EP1999726B1 - Grating image - Google Patents

Grating image Download PDF

Info

Publication number
EP1999726B1
EP1999726B1 EP07711798.4A EP07711798A EP1999726B1 EP 1999726 B1 EP1999726 B1 EP 1999726B1 EP 07711798 A EP07711798 A EP 07711798A EP 1999726 B1 EP1999726 B1 EP 1999726B1
Authority
EP
European Patent Office
Prior art keywords
grating
achromatic
regions
image according
grating image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07711798.4A
Other languages
German (de)
French (fr)
Other versions
EP1999726A1 (en
Inventor
Marius Dichtl
Thomas Gerhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP1999726A1 publication Critical patent/EP1999726A1/en
Application granted granted Critical
Publication of EP1999726B1 publication Critical patent/EP1999726B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/128Viewing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/08Designs or pictures characterised by special or unusual light effects characterised by colour effects
    • B44F1/10Changing, amusing, or secret pictures
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/003Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
    • G07D7/0032Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements using holograms
    • B42D2035/20
    • B42D2035/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms

Definitions

  • the invention relates to a grating image with achromatic grating areas.
  • the invention further relates to a method for producing such a grating image as well as a security element, a security paper and a data carrier with such a grating image.
  • holograms For authenticity assurance of credit cards, banknotes and other value documents, holograms, holographic lattice images or other hologram-like diffraction structures have been used for some years.
  • holographic diffraction structures are used in the banknote and security sector, which can be produced by embossing holographically generated lattice images in thermoplastically deformable plastics or UV-curable lacquers on film substrates.
  • Real holograms are formed by illuminating an object with coherent laser light and superposing the laser light scattered by the object with an uninfluenced reference beam in a photosensitive layer.
  • So-called holographic diffraction gratings are obtained when the light beams superimposed in the photosensitive layer consist of spatially extended, uniform, coherent wave fields.
  • the photosensitive layer for example a photographic film or a photoresist layer
  • a holographic diffraction grating which can be preserved in the form of light and dark lines in a photographic film or in the form of mountains and valleys in a photoresist layer. Since the light rays have not been scattered by an object in this case, the holographic diffraction grating produces only an optically variable color impression, but no image representation.
  • Holographic gratings can be generated from holographic diffraction gratings by not covering the entire surface of the photosensitive material with a uniform holographic diffraction grating, but by using suitable masks to respectively cover only parts of the receiving surface with one of several different uniform grating patterns.
  • Such a holographic grating image is thus composed of several areas with different diffraction grating patterns, which are usually adjacent to each other in a flat, strip-shaped or pixel-like design. By suitable arrangement of the regions, a multiplicity of different image motifs can be represented with such a holographic grating image.
  • the diffraction grating patterns can be produced not only by direct or indirect optical superposition of coherent laser beams but also by electron lithography. Frequently, a pattern diffraction structure is generated, which is subsequently converted into a relief structure. This relief structure can be used as a stamping tool.
  • WO 97/19821 discloses an optically variable surface pattern including at least one representation of a graphic.
  • the images When illuminated with visible light, the images are visible at different viewing angles than images with relatively light and dark spots.
  • the representations have grating structures less than 250 lines per millimeter so that many diffraction arrays appear in the visible range. This results in the corresponding representation appearing achromatic. Kinematic effects can be generated.
  • grating fields with grating lines which are characterized by the parameters orientation, curvature, spacing and profiling, at least one of which is the parameter varies over the area of the grid field. If one of the parameters varies randomly, we speak of so-called matt structures. These show when viewed no diffractive effects, but scattering effects and have a dull, preferably no color showy appearance. The matt structures show the same appearance with pure scattering effects from all viewing angles.
  • the present invention seeks to further improve lattice images of the type mentioned, and in particular under Maintaining the previous advantages grid images with new optical effects to create and / or to further increase the anti-counterfeiting of the lattice images.
  • the grating image comprises achromatic grating regions which have a viewing angle-dependent appearance, with a visually apparent movement effect as the viewing angle changes, in which the achromatic grating regions apparently move on a trajectory with a particular direction and velocity.
  • the achromatic grating areas have a matt - preferably silvery matte - non-colored appearance, which changes depending on the viewing angle. It could also be said that the achromatic grating areas are matt structures, but - in contrast to the prior art - have a viewing angle-dependent appearance.
  • the change may consist in the change of the optical brightness or else consist in the fact that a grating area is visible under a certain viewing angle and is not visible under a different viewing angle.
  • the respective achromatic grating region of the grating image contains a grating pattern influencing electromagnetic radiation with grating lines, which are characterized by the parameters orientation, curvature, spacing and profiling and for which at least the parameter orientation over the area of the grating area randomly, preferably randomly varies in a sudden jump in a limited angular range.
  • said grating region contains a grating pattern influencing electromagnetic radiation from uninterrupted grating lines.
  • the orientation parameter of the grating patterns according to the invention since the orientation parameter of the grating patterns according to the invention, as explained in detail below, has a random variation in a restricted angular range, so that nevertheless a certain degree of order is present over the grating region, both effects usually associated with diffraction processes and effects which are usually possible with scattering operations, generate in a grid area.
  • the proportion of the diffraction or scattering effect depends on the proportion of random variation. The greater the degree of disorder in the lattice image, the greater the amount of scattering effect.
  • grid patterns are therefore generally referred to as grid patterns influencing electromagnetic radiation.
  • diffraction or diffraction is understood to mean the deviation from the rectilinear propagation of the light, which is not caused by refraction, reflection or scattering, but which occurs when light strikes obstacles such as gaps, apertures, edges or the like.
  • Diffraction is a typical wave phenomenon and therefore strongly wavelength dependent and always associated with interference. It is to be distinguished in particular from the processes of reflection and refraction, which can be accurately described with the image of geometric light rays. Does one have it with diffraction at very many To do statistically distributed objects, it has become customary to speak of scattering instead of diffraction on irregularly distributed objects.
  • Scattering refers to the deflection of part of a bundled wave radiation from its original direction when passing through matter due to interaction with one or more scattering centers.
  • the radiation scattered diffusely in all spatial directions or the totality of the scattering waves emanating from the scattering centers is lost to the primary radiation.
