Steuern der Auslösung eines Angriffsmoduls nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine Messung des Abstandes Angriffsmodul (2,15) / Ziel (3) anhand von Koordinaten (XtYtZt) des Ziels in dem festen, terrestrischen Koordinatensystem, welche vor dem Abschuss oder auf der Flugbahn programmiert wurden, und Messungen von Koordinaten (XpYpZp) des Angriffsmoduls (2, 15) in dem festen, terrestrischen Koordinatensystem (4) vorgenommen wird, wobei die Messungen auf der Flugbahn von einem Satelliten gestützten System (11) zur Positionsbestimmung erfolgen oder auch ausgehend von einer Plattform (1), welche mit einem Mittel zur Flugbahnverfolgung (13) ausgerüstet ist, an das Angriffsmodul übertragen werden.
  4. Verfahren zum Steuern der Auslösung eines Angriffsmoduls nach Anspruch 3, und das insbesondere an ein Projektil (2) mit einer nicht vertikalen Flugbahn angepasst ist, wobei das Verfahren dadurch gekennzeichnet ist, dass die Koordinaten des Vektors (Δ) Angriffsmodul (2) / Ziel (3) auf der Flugbahn und in einem festen, terrestrischen Koordinatensystem (4) berechnet werden, wobei die Berechnung anhand von vorprogrammierten Koordinaten (XtYtZt) des Ziels sowie jener gemessenen (XpYpZp) des Angriffsmoduls (2) vorgenommen wird, und mit Hilfe eines dreiachsigen Magnetkompass die Ausrichtung der Wirkungsrichtung (WH) des Angriffsmoduls (2) in einem festen, terrestrischen Koordinatensystem (4) bestimmt wird.
  5. Verfahren zum Steuern der Auslösung eines Angriffsmoduls nach Anspruch 4, dadurch gekennzeichnet, dass, um die Ausrichtung der Wirkungsrichtung (WH) des Angriffsmoduls (2) in einem festen, terrestrischen Koordinatensystem (4) zu bestimmen, die Koeffizienten einer Übergangsmatrix (T) von einem mit dem Angriffsmodul (2) verbundenen Koordinatensystem zum festen, terrestrischen Koordinatensystem (4) berechnet werden, wobei diese Komponenten berechnet werden, indem für die betreffenden Punkte der Flugbahn (5) die Messung der Komponenten (HXm, HYm, HZm) des terrestrischen Magnetfeldes in einem mit dem Angriffsmodul (2) verbundenen Koordinatensystem und die Werte der Komponenten (HX, HY, HZ) des Magnetfeldes in dem terrestrischen Koordinatensystem (4) verknüpft werden, wobei diese letzteren Werte bekannt und in dem Angriffsmodul (2) vorprogrammiert sind, wobei die rechnerische Unbestimmtheit durch die Bestimmung mindestens einer Richtung in dem terrestrischen Koordinatensystem einer der Achsen eines mit dem Angriffsmodul (2) verbundenen Koordinatensystems angehoben wird.
  6. Verfahren zum Steuern der Auslösung eines Angriffsmoduls nach Anspruch 5, dadurch gekennzeichnet, dass, um die Unbestimmtheit anzuheben, die Ausrichtung der longitudinalen Achse (GXm) des Angriffsmoduls (2) anhand einer Berechnung des Einfallwinkels (Inc) des Projektils berechnet wird, wobei die Berechnung anhand von Messungen der durchlaufenen Flugbahn (5), der Geschwindigkeit (Vt) im terrestrischen Koordinatensystem (4) sowie anhand der Kenntnis der aerodynamischen Übertragungsfunktion des Projektils (2) durchgeführt wird.
