EP2005057B1 - Method for filling at least one compressed gas tank with at least one gas - Google Patents
Method for filling at least one compressed gas tank with at least one gas Download PDFInfo
- Publication number
- EP2005057B1 EP2005057B1 EP07723913.5A EP07723913A EP2005057B1 EP 2005057 B1 EP2005057 B1 EP 2005057B1 EP 07723913 A EP07723913 A EP 07723913A EP 2005057 B1 EP2005057 B1 EP 2005057B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressed gas
- pressure
- gas container
- gas
- filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 33
- 239000000203 mixture Substances 0.000 claims description 29
- 238000005429 filling process Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 6
- 238000009530 blood pressure measurement Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 232
- 230000008901 benefit Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000002032 lab-on-a-chip Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C5/00—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
- F17C5/06—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
- F17C13/025—Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
- F17C13/026—Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C7/00—Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/035—High pressure, i.e. between 10 and 80 bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/04—Methods for emptying or filling
- F17C2227/041—Methods for emptying or filling vessel by vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/03—Control means
- F17C2250/032—Control means using computers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/043—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0439—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/05—Improving chemical properties
- F17C2260/056—Improving fluid characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/02—Mixing fluids
- F17C2265/025—Mixing fluids different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
Definitions
- the subject matter of the present invention is a method for filling at least one pressurized gas container with at least one gas.
- a suitable intermediate piece for connecting to an opening of a pressurized gas container and a corresponding compressed gas cylinder fitting are described. According to the invention, it is particularly possible to produce mixtures of gases whose conditions can be adjusted with high precision.
- a method for mixing gases in which a reference gas container is filled in addition to the compressed gas container to be filled.
- the reference gas container has one or more additional holes in the shell of the gas cylinder, can be introduced by the probe into the reference pressure gas container. Based on the measured values of these sensors, the filling is controlled accordingly.
- the compressed gas container to be filled and the reference compressed gas container are in fluid communication and are filled parallel to each other, so that in the reference pressure gas container substantially the same conditions as in the pressurized gas container to be filled.
- reference compressed gas tank is a special reference compressed gas tank, which must be prepared by additional holes are introduced into the container and must take place for a safety review. This test must be carried out in particular for each individual reference compressed gas container. Under certain circumstances, such special reference compressed gas containers can not be pretreated together with the containers to be filled.
- the object of the present invention is to provide a corresponding filling method in which a conventional compressed gas container can be used as the reference compressed gas container. Furthermore, a corresponding intermediate piece should be specified, which makes this possible.
- the inventive method for filling at least one compressed gas container with at least one gas wherein a reference pressure gas container is formed, in which a measurement of at least one relevant for the state in the reference pressure gas container measured variable can be carried out, the compressed gas container and reference gas pressure vessel are at least partially in fluid communication, each compressed gas container and the reference compressed gas container each having an opening through which a gas is filled and removed, wherein in a filling at least one gas is filled through the opening in the at least one compressed gas container and at least temporarily in the reference pressure gas container, characterized in that a sensor is introduced through the opening in the reference compressed gas container and at least one measured variable is measured with this sensor at least during a part of the filling process.
- the reference compressed gas container is characterized by the fact that it can use a conventional compressed gas container without additional holes as a reference pressure gas container and in particular exactly as the compressed gas container to be filled only has an opening through which gas is usually filled and removed.
- the reference compressed gas container and the pressurized gas containers to be filled are compressed gas cylinders which, depending on the design, have pressures of, for example, 10 bar. B. up to 200 bar or even 300 bar or more and how they are commercially available in different volumes. If there are two elements in a fluidic connection, this means that a gas can flow from one element to the other without being hindered by, for example, walls or the like.
- a sensor is an active or passive sensor.
- the active sensor has to be actively operated, for example supplied with power, or comprises electronic devices for evaluating the measurements, while the passive sensor merely provides a size which allows conclusions to be drawn about the measured variable to be measured.
- a passive sensor is for example a thermoresistor or a photoresistor.
- An active sensor is for example a so-called "lab on a chip", in which a complete analytical equipment is designed in miniature scale and on which the measurement results are removable.
- the measuring sensor is a high-precision measuring sensor, in particular a high-precision pressure sensor.
- a pressure sensor with an accuracy of ⁇ 0.5 to 0.1% is present here, in particular a low-pressure sensor with measuring ranges of 0 to 10 bar absolute, preferably 0 to 5 bar absolute, in particular 0 to 2 bar absolute. This can be used particularly advantageously for a high-precision metered addition of gas, in particular in the context of creating a gas mixture.
- the last component preferably the gas component with the largest proportion of the total mixture, is preferably mixed gravimetrically, that is via a control of the filled-in weight. This can take place at pressures of up to 100 bar, preferably up to 200 bar, particularly preferably up to 300 bar. Let it be high-precision gas mixtures with an accuracy of 1 to 2% up to four times faster than usual gravimetric filling process.
- the inventive method is particularly suitable for filling a plurality of compressed gas containers such as from two to twelve or even more compressed gas containers.
- a plurality of compressed gas containers such as from two to twelve or even more compressed gas containers.
- not only a single gas can be filled into the pressurized gas container, but also two or more gases or gas mixtures in succession.
- high-precision mixtures of several gases can be produced.
- the process according to the invention is suitable for producing mixtures of two or more gases in which one or more gases have only a very low partial pressure in the final mixture.
- one component may have a partial pressure of only a few millibar, while the other component may have a pressure of 100 bar or more.
- reference pressure vessels and pressurized gas containers to be filled have the same fluidic conductance values. This is the case, in particular, when the valve cross sections, including the tube cross sections of the supply lines, do not differ or only insignificantly differ from one another.
- At least one measured variable is measured with the measuring probe at least during a part of the filling process.
- the pressure in each compressed gas container is at the same time then, when all pressurized gas container to be filled are in fluid communication with the reference pressure gas container known. Due to the pressure, it is also possible to deduce the appropriate amount of gas based on the relevant gas state equation. If the reference compressed gas container and the pressurized gas container to be filled have identical volumes, the same amount of gas is present in both containers at the same pressure. In particular, at low pressures can be assumed here by an ideal gas, which follows the ideal gas law.
- the measurement of the temperature in the reference pressure gas container allows even more accurate determinations of the amount of gas, in particular in conjunction with a pressure measurement, since due to the temperature, the corresponding gas state equations can be evaluated even more accurately.
- the measurement of the chemical composition of a gas in the reference pressure gas container can continue to be used for checking the gas mixture to be adjusted and on the other hand also serve to determine impurities in the compressed gas tank and / or in the incoming gas.
- the analysis of the chemical composition can be carried out by appropriate analytical sensors, for example by so-called "lab on a chip” devices.
- the moisture content in the reference compressed gas container may be relevant, for example, when gases or gas mixtures are reacted which react with water.
- the moisture content is relevant and critical when a gas comprising nitrogen monoxide is introduced into the compressed gas container (s).
- a gas comprising nitrogen monoxide is introduced into the compressed gas container (s).
- sampling from the reference compressed gas container is possible, with a small amount of gas being taken and analyzed externally. This may be for example a mass spectrometric, spectral analysis, FTIR, GC and NMR analysis or other analysis.
- the senor is a capacitive pressure sensor.
- Such capacitive pressure sensors measure the locally applied pressure by measuring the electrical capacitance of a capacitor.
- These sensors for example, sold under the name Compact Capacitance Diaphragm Gauge by Pfeiffer or Alcatel, under the name Capacitron by Leybold and under the name Barocel 600-659 by BOC Edwards, allow high-precision measurement of the pressure at small pressures. Under a small pressure is here in particular a pressure below the atmospheric pressure or in the vicinity of the atmospheric pressure understood, for example in the range of 10 -3 mbar up to 10 bar.
- Capacitive pressure sensors in particular also have the advantage that they can measure the pressure of a wide variety of gas types, that is, they operate independently of the type of gas. The measured value of such a capacitive pressure sensor is thus independent of the gas type, so that in particular without further corrections the measured values of the same pressure sensor can be used for filling with different types of gas.
- the filling process is carried out in multiple stages.
- a filling is understood in which at least one printing plateau is present.
- a pressure plateau is understood here to be a situation in which the pressure is kept essentially constant for a certain period of time during the filling process.
- Another example of a multi-stage filling process is a filling process in which first a certain partial pressure of a first gas component, for example nitrogen monoxide, and subsequently a partial pressure of a second gas component, for example nitrogen, in the compressed gas container is achieved.
- a first gas component for example nitrogen monoxide
- a partial pressure of a second gas component for example nitrogen
- the filling process is performed at least temporarily as a function of the measured variable. Ie. that in a particularly advantageous manner the measured variable is used to control or regulate the filling process.
- This may mean, for example, that a gas valve, which establishes a connection to a gas reservoir or closes it, is opened until a pressure sensor indicates a corresponding pressure and after reaching this pressure, the valve is closed.
- a predetermined value that is, a corresponding inlet valve is closed when this temperature is reached and only then the valve is opened again, if another pressure to be specified is undershot.
- the corresponding measured quantities can also be used to trigger warning functions. For example, if a moisture content above a threshold value is detected and a gas is filled, which reacts with water, a corresponding warning message is issued, for. B. be issued a warning signal.
- an intermediate piece can be used, which serves for connection to an opening of a compressed gas container.
- the intermediate piece comprises a first connection for connecting the intermediate piece to a compressed gas container, a second connection for connecting the intermediate piece to a valve head and records This is due to the fact that at least one measuring sensor is formed, which can be brought into fluid communication with the first connection at least.
- a connection is here understood to mean a mechanical connection with which the intermediate piece can be connected to the respective element.
- This may be, for example, a thread which can be connected to a component with, in particular, a pin or cone having a corresponding thread or else a pressurized gas container having a corresponding thread, as is customary in compressed gas cylinders.
- a valve head is understood here to mean a unit which is usually used on compressed gas cylinders. This is a valve by means of which a corresponding valve body can be opened and closed and a pressure measuring unit, which indicates the pressure in the gas cylinder.
- the valve head may further comprise a pressure reducer, by means of which the possibly quite high pressure present in the pressurized gas container is reduced to lower pressures, for example in the range of one or a few bars.
- the valve head comprises a connection for a gas line, by means of which gas can be removed from the compressed gas container.
- a valve head may be a compressed gas container valve.
- At least one measuring sensor is designed such that it passes through the first connection.
- the probe protrudes when connecting the intermediate piece with the compressed gas container in this and thus measures the measured variable in the interior of the compressed gas container.