  • Scattering of light on objects of the order of wavelengths of light and below is also usually wavelength dependent, such as Rayleigh scattering or Mie scattering. From an object size exceeding ten times the wavelength, one usually speaks of non-selective scattering in which all wavelengths are affected approximately equally.
  • non-selective scattering can also be achieved with smaller objects if the objects have only an irregular distribution and a suitable bandwidth of object sizes, since then the wavelength-dependent properties of the individual objects are found out over the entire ensemble.
  • a random, in particular a random and erratic variation of the orientation in a restricted angular range is understood to mean the following.
  • the orientation of the grid lines in a grid pattern influencing electromagnetic radiation can theoretically extend over an angular range of +/- 90 ° in a Cartesian coordinate system.
  • the angle that determines the orientation is the acute angle between the x-axis and the observed grid line. Do all grid lines have the same orientation? - So the same angle in the coordinate system - on, the lines are parallel and it is a pure diffraction grating. If the grid lines are completely randomly oriented over the entire angular range, all grid lines are randomly distributed and no preferred orientation can be determined.
  • the grid pattern shows pure scattering effects and thus no viewing angle dependent effects. Such lattice patterns are called matt structures. If the orientation varies randomly, but within a limited angular range, ie within an angle range within the specified limits of + 90 ° and - 90 °, the grid pattern shows a certain regularity. The grid pattern shows a more or less strong preference orientation so that the observer perceives the grid pattern differently depending on his viewing angle.
  • the orientation preferably varies in an angular range of +/- 10 ° or less, more preferably in a range of +/- 5 ° or less, most preferably in a range of +/- 3 ° or less.
  • each grating area thus has a central orientation which defines the viewing angle at which the grating area is visually recognizable.
  • a grating region having such a grating pattern exhibits a viewing angle dependent appearance, i. that the grating area due to the scattering effects a dull appearance, but this is due to the diffraction effects viewing angle dependent.
  • an achromatic grating region can vary depending on the viewing angle in the optical brightness or even only from a certain angle visible and not visible from other angles substantially.
  • achromatic grating areas in the grating image apparently move on a trajectory with a certain direction and speed when the viewing angle is changed
  • achromatic grating areas the mean orientations of which are rotated by a certain value
  • the value of the average orientation of successively arranged grating areas thus increases or decreases.
  • the mean orientations of the individual lattice patterns differ by at least 2 °, particularly preferably by at least 5 °, very particularly preferably by at least 10 °.
  • the mean orientations in the lattice image are preferably in the range of +/- 60 °.
  • the direction of the movement depends, among other things, on the mean orientation.
  • the speed of the movement depends on the difference between the mean orientations.
  • the number of achromatic grating areas should be at least 3.
  • at least 5 achromatic grating regions are present.
  • the achromatic grating regions may preferably be arranged directly adjacent to or spaced from each other on an imaginary line or curve. Particularly preferably, the achromatic grating regions are arranged directly adjacent to one another on a straight line.
  • the achromatic grating areas appear, for example, with different optical brightness or are only visible under the respectively desired viewing angle. The viewer then has the visual impression of a moving on the line or curve achromatic grid area.
  • the achromatic grating regions may alternatively also be arranged concentrically. Again, these may be directly adjacent or spaced. Preferably, the achromatic grating regions are directly adjacent. As the viewing angle changes, the different achromatic grating areas appear to be e.g. with different optical brightness on or are visible only under the respective desired angle. The observer then has the visual impression of an achromatic grating area moving toward a center or moving away from a center.
  • the achromatic grating region itself can assume any conceivable geometric shape. Pixel-like, annular, stripe or punctiform formations are just as conceivable as figurative figures. Preferably, the achromatic grating regions are each separately recognizable with the naked eye.
  • the grating lines are advantageously produced by electron beam lithography. This technique makes it possible to produce grid images in which each individual grid line can be uniquely determined by the parameters orientation, curvature, spacing and profiling.
  • said lattice image contains, in addition to the achromatic lattice regions, diffractive lattice structures, such as linear lattices, sub-wavelength lattices, moth-eye structures, etc. Preferably, these are sinusoidal lattices.
  • diffractive grating structures and achromatic grating regions are realized within an electron beam lithographically generated grating image.
  • the diffractive grating structures have a viewing angle-dependent color and are arranged so that they move apparently on a trajectory with a certain direction and speed when changing the viewing angle.
  • the diffractive grating structures may preferably be arranged directly adjacent or spaced apart on an imaginary line or curve. Particularly preferably, the diffractive grating structures are arranged directly adjacent to a straight line. When tilted or rotated by the viewer, the diffractive grating structures appear to be e.g. with different colors or are only visible under the respective desired angle. The observer then has the visual impression of a colored, geometric shape moving on the line or curve.
  • the diffractive grating structures may alternatively also be arranged concentrically. Again, these may be directly adjacent or spaced. Preferably, the diffractive grating structures are directly adjacent.
  • the different diffractive grating structures appear, for example, with different colors or are only visible under the respective desired viewing angle. The observer then has the visual impression of a grid structure moving toward a center or moving away from a center.
  • the diffractive lattice structure itself can assume any conceivable geometric form. Pixel-like, annular, stripe or punctiform formations are just as conceivable as figurative figures.
  • achromatic grating regions and diffractive grating structures are matched to one another visually or in terms of design.
  • complement achromatic grating areas and diffractive grating structures to a pictorial whole.
  • concentric achromatic grating regions combined with concentric or linearly arranged diffractive grating structures in a grating image.
  • the range of grid line spacings in the grid regions is preferably between about 0.1 ⁇ m and 10 ⁇ m, particularly preferably between 0.5 ⁇ m and 1.5 ⁇ m.
  • the grid line spacings in a grid area can be constant, but can also vary randomly, preferably randomly.
  • the grating lines have a line profile depth between about 100 nm and about 400 nm.
  • the grid lines preferably have a sine profile.
  • the occupation density of an achromatic grating area with grating lines can be used to control its optical brightness. Depending on how much the grid lines fill a certain area, this leads to lighter or darker matt surfaces. A surface less filled with grid lines exhibits a less pronounced matt-textured effect, so the surface appears darker to an observer than an area more heavily filled with grid lines.
  • the brightness of the surface covered with lattice patterns can be controlled, so that the relative brightness of differently bright-acting surface regions can be selectively varied.
  • the grating image itself is preferably coated with a reflective or high refractive index material.