  7. Verfahren zum Steuern der Auslösung eines Angriffsmoduls nach einem der Ansprüche 2 oder 3, und das insbesondere an ein Angriffsmodul (15) angepasst ist, welches über einer Geländezone von einem Träger verstreut wird und dem eine Senkbewegung gemäß einer im wesentlichen vertikalen Achse (16) sowie eine Drehbewegung um die vertikale Senkachse verliehen ist, wobei die Wirkungsrichtung (WH) in Bezug auf die vertikale Achse (16) um einen gegebenen Winkel (β) geneigt ist, dadurch gekennzeichnet, dass die Bestimmung der Ausrichtung der Wirkungsrichtung (WH) in dem festen, terrestrischen Koordinatensystem (4) nunmehr anhand der Messung der Komponenten des Magnetfeldes in einer horizontalen Ebene, welche von zwei, von dem Angriffsmodul (15) getragenen Magnetsensoren (14) aufgespannt wird, vorgenommen wird, wobei die Ausrichtung der Wirkungsrichtung (WH) sowie die Ausrichtung des Magnetfeldes in dem festen, terrestrischen Koordinatensystem (4) in Bezug auf diese Ebene außerdem bekannt ist.
  8. Verfahren zum Steuern der Auslösung eines Angriffsmoduls nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass auch im Bereich des Angriffsmoduls (2, 15) Mittel zur Zielerfassung eingesetzt werden und dass die Auslösung des Angriffsmoduls nur dann herbeigeführt wird, wenn die Bedingungen zur Freigabe erfüllt sind und außerdem nur ein Ziel erfasst ist.
  9. Vorrichtung zum Steuern der Auslösung eines Angriffsmoduls (2, 15) mit mindestens einer festgelegten Wirkungsrichtung, welche eine Richtung des vom Angriffsmodul erzeugten Wegschleuderns eines Kerns, eines Strahls oder einer Garbe von Splittern ist, die das Verfahren nach einem der vorhergehenden Ansprüche einsetzt, wobei die Vorrichtung dadurch gekennzeichnet ist, dass sie Mittel (7), welche es ermöglichen, die Koordinaten von mindestens einem Ziel (3) in einem festen, terrestrischen Koordinatensystem (4) abzuspeichern, Mittel (11), welche es ermöglichen, Koordinaten (XpYpZp) des Angriffsmoduls (2,15) in dem festen, terrestrischen Koordinatensystem (4) zu messen, sowie Rechenmittel (7) umfasst, welche es ermöglichen, auf der Flugbahn eine Ausrichtung der sogenannten Wirkungsrichtung des Angriffsmoduls in dem festen, terrestrischen Koordinatensystem zu bestimmen, wobei Mittel (20) die Auslösung des Angriffsmoduls (2) gewährleisten und derartig mit den Rechenmitteln (7) verbunden sind, dass eine solche Auslösung nur dann zugelassen wird, wenn sich die Ausrichtung der sogennanten Wirkungsrichtung (WH) in Richtung des Ziels (3) befindet.
