EP2001621A2 - Verfahren zum herstellen einer wabendichtung - Google Patents

Verfahren zum herstellen einer wabendichtung

Info

Publication number
EP2001621A2
EP2001621A2 EP07722126A EP07722126A EP2001621A2 EP 2001621 A2 EP2001621 A2 EP 2001621A2 EP 07722126 A EP07722126 A EP 07722126A EP 07722126 A EP07722126 A EP 07722126A EP 2001621 A2 EP2001621 A2 EP 2001621A2
Authority
EP
European Patent Office
Prior art keywords
cells
honeycomb
shaped body
injection molding
honeycomb seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07722126A
Other languages
English (en)
French (fr)
Inventor
Reinhold Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2001621A2 publication Critical patent/EP2001621A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/045Air intakes for gas-turbine plants or jet-propulsion plants having provisions for noise suppression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B2003/203Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded for multi-channelled structures, e.g. honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture

Definitions

  • the invention relates to a method for producing a honeycomb seal according to the preamble of claim 1.
  • titanium alloys The most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys (also called superalloys) and high-strength steels.
  • the high strength steels are used for shaft parts, gear parts, compressor casings and turbine casings.
  • Titanium alloys are typical materials for compressor parts.
  • Nickel alloys are suitable for the hot parts of the aircraft engine.
  • As a manufacturing method for gas turbine components made of titanium alloys, nickel alloy or other alloys are known from the prior art primarily investment casting and forging. All highly stressed gas turbine components, such as components for a compressor, are forgings. Components for a turbine, however, are usually designed as precision castings.
  • Powder metallurgical injection molding represents an alternative for the manufacture or production of complex components.
  • Powder metallurgical injection molding is related to plastic injection molding and is also referred to as metal mold injection or metal injection molding (MIM-V experienced).
  • MIM-V metal mold injection or metal injection molding
  • With the powder metallurgical injection molding components can be produced, which reach almost the full density and approximately the static strength of forgings. As a rule, the reduced dynamic strength compared to forgings can be compensated for by suitable material selection. be siert.
  • the procedure is such that in a first process step a powder, preferably a metal powder and / or a ceramic powder, is mixed with a binder and optionally a plasticizer and optionally further additives to form a homogeneous mass. From this homogeneous mass, a molding for the honeycomb seal is made by injection molding.
  • the injection-molded body already has the geometric shape of the honeycomb seal to be produced and thus honeycomb-like cells, but its volume is increased by the volume of the binder and plasticizer added.
  • the injection-molded article is deprived of binder and plasticizer in a debinding process. Subsequently, during the sintering, the molded body is compressed or shrunk to the finished honeycomb seal.
  • honeycomb seals produced by powder metallurgical injection molding are suitable, for example, for sealing in a gas turbine a radially outer gap between blade tips of rotating blades and a stationary housing. If such honeycomb seals also assume a heat transfer function in addition to the sealing function, it is already known from practice to arrange a heat-insulating filling in the honeycomb cells of the finished honeycomb seal, this heat-insulating filling being firmly connected to the honeycomb seal by soldering. The soldering of heat-insulating fillings with the honeycomb cells of a honeycomb seal is technically particularly complex.
  • the present invention is based on the problem to provide a novel method for producing a honeycomb seal with fauxdärnmfunktion.
  • At least some of the cells of the molding are at least partially sintered before sintering. each filled with at least one hollow body, wherein then the shaped body is sintered together with the introduced into the cells hollow bodies.
  • heat-insulating hollow bodies at least in each case one heat-insulating hollow body in at least some of the cells of the shaped body before sintering a shaped body of a honeycomb seal to be produced by powder metallurgical injection molding.
  • the heat-curable hollow bodies are firmly connected to the honeycomb cells of the molded body.
  • soldering of heat-insulating fillings with the cells of the honeycomb seal can be dispensed with, resulting in a particularly efficient manufacturing process for honeycomb seals with a thermal insulation function.
  • the present invention relates to the production of a honeycomb seal by powder metallurgical injection molding.
  • Powder metallurgy injection molding is also referred to as Metal Injection Molding (MIM).
  • MIM Metal Injection Molding
  • the procedure is such that a metal powder and / or a ceramic powder is provided in a first step.
  • a binder and optionally a plasticizer and optionally further additives are provided in a second step.
  • the provided metal powder and / or ceramic powder and the provided binder and optionally the plasticizer and optionally the other additives are mixed in a third step, so that forms a homogeneous mass.