  • Reflective materials are all metals and many metal alloys into consideration.
  • suitable high-index materials are CaS, CrO 2 , ZnS, TiO 2 or SiO x .
  • the grid image may be generated in embedded or non-embedded configuration. For embedding, for example, PVC, PET, polyester or a UV lacquer layer are suitable.
  • the grating image according to the invention can be combined with a color-shifting thin-film structure.
  • the total area of the lattice image or only a partial area of the lattice image can be provided with the thin-film structure.
  • the thin-film structure can be made opaque or semitransparent and comprises at least three layers.
  • the layer structure may comprise a reflection layer, an absorber layer and a dielectric layer lying between these two layers.
  • the thin-film structure consists of two absorber layers and a dielectric layer lying between the absorber layers. It is also conceivable for a plurality of absorber and dielectric layers to be present alternately or else to be provided exclusively with dielectric layers where contiguous layers have very different refractive indices to produce a color shift effect.
  • the reflective layer is usually a metal layer, e.g. made of aluminium.
  • absorber layers are typically metal layers of materials such as chromium, iron, gold, aluminum or titanium, in a thickness of preferably 4 nm to 20 nm.
  • absorber layer materials can also compounds such as nickel-chromium-iron, or more rare metals such as vanadium, Palladium or molybdenum, can be used.
  • Other suitable materials are e.g.
  • the absorber layers may be identical, but may also be different in thickness and / or consist of different materials.
  • the dielectric layer are mainly transparent materials with a low refractive index ⁇ 1.7 into consideration, such as SiO 2 , MgF, SiO x with 1 ⁇ x ⁇ 2 and Al 2 O 3 .
  • transparent materials with a low refractive index ⁇ 1.7 into consideration, such as SiO 2 , MgF, SiO x with 1 ⁇ x ⁇ 2 and Al 2 O 3 .
  • almost all vapor-deposited, transparent compounds come into consideration, in particular also higher refractive coating materials, such as ZrO 2 ZnS, TiO 2 and indium tin oxides (ITO).
  • the layer thickness of the dielectric layer D is in the range of 100 nm to 1000 nm, preferably 200 nm to 500 nm.
  • the invention also encompasses methods for producing lattice images and a security element with a lattice image of the type described above.
  • the security element can in particular be a security thread, a label or a transfer element.
  • the invention further comprises a security paper with such a security element and a data carrier which is equipped with a grid image, a security element or a security paper of the type described.
  • the data carrier may be a banknote, a value document, a passport, an identity card or a certificate.
  • the security element can be used to secure any product.
  • a methodological group is Physical Vapor Deposition (PVD) with Schiffchenbedampfung, evaporation by resistance heating, vapor deposition by induction heating or electron beam evaporation, sputtering (DC or AC) and arc vapor deposition.
  • PVD Physical Vapor Deposition
  • the vapor deposition can also take place as chemical vapor deposition (CVD), such as e.g. Sputtering in the reactive plasma or any other plasma-assisted evaporation method.
  • CVD chemical vapor deposition
  • achromatic grating areas and color-shifting thin-film structures are very difficult to falsify, as the technologies for producing these elements are extremely difficult to obtain.
  • the design of the achromatic grating areas and the thin-film structure can be precisely matched to each other, so that completely new optical effects can be achieved.
  • the lattice images according to the invention can be combined with other optical and / or machine-readable security elements.
  • the lattice image with other functional layers such as polarizing, phase-shifting, conductive, magnetic or luminescent layers.
  • Fig. 1 shows a schematic representation of a banknote 10, which has two security elements according to the invention, namely a security thread 12 and a glued transfer element 16.
  • the security thread 12 is formed as a window security thread, which emerges in certain window areas 14 on the surface of the banknote 10, while it is embedded in the intervening areas inside the banknote 10.
  • Both security elements 12,16 are equipped with grid images of the type described below.
  • Fig. 2 (a) shows one in the WO2005 / 071444 A2 disclosed grating field 20 with a grid pattern whose grating lines 22 are completely randomly oriented to each other, so that the parameter orientation varies randomly and abruptly over the surface of the grid array 20.
  • a grid pattern influencing such electromagnetic radiation produces a matt structure which has the same appearance from all viewing angles.
  • the Cartesian coordinate system with x- and y-axis is of course not part of the grid field, but should serve only as an aid for estimating the orientations for the individual grid lines.
  • Fig. 2 (b) shows an achromatic grating region in which the orientation of the grating lines also varies randomly, but not completely randomly over the entire possible angular range, as in FIG Fig. 2 (a) but in a limited angular range, in this case +/- 30 °.
  • the angle to be read results in a simple manner in that the zero point of the coordinate system is shifted horizontally or vertically so that the grid line concerned comes to rest at zero. Then the acute angle between the grid line and the x-axis lying in the first and second quadrant, respectively.
  • the grid lines 26, 28 are already arranged at the zero point of the coordinate system. All other grid lines have angles which are within the desired angular range. For a better overview, only the grid lines 27, 29,31 were drawn. Depending on the desired brightness of the grid area, the occupation density should be selected accordingly. In the present embodiment, the grid line pitches are not constant.
  • Fig. 3 shows a grating image according to the invention, in which achromatic grating regions 31, 32, 33, 34, 35 are lined up in the form of small squares with an edge length of 2 mm directly to each other, thus resulting in a strip-like structure.
  • the mean orientation of the individual grid areas is in Fig. 3 indicated with arrows in the grating areas and designed so that they are the value -40 ° in the grating area 31, the value -20 ° in the grating area 32, the value 0 ° in the grating area 33, the value 20 ° in the grating area 34 and the grating area 35 the Value 40 °.
  • Each grid area can only be seen at a certain viewing angle.
  • the occupancy density is equal to grating lines in all grating areas, so that they appear to a viewer with the same brightness.
  • Figure 4 shows a grating image in which annular, achromatic grating areas are combined with strip-like, diffractive sine grating.
  • the achromatic ones Grating areas 41, 42, 43, 44, 45 are arranged concentrically.
  • the mean orientation of the grating region 41 has the value -60 °, the grating region 42 the value -30 °, the grating region 43 the value 0 °, the grating region 44 the value + 30 ° and the grating region 45 the value + 60 °.
  • the occupation density of the grid areas with grid lines is the same.
  • it is also possible to set different brightness levels in the grid areas by changing the occupation density in the individual grid areas.
  • diffractive grating structures 46, 47, 48, 49 which should have a certain color depending on the viewing angle.
  • the observer has the following picture.
  • a silvery dull, ring-shaped structure and colored, rectangular shapes run towards and away from a center.
  • the matt and colored areas can run simultaneously to the center or even while the matte areas run into the center, the colored areas can run away from this.
  • Fig. 5 shows a security element 50 with the in Figure 4
  • a paint 52 was applied to a transparent film material 51, in which the grating image 57 has been introduced.
  • a thin-film structure was vapor-deposited over the whole area, which in this case consists of an absorber layer 53, a high-index dielectric layer 54 and a reflective layer 55.
  • the layers of the thin film construction were applied by the vacuum vapor method.