  10. Vorrichtung zum Steuern der Auslösung eines Angriffsmoduls nach Anspruch 9, dadurch gekennzeichnet, dass die Mittel, welche es ermöglichen, die Koordinaten des Angriffsmoduls (2, 15) in dem terrestrischen Koordinatensystem zu messen, einen GPS-Empfänger (11) und / oder einen Empfänger (12) für Ortungsdaten umfassen, welche von einer entfernten Plattform übertragen werden.
  11. Vorrichtung zum Steuern der Auslösung eines Angriffsmoduls nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass sie mindestens zwei feste Magnetsensoren (14) umfasst, welche es ermöglichen, die Ausrichtung der Wirkungsrichtung des Angriffsmoduls (2,15) in Bezug auf das terrestrische Magnetfeld zu bestimmen, wobei Speichermittel (7) außerdem die Komponenten des terrestrischen Magnetfeldes in dem festen, terrestrischen Koordinatensystem (4) bereitstellen.
  12. Vorrichtung zum Steuern der Auslösung eines Angriffsmoduls nach Anspruch 11, welche insbesondere an ein Projektil (2) mit einer nicht vertikalen Flugbahn angepasst ist, wobei die Vorrichtung dadurch gekennzeichnet ist, dass das Angriffsmodul (2) mindestens drei Magnetsensoren (14) und Speichermittel, welche es ermöglichen, die Werte des terrestrischen Magnetfeldes in einem festen, terrestrischen Koordinatensystem (4) für die verschiedenen Punkte der Flugbahn (5) zu kennen, Rechenmittel (7) enthält, welche es ermöglichen, anhand der verschiedenen Werte des terrestrischen Magnetfeldes die Ausrichtung des mit dem Angriffsmodul (2) verbundenen Koordinatensystems sowie die Koordinaten des Vektors (Δ) Angriffsmodul (2) / Ziel (3) in einem festen, terrestrischen Koordinatensystem (4) und diejenigen der Wirkungsrichtung (WH) des Angriffsmoduls zu bestimmen.
  13. Vorrichtung zum Steuern der Auslösung eines Angriffsmoduls nach Anspruch 11, welche dafür vorgesehen ist, über einer Geländezone von einem Träger verstreut zu werden und welcher nach Verstreuung eine Senkbewegung gemäß einer im wesentlichen vertikalen Achse (16) sowie eine Drehbewegung um diese vertikale Achse verliehen ist, wobei die Wirkungsrichtung (WH) in Bezug auf die vertikale Achse außerdem um einen gegebenen Winkel (β) geneigt ist, wobei die Vorrichtung dadurch gekennzeichnet ist, dass das Angriffsmodul (15) mindestens zwei Magnetsensoren (14) umfasst, die gemäß zweier Achsen (GXm, Gym) eines mit dem Angriffsmodul (15) verbundenen Koordinatensystems angeordnet sind, wobei beide durch diese Sensoren definierten Achsen so eine Ebene aufspannen, welche senkrecht zur vorgesehenen, vertikalen Sinkachse (16) ist, wobei die Ausrichtung der Wirkungsrichtung (WH) des Angriffsmoduls (15) in Bezug auf diese horizontale Ebene bekannt ist.
EP08290608.2A 2007-06-27 2008-06-25 Steuerverfahren zur Auslösung eines Angriffsmoduls und Vorrichtung zur Umsetzung eines solchen Verfahrens Active EP2009387B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0704613A FR2918168B1 (fr) 2007-06-27 2007-06-27 Procede de commande du declenchement d'un module d'attaque et dispositif mettant en oeuvre un tel procede.