  • the volume fraction of the metal powder and / or ceramic powder in the homogeneous mass is preferably between 50% and 70%.
  • the proportion of binder and optionally plasticizer on the homogeneous mass varies approximately between 30% and 50%.
  • This homogeneous mass of metal powder and / or ceramic powder, binder and optionally plasticizer is then further processed by injection molding in a further process step.
  • injection molding a shaped body of the honeycomb seal to be produced is manufactured.
  • This shaped body already has all the typical features of the honeycomb seal to be produced.
  • the shaped body has the geometric shape of the honeycomb seal to be produced, that is to say honeycomb-like cells.
  • the molded article has a volume increased by the binder content and plasticizer content.
  • the moldings provided by injection molding are also called greenware.
  • the binder and the plasticizer is expelled from the molding.
  • This step can also be called a de-bonding process.
  • the expulsion of binder and plasticizer can be done in different ways. This is usually done by fractional, thermal decomposition or evaporation. Another possibility consists of sucking out the thermally liquefied binding and plasticizing agents by capillary forces, by sublimation or by solvents.
  • the shaped body after the debindering process is also called browning.
  • the shaped body is sintered. During the sintering, the shaped body is compacted to the honeycomb seal with the final geometric properties. During sintering, therefore, the shaped body decreases, wherein the dimensions of the shaped body must uniformly decrease in all three spatial directions. The linear shrinkage is dependent on the binder content and plasticizer content between 10% and 20%.
  • the sintering can be carried out under different protective gases or under vacuum. After sintering, the finished honeycomb seal is present. If necessary, after the sintering, the honeycomb seal can be subjected to a refining process. However, the refining process is optional. nal. It can already be present immediately after sintering a ready-to-install honeycomb seal.
  • the heat-insulating hollow body with the honeycomb cells of the molded body enter a firm connection.
  • the heat-insulating hollow bodies are preferably introduced before the debinding process into the cells of the green body, still soft molded body.
  • the honeycomb cells of the molding are at least partially filled with at least one heat-insulating hollow body. It is therefore possible to introduce in each honeycomb cell of the molding exclusively a heat-insulating hollow body. It is also possible to introduce in each honeycomb cell a plurality of heat-insulating hollow body. By filling the honeycomb cells with at least one hollow body, they may be filled either partially or completely by the or each thermally insulating hollow body.
  • a homogeneous mass is used for injection molding of the shaped body of the honeycomb seal to be produced, which was obtained using a metal powder, metallic or metallized hollow body are used as a heat-insulating hollow body.
  • Metallized hollow bodies are those hollow bodies which are metallically coated on their outer surface.
  • ceramic bodies or hollow bodies ceramized on its outer surface are used as hollow bodies.
  • they may optionally be provided on their outer surface with a slip layer.
  • the heat-insulating hollow bodies to be introduced into the honeycomb cells of the shaped body are preferably adapted in size and shape to the honeycomb-like cells of the shaped body.
  • Particularly preferably hollow bodies designed as hollow spheres are used, which are pressed into the honeycomb cells of the shaped body.
  • the honeycomb cells of the shaped body may have different geometric shapes, e.g. round, oval or even polygonal, in particular hexagonal, be contoured.
  • honeycomb seal By filling the honeycomb cells of a molded article produced by injection molding for a honeycomb seal before sintering the same with hollow bodies, a honeycomb seal with thermal insulation function can be produced in a particularly simple manner. By filling the honeycomb cells with the hollow bodies, the sealing effect of the honeycomb seal is further improved. Furthermore, when rubbing blade tips of rotating blades into the honeycomb seal, the abrasion thereof is reduced, so that it has a longer service life.
  • the hollow bodies are subcooled before they are imported into the honeycomb cells of the molded body, ie cooled to a temperature which is lower than the temperature of the shaped body. This can avoid that the honeycomb cells are damaged during insertion of the hollow body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen einer Wabendichtung durch pulvermetallurgisches Spitzgießen, wobei beim pulvermetallurgischen Spitzgießen zuerst ein Metallpulver und/oder ein Keramikpulver mit zumindest einem Bindemittel zu einer homogenen Masse vermischt wird, wobei anschließend aus der homogenen Masse durch Spritzgießen ein wabenartige Zellen aufweisender Formkörper für die Wabendichtung gefertigt wird, wobei der Formkörper darauffolgend einem Entbinderungsprozess unterzogen wird, und wobei im Anschluss durch Sintern der Formkörper zu der Wabendichtung mit gewünschten geometrischen Eigenschaften verdichtet wird. Erfindungsgemäß werden vor dem Sintern zumindest einige der Zellen des Formkörpers zumindest teilweise mit jeweils mindestens einem Hohlkörper befüllt, wobei anschließend der Formkörper zusammen mit den in die Zellen eingeführten Hohlkörpern gesintert wird.