Description

Die Erfindung betrifft ein Gitterbild mit achromatischen Gitterbereichen. Die Erfindung betrifft ferner ein Verfahren zum Herstellen eines solchen Gitterbildes sowie ein Sicherheitselement, ein Sicherheitspapier und einen Datenträger mit einem solchen Gitterbild.The invention relates to a grating image with achromatic grating areas. The invention further relates to a method for producing such a grating image as well as a security element, a security paper and a data carrier with such a grating image.

Zur Echtheitsabsicherung von Kreditkarten, Banknoten und anderen Wertdokumenten werden seit einigen Jahren Hologramme, holographische Gitterbilder oder andere hologrammartige Beugungsstrukturen eingesetzt. Im Allgemeinen werden im Banknoten- und Sicherheitsbereich holographische Beugungsstrukturen verwendet, die sich durch Prägung von holographisch erzeugten Gitterbildern in thermoplastisch verformbare Kunststoffe oder UV-härtbare Lacke auf Foliensubstraten herstellen lassen.For authenticity assurance of credit cards, banknotes and other value documents, holograms, holographic lattice images or other hologram-like diffraction structures have been used for some years. In general, holographic diffraction structures are used in the banknote and security sector, which can be produced by embossing holographically generated lattice images in thermoplastically deformable plastics or UV-curable lacquers on film substrates.

Echte Hologramme entstehen durch Beleuchtung eines Objekts mit kohärentem Laserlicht und Überlagerung des von dem Objekt gestreuten Laserlichts mit einem unbeeinflussten Referenzstrahl in einer lichtempfindlichen Schicht. Sogenannte holographische Beugungsgitter erhält man, wenn die in der lichtempfindlichen Schicht überlagerten Lichtstrahlen aus räumlich ausgedehnten, einheitlichen kohärenten Wellenfeldern bestehen. Durch die Einwirkung der überlagerten Wellenfelder auf die lichtempfindliche Schicht, beispielsweise einen photographischen Film oder eine Photoresistschicht, entsteht dort ein holographisches Beugungsgitter, das in Form heller und dunkler Linien in einem photographischen Film oder in Form von Bergen und Tälern in einer Photoresistschicht konserviert werden kann. Da die Lichtstrahlen in diesem Fall nicht durch ein Objekt gestreut worden sind, erzeugt das holographische Beugungsgitter lediglich einen optisch variablen Farbeindruck, jedoch keine Bilddarstellung.Real holograms are formed by illuminating an object with coherent laser light and superposing the laser light scattered by the object with an uninfluenced reference beam in a photosensitive layer. So-called holographic diffraction gratings are obtained when the light beams superimposed in the photosensitive layer consist of spatially extended, uniform, coherent wave fields. By the action of the superimposed wave fields on the photosensitive layer, for example a photographic film or a photoresist layer, there arises a holographic diffraction grating which can be preserved in the form of light and dark lines in a photographic film or in the form of mountains and valleys in a photoresist layer. Since the light rays have not been scattered by an object in this case, the holographic diffraction grating produces only an optically variable color impression, but no image representation.

Aus holographischen Beugungsgittern lassen sich holographische Gitterbilder erzeugen, indem nicht die gesamte Fläche des lichtempfindlichen Materials mit einem einheitlichen holographischen Beugungsgitter belegt wird, sondern indem geeignete Masken verwendet werden, um jeweils nur Teile der Aufnahmefläche mit einem von mehreren verschiedenen einheitlichen Gittermustern zu belegen. Ein solches holographisches Gitterbild setzt sich somit aus mehreren Bereichen mit unterschiedlichen Beugungsgittermustern zusammen, die in der Regel nebeneinander in flächiger, streifenförmiger oder pixelartiger Ausführung liegen. Durch geeignete Anordnung der Bereiche lässt sich mit einem derartigen holographischen Gitterbild eine Vielzahl unterschiedlicher Bildmotive darstellen. Die Beugungsgittermuster können nicht nur durch direkte oder indirekte optische Überlagerung kohärenter Laserstrahlen, sondern auch mittels Elektronenlithographie hergestellt werden. Häufig wird eine Musterbeugungsstruktur erzeugt, die anschließend in eine Reliefstruktur umgesetzt wird. Diese Reliefstruktur kann als Prägewerkzeug verwendet werden.Holographic gratings can be generated from holographic diffraction gratings by not covering the entire surface of the photosensitive material with a uniform holographic diffraction grating, but by using suitable masks to respectively cover only parts of the receiving surface with one of several different uniform grating patterns. Such a holographic grating image is thus composed of several areas with different diffraction grating patterns, which are usually adjacent to each other in a flat, strip-shaped or pixel-like design. By suitable arrangement of the regions, a multiplicity of different image motifs can be represented with such a holographic grating image. The diffraction grating patterns can be produced not only by direct or indirect optical superposition of coherent laser beams but also by electron lithography. Frequently, a pattern diffraction structure is generated, which is subsequently converted into a relief structure. This relief structure can be used as a stamping tool.

In der WO 97/19821 wird ein optisch variables Oberflächenmuster offenbart, das wenigstens eine Darstellung einer Graphik enthält. Bei Beleuchtung mit sichtbarem Licht sind die Darstellungen bei unterschiedlichen Betrachtungswinkeln als Bilder mit verhältnismäßig hellen und dunklen Punkten sichtbar. Die Darstellungen weisen Gitterstrukturen mit weniger als 250 Linien pro Millimeter auf, so dass viele Beugungsanordnungen im sichtbaren Bereich erscheinen. Dies führt dazu, dass die korrespondierende Darstellung achromatisch erscheint. Kinematische Effekte sind erzeugbar.In the WO 97/19821 discloses an optically variable surface pattern including at least one representation of a graphic. When illuminated with visible light, the images are visible at different viewing angles than images with relatively light and dark spots. The representations have grating structures less than 250 lines per millimeter so that many diffraction arrays appear in the visible range. This results in the corresponding representation appearing achromatic. Kinematic effects can be generated.