Publications (2)

Publication Number Publication Date
EP2009387A1 EP2009387A1 (de) 2008-12-31
EP2009387B1 true EP2009387B1 (de) 2014-08-27

Family

ID=38983957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08290608.2A Active EP2009387B1 (de) 2007-06-27 2008-06-25 Steuerverfahren zur Auslösung eines Angriffsmoduls und Vorrichtung zur Umsetzung eines solchen Verfahrens

Country Status (3)

Country Link
US (1) US7989742B2 (de)
EP (1) EP2009387B1 (de)
FR (1) FR2918168B1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009024508A1 (de) * 2009-06-08 2011-07-28 Rheinmetall Air Defence Ag Verfahren zur Korrektur der Flugbahn einer endphasengelenkten Munition
US8650000B2 (en) * 2010-01-15 2014-02-11 The United States Of America As Represented By The Secretary Of The Navy Ballistic missile phase categorization technique
FR2983289B1 (fr) 2011-11-29 2014-12-12 Nexter Munitions Procede de controle du declenchement d'une charge militaire, dispositif de controle et fusee de projectile mettant en oeuvre un tel procede
FR2999697B1 (fr) * 2012-12-17 2015-01-02 Nexter Systems Procede d'acquisition des coordonnees d'un point de declenchement d'un projectile et conduite de tir mettant en oeuvre un tel procede
AU2014357421B2 (en) 2013-12-02 2017-09-14 Austin Star Detonator Company Method and apparatus for wireless blasting
US9518807B2 (en) * 2014-07-16 2016-12-13 Rosemount Aerospace Inc. Projectile control systems and methods
US11555679B1 (en) 2017-07-07 2023-01-17 Northrop Grumman Systems Corporation Active spin control
US11578956B1 (en) 2017-11-01 2023-02-14 Northrop Grumman Systems Corporation Detecting body spin on a projectile
FR3080912B1 (fr) 2018-05-02 2020-04-03 Nexter Munitions Projectile propulse par statoreacteur
CN109709981B (zh) * 2018-12-27 2022-01-14 西安工业大学 一种无人机群竞技对抗方法
US11573069B1 (en) 2020-07-02 2023-02-07 Northrop Grumman Systems Corporation Axial flux machine for use with projectiles
CN111895864B (zh) * 2020-08-06 2022-05-10 西安睿高测控技术有限公司 一种无加速度计的卫星制导弹药的过载驾驶仪构建方法
US20220107160A1 (en) * 2020-10-02 2022-04-07 United States Of America, As Represented By The Secretary Of The Navy Glide Trajectory Optimization for Aerospace Vehicles
CN112857224B (zh) * 2021-01-20 2022-08-30 中北大学 一种ccd线阵相机交汇连发弹丸坐标快速处理方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886286A (en) * 1965-07-26 1999-03-23 The United States Of America As Represented By The Secretary Of The Navy Monitoring safety system
US4277038A (en) * 1979-04-27 1981-07-07 The United States Of America As Represented By The Secretary Of The Army Trajectory shaping of anti-armor missiles via tri-mode guidance
US4356770A (en) 1979-11-09 1982-11-02 Avco Corporation Overflying munitions device and system
SE452505B (sv) 1986-03-27 1987-11-30 Bofors Ab Substridsdel med svengbart anordnad maldetektor
US4934269A (en) * 1988-12-06 1990-06-19 Powell Roger A Arming system for a warhead
US5637826A (en) * 1996-02-07 1997-06-10 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for optimal guidance
FR2793314B1 (fr) 1996-04-02 2002-05-31 Giat Ind Sa Charge generatrice de noyau a performances ameliorees
DE69706738T2 (de) 1996-04-05 2002-07-04 Luchaire Defense Sa Geschoss dessen Sprengladung durch einen Zielanzeiger ausgelöst wird
ES2167534T3 (es) * 1996-05-17 2002-05-16 Bofors Defence Ab Proyectil con efecto de fragmentacion dirigido.
US5760737A (en) * 1996-09-11 1998-06-02 Honeywell Inc. Navigation system with solution separation apparatus for detecting accuracy failures
US5881969A (en) * 1996-12-17 1999-03-16 Raytheon Ti Systems, Inc. Lock-on-after launch missile guidance system using three dimensional scene reconstruction
US6142411A (en) * 1997-06-26 2000-11-07 Cobleigh; Nelson E. Geographically limited missile
FR2768809B1 (fr) 1997-09-24 1999-10-15 Giat Ind Sa Projectile d'artillerie de campagne de gros calibre a longue portee
DE19917173A1 (de) 1999-04-16 2000-10-19 Diehl Stiftung & Co Gefechtskopf mit Splitterwirkung
FR2847033B1 (fr) 2002-11-08 2004-12-17 Giat Ind Sa Procede d'elaboration d'un ordre de commande pour un organe permettant le pilotage d'un projectile girant
US6896220B2 (en) * 2003-05-23 2005-05-24 Raytheon Company Munition with integrity gated go/no-go decision
US6796213B1 (en) * 2003-05-23 2004-09-28 Raytheon Company Method for providing integrity bounding of weapons
FR2872928B1 (fr) * 2004-07-12 2006-09-15 Giat Ind Sa Procede de guidage et/ou pilotage d'un projectile et dispositif de guidage et/ou pilotage mettant en oeuvre un tel procede
US7236446B2 (en) * 2004-07-23 2007-06-26 Hewlett-Packard Development Company, L.P. Compensating for variations in the temperature of a probe of a storage device
FR2885213B1 (fr) 2005-05-02 2010-11-05 Giat Ind Sa Procede de commande d'une munition ou sous-munition, systeme d'attaque, munition et designateur mettant en oeuvre un tel procede