Description

Verfahren zum Herstellen einer Wabendichtung
Die Erfindung betrifft ein Verfahren zum Herstellen einer Wabendichtung nach dem Oberbegriff des Anspruchs 1.
Moderne Gasturbinen, insbesondere Flugtriebwerke, müssen höchsten Ansprüchen im Hinblick auf Zuverlässigkeit, Gewicht, Leistung, Wirtschaftlichkeit und Lebensdauer gerecht werden. In den letzten Jahrzehnten wurden insbesondere auf dem zivilen Sektor Flugtriebwerke entwickelt, die den obigen Anforderungen voll gerecht werden und ein hohes Maß an technischer Perfektion erreicht haben. Bei der Entwicklung von Flugtriebwerken spielt unter anderem die Werkstoffauswahl, die Suche nach neuen, geeigneten Werkstoffen sowie die Suche nach neuen Fertigungsverfahren eine entscheidende Rolle.
Die wichtigsten, heutzutage für Flugtriebwerke oder sonstige Gasturbinen verwendeten Werkstoffe sind Titanlegierungen, Nickellegierungen (auch Superlegierungen genannt) und hochfeste Stähle. Die hochfesten Stähle werden für Wellenteile, Getriebeteile, Verdichtergehäuse und Turbinengehäuse verwendet. Titanlegierungen sind typische Werkstoffe für Verdichterteile. Nickellegierungen sind für die heißen Teile des Flugtriebwerks geeignet. Als Fertigungsverfahren für Gasturbinenbauteile aus Titanlegierungen, Nickellegierung oder sonstigen Legierungen sind aus dem Stand der Technik in erster Linie das Feingießen sowie Schmieden bekannt. Alle hochbeanspruchten Gasturbinenbauteile, wie zum Beispiel Bauteile für einen Verdichter, sind Schmiedeteile. Bauteile für eine Turbine werden hingegen in der Regel als Feingussteile ausgeführt.
Für die Fertigung bzw. Herstellung von komplexen Bauteilen stellt das pulvermetallurgische Spritzgießen eine Alternative dar. Das pulvermetallurgische Spritzgießen ist mit dem Kunststoffspritzguss verwandt und wird auch als Metallform-Spritzen oder Metal Injection Moulding-Verfahren (MIM-V erfahren) bezeichnet. Mit dem pulvermetallurgischen Spritzgießen können Bauteile hergestellt werden, die fast die volle Dichte sowie annähernd die statische Festigkeit von Schmiedeteilen erreichen. Die gegenüber Schmiedeteilen in der Regel verringerte dynamische Festigkeit kann durch geeignete Werkstoffauswahl kompen- siert werden. So ist es aus dem Stand der Technik gemäß DE 102 59 963 Al bereits bekannt, mit dem pulvermetallurgischen Spritzgießen Wabendichtungen herzustellen.
Beim pulvermetallurgischen Spritzgießen einer Wabendichtung wird in groben Zügen so vorgegangen, dass in einem ersten Verfahrensschritt ein Pulver, vorzugsweise ein Metallpulver und/oder ein Keramikpulver, mit einem Bindemittel und gegebenenfalls einem Plastifizierungsmittel und gegebenenfalls weiteren Additiven zu einer homogenen Masse vermischt wird. Aus dieser homogenen Masse wird durch Spritzgießen ein Formkörper für die Wabendichtung gefertigt. Der spritzgegossene Formkörper besitzt bereits die geometrische Form der herzustellenden Wabendichtung und damit wabenartige Zellen, sein Volumen ist jedoch um das Volumen des zugesetzten Bindemittels und Plastifϊzierungsmittels vergrößert. Dem spritzgegossenen Formkörper wird in einem Entbinderungsprozess das Bindemittel sowie Plastifizierungsmittel entzogen. Darauffolgend wird während des Sinters der Formkörper zur fertigen Wabendichtung verdichtet bzw. geschrumpft.