In der WO2005/071444 A2 werden Gitterfelder mit Strichgitterlinien beschrieben, die durch die Parameter Orientierung, Krümmung, Beabstandung und Profilierung charakterisiert sind, wobei zumindest einer dieser der Parameter über die Fläche des Gitterfeldes variiert. Variiert einer der Parameter zufällig, spricht man von sogenannten Mattstrukturen. Diese zeigen bei Betrachtung keine diffraktiven Effekte, sondern Streueffekte und weisen ein mattes, vorzugsweise keinerlei Farbigkeit zeigendes Erscheinungsbild auf. Die Mattstrukturen zeigen bei reinen Streueffekten aus allen Betrachtungswinkeln das gleiche Erscheinungsbild.In the WO2005 / 071444 A2 are described grating fields with grating lines, which are characterized by the parameters orientation, curvature, spacing and profiling, at least one of which is the parameter varies over the area of the grid field. If one of the parameters varies randomly, we speak of so-called matt structures. These show when viewed no diffractive effects, but scattering effects and have a dull, preferably no color showy appearance. The matt structures show the same appearance with pure scattering effects from all viewing angles.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, Gitterbilder der eingangs genannten Art weiter zu verbessern, und insbesondere unter Beibehaltung der bisherigen Vorteile Gitterbilder mit neuen optischen Effekten zu schaffen und/oder die Fälschungssicherheit der Gitterbilder weiter zu erhöhen.Based on this, the present invention seeks to further improve lattice images of the type mentioned, and in particular under Maintaining the previous advantages grid images with new optical effects to create and / or to further increase the anti-counterfeiting of the lattice images.

Diese Aufgabe wird durch das Gitterbild mit den Merkmalen des Hauptanspruchs gelöst. Ein Herstellungsverfahren sowie ein Sicherheitselement, ein Sicherheitspapier und ein Datenträger mit derartigen Gitterbilder sind in den nebengeordneten Ansprüchen angegeben. Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.This object is achieved by the grid image with the features of the main claim. A manufacturing method and a security element, a security paper and a data carrier with such lattice images are given in the independent claims. Further developments of the invention are the subject of the dependent claims.

Gemäß der Erfindung umfasst das Gitterbild achromatische Gitterbereiche, die ein betrachtungswinkelabhängiges Erscheinungsbild aufweisen, wobei sich bei Änderung des Betrachtungswinkels ein visuell sichtbarer Bewegungseffekt ergibt, bei dem sich die achromatischen Gitterbereiche scheinbar auf einer Bewegungsbahn mit einer bestimmten Richtung und Geschwindigkeit bewegen.According to the invention, the grating image comprises achromatic grating regions which have a viewing angle-dependent appearance, with a visually apparent movement effect as the viewing angle changes, in which the achromatic grating regions apparently move on a trajectory with a particular direction and velocity.

Die achromatischen Gitterbereiche weisen ein mattes - vorzugsweise silbrig mattes - nicht farbiges Erscheinungsbild auf, das sich in Abhängigkeit vom Betrachtungswinkel ändert. Man könnte also auch sagen, dass es sich bei den achromatischen Gitterbereichen um Mattstrukturen handelt, die aber - im Gegensatz zum Stand der Technik - ein betrachtungswinkelabhängiges Erscheinungsbild aufweisen. Die Änderung kann dabei in der Änderung der optischen Helligkeit bestehen oder aber auch darin bestehen, dass ein Gitterbereich unter einem bestimmten Betrachtungswinkel sichtbar und unter einem anderen Betrachtungswinkel nicht sichtbar ist.The achromatic grating areas have a matt - preferably silvery matte - non-colored appearance, which changes depending on the viewing angle. It could also be said that the achromatic grating areas are matt structures, but - in contrast to the prior art - have a viewing angle-dependent appearance. The change may consist in the change of the optical brightness or else consist in the fact that a grating area is visible under a certain viewing angle and is not visible under a different viewing angle.

Der jeweilige achromatische Gitterbereich des Gitterbilds enthält ein elektromagnetische Strahlung beeinflussendes Gittermuster mit Strichgitterlinien, die durch die Parameter Orientierung, Krümmung, Beabstandung und Profilierung charakterisiert sind und für die zumindest der Parameter Orientierung über der Fläche des Gitterbereiches zufällig, bevorzugt zufällig sprunghaft in einem eingeschränkten Winkelbereich variiert. Bevorzugt enthält der genannte Gitterbereich dabei ein elektromagnetische Strahlung beeinflussendes Gittermuster aus nicht unterbrochenen Strichgitterlinien.The respective achromatic grating region of the grating image contains a grating pattern influencing electromagnetic radiation with grating lines, which are characterized by the parameters orientation, curvature, spacing and profiling and for which at least the parameter orientation over the area of the grating area randomly, preferably randomly varies in a sudden jump in a limited angular range. Preferably, said grating region contains a grating pattern influencing electromagnetic radiation from uninterrupted grating lines.

Da der Parameter Orientierung der erfindungsgemäßen Gittermuster, wie nachfolgend im Detail erläutert, eine zufällige Variation in einem eingeschränkten Winkelbereich aufweist, so dass dennoch über den Gitterbereich ein gewisser Ordnungsgrad vorliegt, lassen sich sowohl Effekte, die gewöhnlich mit Beugungsvorgängen, als auch Effekte, die gewöhnlich mit Streuvorgängen beschrieben werden, in einem Gitterbereich erzeugen. Der Anteil des Beugungs- bzw- Streueffektes hängt hierbei vom Anteil der zufälligen Variation ab. Je größer der Grad der Unordnung im Gitterbild, umso größer wird der Streueffektanteil. Im Rahmen dieser Beschreibung werden derartige Gittermuster daher allgemein als elektromagnetische Strahlung beeinflussende Gittermuster bezeichnet.Since the orientation parameter of the grating patterns according to the invention, as explained in detail below, has a random variation in a restricted angular range, so that nevertheless a certain degree of order is present over the grating region, both effects usually associated with diffraction processes and effects which are usually possible with scattering operations, generate in a grid area. The proportion of the diffraction or scattering effect depends on the proportion of random variation. The greater the degree of disorder in the lattice image, the greater the amount of scattering effect. In the context of this description, such grid patterns are therefore generally referred to as grid patterns influencing electromagnetic radiation.

Im Rahmen der vorliegenden Beschreibung wird unter Beugung oder Diffraktion die Abweichung von der geradlinigen Ausbreitung des Lichts verstanden, die nicht durch Brechung, Reflexion oder Streuung hervorgerufen wird, sondern die auftritt, wenn Licht auf Hindernisse wie Spalten, Blenden, Kanten oder dergleichen trifft. Beugung ist eine typische Wellenerscheinung und daher stark wellenlängenabhängig und stets mit Interferenz verbunden. Sie ist insbesondere von den Vorgängen der Reflexion und der Brechung zu unterscheiden, die sich bereits mit dem Bild geometrischer Lichtstrahlen zutreffend beschreiben lassen. Hat man es mit Beugung an sehr vielen statistisch verteilten Objekten zu tun, hat es sich eingebürgert, statt von Beugung an unregelmäßig verteilten Objekten von Streuung zu sprechen.In the present specification diffraction or diffraction is understood to mean the deviation from the rectilinear propagation of the light, which is not caused by refraction, reflection or scattering, but which occurs when light strikes obstacles such as gaps, apertures, edges or the like. Diffraction is a typical wave phenomenon and therefore strongly wavelength dependent and always associated with interference. It is to be distinguished in particular from the processes of reflection and refraction, which can be accurately described with the image of geometric light rays. Does one have it with diffraction at very many To do statistically distributed objects, it has become customary to speak of scattering instead of diffraction on irregularly distributed objects.