Also Published As

Publication number Publication date
US7989742B2 (en) 2011-08-02
EP2009387A1 (de) 2008-12-31
FR2918168B1 (fr) 2009-08-28
US20090001215A1 (en) 2009-01-01
FR2918168A1 (fr) 2009-01-02

Similar Documents

Publication Publication Date Title
EP2009387B1 (de) Steuerverfahren zur Auslösung eines Angriffsmoduls und Vorrichtung zur Umsetzung eines solchen Verfahrens
EP0081421B1 (de) Verfahren zur Endphasenlenkung und dieses Verfahren verwendender Lenkflugkörper
EP0028966B1 (de) Verfahren zur Endphasenlenkung und -führung von Flugkörpern
EP1719969B1 (de) Verfahren zum Steuern einer Munition oder einer Submunition, Angreifsystem, Munition und Zielanzeiger für eine Durchführung eines solchen Verfahrens
EP1617165A1 (de) Verfahren zur Lenkung und/oder Führung eines Geschosses und Vorrichtung zur Lenkung und/oder Führung mit Mitteln zur Durchführung dieses Verfahrens
EP0887613A2 (de) Im-Flug-Programmierverfahren für Auslösungsmoment eines Geschosselements, Feuerleitung und Zünder zur Durchführung dieses Verfahrens
EP0273787B1 (de) Geschoss zum indirekten Angriff auf Panzerfahrzeuge
EP0800054B1 (de) Geschoss dessen Sprengladung durch einen Zielanzeiger ausgelöst wird
EP1480000A1 (de) Verfahren zur Lenkung der Flugbahn eines drehenden Geschosses
FR2563000A1 (fr) Systeme d'arme et missile pour la destruction structurale d'une cible aerienne au moyen d'une charge focalisee
EP1798622B1 (de) Verfahren, das ein Absichern der Navigation und/oder der Lenkung und/oder der Steuerung eines Projektils zu einem Ziel ermöglicht, und Vorrichtung, die ein solches Verfahren einsetzt
EP0918205B1 (de) Projektil mit radialer Wirkrichtung
EP0316216B1 (de) Einrichtung zur Kreiselstabilisierung eines Geschoss-Steuerorgans
EP2600097A1 (de) Kontrollverfahren zur Auslösung eines Gefechtskopfes, Kontrollvorrichtung und Zünder eines Geschosses, in dem ein solches Verfahren zur Anwendung kommt
EP3462210B1 (de) Verfahren und vorrichtung zum abschiessen von projektilen auf ein ziel
EP1840692B1 (de) Verfahren zur Steuerung und/oder Lenkung eines Projektils und Vorrichtung zum Steuern und/oder Lenken mit Hilfe dieses Verfahrens
FR2504703A1 (fr) Systeme d'asservissement d'un projectile a une reference axiale pour supprimer l'effet du vent
EP0809084A1 (de) Vorrichtung zur Rollwinkelbestimmung eines Flugkörpers, insbesondere einer Munition
EP0420760A1 (de) Selbstlenkungssystem und -verfahren einer getriebenen ballistischen Luftfahrzeuggeschosses gegen ein Ziel
FR2747185A1 (fr) Projectile generateur d'eclats dont la charge explosive est declenchee au moyen d'un designateur de cible
EP2175226B1 (de) Steuerungsverfahren eines Angriffsmoduls und Angriffsmodul zur Umsetzung eines solchen Verfahrens
JPH04104000A (ja) 誘導砲弾の誘導方法および誘導砲弾
FR2667390A1 (fr) Procede et dispositif pour imprimer une trajectoire inflechie lateralement a un projectile lance a partir d'un engin aerien.
FR2643448A1 (fr) Systeme de defense contre des corps etrangers
BE901258A (fr) Methode d'acquisition d'une cible par un projectile guide et projectile operant selon cette methode.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090630

17Q First examination report despatched

Effective date: 20090804

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 684726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008034079

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 684726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140827

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141128

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008034079

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150625

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230523

Year of fee payment: 16

Ref country code: DE

Payment date: 20230523

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230523

Year of fee payment: 16