Derartige, durch pulvermetallurgisches Spritzgießen hergestellte Wabendichtungen eignen sich beispielsweise dazu, in einer Gasturbine einen radial außenliegenden Spalt zwischen Schaufelspitzen rotierender Laufschaufeln und einem feststehenden Gehäuse abzudichten. Sollen derartige Wabendichtungen neben der Dichtfunktion auch eine Wärmedä^nmfunkti- on übernehmen, so ist es aus der Praxis bereits bekannt, in den wabenartigen Zellen der fertig hergestellten Wabendichtung eine wärmedämmende Füllung anzuordnen, wobei diese wärmedämmende Füllung durch Verlöten mit der Wabendichtung fest verbunden ist. Das Verlöten wärmedämmender Füllungen mit den wabenartigen Zellen einer Wabendichtung ist prozesstechnisch besonders aufwendig.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zum Herstellen einer Wabendichtung mit Wärmedärnmfunktion zu schaffen.
Dieses Problem wird durch ein Verfahren im Sinne von Anspruch 1 gelöst. Erfindungsgemäß werden vor dem Sintern zumindest einige der Zellen des Formkörpers zumindest teil- weise mit jeweils mindestens einem Hohlköper befüllt, wobei anschließend der Formkörper zusammen mit den in die Zellen eingeführten Hohlkörpern gesintert wird.
Mit der hier vorliegenden Erfindung wird vorgeschlagen, wärmedämmende Hohlkörper vor dem Sintern eines Formkörpers einer durch pulvermetallurgisches Spritzgießen herzustellenden Wabendichtung in zumindest einige der Zellen des Formkörpers mindestens jeweils einen wärmedämmenden Hohlkörper anzuordnen.
Beim anschließenden Sintern werden die wärrnedärnrnenden Hohlkörper mit den wabenartigen Zellen des Formkörpers fest verbunden. Auf das nach der Praxis übliche Verlöten von wärmedämmenden Füllungen mit den Zellen der Wabendichtung kann so verzichtet werden, wodurch sich ein besonders effizientes Herstellverfahren für Wabendichtungen mit einer Wärmedämmfunktion ergibt.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung.
Die hier vorliegende Erfindung betrifft die Herstellung einer Wabendichtung durch pulvermetallurgisches Spritzgießen. Pulvermetallurgisches Spritzgießen wird auch als Metal Injection Moulding (MIM) bezeichnet.
Beim pulvermetallurgischen Spritzgießen einer Wabendichtung wird so vorgegangen, dass in einem ersten Schritt ein Metallpulver und/oder ein Keramikpulver bereitgestellt wird. In einem zweiten Schritt werden ein Bindemittel und gegebenenfalls ein Plastifizierungsmittel sowie gegebenenfalls weitere Additive bereitgestellt.
Das bereitgestellte Metallpulver und/oder Keramikpulver sowie das bereitgestellte Bindemittel und gegebenenfalls das Plastifizierungsmittel sowie gegebenenfalls die weiteren Additive werden in einem dritten Schritt gemischt, so dass sich eine homogene Masse ausbildet. Der Volumenanteil des Metallpulvers und/oder Keramikpulver in der homogenen Masse beträgt dabei vorzugsweise zwischen 50% und 70%. Der Anteil von Bindemittel und gegebenenfalls Plastifizierungsmittel an der homogenen Masse schwankt in etwa zwischen 30% und 50%.