- a corresponding temperature measuring head for example in the form of a thermoresistor or a thermocouple, passes through the first connection and thus the temperature in the interior of the pressurized gas container can be determined when mounting the intermediate piece on a compressed gas container.
- the intermediate piece allows, in particular, in a particularly advantageous manner, that the usual valve heads which are known for connecting to or removing gas from the compressed gas container, continue to use can be.
- the intermediate piece also has the advantage that it is no longer necessary to form a reference compressed gas container which differs from conventional compressed gas containers but that a conventional compressed gas container, for example a compressed gas cylinder, can be used with the intermediate piece as a reference compressed gas container.
- a conventional compressed gas container for example a compressed gas cylinder
- the intermediate piece can be used with the intermediate piece as a reference compressed gas container.
- no additional safety-related acceptance of the reference compressed gas tank must take place. Rather, the safety-related acceptance of the normal compressed gas container is sufficient anyway.
- measurements at high pressures inside the reference gas container can be carried out in an advantageous manner.
- a lance is formed which extends through the first connection.
- a lance is understood here to mean an elongate, preferably metallic component. In the assembled state, the lance protrudes at least partially into the compressed gas container.
- At least one of the measuring sensors is arranged on the lance, in particular in the region of the lance end.
- a temperature-measuring sensor may be arranged on the lance.
- a sensor for determining the temperature comprises in particular a thermocouple or a thermoresistor.
- thermoresistor only the ohmic resistance of the thermoresistance is measured, which changes as a function of the temperature applied to the thermoresistor.
- a thermocouple a voltage is applied to a thermal resistor and a flowing current is measured, and from this, the current resistance is determined. From this can then close on the temperature.
- a sensor for determining a chemical composition may comprise a sensor for measuring the proportion of a specific component of gas. This may be, for example, a Nernst probe whose one electrode lies on a corresponding reference. Thus, the moisture content in the reference pressure gas container can be determined.
- At least one transmission means is designed for transmitting at least one signal of a measuring sensor.
- a transfer agent is in this context a means by which one can transfer data to a corresponding recipient.
- the transmission can be done both wired and wireless.
- the transmission means may be formed as a plug or coupling, to which a wire can be connected, via which the corresponding measured variable or signals generated by the sensor are transmitted to a corresponding evaluation unit, such as a measuring device or a control unit.
- wireless transmission is also possible, preferably based on electromagnetic waves, particularly preferably based on electromagnetic waves in the radio-frequency or optical range.
- a single measuring device can be used for monitoring a plurality of measuring sensors in different intermediate pieces, in which a central measuring device interacts with a multiplicity of measuring sensors.
- This has the particular advantage that when damage to an intermediate piece only a fairly inexpensive element is replaced, while the comparatively expensive evaluation electronics is not housed in the intermediate piece and does not need to be replaced.
- a thermocouple or a thermoresistor for measuring the temperature via a corresponding cable with a corresponding ohmmeter, voltmeter or a corresponding evaluation element can be connected.
- the details and advantages disclosed in the context of this invention for the method according to the invention can be transferred and applied to the intermediate piece.
- the described intermediate piece can be used advantageously in the context of the method according to the invention, in which the reference pressure gas container has such an intermediate piece.
- Fig. 1 shows an embodiment of an intermediate piece 1 for connection to an opening of a compressed gas container comprising a first port 2 for connecting the intermediate piece with a compressed gas container, a second port 3 for connecting the intermediate piece with a valve head (not shown), wherein a sensor 4 for determining the temperature and a sensor 5 for determining the pressure are formed.
- the first connection 2 comprises in particular a pin provided with an external thread, the thread of which communicates with the internal thread of a corresponding compressed gas cylinder.
- the second connection 3 has, in particular, an internal thread, which substantially corresponds to the internal thread of a compressed gas cylinder, so that a conventional valve head can be connected to the second connection 3.
- the first port 2 is connectable to a conventional compressed gas cylinder such that the first port 2 is screwed onto the corresponding internal thread, so that the sensor 4 for determining the temperature which extends through the first port 2, protrudes into the interior of the gas cylinder.
- Other versions of the connections 2, 3 are possible.
- the intermediate piece 1 on a transmission means 6.
- the transmission means 6 is a plug by means of which the measuring sensor 4 for measuring the temperature and / or the measuring sensor 5 for determining the pressure can be connected to a corresponding measuring device (not shown).
- the intermediate piece 1 can be used in any compressed gas cylinder, which can be used in the inventive method as a reference compressed gas container.
- the intermediate piece 1 and in particular its lines 7 are formed so that they have the smallest possible volume. As a result, it can be ensured that the volume of the relevant reference compressed gas container changes only slightly, so that at most such measurement errors occur that are negligible in terms of their amount.
- Fig. 2 shows a compressed gas container 8, which is filled according to the inventive method.
- a reference pressure gas container 9 is formed.
- Compressed gas container 8 and reference compressed gas container 9 are connected in parallel with a filling supply line 10.
- the reference compressed gas container 9 is basically identical to the compressed gas container 8 is formed.
- the compressed gas container 8 is provided with a conventional valve head 11.
- the valve head 11 has two connections 12, by means of which the valve head 11 is connected to the compressed gas container 8 on the one hand and the filling line 10 on the other.
- the valve head 11 comprises a valve 13, by means of which the compressed gas container 8 can be brought into fluidic connection to the filling line 10 or a sampling line, not shown here.
- the reference pressure gas container 9 has an intermediate piece 1, which in Fig. 1 shown in detail and described above.
- the second terminal 3 of the intermediate piece 1 is with connected to a corresponding valve head 11.
- the measuring sensor 4 for determining the temperature is here attached to a lance 17 extending into the reference pressure gas container 9.
- the measuring sensors 4, 5 it is possible to determine measured variables such as the temperature and the pressure present in the reference compressed gas container 9.
- the inventive method is not limited to the mixture of two-component gas mixtures.
- mixtures of any desired number of gas components can thus be produced.
- the compressed gas container 8 and the reference compressed gas container 9 are evacuated via the filling line 10 until a predefinable maximum pressure or minimum pressure is reached.
- the first gas component is added. This is preferably the gas component whose proportion in the final mixture is lower, ie, whose partial pressure in the final mixture is lower than that of the other component.
- the filling takes place with the valves 13 open, so that the gas component can flow through the filling line 10 both into the compressed gas container 8 and into the reference compressed gas container 9.
- the filling line 10 is closed when the pressure to be reached is displayed by means of the measuring sensor 5 for determining the pressure. Thereafter, the filling line 10 is connected to the other gas component or with a reservoir containing them.
- the reference compressed gas container 9 it is possible to fill the first gas component up to a pressure of 150 mbar and subsequently to fill the second component up to a pressure of 150 bar or more.
- the reference compressed gas container 9 it is also possible for the reference compressed gas container 9 to be connected to the filling line 10 during the entire filling process.
- the compressed gas containers of the compressed gas container 8 and of the reference compressed gas container 9 are identical.
- any compressed gas container can be used as a reference pressure gas container.
- an embodiment of the intermediate piece 1 is possible, which fits on a plurality of compressed gas containers 9. This is due to the fact that there are a large number of different compressed gas containers 8 of different volumes, but all of which have an identical thread for connection to a corresponding valve head 11.
- first port 2 communicates with such an internal thread, it is thus possible to use a single adapter for a plurality of different compressed gas containers in order to use these as a reference compressed gas container 9. It is particularly advantageous that probe 4, 5 or the lance 17, which extend through the first port 2 into the interior of the reference gas cylinder 9, as short as possible, since then an insert in small gas cylinders 8 is possible. This is not disadvantageous in particular if a pressure measurement is carried out in the low pressure range, since in the low pressure range most of the gases behave like ideal gases and no stratification effects or the like are to be expected.
- the lance 17 may be formed in particular as a riser.
- the measuring sensors 5 are connected to the interior of the reference compressed gas container 9 for determining the pressure via this lance 17, while an evacuation of the reference compressed gas container 9 does not take place via the lance 17, but next to the lance 17. This accelerates the evacuation operation of the reference compressed gas tank 9.
- Fig. 3 schematically shows a filling level, which shows two reference compressed gas tank 9 different sizes.
- the filling device also has a connection 14 for connecting a conventional compressed gas cylinder for filling.
- valves 15 are formed, by means of which each individual reference compressed gas container 9 can be separated from the filling line 10 or can be fluidically connected to it. Furthermore, an inlet valve 16 is formed, with which the filling line 10 can be connected to a corresponding gas reservoir and / or a corresponding Evakuierü.
- This embodiment has the particular advantage that can be filled without one of the reference gas pressure tank 9 exchange compressed gas tank 8 different sizes.
- the inventive method advantageously allows the production of high-precision gas mixtures.
- the intermediate piece 1 can be used in a particularly advantageous manner to form a reference pressure gas container 9 from a conventional compressed gas container 8 such as a compressed gas cylinder.
- measuring sensors 4 for determining the temperature and measuring sensors 5 for determining the pressure and, in particular, capacitive pressure sensors have proved to be advantageous as measuring sensors.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Befüllen mindestens eines Druckgasbehälters mit mindestens einem Gas Ein dazu geeignetes Zwischenstück zum Verbinden mit einer Öffnung eines Druckgasbehälters und eine entsprechende Druckgasflaschenarmatur werden beschrieben. Gemäß der Erfindung ist es insbesondere möglich, Mischungen von Gasen herzustellen, deren Verhältnisse hochpräzise eingestellt werden können.The subject matter of the present invention is a method for filling at least one pressurized gas container with at least one gas. A suitable intermediate piece for connecting to an opening of a pressurized gas container and a corresponding compressed gas cylinder fitting are described. According to the invention, it is particularly possible to produce mixtures of gases whose conditions can be adjusted with high precision.