Unter Streuung versteht man die Ablenkung eines Teils einer gebündelten Wellenstrahlung aus seiner ursprünglichen Richtung beim Durchgang durch Materie aufgrund der Wechselwirkung mit einem oder mehreren Streuzentren. Die diffus in alle Raumrichtungen gestreute Strahlung bzw die Gesamtheit der von den Streuzentren ausgehenden Streuwellen geht der primären Strahlung verloren. Streuung von Licht an Objekten mit einer Größenordnung im Bereich der Lichtwellenlänge und darunter ist in der Regel ebenfalls wellenlängenabhängig, wie beispielsweise die Rayleigh-Streuung oder die Mie-Streuung. Ab einer Objektgröße, die die zehnfache Wellenlänge überschreitet, spricht man gewöhnlich von nicht-selektiver Streuung, bei der alle Wellenlängen in etwa gleich beeinflusst werden.Scattering refers to the deflection of part of a bundled wave radiation from its original direction when passing through matter due to interaction with one or more scattering centers. The radiation scattered diffusely in all spatial directions or the totality of the scattering waves emanating from the scattering centers is lost to the primary radiation. Scattering of light on objects of the order of wavelengths of light and below is also usually wavelength dependent, such as Rayleigh scattering or Mie scattering. From an object size exceeding ten times the wavelength, one usually speaks of non-selective scattering in which all wavelengths are affected approximately equally.

Nicht-selektive Streuung kann jedoch auch mit kleineren Objekten erreicht werden, wenn die Objekte nur eine unregelmäßige Verteilung und eine geeignete Bandbreite von Objektgrößen aufweisen, da sich dann die wellenlängenabhängigen Eigenschaften der einzelnen Objekte über das gesamte Ensemble herausmitteln.However, non-selective scattering can also be achieved with smaller objects if the objects have only an irregular distribution and a suitable bandwidth of object sizes, since then the wavelength-dependent properties of the individual objects are found out over the entire ensemble.

Im Rahmen der vorliegenden Beschreibung wird unter einer zufälligen, insbesondere einer zufälligen und sprunghaften Variation der Orientierung in einem eingeschränkten Winkelbereich Folgendes verstanden. Die Orientierung der Gitterlinien in einem elektromagnetische Strahlung beeinflussenden Gittermuster kann rein theoretisch über einen Winkelbereich von +/- 90° in einem kartesischen Koordinatensystem reichen. Der für die Orientierung maßgebliche Winkel ist hierbei der spitze Winkel zwischen der x-Achse und der betrachteten Gitterlinie. Weisen alle Gitterlinien die gleiche Orientierung - also den gleichen Winkel im Koordinatensystem - auf, sind die Linien parallel und es handelt sich um ein reines Beugungsgitter. Sind die Gitterlinien über den gesamten Winkelbereich vollständig zufällig orientiert, sind alle Gitterlinien regellos verteilt und es kann keine Vorzugsorientierung mehr festgestellt werden. Das Gittermuster zeigt reine Streueffekte und damit keine betrachtungswinkelabhängigen Effekte. Derartige Gittermuster bezeichnet man als Mattstrukturen. Variiert die Orientierung zufällig, aber in einem eingeschränkten Winkelbereich, also in einem Winkelbereich, der innerhalb der genannten Grenzwerte von +90° und - 90° liegt, zeigt das Gittermuster eine gewisse Regelhaftigkeit. Das Gittermuster zeigt eine mehr oder weniger starke Vorzugsorientierung, so dass der Betrachter das Gittermuster in Abhängigkeit von seinem Blickwinkel unterschiedlich wahrnimmt. Die Orientierung variiert vorzugsweise in einem Winkelbereich von +/-10° oder weniger, besonders bevorzugt in einem Bereich von +/- 5° oder weniger, ganz besonders bevorzugt in einem Bereich von +/- 3° oder weniger. Bildet man den Mittelwert über die Orientierung der im einzelnen Gittermuster vorliegenden Gitterlinien, spricht man von mittlerer Orientierung im Gittermuster. Die mittlere Orientierung bestimmt auch den Betrachtungswinkel, unter dem der Gitterbereich im Wesentlichen sichtbar ist. Jeder Gitterbereich weist also eine mittlere Orientierung auf, die den Betrachtungswinkel definiert, unter dem der Gitterbereich visuell erkennbar ist.In the context of the present description, a random, in particular a random and erratic variation of the orientation in a restricted angular range is understood to mean the following. The orientation of the grid lines in a grid pattern influencing electromagnetic radiation can theoretically extend over an angular range of +/- 90 ° in a Cartesian coordinate system. The angle that determines the orientation is the acute angle between the x-axis and the observed grid line. Do all grid lines have the same orientation? - So the same angle in the coordinate system - on, the lines are parallel and it is a pure diffraction grating. If the grid lines are completely randomly oriented over the entire angular range, all grid lines are randomly distributed and no preferred orientation can be determined. The grid pattern shows pure scattering effects and thus no viewing angle dependent effects. Such lattice patterns are called matt structures. If the orientation varies randomly, but within a limited angular range, ie within an angle range within the specified limits of + 90 ° and - 90 °, the grid pattern shows a certain regularity. The grid pattern shows a more or less strong preference orientation so that the observer perceives the grid pattern differently depending on his viewing angle. The orientation preferably varies in an angular range of +/- 10 ° or less, more preferably in a range of +/- 5 ° or less, most preferably in a range of +/- 3 ° or less. If one forms the mean value over the orientation of the grid lines present in the individual grid pattern, one speaks of average orientation in the grid pattern. The median orientation also determines the viewing angle below which the grating area is substantially visible. Each grating area thus has a central orientation which defines the viewing angle at which the grating area is visually recognizable.

Ein Gitterbereich mit einem derartigen Gittermuster zeigt ein betrachtungswinkelabhängiges Erscheinungsbild, d.h. dass der Gitterbereich aufgrund der Streueffekte ein mattes Erscheinungsbild, aber dieses aufgrund der Beugungseffekte betrachtungswinkelabhängig ist.A grating region having such a grating pattern exhibits a viewing angle dependent appearance, i. that the grating area due to the scattering effects a dull appearance, but this is due to the diffraction effects viewing angle dependent.