Diese homogene Masse aus Metallpulver und/oder Keramikpulver, Bindemittel und gegebenenfalls Plastifizierungsmittel wird anschließend in einem weiteren Verfahrensschritt durch Spritzgießen weiterverarbeitet. Beim Spritzgießen wird ein Formkörper der herzustellenden Wabendichtung gefertigt. Dieser Formkörper weist schon alle typischen Merkmale der herzustellenden Wabendichtung auf. Insbesondere verfügt der Formkörper über die geometrische Form der zu fertigenden Wabendichtung, also über wabenartige Zellen. Der Formkörper verfügt jedoch über ein um den Bindemittelgehalt sowie Plastifizierungs- mittelgehalt vergrößertes Volumen. Den durch Spritzgießen bereitgestellten Formkörper bezeichnet man auch als Grünling.
In einem nachgeschalteten Verfahrensschritt wird das Bindemittel und das Plastifizierungsmittel aus dem Formkörper ausgetrieben. Diesen Schritt kann man auch als Entbinde- rungsprozess bezeichnen. Das Austreiben von Bindemittel und Plastifizierungsmittel kann auf unterschiedliche Art und Weise erfolgen. Üblicherweise erfolgt dies durch fraktionierte, thermische Zersetzung bzw. Verdampfung. Eine weitere Möglichkeit besteht durch Heraussaugen der thermisch verflüssigten Binde- und Plastifizierungsmittel durch Kapillarkräfte, durch Sublimation oder durch Lösungsmittel. Den Formkörper nach dem Entbin- derungsprozess bezeichnet man auch als Bräunung.
Im Anschluss an den Entbinderungsprozess wird der Formkörper gesintert. Während des Sinters wird der Formkörper zu der Wabendichtung mit den endgültigen, geometrischen Eigenschaften verdichtet. Während des Sinterns verkleinert sich demnach der Formkörper, wobei die Dimensionen des Formkörpers in allen drei Raumrichtungen gleichmäßig schwinden müssen. Der lineare Schwund beträgt abhängig vom Bindemittelgehalt und Plastifizierungsmittelgehalt zwischen 10% und 20%. Das Sintern kann unter verschiedenen Schutzgasen oder unter Vakuum durchgeführt werden. Nach dem Sintern liegt die fertige Wabendichtung vor. Falls erforderlich, kann nach dem Sintern die Wabendichtung noch einem Veredelungsprozess unterzogen werden. Der Veredelungsprozess ist jedoch optio- nal. Es kann bereits auch unmittelbar nach dem Sintern eine einbaufertige Wabendichtung vorliegen.
Zum Herstellen einer Wabendichtung mit Wärmedäirmifunktion wird im Sinne der hier vorliegenden Erfindung vorgeschlagen, vor dem Sintern zumindest einige der wabenartigen Zellen des Formkörpers zumindest teilweise mit jeweils mindestens einem wärmedämmenden Hohlkörper zu befüllen, wobei der Formkörper anschließend zusammen mit den in die wabenartigen Zellen eingeführten Hohlkörpern gesintert wird. Dabei gehen die wärmedämmenden Hohlkörper mit den wabenartigen Zellen des Formkörpers eine feste Verbindung ein.