Aus dem Stand der Technik
Dieses aus dem Stand der Technik bekannte Verfahren hat den Nachteil, dass es sich bei dem Referenzdruckgasbehälter um einen speziellen Referenzdruckgasbehälter handelt, der hergestellt werden muss, indem zusätzliche Bohrungen in den Behälter eingebracht werden und für den eine sicherheitstechnische Überprüfung stattfinden muss. Diese Prüfung muss insbesondere für jeden einzelnen Referenzdruckgasbehälter erfolgen. Solche speziellen Referenzdruckgasbehälter können unter Umständen auch nicht gemeinsam mit den zu füllenden Behältern vorbehandelt werden.This known from the prior art method has the disadvantage that it is the reference compressed gas tank is a special reference compressed gas tank, which must be prepared by additional holes are introduced into the container and must take place for a safety review. This test must be carried out in particular for each individual reference compressed gas container. Under certain circumstances, such special reference compressed gas containers can not be pretreated together with the containers to be filled.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein entsprechendes Befüllungsverfahren bereitzustellen, bei dem als Referenzdruckgasbehälter ein üblicher Druckgasbehälter Verwendung finden kann. Weiterhin soll ein entsprechendes Zwischenstück angegeben werden, welches dies ermöglicht.Proceeding from this, the object of the present invention is to provide a corresponding filling method in which a conventional compressed gas container can be used as the reference compressed gas container. Furthermore, a corresponding intermediate piece should be specified, which makes this possible.
Diese Aufgaben werden gelöst mit den Merkmalen des unabhängigen Anspruchs 1. Die abhängigen Ansprüche sind auf vorteilhafte Weiterbildungen gerichtet.These objects are achieved with the features of
Das erfindungsgemäße Verfahren zum Befüllen mindestens eines Druckgasbehälters mit mindestens einem Gas, wobei ein Referenzdruckgasbehälter ausgebildet ist, in dem eine Messung mindestens einer für den Zustand in dem Referenzdruckgasbehälter relevanten Messgröße erfolgen kann, wobei Druckgasbehälter und Referenzdruckgasbehälter zumindest teilweise in strömungstechnischer Verbindung stehen, wobei jeder Druckgasbehälter und der Referenzdruckgasbehälter jeweils eine Öffnung aufweisen, durch die ein Gas einfüll- und entnehmbar ist, wobei in einem Befüllvorgang mindestens ein Gas durch die Öffnung in den mindestens einen Druckgasbehälter und zumindest zeitweise in den Referenzdruckgasbehälter gefüllt wird, zeichnet sich dadurch aus, dass ein Messfühler durch die Öffnung in den Referenzdruckgasbehälter eingebracht wird und mit diesem Messfühler zumindest während eines Teils des Befüllvorgangs mindestens eine Messgröße gemessen wird.The inventive method for filling at least one compressed gas container with at least one gas, wherein a reference pressure gas container is formed, in which a measurement of at least one relevant for the state in the reference pressure gas container measured variable can be carried out, the compressed gas container and reference gas pressure vessel are at least partially in fluid communication, each compressed gas container and the reference compressed gas container each having an opening through which a gas is filled and removed, wherein in a filling at least one gas is filled through the opening in the at least one compressed gas container and at least temporarily in the reference pressure gas container, characterized in that a sensor is introduced through the opening in the reference compressed gas container and at least one measured variable is measured with this sensor at least during a part of the filling process.
Erfindungsgemäß zeichnet sich der Referenzdruckgasbehälter dadurch aus, dass es ein üblicher Druckgasbehälter ohne zusätzliche Bohrungen als Referenzdruckgasbehälter Verwendung finden kann und insbesondere genau wie die zu befüllenden Druckgasbehälter lediglich eine Öffnung aufweist, durch die üblicherweise Gas eingefüllt und entnommen wird. Insbesondere handelt es sich bei dem Referenzdruckgasbehälter und den zu befüllenden Druckgasbehältern um Druckgasflaschen, die je nach Ausführung Drücken von z. B. bis zu 200 bar oder sogar 300 bar oder mehr standhalten können und wie sie in verschiedenen Volumina handelsüblich sind. Stehen zwei Elemente in einer strömungstechnischen Verbindung, so bedeutet dies, dass ein Gas von dem einen Element zu dem anderen strömen kann, ohne durch beispielsweise Wände oder ähnliches gehindert zu werden. Unter einem Messfühler wird beispielsweise ein aktiver oder passiver Sensor verstanden. Der aktive Sensor muss hierbei aktiv betrieben werden, beispielsweise mit Strom versorgt werden oder umfasst elektronische Geräte zur Auswertung der Messungen, während der passive Sensor lediglich eine Größe zur Verfügung stellt, die Rückschlüsse auf die zu messende Messgröße zulässt. Ein passiver Sensor ist beispielsweise ein Thermowiderstand oder ein Fotowiderstand. Ein aktiver Sensor ist beispielsweise ein so genanntes "Lab on a Chip", bei dem eine vollständige analytische Ausrüstung im Miniaturmaßstab ausgebildet ist und an dem die Messergebnisse abnehmbar sind.According to the invention, the reference compressed gas container is characterized by the fact that it can use a conventional compressed gas container without additional holes as a reference pressure gas container and in particular exactly as the compressed gas container to be filled only has an opening through which gas is usually filled and removed. In particular, the reference compressed gas container and the pressurized gas containers to be filled are compressed gas cylinders which, depending on the design, have pressures of, for example, 10 bar. B. up to 200 bar or even 300 bar or more and how they are commercially available in different volumes. If there are two elements in a fluidic connection, this means that a gas can flow from one element to the other without being hindered by, for example, walls or the like. For example, a sensor is an active or passive sensor. In this case, the active sensor has to be actively operated, for example supplied with power, or comprises electronic devices for evaluating the measurements, while the passive sensor merely provides a size which allows conclusions to be drawn about the measured variable to be measured. A passive sensor is for example a thermoresistor or a photoresistor. An active sensor is for example a so-called "lab on a chip", in which a complete analytical equipment is designed in miniature scale and on which the measurement results are removable.
Bevorzugt ist hierbei eine Ausgestaltung, bei der der Messfühler ein hochpräziser Messfühler, insbesondere ein hochpräziser Drucksensor ist. Bevorzugt liegt hier ein Drucksensor mit einer Genauigkeit von < 0,5 bis 0,1% vor, insbesondere ein Niederdrucksensor mit Messbereichen von 0 bis 10 bar absolut, bevorzugt 0 bis 5 bar absolut, insbesondere von 0 bis 2 bar absolut. Dieser kann besonders vorteilhaft für ein hochpräzises Zudosieren von Gas, insbesondere im Rahmen des Erstellens einer Gasmischung eingesetzt werden.In this case, an embodiment is preferred in which the measuring sensor is a high-precision measuring sensor, in particular a high-precision pressure sensor. Preferably, a pressure sensor with an accuracy of <0.5 to 0.1% is present here, in particular a low-pressure sensor with measuring ranges of 0 to 10 bar absolute, preferably 0 to 5 bar absolute, in particular 0 to 2 bar absolute. This can be used particularly advantageously for a high-precision metered addition of gas, in particular in the context of creating a gas mixture.
Bevorzugt ist eine Ausgestaltung des erfindungsgemäßen Verfahrens, bei dem zunächst mindestens eine erste Komponente bis zu einem vorgebbaren ersten Druck, der über einen entsprechend als Niederdrucksensor ausgebildeten Messfühler überwacht wird, eingefüllt wird. Daran anschließend kann im Bedarfsfall mindestens eine weitere Komponente drucküberwacht eingefüllt werden. Die letzte Komponente, bevorzugt die Gaskomponente mit dem größten Anteil an der Gesamtmischung, wird bevorzugt gravimetrisch, dass heißt über eine Kontrolle des eingefüllten Gewichtes, zugemischt. Dies kann bei Drücken bis zu 100 bar, bevorzugt bis zu 200 bar, besonders bevorzugt bis zu 300 bar erfolgen. So lassen sich hochpräzise Gasmischungen mit einer Genauigkeit von 1 bis 2% bis zu viermal schneller als bei üblichen gravimetrischen Füllverfahren erfolgen.Preference is given to an embodiment of the method according to the invention, in which first at least one first component is filled up to a predefinable first pressure, which is monitored by means of a measuring sensor designed accordingly as a low-pressure sensor. Subsequently, if required, at least one further component can be filled in under pressure control. The last component, preferably the gas component with the largest proportion of the total mixture, is preferably mixed gravimetrically, that is via a control of the filled-in weight. This can take place at pressures of up to 100 bar, preferably up to 200 bar, particularly preferably up to 300 bar. Let it be high-precision gas mixtures with an accuracy of 1 to 2% up to four times faster than usual gravimetric filling process.
Das erfindungsgemäße Verfahren eignet sich insbesondere zum Befüllen mehrerer Druckgasbehälter wie beispielsweise von zwei bis zwölf oder sogar mehr Druckgasbehältern. Insbesondere kann hierbei nicht nur ein einziges Gas in die Druckgasbehälter gefüllt werden, sondern auch zwei oder mehr Gase oder Gasmischungen nacheinander. So können beispielsweise hochpräzise Mischungen mehrerer Gase hergestellt werden. Insbesondere eignet sich das erfindungsgemäße Verfahren dazu, Mischungen von zweien oder mehreren Gasen herzustellen, bei denen ein oder mehrere Gase nur einen sehr geringen Partialdruck in der endgültigen Mischung aufweisen. So kann beispielsweise eine Komponente einen Partialdruck von nur wenigen Millibar aufweisen, während die andere Komponente einen Druck von 100 bar oder mehr aufweisen kann. Insbesondere ist es bei dem erfindungsgemäßen Verfahren vorteilhaft, dass Referenzdruckbehälter und zu befüllende Druckgasbehälter die gleichen strömungsmechanischen Leitwerte aufweisen. Dies ist insbesondere dann der Fall, wenn sich die Ventilquerschnitte inklusive der Rohrquerschnitte der Zuleitungen nicht oder nur unwesentlich voneinander unterscheiden.The inventive method is particularly suitable for filling a plurality of compressed gas containers such as from two to twelve or even more compressed gas containers. In particular, not only a single gas can be filled into the pressurized gas container, but also two or more gases or gas mixtures in succession. For example, high-precision mixtures of several gases can be produced. In particular, the process according to the invention is suitable for producing mixtures of two or more gases in which one or more gases have only a very low partial pressure in the final mixture. For example, one component may have a partial pressure of only a few millibar, while the other component may have a pressure of 100 bar or more. In particular, it is advantageous in the method according to the invention that reference pressure vessels and pressurized gas containers to be filled have the same fluidic conductance values. This is the case, in particular, when the valve cross sections, including the tube cross sections of the supply lines, do not differ or only insignificantly differ from one another.
Erfindungsgemäß wird mit dem Messfühler zumindest während eines Teils des Befüllvorgangs mindestens eine Messgröße gemessen. Dies bedeutet insbesondere beim Einfüllen von mehreren Gasen, dass die Messgröße nicht notwendigerweise beim Füllen jeder einzelnen Komponenten gemessen wird. So kann beispielsweise bei Herstellung eines Gemisches aus zwei Gasarten nur bei der Befüllung einer der beiden Gasarten gemessen werden.According to the invention, at least one measured variable is measured with the measuring probe at least during a part of the filling process. This means, in particular when filling a plurality of gases, that the measured variable is not necessarily measured when filling each individual component. For example, when producing a mixture of two types of gas, only one of the two types of gas can be measured when filling.