Das Erscheinungsbild eines achromatischen Gitterbereiches kann dabei in Abhängigkeit vom Betrachtungswinkel in der optischen Helligkeit variieren oder aber auch nur aus einem bestimmten Blickwinkel sichtbar und aus anderen Blickwinkeln im Wesentlichen nicht sichtbar sein.The appearance of an achromatic grating region can vary depending on the viewing angle in the optical brightness or even only from a certain angle visible and not visible from other angles substantially.

Um den Effekt zu erreichen, dass sich achromatische Gitterbereiche im Gitterbild bei Änderung des Betrachtungswinkels scheinbar auf einer Bewegungsbahn mit einer bestimmten Richtung und Geschwindigkeit bewegen, werden achromatische Gitterbereiche, deren mittlere Orientierungen zueinander um einen bestimmten Wert verdreht sind, im Gitterbild sukzessiv angeordnet. Der Wert der mittleren Orientierung sukzessiv angeordneter Gitterbereiche nimmt somit zu oder ab. Vorzugsweise unterscheiden sich die mittleren Orientierungen der einzelnen Gittermuster um mindestens 2°, besonders bevorzugt um mindestens 5°, ganz besonders bevorzugt um mindestens 10°. Die mittleren Orientierungen im Gitterbild liegen vorzugsweise im Bereich von +/- 60°. Die Richtung der Bewegung hängt dabei unter anderem von der mittleren Orientierung ab. Die Geschwindigkeit der Bewegung hängt von der Differenz zwischen den mittleren Orientierungen ab. Die Anzahl der achromatischen Gitterbereiche sollte mindestens 3 betragen. Vorzugsweise liegen mindestens 5 achromatische Gitterbereiche vor.In order to achieve the effect that achromatic grating areas in the grating image apparently move on a trajectory with a certain direction and speed when the viewing angle is changed, achromatic grating areas, the mean orientations of which are rotated by a certain value, are arranged successively in the grating image. The value of the average orientation of successively arranged grating areas thus increases or decreases. Preferably, the mean orientations of the individual lattice patterns differ by at least 2 °, particularly preferably by at least 5 °, very particularly preferably by at least 10 °. The mean orientations in the lattice image are preferably in the range of +/- 60 °. The direction of the movement depends, among other things, on the mean orientation. The speed of the movement depends on the difference between the mean orientations. The number of achromatic grating areas should be at least 3. Preferably, at least 5 achromatic grating regions are present.

Für die sukzessive Anordnung der achromatischen Gitterbereiche gibt es verschiedene Möglichkeiten. Die achromatischen Gitterbereiche können vorzugsweise direkt benachbart oder beabstandet voneinander auf einer imaginären Linie bzw. Kurve angeordnet sein. Besonders bevorzugt sind die achromatischen Gitterbereiche direkt benachbart auf einer Geraden angeordnet. Bei Kipp- oder Drehbewegungen durch den Betrachter scheinen die achromatischen Gitterbereiche z.B. mit unterschiedlich optischer Helligkeit auf oder sind nur unter dem jeweilig gewünschten Blickwinkel sichtbar. Der Be-trachter hat dann den optischen Eindruck eines sich auf der Linie bzw. Kurve fortbewegenden achromatischen Gitterbereiches.There are various possibilities for the successive arrangement of the achromatic grating areas. The achromatic grating regions may preferably be arranged directly adjacent to or spaced from each other on an imaginary line or curve. Particularly preferably, the achromatic grating regions are arranged directly adjacent to one another on a straight line. During tilting or rotational movements by the viewer, the achromatic grating areas appear, for example, with different optical brightness or are only visible under the respectively desired viewing angle. The viewer then has the visual impression of a moving on the line or curve achromatic grid area.

Die achromatischen Gitterbereiche können alternativ auch konzentrisch angeordnet sein. Auch hier können diese direkt benachbart oder beabstandet vorliegen. Vorzugsweise sind die achromatischen Gitterbereiche direkt benachbart. Bei Änderung des Blickwinkels scheinen die unterschiedlichen achromatischen Gitterbereiche z.B. mit unterschiedlich optischer Helligkeit auf oder sind nur unter dem jeweiligen gewünschten Blickwinkel sichtbar. Der Betrachter hat dann den optischen Eindruck eines sich auf ein Zentrum zubewegenden bzw. vom einem Zentrum wegbewegenden achromatischen Gitterbereiches.The achromatic grating regions may alternatively also be arranged concentrically. Again, these may be directly adjacent or spaced. Preferably, the achromatic grating regions are directly adjacent. As the viewing angle changes, the different achromatic grating areas appear to be e.g. with different optical brightness on or are visible only under the respective desired angle. The observer then has the visual impression of an achromatic grating area moving toward a center or moving away from a center.

Der achromatische Gitterbereich selbst kann jede denkbare geometrische Form annehmen. Pixelartige, ring-, streifen- oder punktförmige Gebilde sind ebenso denkbar wie bildliche Figuren. Vorzugsweise sind die achromatischen Gitterbereiche jeweils mit bloßem Auge separat erkennbar.The achromatic grating region itself can assume any conceivable geometric shape. Pixel-like, annular, stripe or punctiform formations are just as conceivable as figurative figures. Preferably, the achromatic grating regions are each separately recognizable with the naked eye.

In allen beschriebenen Gitterbildern sind die Strichgitterlinien mit Vorteil elektronenstrahllithographisch erzeugt. Diese Technik ermöglicht es, Gitterbilder herzustellen, bei denen jede einzelne Gitterlinie durch die Parameter Orientierung, Krümmung, Beabstandung und Profilierung eindeutig bestimmt werden kann.In all described grating images, the grating lines are advantageously produced by electron beam lithography. This technique makes it possible to produce grid images in which each individual grid line can be uniquely determined by the parameters orientation, curvature, spacing and profiling.

Dadurch können Flächenbereiche mit mattem, betrachtungswinkelabhängigen Erscheinungsbild einfach in ein elektronenstrahllithographisch erzeugtes Gitterbild integriert werden.As a result, surface regions with a matt viewing angle-dependent appearance can simply be integrated into a grating image produced electron beam lithographically.