Im Sinne der hier vorliegenden Erfindung werden die wärmedämmenden Hohlkörper vorzugsweise noch vor dem Entbinderungsprozess in die Zellen des als Grünling ausgebildeten, noch weichen Formkörpers eingeführt. Alternativ ist es jedoch auch möglich, die Hohlkörper nach dem Entbinderungsprozess in die wabenartigen Zellen des als Bräunung ausgebildeten, bereits teilweise verfestigten Formkörpers einzuführen.
Wie bereits oben erwähnt, werden die wabenartigen Zellen des Formkörpers zumindest teilweise mit jeweils mindestens einem wärmedämmenden Hohlkörper befüllt. Es ist demnach möglich, in jede wabenartige Zelle des Formkörpers ausschließlich einen wärmedämmenden Hohlkörper einzuführen. Ebenso ist es möglich, in jede wabenartige Zelle mehrere wärmedämmende Hohlkörper einzuführen. Durch das Befüllen der wabenartigen Zellen mit mindestens einem Hohlkörper können dieselben entweder teilweise oder vollständig von dem oder jedem wärmedämmenden Hohlkörper ausgefüllt sein.
Dann, wenn zum Spritzgießen des Formkörpers der herzustellenden Wabendichtung eine homogene Masse verwendet wird, die unter Verwendung eines Metallpulvers gewonnen wurde, werden als wärmedämmende Hohlkörper metallische oder metallisierte Hohlkörper verwendet. Metallisierte Hohlkörper sind solche Hohlkörper, die an ihrer äußeren Oberfläche metallisch beschichtet sind. Dann, wenn die zum Spritzgießen des Formkörpers verwendete homogene Masse aus einem Keramikpulver gewonnen wird, werden als Hohlkörper keramische oder an ihrer äußeren Oberfläche keramisierte Hohlkörper verwendet. Um die Sinterfähigkeit der Hohlkörper zu verbessern, können dieselben gegebenenfalls an ihrer äußeren Oberfläche mit einer Schlickerschicht versehen werden.
Die in die wabenartigen Zellen des Formkörpers einzuführenden, wärmedämmenden Hohlkörper sind vorzugsweise in Größe und Form an die wabenartigen Zellen des Formkörpers angepasst. Besonders bevorzugt finden als Hohlkugeln ausgebildete Hohlkörper Verwendung, die in die wabenartigen Zellen des Formkörpers eingedrückt werden. Die wabenartigen Zellen des Formkörpers können unterschiedliche geometrische Formen aufweisen, so z.B. rund, oval oder auch mehreckig, insbesondere sechseckig, konturiert sein.
Durch die Befüllung der wabenartigen Zellen eines durch Spritzgießen hergestellten Formkörpers für eine Wabendichtung vor dem Sintern desselben mit Hohlkörpern kann auf besonders einfache Art und Weise eine Wabendichtung mit Wärmedämmfunktion hergestellt werden. Durch die Befüllung der wabenartigen Zellen mit den Hohlkörpern wird des Weiteren auch die Dichtwirkung der Wabendichtung verbessert. Weiterhin wird beim Anstreifen von Schaufelspitzen rotierender Laufschaufeln in die Wabendichtung der Abrieb an derselben verringert, sodass dieselbe eine höhere Lebensdauer aufweist.
Vorzugsweise werden die Hohlkörper vor dem Einfuhren derselben in die wabenartigen Zellen des Formkörpers unterkühlt, also auf eine Temperatur abgekühlt, die geringer ist als die Temperatur des Formkörpers. Hierdurch kann vermieden werden, dass die wabenartigen Zellen beim Einführen der Hohlkörper beschädigt werden.