Durch die zumindest zeitweise vorliegende strömungstechnische Verbindung zwischen zu befüllendem Druckgasbehälter und Referenzdruckgasbehälter ist beispielsweise dann, wenn die Messgröße der Druck ist, neben dem Druck im Referenzgasbehälter gleichzeitig auch der Druck in dem oder den zu befüllenden Druckgasbehältern bekannt. Mit hochpräzisen Druckmessfühlern, insbesondere kapazitiven Drucksensoren, die insbesondere für Drücke von weniger als einem bar, bevorzugt weniger als einem halben bar oder auch von 250 Millibar oder weniger kann folglich genau bestimmt werden, was für Drücke in den zu befüllenden Druckgasbehältern anliegen. Durch die bekannten Drücke in den Druckgasbehältern ist aber auch die Gasmenge in diesen Behältern bekannt. Insbesondere dann, wenn Gasgemische hergestellt werden, in denen eine Gaskomponente nur einen sehr kleinen Anteil beispielsweise im Bereich weniger Prozent, unter einem Prozent oder sogar im Bereich von einigen ppm (Teilen pro Million, parts per million) oder sogar von einigen ppb (Teilen pro Milliarde, parts per billion) aufweist, ist dies von Vorteil, da sich kleine Drücke sehr genau bestimmen lassen. Beispielsweise kann dies über kapazitive Druckmesssysteme erfolgen. Im Gegensatz dazu ist eine genaue Messung beispielsweise über gravimetrische Methoden bei sehr kleinen Anteilen nur mit größeren Mengen möglich, so dass hier entweder ein großer Fehler bei der Erstellung der Gasgemische in Kauf genommen wird oder eine sehr große Gasmenge erstellt werden muss, die dann anschließend verdünnt werden muss. Diese letztere Methode benötigt eine Vielzahl großvolumiger Zwischenbehälter in denen diese einzelnen Gasgemische gespeichert werden. Dies bedingt einen hohen apparativen Aufwand und ist mit hohen Kosten verbunden, wenn auf diese Art und Weise hochpräzise Gasgemische hergestellt werden sollen, was durch die vorliegende Erfindung vermieden werden kann.By at least temporarily present fluidic connection between to be filled pressure gas container and reference gas pressure vessel, for example, when the measured value is the pressure, in addition to the pressure in the reference gas container at the same time the pressure in or to be filled Gas cylinders known. With high-precision pressure sensors, in particular capacitive pressure sensors, in particular for pressures of less than one bar, preferably less than half a bar or 250 millibar or less can thus be determined exactly what pressure applied in the compressed gas containers to be filled. Due to the known pressures in the compressed gas tanks but also the amount of gas in these containers is known. In particular, when gas mixtures are produced in which a gas component only a very small proportion, for example in the range of less than one percent or even in the range of a few ppm (parts per million, parts per million) or even some ppb (parts per million Billion, parts per billion), this is an advantage since small pressures can be determined very accurately. For example, this can be done via capacitive pressure measuring systems. In contrast, an accurate measurement, for example, by gravimetric methods at very small proportions only possible with larger quantities, so that here either a large error in the preparation of gas mixtures is taken into account or a very large amount of gas must be created, which then subsequently diluted must become. This latter method requires a large number of large-volume intermediate container in which these individual gas mixtures are stored. This requires a high expenditure on equipment and is associated with high costs if high-precision gas mixtures are to be produced in this manner, which can be avoided by the present invention.
Gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens umfasst die Messgröße mindestens eine der folgenden Größen:
- i) einen Druck in dem Referenzdruckgasbehälter;
- ii) eine Temperatur in dem Referenzdruckgasbehälter;
- iii) eine chemische Zusammensetzung eines Gases im Referenzdruckgasbehälter; und
- iv) einen Feuchtigkeitsgehalt in dem Referenzdruckgasbehälter.
- i) a pressure in the reference compressed gas container;
- ii) a temperature in the reference compressed gas container;
- iii) a chemical composition of a gas in the reference compressed gas container; and
- iv) a moisture content in the reference compressed gas container.
Durch die Messung des Druckes in dem Referenzdruckgasbehälter ist gleichzeitig dann, wenn alle zu befüllenden Druckgasbehälter in strömungstechnischer Verbindung mit dem Referenzdruckgasbehälter stehen, der Druck in jedem Druckgasbehälter bekannt. Aufgrund des Druckes lässt sich anhand der relevanten Gaszustandsgleichung auch auf die entsprechende Menge des Gases schließen. Weisen der Referenzdruckgasbehälter und der zu befüllende Druckgasbehälter identische Volumina auf, so liegt in beiden Behältern bei gleichem Druck auch die identische Menge an Gas vor. Insbesondere bei kleinen Drücken kann hier von einem idealen Gas ausgegangen werden, welches dem idealen Gasgesetz folgt.By measuring the pressure in the reference pressure gas container, the pressure in each compressed gas container is at the same time then, when all pressurized gas container to be filled are in fluid communication with the reference pressure gas container known. Due to the pressure, it is also possible to deduce the appropriate amount of gas based on the relevant gas state equation. If the reference compressed gas container and the pressurized gas container to be filled have identical volumes, the same amount of gas is present in both containers at the same pressure. In particular, at low pressures can be assumed here by an ideal gas, which follows the ideal gas law.
Die Messung der Temperatur in dem Referenzdruckgasbehälter ermöglicht noch genauere Bestimmungen der Gasmenge insbesondere in Verbindung mit einer Druckmessung, da aufgrund der Temperatur die entsprechenden Gaszustandsgleichungen noch genauer ausgewertet werden können. Die Messung der chemischen Zusammensetzung eines Gases im Referenzdruckgasbehälter kann weiterhin zur Überprüfung des einzustellenden Gasgemisches eingesetzt werden und kann andererseits auch dazu dienen, Verunreinigungen im Druckgasbehälter und/oder im einströmenden Gas festzustellen. Die Analyse der chemischen Zusammensetzung kann durch entsprechende analytische Messfühler erfolgen, beispielsweise durch so genannte "Lab on a Chip"-Vorrichtungen. Der Feuchtigkeitsgehalt in dem Referenzdruckgasbehälter kann beispielsweise dann relevant sein, wenn Gase oder Gasgemische eingefüllt werden, die mit Wasser reagieren. So ist beispielsweise der Feuchtigkeitsgehalt relevant und kritisch wenn ein Stickstoffmonoxid umfassendes Gas in den oder die Druckgasbehälter eingefüllt wird. Alternativ oder zusätzlich ist auch eine Probenentnahme aus dem Referenzdruckgasbehälter möglich, wobei eine kleine Menge an Gas entnommen und extern analysiert wird. Dies kann beispielsweise eine massenspektrometrische, Spektralanalyse, FTIR, GC und eine NMR-Analyse oder eine andere Analyse sein.The measurement of the temperature in the reference pressure gas container allows even more accurate determinations of the amount of gas, in particular in conjunction with a pressure measurement, since due to the temperature, the corresponding gas state equations can be evaluated even more accurately. The measurement of the chemical composition of a gas in the reference pressure gas container can continue to be used for checking the gas mixture to be adjusted and on the other hand also serve to determine impurities in the compressed gas tank and / or in the incoming gas. The analysis of the chemical composition can be carried out by appropriate analytical sensors, for example by so-called "lab on a chip" devices. The moisture content in the reference compressed gas container may be relevant, for example, when gases or gas mixtures are reacted which react with water. Thus, for example, the moisture content is relevant and critical when a gas comprising nitrogen monoxide is introduced into the compressed gas container (s). Alternatively or additionally, sampling from the reference compressed gas container is possible, with a small amount of gas being taken and analyzed externally. This may be for example a mass spectrometric, spectral analysis, FTIR, GC and NMR analysis or other analysis.
Besonders bevorzugt ist es in diesem Zusammenhang, wenn der Messfühler ein kapazitiver Druckmessfühler ist.It is particularly preferred in this context if the sensor is a capacitive pressure sensor.
Solche kapazitiven Druckmessfühler messen den lokal an diesem anliegenden Druck durch eine Messung der elektrischen Kapazität eines Kondensators. Diese Messfühler, die beispielsweise unter dem Namen Compact Capacitance Diaphragm Gauge von den Firmen Pfeiffer oder Alcatel, unter dem Namen Capacitron von der Firma Leybold und unter dem Namen Barocel 600-659 von der Firma BOC Edwards vertrieben werden, erlauben eine hochpräzise Messung des Druckes gerade bei kleinen Drücken. Unter einem kleinen Druck wird hier insbesondere ein Druck unterhalb des Atmosphärendrucks oder in der Nähe des Atmosphärendrucks verstanden, beispielsweise im Bereich von 10-3 mbar bis hin zu 10 bar. Kapazitive Druckmessfühler haben insbesondere auch den Vorteil, dass sie den Druck verschiedenster Gasarten messen können, also unabhängig von der Gasart arbeiten. Der Messwert eines solchen kapazitiven Druckmessfühlers ist also unabhängig von der Gasart, so dass insbesondere ohne weitere Korrekturen die Messwerte desselben Druckmessfühlers für die Befüllung mit unterschiedlichen Gasarten verwendet werden können.Such capacitive pressure sensors measure the locally applied pressure by measuring the electrical capacitance of a capacitor. These sensors, for example, sold under the name Compact Capacitance Diaphragm Gauge by Pfeiffer or Alcatel, under the name Capacitron by Leybold and under the name Barocel 600-659 by BOC Edwards, allow high-precision measurement of the pressure at small pressures. Under a small pressure is here in particular a pressure below the atmospheric pressure or in the vicinity of the atmospheric pressure understood, for example in the range of 10 -3 mbar up to 10 bar. Capacitive pressure sensors in particular also have the advantage that they can measure the pressure of a wide variety of gas types, that is, they operate independently of the type of gas. The measured value of such a capacitive pressure sensor is thus independent of the gas type, so that in particular without further corrections the measured values of the same pressure sensor can be used for filling with different types of gas.
Gemäß einer weiteren vorteilhaften Ausgestaltung des erfmdungsgemäßen Verfahrens erfolgt der Befüllvorgang mehrstufig.According to a further advantageous embodiment of the inventive method, the filling process is carried out in multiple stages.
Unter einer mehrstufigen Befüllung wird beispielsweise eine Befüllung verstanden, bei dem mindestens ein Druckplateau vorhanden ist. Unter einem Druckplateau wird hier eine Situation verstanden, bei dem während des Befüllvorgangs der Druck für einen gewissen Zeitraum im Wesentlichen konstant gehalten wird. Ein weiteres Beispiel eines mehrstufigen Befüllungsvorgangs ist ein Befüllungsvorgang, bei dem zunächst ein gewisser Partialdruck einer ersten Gaskomponente, beispielsweise Stickstoffmonoxid, und daran anschließend ein Partialdruck einer zweiten Gaskomponente, beispielsweise Stickstoff, in dem Druckgasbehälter erreicht wird. Insbesondere bei mehrstufigen Befüllungsvorgängen kann es vorteilhaft sein, vor oder zwischen den Stufen eine zumindest teilweise Evakuierung des oder der Druckgasbehälter und/oder von Zuleitungen zu den Druckgasbehältern vorzunehmen, um Verunreinigungen zu verringern. Hierbei wird unter einer Evakuierung eine Druckverminderung verstanden.By a multi-stage filling, for example, a filling is understood in which at least one printing plateau is present. A pressure plateau is understood here to be a situation in which the pressure is kept essentially constant for a certain period of time during the filling process. Another example of a multi-stage filling process is a filling process in which first a certain partial pressure of a first gas component, for example nitrogen monoxide, and subsequently a partial pressure of a second gas component, for example nitrogen, in the compressed gas container is achieved. In particular, in multi-stage filling operations, it may be advantageous, before or between stages, an at least partial evacuation of the compressed gas container or containers and / or of supply lines to the compressed gas containers to reduce contamination. Here, an evacuation is understood as a pressure reduction.
Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird der Befüllvorgang zumindest zeitweise in Abhängigkeit von der Messgröße durchgeführt. D. h. dass in besonders vorteilhafter Weise die Messgröße zur Steuerung oder Regelung des Befüllvorgangs verwendet wird. Dies kann beispielsweise bedeuten, dass ein Gasventil, welches eine Verbindung zu einem Gasreservoir herstellt oder diese schließt, geöffnet wird, bis ein Druckmessfühler einen entsprechenden Druck anzeigt und nach Erreichen dieses Druckes das Ventil geschlossen wird. Dies kann beispielsweise auch bedeuten, dass der Befüllvorgang so vorgenommen wird, dass eine Temperatur im Referenzdruckgasbehälter und damit auch die Temperatur in dem oder den zu befüllenden Druckgasbehältern einen vorgebbaren Wert nicht übersteigt, dass also ein entsprechendes Zulaufventil geschlossen wird, wenn diese Temperatur erreicht wird und erst dann das Ventil wieder geöffnet wird, wenn ein weiterer vorzugebender Druck unterschritten wird. Dies kann insbesondere dann von Vorteil sein, wenn Gase oder Gasgemische hergestellt werden, die oberhalb einer bestimmten Temperatur reaktiv sind. Die entsprechenden gemessenen Messgrößen können auch zur Auslösung von Warnfunktionen verwendet werden. Beispielsweise kann dann, wenn ein oberhalb eines Grenzwertes liegender Feuchtigkeitsgehalt festgestellt wird und ein Gas befüllt wird, welches mit Wasser reagiert, ein entsprechender Warnhinweis ausgegeben werden, z. B. ein Warnsignal abgegeben werden. Alternativ oder zusätzlich ist es auch möglich den Befüllvorgang in diesem Fall abzubrechen.According to a further advantageous embodiment of the method according to the invention, the filling process is performed at least temporarily as a function of the measured variable. Ie. that in a particularly advantageous manner the measured variable is used to control or regulate the filling process. This may mean, for example, that a gas valve, which establishes a connection to a gas reservoir or closes it, is opened until a pressure sensor indicates a corresponding pressure and after reaching this pressure, the valve is closed. This may mean, for example, that the filling process is carried out so that a temperature in the reference pressure gas container and thus the temperature in the or to be filled gas cylinders does not exceed a predetermined value, that is, a corresponding inlet valve is closed when this temperature is reached and only then the valve is opened again, if another pressure to be specified is undershot. This may be particularly advantageous when producing gases or gas mixtures which are reactive above a certain temperature. The corresponding measured quantities can also be used to trigger warning functions. For example, if a moisture content above a threshold value is detected and a gas is filled, which reacts with water, a corresponding warning message is issued, for. B. be issued a warning signal. Alternatively or additionally, it is also possible to stop the filling process in this case.
Zur Durchführung der beschriebenen erfmdungsgemäßen Verfahren kann ein Zwischenstück eingesetzt werden, welches zum Verbinden mit einer Öffnung eines Druckgasbehälters dient. Das Zwischenstück umfasst einen ersten Anschluss zum Verbinden des Zwischenstücks mit einem Druckgasbehälter, einen zweiten Anschluss zum Verbinden des Zwischenstücks mit einem Ventilkopf und zeichnet sich dadurch aus, dass mindestens ein Messfühler ausgebildet ist, der zumindest mit dem ersten Anschluss in strömungstechnische Verbindung bringbar ist.To carry out the described inventive method, an intermediate piece can be used, which serves for connection to an opening of a compressed gas container. The intermediate piece comprises a first connection for connecting the intermediate piece to a compressed gas container, a second connection for connecting the intermediate piece to a valve head and records This is due to the fact that at least one measuring sensor is formed, which can be brought into fluid communication with the first connection at least.
Unter einem Anschluss wird hier ein mechanischer Anschluss verstanden, mit welchem das Zwischenstück mit dem jeweiligen Element verbunden werden kann. Es kann sich hierbei beispielsweise um ein Gewinde handeln, welches mit einem Bauteil mit insbesondere einem ein korrespondierendes Gewinde aufweisenden Zapfen oder Konus verbindbar ist oder auch um einen ein korrespondierendes Gewinde aufweisenden Druckgasbehälter, wie dies bei Druckgasflaschen üblich ist. Unter einem Ventilkopf wird hier eine Einheit verstanden, wie sie üblicherweise auf Druckgasflaschen Verwendung findet. Es handelt sich hierbei um ein Ventilrad mittels dessen ein entsprechender Ventilkörper geöffnet und geschlossen werden kann und eine Druckmesseinheit, die den Druck in der Gasflasche anzeigt. Der Ventilkopf kann ferner einen Druckminderer umfassen, mittels dessen der ggf. recht hohe im Druckgasbehälter vorliegende Druck auf niedrigere Drücke beispielsweise im Bereich von einem oder wenigen bar herabgemindert wird. Weiterhin umfasst der Ventilkopf einen Anschluss für eine Gasleitung, mittels derer Gas aus dem Druckgasbehälter entnommen werden kann. Insbesondere kann es sich bei einem Ventilkopf um ein Druckgasbehälterventil handeln.A connection is here understood to mean a mechanical connection with which the intermediate piece can be connected to the respective element. This may be, for example, a thread which can be connected to a component with, in particular, a pin or cone having a corresponding thread or else a pressurized gas container having a corresponding thread, as is customary in compressed gas cylinders. A valve head is understood here to mean a unit which is usually used on compressed gas cylinders. This is a valve by means of which a corresponding valve body can be opened and closed and a pressure measuring unit, which indicates the pressure in the gas cylinder. The valve head may further comprise a pressure reducer, by means of which the possibly quite high pressure present in the pressurized gas container is reduced to lower pressures, for example in the range of one or a few bars. Furthermore, the valve head comprises a connection for a gas line, by means of which gas can be removed from the compressed gas container. In particular, a valve head may be a compressed gas container valve.
Besonders bevorzugt ist mindestens ein Messfühler so ausgebildet, dass dieser durch den ersten Anschluss hindurchtritt. So kann gewährleistet werden, dass der Messfühler beim Verbinden des Zwischenstücks mit dem Druckgasbehälter in diesen hineinragt und so die Messgröße im Inneren des Druckgasbehälters misst. Beispielsweise ist es so möglich, dass ein entsprechender Temperaturmesskopf beispielsweise in Form eines Thermowiderstandes oder eines Thermoelementes durch den ersten Anschluss hindurchtritt und so beim Montieren des Zwischenstückes auf einen Druckgasbehälter die Temperatur im Inneren des Druckgasbehälters bestimmt werden kann. Das Zwischenstück erlaubt es insbesondere in besonders vorteilhafter Weise, dass die üblichen Ventilköpfe die zum Verbinden mit bzw. Entnehmen von Gas aus dem Druckgasbehälter bekannt sind, weiterverwendet werden können. Das Zwischenstück hat weiterhin den Vorteil, dass es nicht mehr notwendig ist, einen Referenzdruckgasbehälter auszubilden, der sich von üblichen Druckgasbehältern unterscheidet sondern dass ein üblicher Druckgasbehälter, beispielsweise eine Druckgasflasche, mit dem Zwischenstück als Referenzdruckgasbehälter Verwendung finden kann. Dies hat einen Kostenvorteil zur Folge. Weiterhin muss keine zusätzliche sicherheitstechnische Abnahme des Referenzdruckgasbehälters erfolgen. Vielmehr ist hier die ohnehin erfolgende sicherheitstechnische Abnahme des normalen Druckgasbehälters ausreichend. Weiterhin ist im Vergleich zu dem oben aus dem Stand der Technik bekannten System somit die Ausbildung eines Referenzdruckgasbehälters möglich, der auch hohen Drücken standhalten kann. Dies ist bei der aus dem Stand der Technik bekannten Lösung mit Bohrungen in den Seiten des Druckgasbehälters üblicherweise nicht der Fall. Somit können auch Messungen bei hohen Drücken im Inneren des Referenzdruckgasbehälters in vorteilhafter Weise durchgeführt werden.Particularly preferably, at least one measuring sensor is designed such that it passes through the first connection. Thus, it can be ensured that the probe protrudes when connecting the intermediate piece with the compressed gas container in this and thus measures the measured variable in the interior of the compressed gas container. For example, it is possible that a corresponding temperature measuring head, for example in the form of a thermoresistor or a thermocouple, passes through the first connection and thus the temperature in the interior of the pressurized gas container can be determined when mounting the intermediate piece on a compressed gas container. The intermediate piece allows, in particular, in a particularly advantageous manner, that the usual valve heads which are known for connecting to or removing gas from the compressed gas container, continue to use can be. The intermediate piece also has the advantage that it is no longer necessary to form a reference compressed gas container which differs from conventional compressed gas containers but that a conventional compressed gas container, for example a compressed gas cylinder, can be used with the intermediate piece as a reference compressed gas container. This results in a cost advantage. Furthermore, no additional safety-related acceptance of the reference compressed gas tank must take place. Rather, the safety-related acceptance of the normal compressed gas container is sufficient anyway. Furthermore, in comparison with the system known from the prior art, it is thus possible to form a reference compressed gas container which can withstand even high pressures. This is usually not the case with the known from the prior art solution with holes in the sides of the gas cylinder. Thus, measurements at high pressures inside the reference gas container can be carried out in an advantageous manner.