Claims

Patentansprüche
1. Verfahren zum Herstellen einer Wabendichtung durch pulvermetallurgisches Spitzgießen, wobei beim pulvermetallurgischen Spitzgießen zuerst ein Metallpulver und/oder ein Keramikpulver mit zumindest einem Bindemittel zu einer homogenen Masse vermischt wird, wobei anschließend aus der homogenen Masse durch Spritzgießen ein wabenartige Zellen aufweisender Formkörper für die Wabendichtung gefertigt wird, wobei der Formkörper darauffolgend einem Entbinderungsprozess unterzogen wird, und wobei im Anschluss durch Sintern der Formkörper zu der Wabendichtung mit gewünschten geometrischen Eigenschaften verdichtet wird, dadurch gekennzeichnet, vor dem Sintern zumindest einige der Zellen des Formkörpers zumindest teilweise mit jeweils mindestens einem Hohlköper befüllt werden, und dass anschließend der Formkörper zusammen mit den in die Zellen eingeführten Hohlkörpern gesintert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Hohlköper vor dem Entbinderungsprozess in Zellen des als Grünling ausgebildeten Formkörpers eingeführt werden.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Hohlköper nach dem Entbinderungsprozess in Zellen des als Bräunung ausgebildeten Formkörpers eingeführt werden.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dann, wenn die zum Spritzgießen verwendete homogene Masse ausMetallpulver gewonnen wird, als Hohlköper metallische oder an ihrer äußeren Oberfläche metallisierte Hohlköper verwendet werden.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dann, wenn die zum Spritzgießen verwendete homogene Masse aus Keramikpulver gewonnen wird, als Hohlköper keramische oder an ihrer äußeren Oberfläche keramisierte Hohlköper verwendet werden.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Hohlkörper verwendet werden, die an die Größe und vorzugsweise Form der Zellen des Formkörpers angepasst sind.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Hohlköper vor dem Einführen derselben in Zellen des Formkörpers auf eine Temperatur abgekühlt werden, die geringer als die Temperatur des Formkörpers ist.
EP07722126A 2006-04-06 2007-03-29 Verfahren zum herstellen einer wabendichtung Withdrawn EP2001621A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006016147A DE102006016147A1 (de) 2006-04-06 2006-04-06 Verfahren zum Herstellen einer Wabendichtung
PCT/DE2007/000568 WO2007112727A2 (de) 2006-04-06 2007-03-29 Verfahren zum herstellen einer wabendichtung

Publications (1)

Publication Number Publication Date
EP2001621A2 true EP2001621A2 (de) 2008-12-17

Family

ID=38513337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07722126A Withdrawn EP2001621A2 (de) 2006-04-06 2007-03-29 Verfahren zum herstellen einer wabendichtung

Country Status (5)

Country Link
US (1) US20090096138A1 (de)
EP (1) EP2001621A2 (de)
CA (1) CA2647473A1 (de)
DE (1) DE102006016147A1 (de)
WO (1) WO2007112727A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029789A1 (de) * 2004-06-19 2006-01-05 Mtu Aero Engines Gmbh Verfahren zum Fertigen von Bauteilen einer Gasturbine sowie Bauteil einer Gasturbine
US7543383B2 (en) * 2007-07-24 2009-06-09 Pratt & Whitney Canada Corp. Method for manufacturing of fuel nozzle floating collar
DE102009016803A1 (de) * 2009-04-09 2010-10-14 Rolls-Royce Deutschland Ltd & Co Kg Labyrinth-Anstreifdichtung für eine Strömungsmaschine
RU2483838C2 (ru) * 2011-04-07 2013-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Композиционный элемент прирабатываемого уплотнения турбины
RU2483839C2 (ru) * 2011-04-07 2013-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Армированный элемент прирабатываемого уплотнения турбины
CN102179662A (zh) * 2011-04-27 2011-09-14 沈阳北碳密封有限公司 蜂窝式汽封菱形状正六边形蜂窝加工方法
US10487677B2 (en) * 2015-11-10 2019-11-26 General Electric Company Turbine component having a seal slot and additive manufacturing process for making same
DE102018201295A1 (de) 2018-01-29 2019-08-01 MTU Aero Engines AG Modul für eine strömungsmaschine
US11187100B2 (en) * 2018-12-03 2021-11-30 Raytheon Technologies Corporation CMC honeycomb base for abradable coating on CMC BOAS
CN111138174A (zh) * 2019-12-26 2020-05-12 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种用于人防工程的矾土基泡沫陶瓷球壳的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194782A (ja) * 1982-03-05 1983-11-12 ロ−ルス−ロイス・リミテツド 複合材料被覆物および物品への適用法
DE3424661A1 (de) * 1984-07-05 1986-01-16 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Einlaufbelag einer stroemungsmaschine
US5372103A (en) * 1994-04-25 1994-12-13 Caterpillar Inc. Method of mounting a ceramic valve guide assembly
US6235370B1 (en) * 1999-03-03 2001-05-22 Siemens Westinghouse Power Corporation High temperature erosion resistant, abradable thermal barrier composite coating
US6846574B2 (en) * 2001-05-16 2005-01-25 Siemens Westinghouse Power Corporation Honeycomb structure thermal barrier coating
DE10259963B4 (de) * 2002-12-20 2010-04-01 Mtu Aero Engines Gmbh Wabendichtung
DE102004029789A1 (de) * 2004-06-19 2006-01-05 Mtu Aero Engines Gmbh Verfahren zum Fertigen von Bauteilen einer Gasturbine sowie Bauteil einer Gasturbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007112727A3 *