Gemäß einer vorteilhaften Ausgestaltung des Zwischenstücks ist eine Lanze ausgebildet, die sich durch den ersten Anschluss hindurch erstreckt.According to an advantageous embodiment of the intermediate piece, a lance is formed which extends through the first connection.
Unter einer Lanze wird hier ein sich länglich erstreckendes, bevorzugt metallisches Bauteil verstanden. Im montierten Zustand ragt die Lanze zumindest teilweise in den Druckgasbehälter hinein.A lance is understood here to mean an elongate, preferably metallic component. In the assembled state, the lance protrudes at least partially into the compressed gas container.
Bevorzugt ist in diesem Zusammenhang, dass mindestens einer der Messfühler an der Lanze, insbesondere im Bereich des Lanzenendes, angeordnet ist.In this context, it is preferred that at least one of the measuring sensors is arranged on the lance, in particular in the region of the lance end.
Insbesondere kann ein die Temperatur messender Messfühler an der Lanze angeordnet sein.In particular, a temperature-measuring sensor may be arranged on the lance.
Gemäß einer vorteilhaften Weiterbildung des Zwischenstücks ist mindestens einer der folgenden Messfühler ausgebildet:
- i) ein Messfühler zur Bestimmung des Drucks in dem Referenzdruckgasbehälter;
- ii) ein Messfühler zur Bestimmung der Temperatur in dem Referenzdruckgasbehälter;
- iii) ein Messfühler zur Bestimmung einer chemischen Zusammensetzung eines Gases im Referenzdruckgasbehälter; und
- iv) ein Messfühler zur Bestimmung eines Feuchtigkeitsgehaltes in dem Referenzdruckgasbehälter.
- i) a sensor for determining the pressure in the reference compressed gas container;
- ii) a sensor for determining the temperature in the reference compressed gas container;
- iii) a sensor for determining a chemical composition of a gas in the reference compressed gas container; and
- iv) a sensor for determining a moisture content in the reference compressed gas container.
Zur Druckmessung können insbesondere kapazitive Druckmessfühler eingesetzt werden oder piezoelektrische Druckmessfühler. Ein Messfühler zur Bestimmung der Temperatur umfasst insbesondere ein Thermoelement oder einen Thermowiderstand. Bei einem Thermowiderstand wird lediglich der Ohmsche Widerstand des Thermowiderstandes gemessen, der sich in Abhängigkeit von der am Thermowiderstand anliegenden Temperatur ändert. Bei einem Thermoelement wird beispielsweise eine Spannung an einen Thermowiderstand angelegt und ein fließender Strom gemessen und aus diesem der gerade anliegende Widerstand bestimmt. Aus diesem lässt sich dann auf die anliegende Temperatur schließen.In particular, capacitive pressure sensors or piezoelectric pressure sensors can be used for pressure measurement. A sensor for determining the temperature comprises in particular a thermocouple or a thermoresistor. In the case of a thermoresistor, only the ohmic resistance of the thermoresistance is measured, which changes as a function of the temperature applied to the thermoresistor. For example, in a thermocouple, a voltage is applied to a thermal resistor and a flowing current is measured, and from this, the current resistance is determined. From this can then close on the temperature.
Ein Messfühler zur Bestimmung einer chemischen Zusammensetzung kann beispielsweise einen Messfühler zur Messung des Anteils einer bestimmten Komponente Gas umfassen. Dies kann beispielsweise eine Nernst-Sonde sein, deren eine Elektrode auf einer entsprechenden Referenz liegt. So kann der Feuchtigkeitsgehalt im Referenzdruckgasbehälter bestimmt werden.For example, a sensor for determining a chemical composition may comprise a sensor for measuring the proportion of a specific component of gas. This may be, for example, a Nernst probe whose one electrode lies on a corresponding reference. Thus, the moisture content in the reference pressure gas container can be determined.
Besonders bevorzugt ist eine Ausbildung des Zwischenstücks, bei dem ein kapazitiver Druckmessfühler ausgebildet ist.Particularly preferred is an embodiment of the intermediate piece, in which a capacitive pressure sensor is formed.
Gemäß einer weiteren vorteilhaften Ausgestaltung des Zwischenstücks ist mindestens ein Übertragungsmittel zur Übertragung zumindest eines Signals eines Messfühlers ausgebildet. Unter einem Übertragungsmittel wird in diesem Zusammenhang ein Mittel verstanden, mit dem man Daten hin zu einem entsprechenden Empfänger übertragen kann. Hierbei kann die Übertragung sowohl drahtgebunden als auch drahtlos erfolgen. Entsprechend kann das Übertragungsmittel als Stecker oder Kupplung ausgebildet sein, an den ein Draht anschließbar ist, über welchen die entsprechende Messgröße oder durch den Messfühler generierte Signale an eine entsprechende Auswerteeinheit wie beispielsweise ein Messgerät oder ein Steuergerät übertragen werden. Gleichzeitig ist auch eine drahtlose Übertragung möglich, bevorzugt basierend auf elektromagnetischen Wellen, besonders bevorzugt basierend auf elektromagnetischen Wellen im Radiofrequenz- oder optischen Bereich. So kann in besonders vorteilhafter Weise ein einziges Messgerät zur Überwachung einer Vielzahl von Messfühlern in verschiedenen Zwischenstücken eingesetzt werden, bei dem ein zentrales Messgerät mit einer Vielzahl von Messfühlern zusammenwirkt. Dies hat insbesondere den Vorteil, dass bei Beschädigung eines Zwischenstückes nur ein recht preiswertes Element auszutauschen ist, während die vergleichsweise teure Auswertungselektronik nicht im Zwischenstück untergebracht ist und nicht ausgetauscht werden muss. Beispielsweise kann so ein Thermoelement oder ein Thermowiderstand zur Messung der Temperatur über ein entsprechendes Kabel mit einem entsprechenden Ohmmeter, Voltmeter oder einem entsprechenden Auswerteelement verbunden werden.According to a further advantageous embodiment of the intermediate piece, at least one transmission means is designed for transmitting at least one signal of a measuring sensor. Under a transfer agent is in this context a means by which one can transfer data to a corresponding recipient. Here, the transmission can be done both wired and wireless. Accordingly, the transmission means may be formed as a plug or coupling, to which a wire can be connected, via which the corresponding measured variable or signals generated by the sensor are transmitted to a corresponding evaluation unit, such as a measuring device or a control unit. At the same time, wireless transmission is also possible, preferably based on electromagnetic waves, particularly preferably based on electromagnetic waves in the radio-frequency or optical range. Thus, in a particularly advantageous manner, a single measuring device can be used for monitoring a plurality of measuring sensors in different intermediate pieces, in which a central measuring device interacts with a multiplicity of measuring sensors. This has the particular advantage that when damage to an intermediate piece only a fairly inexpensive element is replaced, while the comparatively expensive evaluation electronics is not housed in the intermediate piece and does not need to be replaced. For example, such a thermocouple or a thermoresistor for measuring the temperature via a corresponding cable with a corresponding ohmmeter, voltmeter or a corresponding evaluation element can be connected.
Die im Rahmen dieser Erfindung für das erfindungsgemäße Verfahren offenbarten Details und Vorteile lassen sich auf das Zwischenstück übertragen und anwenden. Gleiches gilt für die im Rahmen der Beschreibung des er Zwischenstücks offenbarten Details und Vorteile, die sich in gleicher Weise auf das erfindungsgemäße Verfahren übertragen und anwenden lassen. Das beschriebene Zwischenstück lässt sich in vorteilhafter Weise im Rahmen des erfindungsgemäßen Verfahrens einsetzen, in dem nämlich der Referenzdruckgasbehälter ein solches Zwischenstück aufweist.The details and advantages disclosed in the context of this invention for the method according to the invention can be transferred and applied to the intermediate piece. The same applies to the details disclosed in the context of the description of the intermediate piece and advantages which can be equally transferred and applied to the method according to the invention. The described intermediate piece can be used advantageously in the context of the method according to the invention, in which the reference pressure gas container has such an intermediate piece.
Im Folgenden soll die Erfindung anhand der beigefügten Figuren näher erläutert werden, ohne dass die Erfindung auf die dort gezeigten Ausführungsbeispiele beschränkt wäre.In the following, the invention will be explained in more detail with reference to the attached figures, without the invention being limited to the exemplary embodiments shown there.
Es zeigen:
- Fig. 1
- schematisch ein Ausführungsbeispiel eines für das erfindungsgemäße Verfahren geeigneten Zwischenstückes;
- Fig. 2
- einen mit einem solchen Zwischenstück ausgestatteten Druckgasbehälter in schematischer Form beim Einsatz im erfindungsgemäßen Verfahren; und
- Fig. 3
- schematisch ein weiteres Ausführungsbeispiel von mit geeigneten Zwischenstücken ausgestatteten Druckgasbehältem.
- Fig. 1
- schematically an embodiment of an appropriate for the process according to the invention intermediate piece;
- Fig. 2
- a pressurized gas container equipped with such an intermediate piece in a schematic form when used in the method according to the invention; and
- Fig. 3
- schematically another embodiment of equipped with suitable spacers Druckgasbehältem.
Weiterhin weist das Zwischenstück 1 ein Übertragungsmittel 6 auf. Das Übertragungsmittel 6 ist im vorliegenden Ausführungsbeispiel ein Stecker, mittels welchem der Messfühler 4 zur Messung der Temperatur und/oder der Messfühler 5 zur Bestimmung des Druckes mit einer entsprechenden Messeinrichtung (nicht gezeigt) verbunden werden kann. Das Zwischenstück 1 kann in eine beliebige Druckgasflasche eingesetzt werden, welche bei dem erfindungsgemäßen Verfahren als Referenzdruckgasbehälter eingesetzt werden kann. Insbesondere sei hier darauf verwiesen, dass in bevorzugter Weise das Zwischenstück 1 und insbesondere dessen Leitungen 7 so ausgebildet sind, dass diese ein möglichst kleines Volumen aufweisen. Dadurch kann gewährleistet werden, dass sich das Volumen des relevanten Referenzdruckgasbehälters nur geringfügig ändert, so dass hier höchstens solche Messfehler entstehen, die vom Betrag her vernachlässigbar sind.Furthermore, the
Das erfindungsgemäße Verfahren wird nun insbesondere unter Bezugnahme auf
Mittels der Messfühler 4, 5 lassen sich Messgrößen bestimmen wie die Temperatur und der Druck, die in dem Referenzdruckgasbehälter 9 vorliegen. Im Folgenden soll als Beispiel ein mehrstufiger Füllvorgang, nämlich die Herstellung eines zweikomponentigen Gasgemisches beschrieben werden, wobei das erfindungsgemäße Verfahren nicht auf die Mischung zweikomponentiger Gasgemische beschränkt ist. Erfindungsgemäß können so Gemische aus beliebigen Anzahlen von Gaskomponenten hergestellt werden. Zu Beginn des Vorgangs werden der Druckgasbehälter 8 und der Referenzdruckgasbehälter 9 über die Befüllungsleitung 10 evakuiert, bis ein vorgebbarer Maximaldruck bzw. Minimaldruck erreicht ist. Danach wird die erste Gaskomponente zugegeben. Dies ist bevorzugt die Gaskomponente, deren Anteil im fertigen Gemisch geringer ist, d. h. deren Partialdruck im fertigen Gemisch niedriger ist als der der anderen Komponente. Die Befüllung erfolgt bei geöffneten Ventilen 13, so dass die Gaskomponente durch die Befüllungsleitung 10 sowohl in den Druckgasbehälter 8 als auch in den Referenzdruckgasbehälter 9 strömen kann. Die Befüllungsleitung 10 wird geschlossen, wenn mittels des Messfühlers 5 zur Bestimmung des Druckes der zu erreichende Druck angezeigt wird. Danach wird die Befüllungsleitung 10 mit der anderen Gaskomponente bzw. mit einem diese enthaltenden Reservoir verbunden. Bei der zweiten Stufe der Befüllung ist es insbesondere möglich, durch eine Betätigung des entsprechenden Ventils 13 des mit dem zweiten Anschluss 3 verbundenen Ventilkopfes 11 den Referenzdruckgasbehälter 9 von der Befüllungsleitung 10 zu trennen. Hierauf erfolgt die Befüllung des Druckgasbehälters 8 mit einer zweiten Gaskomponente. So ist es beispielsweise möglich, die erste Gaskomponente bis zu einem Druck von 150 mbar zu füllen und daran anschließend die zweite Komponente bis zu einem Druck von 150 bar oder mehr zu füllen. Alternativ ist es auch möglich, dass während des gesamten Befüllungsvorgangs auch die Referenzdruckgasbehälter 9 mit der Befüllungsleitung 10 verbunden ist.By means of the measuring
Nach Beendigung der Befüllung des Druckgasbehälters 8 wird dieser verschlossen und von der Befüllungsleitung 10 getrennt. Gleiches kann, mit dem Referenzdruckgasbehälter 9 geschehen. Der große Vorteil bei dem erfindungsgemäßen Verfahren liegt darin, dass die Druckgasbehälter des Druckgasbehälters 8 und des Referenzdruckgasbehälters 9 identisch sind. Somit muss einerseits zur Herstellung des Referenzdruckgasbehälter 9 keinerlei bauliche Veränderung vorgenommen werden und andererseits kann jeder beliebige Druckgasbehälter als Referenzdruckgasbehälter eingesetzt werden. Darüber hinaus ist eine Ausgestaltung des Zwischenstücks 1 möglich, welche auf eine Vielzahl von Druckgasbehältern 9 passt. Dies ist dadurch bedingt, dass es eine große Vielzahl von unterschiedlichen Druckgasbehältern 8 unterschiedlicher Volumina gibt, die jedoch alle ein identisches Gewinde zum Verbinden mit einem entsprechenden Ventilkopf 11 aufweisen. Da der erste Anschluss 2 mit einem solchen Innengewinde kommuniziert ist es somit möglich ein einziges Zwischenstück für eine Vielzahl von unterschiedlichen Druckgasbehältern einzusetzen, um diese als Referenzdruckgasbehälter 9 zu verwenden. Hierbei ist es besonders vorteilhaft, dass Messfühler 4, 5 oder die Lanze 17, die sich durch den ersten Anschluss 2 hindurch in das Innere des Referenzdruckgasbehälters 9 erstrecken, möglichst kurz auszuführen, da dann ein Einsatz auch in kleinen Druckgasbehältern 8 möglich ist. Dies ist insbesondere dann nicht nachteilig, wenn eine Druckmessung im Niederdruckbereich durchgeführt wird, da sich im Niederdruckbereich die meisten Gase wie ideale Gase verhalten und keine Schichtungseffekte oder ähnliches zu erwarten sind.After completion of the filling of the
Die Lanze 17 kann insbesondere als Steigrohr ausgebildet sein. In diesem Fall ist es vorteilhaft, dass die Messfühler 5 zur Bestimmung des Drucks über diese Lanze 17 mit dem Inneren des Referenzdruckgasbehälters 9 verbunden sind, während eine Evakuierung des Referenzdruckgasbehälters 9 nicht über die Lanze 17, sondern neben der Lanze 17 her erfolgt. Dies beschleunigt den Evakuierungsvorgang des Referenzdruckgasbehälters 9.The
Weiterhin sind Ventile 15 ausgebildet, mittels derer jeder einzelne Referenzdruckgasbehälter 9 von der Befüllleitung 10 trennbar oder mit dieser strömungstechnisch verbindbar ist. Weiterhin ist ein Einlassventil 16 ausgebildet, mit dem die Befüllleitung 10 mit einem entsprechenden Gasreservoir und/oder einer entsprechenden Evakuiereinheit verbunden werden kann. Diese Ausgestaltung hat insbesondere den Vorteil, dass ohne einen der Referenzgasdruckbehälter 9 auszutauschen Druckgasbehälter 8 unterschiedlicher Größe befüllt werden können.Furthermore,
Das erfindungsgemäße Verfahren erlaubt in vorteilhafter Weise die Herstellung von hochpräzisen Gasmischungen. Das Zwischenstück 1 kann dabei in besonders vorteilhafter Weise zur Bildung eines Referenzdruckgasbehälters 9 aus einem üblichen Druckgasbehälter 8 wie beispielsweise einer Druckgasflasche eingesetzt werden. Als Messfühler haben sich insbesondere Messfühler 4 zum Bestimmen der Temperatur und Messfühler 5 zum Bestimmen des Drucks und hier insbesondere kapazitive Druckaufnehmer als vorteilhaft erwiesen.The inventive method advantageously allows the production of high-precision gas mixtures. The
- 11
- Zwischenstückconnecting piece
- 22
- Erster AnschlussFirst connection
- 33
- Zweiter AnschlussSecond connection
- 44
- Messfühler zur Bestimmung der TemperaturSensor for determining the temperature
- 55
- Messfühler zur Bestimmung des DruckesSensor for determining the pressure
- 66
- Übertragungsmitteltransmission means
- 77
- Leitung des ZwischenstücksConduction of the intermediate piece
- 88th
- DruckgasbehälterCompressed gas containers
- 99
- ReferenzdruckgasbehälterReference pressure gas tank
- 1010
- Befüllungsleitungfill line
- 1111
- Ventilkopfvalve head
- 1212
- Anschlussconnection
- 1313
- VentilValve
- 1414
- Anschlussconnection
- 1515
- VentilValve
- 1616
- Einlassventilintake valve
- 1717
- Lanzelance
Claims (5)
- Method for filling at least one compressed gas tank (8) with at least one gas, wherein a reference compressed gas tank (9) is designed in which a measurement of at least one measurement variable which is relevant for the state in the reference compressed gas tank (9) can be carried out, wherein compressed gas tank (8) and reference compressed gas tank (9) are connected for flow purposes at least at times, wherein each compressed gas tank (8) and the reference compressed gas tank (9) each have an opening through which a gas can be introduced and removed, wherein at least one gas is introduced during a filling process through the opening into the at least one compressed gas tank (8) and at least at times into the reference compressed gas tank (9), characterised in that a measurement sensor (4, 5) is introduced through the opening into the reference compressed gas tank, and this measurement sensor is used to measure at least one measurement variable at least during a part of the filling process.
- Method according to claim 1, in which the measurement variable comprises at least one of the following variables:i) a pressure in the reference compressed gas tank (9);ii) a temperature in the reference compressed gas tank (9);iii) a chemical composition of a gas in the reference compressed gas tank (9); andiv) a moisture content in the reference compressed gas tank (9).
- Method according to claim 1 or 2, in which the measurement sensor is a capacitive pressure measurement sensor.
- Method according to any of the preceding claims, in which the filling process comprises a plurality of steps.