Also Published As

Publication number Publication date
CA2647473A1 (en) 2007-10-11
WO2007112727A2 (de) 2007-10-11
DE102006016147A1 (de) 2007-10-11
US20090096138A1 (en) 2009-04-16
WO2007112727A3 (de) 2007-12-21

Similar Documents

Publication Publication Date Title
EP2001621A2 (de) Verfahren zum herstellen einer wabendichtung
DE4338457A1 (de) Bauteil aus Metall oder Keramik mit dichter Außenschale und porösem Kern und Herstellungsverfahren
DE60315550T2 (de) Abreibbarer metallischer oder keramischer Werkstoff; Formkörper, Gehäuse die dieses Material enthalten sowie seine Herstellung
DE102012206087A1 (de) Verfahren zur Herstellung eines Bauteils eines Flugtriebwerks durch Metallpulverspritzgießen
EP1717539B1 (de) Verfahren zur Herstellung eines Verschlussschlittens einer Schusswaffe
EP3150304A1 (de) Verfahren zur herstellung eines ventilsitzringes
DE4322084A1 (de) Verfahren zur Herstellung eines Setters
DE102004057360B4 (de) Verfahren zum Herstellen einer Wabendichtung
DE2707835A1 (de) Keramikgegenstaende und verfahren zu deren herstellung
DE10331599A1 (de) Bauteil für eine Gasturbine sowie Verfahren zur Herstellung desselben
EP1663554B1 (de) Verfahren zur herstellung von bauteilen einer gastubine
DE10331397A1 (de) Verfahren zur Herstellung von Bauteilen einer Gasturbine sowie entsprechendes Bauteil
DE102004029789A1 (de) Verfahren zum Fertigen von Bauteilen einer Gasturbine sowie Bauteil einer Gasturbine
EP0217807B1 (de) Sinterverfahren
DE102007010839B4 (de) Verfahren zur Herstellung eines Kolbens und Kolben mit einer ringförmigen Verstärkung bestehend aus mehreren Verstärkungssegmenten
DE102005033625B4 (de) Verfahren zur Herstellung und /oder Reparatur eines integral beschaufelten Rotors
DE10343781B4 (de) Verfahren zur Herstellung von Bauteilen
DE102009008685A1 (de) Verfahren zum Herstellen eines Bauteils
DE10343780A1 (de) Verfahren zur Herstellung von Bauteilen und Halteeinrichtung
DE102004060023B4 (de) Verfahren zum Herstellen eines Wabendichtungssegments
DE102004029547B4 (de) Verfahren zur Herstellung von Bauteilen einer Gasturbine
DE102005040184B4 (de) Mantelringsegment einer Gasturbine und Verfahren zur Herstellung derselben
DE3942421C2 (de) Verbundener Keramikkörper
DE10336701B4 (de) Verfahren zur Herstellung von Bauteilen
EP2643113B1 (de) Verfahren zur endkonturnahen fertigung von hochtemperaturbeständigen triebwerksbauteilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081001

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101001