- Method according to any of the preceding claims, in which the filling process is carried out at least at times as a function of the measurement variable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL07723913T PL2005057T3 (en) | 2006-04-07 | 2007-04-03 | Method for filling at least one compressed gas tank with at least one gas |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006016554A DE102006016554A1 (en) | 2006-04-07 | 2006-04-07 | Method for filling at least one compressed gas container with at least one gas, intermediate piece for connecting to an opening of a compressed gas container and compressed gas cylinder fitting |
PCT/EP2007/002972 WO2007115734A1 (en) | 2006-04-07 | 2007-04-03 | Method for filling at least one compressed gas tank with at least one gas, connector for connecting to an opening of a compressed gas tank, and compressed gas cylinder valve |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2005057A1 EP2005057A1 (en) | 2008-12-24 |
EP2005057B1 true EP2005057B1 (en) | 2018-10-17 |
Family
ID=38265508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07723913.5A Active EP2005057B1 (en) | 2006-04-07 | 2007-04-03 | Method for filling at least one compressed gas tank with at least one gas |
Country Status (8)
Country | Link |
---|---|
US (1) | US20090277531A1 (en) |
EP (1) | EP2005057B1 (en) |
JP (1) | JP5237261B2 (en) |
CN (1) | CN101454609B (en) |
DE (1) | DE102006016554A1 (en) |
PL (1) | PL2005057T3 (en) |
TN (1) | TNSN08387A1 (en) |
WO (1) | WO2007115734A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006036785A1 (en) * | 2006-08-07 | 2008-02-14 | Robert Bosch Gmbh | Process for detecting contaminants in a gas tank |
DE102008015395A1 (en) * | 2008-03-20 | 2009-09-24 | L'Air Liquide, S.A. pour l'Etude et l'Exploitation des Procédés Georges Claude | Gas mixture e.g. tertiary gas mixture, producing method, involves determining pressure in gas container and flow technically connecting storage container with gas container until pressure in gas container reaches predetermined value |
ITBO20090509A1 (en) * | 2009-07-31 | 2011-02-01 | Bakel Werner Hans Joachim Van | DEVICE FOR THE COMPLETE INTRODUCTION OF A PRESSURIZED FLUID IN GAS G.P.L. |
US8844561B2 (en) * | 2010-05-20 | 2014-09-30 | Eaton Corporation | Isolation valve with integrated sensor |
US9166237B2 (en) * | 2013-02-20 | 2015-10-20 | GM Global Technology Operations LLC | Passive temperature supervision device for a compressed gas fuel tank |
CN103252550B (en) * | 2013-05-22 | 2015-06-24 | 常州大学 | Method for gas replacement before brazing of small-scale gas cylinder |
WO2015070292A1 (en) * | 2013-11-18 | 2015-05-21 | Mosaic Technology Development Pty Ltd | System and method for intelligent refuelling of a pressurised vessel |
WO2016154269A1 (en) * | 2015-03-23 | 2016-09-29 | Tansey Jr Francis X | Fluid filling station |
CN106370224A (en) * | 2015-07-21 | 2017-02-01 | 昱晶能源科技股份有限公司 | Testing system and testing method thereof |
JP6600430B1 (en) * | 2019-02-01 | 2019-10-30 | 岩谷産業株式会社 | Inspection device for hydrogen gas dispenser |
LU101271B1 (en) | 2019-06-18 | 2020-12-18 | Luxembourg Patent Co | Valve with integrated temperature sensor for compressed gas cylinder |
JP2021162122A (en) * | 2020-04-01 | 2021-10-11 | 川崎重工業株式会社 | Rod-like member support structure, tank valve, and snap ring |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1659384A (en) * | 1927-01-29 | 1928-02-14 | Ohio Oxygen Company | Method and apparatus for filling gas tanks |
US3719196A (en) * | 1970-05-06 | 1973-03-06 | Jones R Mc | Charging sequence system and process |
JPH0635156Y2 (en) * | 1989-01-17 | 1994-09-14 | 株式会社鷺宮製作所 | Pressure sensor |
GB8912693D0 (en) * | 1989-06-02 | 1989-07-19 | Glossop Ronald | High pressure gas charging apparatus |
JP2675633B2 (en) * | 1989-07-28 | 1997-11-12 | レール・リキド・ソシエテ・アノニム・プール・レチュド・エ・レクスプルワションデ・プロセデ・ジェオルジェ・クロード | Mixed gas filling device |
US5197710A (en) * | 1991-05-30 | 1993-03-30 | Lloyd G. Wass | Crash proof solenoid controlled valve for natural gas powered vehicles |
JP3532586B2 (en) * | 1993-01-20 | 2004-05-31 | トキコテクノ株式会社 | Gas filling equipment |
US5810058A (en) * | 1996-03-20 | 1998-09-22 | Gas Research Institute | Automated process and system for dispensing compressed natural gas |
US5901758A (en) * | 1997-04-30 | 1999-05-11 | The Boc Group, Inc. | Method of filling gas containers |
US6000230A (en) * | 1997-08-19 | 1999-12-14 | Showa Denko K.K. | Method for dividing and charging of non-azeotropic mixed refrigerant |
DE19744559C2 (en) * | 1997-10-09 | 2003-03-27 | Messer Griesheim Gmbh | Meßgasbehälter |
GB9724168D0 (en) * | 1997-11-14 | 1998-01-14 | Air Prod & Chem | Gas control device and method of supplying gas |
AU2188899A (en) * | 1998-02-05 | 1999-08-23 | Sang Gu Bang | Alarm device for sensing gas quantity within pressure vessel |
DE19915779B4 (en) * | 1999-04-08 | 2007-10-31 | Air Liquide Deutschland Gmbh | Filling level for the production of precision gas mixtures |
FR2794216B1 (en) * | 1999-05-26 | 2001-08-03 | Air Liquide | INSTALLATION FOR FILLING A CONDITIONING VOLUME WITH GAS |
CA2280641A1 (en) * | 1999-08-24 | 2001-02-24 | Veritek Ngv Canada, Corp. | Cylinder management system |
US6257000B1 (en) * | 2000-03-22 | 2001-07-10 | Luping Wang | Fluid storage and dispensing system featuring interiorly disposed and exteriorly adjustable regulator for high flow dispensing of gas |
JP2001304498A (en) * | 2000-04-25 | 2001-10-31 | Neriki:Kk | Valve device for gas cylinder |
LU90629B1 (en) * | 2000-08-10 | 2006-02-21 | Luxembourg Patent Co | Device for detecting gas loss from a carbon dioxide pressure vessel. |
DE10118361A1 (en) * | 2001-04-12 | 2002-10-24 | Solvay Fluor & Derivate | Storage of liquids and liquefied gases, especially zeotropic mixtures, controls composition on basis of vapor pressures exerted |
JP2003065495A (en) * | 2001-08-28 | 2003-03-05 | Nippon Sanso Corp | Mixed gas charging method and device |
US6619336B2 (en) * | 2002-02-14 | 2003-09-16 | Air Products And Chemicals, Inc. | System and method for dispensing pressurized gas |
US6779568B2 (en) * | 2002-07-16 | 2004-08-24 | General Hydrogen Corporation | Gas distribution system |
US7788048B2 (en) * | 2003-04-24 | 2010-08-31 | Hewlett-Packard Development Company, L.P. | Apparatus and method for integrating a fuel supply and a fuel level sensing pressure sensor |
JP2005053358A (en) * | 2003-08-05 | 2005-03-03 | Honda Motor Co Ltd | High pressure gas storage device |
DE10360001A1 (en) * | 2003-12-19 | 2005-07-21 | Friwo Gerätebau Gmbh | Metal hydride hydrogen storage container fill level display for vehicle fuel use has sensors directly fitted in metal hydride mass with gas tight cable entry |
JP2005201342A (en) * | 2004-01-14 | 2005-07-28 | Toyota Motor Corp | High pressure gas charging system and high pressure gas charging method |
-
2006
- 2006-04-07 DE DE102006016554A patent/DE102006016554A1/en not_active Ceased
-
2007
- 2007-04-03 PL PL07723913T patent/PL2005057T3/en unknown
- 2007-04-03 US US12/295,867 patent/US20090277531A1/en not_active Abandoned
- 2007-04-03 WO PCT/EP2007/002972 patent/WO2007115734A1/en active Application Filing
- 2007-04-03 JP JP2009503475A patent/JP5237261B2/en active Active
- 2007-04-03 CN CN200780020015.2A patent/CN101454609B/en active Active
- 2007-04-03 EP EP07723913.5A patent/EP2005057B1/en active Active
-
2008
- 2008-10-06 TN TNP2008000387A patent/TNSN08387A1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP2009532641A (en) | 2009-09-10 |
CN101454609A (en) | 2009-06-10 |
US20090277531A1 (en) | 2009-11-12 |
DE102006016554A1 (en) | 2007-10-11 |
WO2007115734A1 (en) | 2007-10-18 |
TNSN08387A1 (en) | 2010-04-14 |
CN101454609B (en) | 2011-09-14 |
JP5237261B2 (en) | 2013-07-17 |
EP2005057A1 (en) | 2008-12-24 |
PL2005057T3 (en) | 2019-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2005057B1 (en) | Method for filling at least one compressed gas tank with at least one gas | |
EP2570807B1 (en) | Test device for field calibration of a gas sensor | |
WO2003081231A1 (en) | Method and device for calibrating a humidity sensor and sensor arrangement comprising a humidity sensor that can be calibrated | |
EP2806271A1 (en) | Method and measuring device for determining physical gas properties | |
EP3394588B1 (en) | Gross leak measurement in an incompressible test item in a film chamber | |
WO2018019903A1 (en) | Method for calibrating a gas chromatograph | |
EP3475686B1 (en) | Method and device for monitoring the quality of gaseous fluids | |
DE102014219481A1 (en) | Apparatus and method for calibrating a film chamber for leak detection | |
DE19915779A1 (en) | Filling stand for the production of precision gas mixtures | |
EP2702373B1 (en) | Device for measuring a fuel flow and calibrating device therefor | |
AT402837B (en) | METHOD AND DEVICE FOR DOSING GAS | |
DE102008007593A1 (en) | Device for measuring geometry on a workpiece and method for measuring geometry on a workpiece | |
DE19744559C2 (en) | Meßgasbehälter | |
EP3112865A1 (en) | Calibrating device for breath alcohol measuring devices | |
DE102006058269B4 (en) | Method for calibrating at least one pressure sensor and corresponding pressure sensor | |
DE3824987C2 (en) | ||
DE102015201817A1 (en) | Mass flow CNG valve | |
EP0922209B1 (en) | Device for measuring hydraulic discharge volumes and leakages in a test piece | |
DE202005013613U1 (en) | Calibrator for moisture sensors comprises chamber with outlet connected to pressurized chamber and second outlet connected to second gas chamber, first outlet having flow resistance which can be adjusted between two different values | |
DE102004036133B4 (en) | Test gas volume determining method for e.g. container, involves determining pressure-measured values of two volumes, total pressure-measured value of two volumes, determining one volume value based on measured valves | |
DE10162286A1 (en) | Device for determining the volume of a gas at atmospheric pressure | |
EP2177889A1 (en) | Method and device for testing leak tightness | |
DE102009040286A1 (en) | Verification device for verification of sealability of e.g. pneumatic fluid system, has time measuring device defining two time points and controlling pressure measuring device in direct manner regarding determination of pressure | |
EP2413117B1 (en) | Method and measurement assembly for temperature measurement and method for operating the measurement assembly | |
EP1048926B1 (en) | Device for measuring length pneumatically |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081103 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20100927 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180607 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007016444 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 1054468 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190118 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007016444 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
26N | No opposition filed |
Effective date: 20190718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190403 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190403 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1054468 Country of ref document: AT Kind code of ref document: T Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070403 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230324 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230421 Year of fee payment: 17 Ref country code: DE Payment date: 20230420 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230419 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240426 Year of fee payment: 18 |