In einer Weiterbildung der Erfindung enthält das genannte Gitterbild neben den achromatischen Gitterbereichen diffraktive Gitterstrukturen, wie lineare Gitter, Subwellenlängengitter, Mottenaugenstrukturen etc. Vorzugsweise handelt es sich um Sinusgitter. Somit können diffraktive Gitterstrukturen und achromatische Gitterbereiche innerhalb eines elektronenstrahllithographisch erzeugten Gitterbilds verwirklicht werden.In one development of the invention, said lattice image contains, in addition to the achromatic lattice regions, diffractive lattice structures, such as linear lattices, sub-wavelength lattices, moth-eye structures, etc. Preferably, these are sinusoidal lattices. Thus, diffractive grating structures and achromatic grating regions are realized within an electron beam lithographically generated grating image.

Besonders bevorzugt weisen die diffraktiven Gitterstrukturen eine betrachtungswinkelabhängige Farbigkeit auf und sind so angeordnet, dass sie sich bei Änderung des Betrachtungswinkels scheinbar auf einer Bewegungsbahn mit einer bestimmten Richtung und Geschwindigkeit bewegen.Particularly preferably, the diffractive grating structures have a viewing angle-dependent color and are arranged so that they move apparently on a trajectory with a certain direction and speed when changing the viewing angle.

Wie die achromatischen Gitterbereiche, können die diffraktiven Gitterstrukturen vorzugsweise direkt benachbart oder beabstandet voneinander auf einer imaginären Linie bzw. Kurve angeordnet sein. Besonders bevorzugt sind die diffraktiven Gitterstrukturen direkt benachbart auf einer Geraden angeordnet. Bei Kipp- oder Drehbewegungen durch den Betrachter scheinen die diffraktiven Gitterstrukturen z.B. mit unterschiedlicher Farbe auf oder sind nur unter dem jeweilig gewünschten Blickwinkel sichtbar. Der Betrachter hat dann den optischen Eindruck einer sich auf der Linie bzw. Kurve fortbewegenden, farbigen, geometrischen Form.Like the achromatic grating regions, the diffractive grating structures may preferably be arranged directly adjacent or spaced apart on an imaginary line or curve. Particularly preferably, the diffractive grating structures are arranged directly adjacent to a straight line. When tilted or rotated by the viewer, the diffractive grating structures appear to be e.g. with different colors or are only visible under the respective desired angle. The observer then has the visual impression of a colored, geometric shape moving on the line or curve.

Die diffraktiven Gitterstrukturen können alternativ auch konzentrisch angeordnet sein. Auch hier können diese direkt benachbart oder beabstandet vorliegen. Vorzugsweise sind die diffraktiven Gitterstrukturen direkt benachbart. Bei Änderung des Blickwinkels scheinen die unterschiedlichen diffraktiven Gitterstrukturen z.B. mit unterschiedlich Farbe auf oder sind nur unter dem jeweiligen gewünschten Blickwinkel sichtbar. Der Betrachter hat dann den optischen Eindruck einer sich auf ein Zentrum zubewegenden bzw. vom einem Zentrum wegbewegenden Gitterstruktur.The diffractive grating structures may alternatively also be arranged concentrically. Again, these may be directly adjacent or spaced. Preferably, the diffractive grating structures are directly adjacent. When the viewing angle changes, the different diffractive grating structures appear, for example, with different colors or are only visible under the respective desired viewing angle. The observer then has the visual impression of a grid structure moving toward a center or moving away from a center.

Die diffraktive Gitterstruktur selbst kann jede denkbare geometrische Form annehmen. Pixelartige, ring-, streifen- oder punktförmige Gebilde sind ebenso denkbar wie bildliche Figuren.The diffractive lattice structure itself can assume any conceivable geometric form. Pixel-like, annular, stripe or punctiform formations are just as conceivable as figurative figures.

In einer besonders bevorzugten Variante sind achromatische Gitterbereiche und diffraktive Gitterstrukturen bildlich bzw. designmäßig aufeinander abgestimmt. So können sich z.B. achromatischen Gitterbereiche und diffraktive Gitterstrukturen zu einem bildlichen Ganzen ergänzen. Ganz besonders bevorzugt sind konzentrische achromatische Gitterbereiche mit konzentrischen oder linear angeordneten diffraktiven Gitterstrukturen in einem Gitterbild kombiniert.In a particularly preferred variant, achromatic grating regions and diffractive grating structures are matched to one another visually or in terms of design. Thus, for example, complement achromatic grating areas and diffractive grating structures to a pictorial whole. Very particular preference is given to concentric achromatic grating regions combined with concentric or linearly arranged diffractive grating structures in a grating image.

Der Bereich der Gitterlinienabstände in den Gitterbereichen liegt vorzugsweise zwischen etwa 0,1 µm und 10 µm, besonders bevorzugt zwischen 0,5 µm und 1,5 µm. Die Gitterlinienabstände in einem Gitterbereich können konstant sein, aber auch zufällig, bevorzugt zufällig sprunghaft variieren.The range of grid line spacings in the grid regions is preferably between about 0.1 μm and 10 μm, particularly preferably between 0.5 μm and 1.5 μm. The grid line spacings in a grid area can be constant, but can also vary randomly, preferably randomly.

Es hat sich als zweckmäßig herausgestellt, wenn die Strichgitterlinien eine Linienprofiltiefe zwischen etwa 100 nm und etwa 400 nm aufweisen.It has been found to be useful if the grating lines have a line profile depth between about 100 nm and about 400 nm.

Die Gitterlinien weisen mit Vorzug ein Sinusprofil auf.The grid lines preferably have a sine profile.

Über die Belegungsdichte eines achromatischen Gitterbereichs mit Gitterlinien lässt sich dessen optische Helligkeit steuern. Je nachdem wie stark die Gitterlinien eine bestimmte Fläche ausfüllen, führt dies zu helleren oder dunkleren matten Flächen. Eine weniger stark mit Gitterlinien gefüllte Fläche zeigt einen weniger stark ausgeprägten Mattstruktureffekt, so dass die Fläche deshalb für einen Beobachter dunkler erscheint als eine Fläche, die stärker mit Gitterlinien gefüllt ist.The occupation density of an achromatic grating area with grating lines can be used to control its optical brightness. Depending on how much the grid lines fill a certain area, this leads to lighter or darker matt surfaces. A surface less filled with grid lines exhibits a less pronounced matt-textured effect, so the surface appears darker to an observer than an area more heavily filled with grid lines.

Hierüber kann die Helligkeit der mit Gittermustern bedeckten Fläche gesteuert werden, so dass die relative Helligkeit verschieden hell wirkender Flächenbereiche gezielt variiert werden kann.By means of this, the brightness of the surface covered with lattice patterns can be controlled, so that the relative brightness of differently bright-acting surface regions can be selectively varied.

Das Gitterbild selbst ist vorzugsweise mit einem reflektierenden oder hochbrechenden Material beschichtet. Als reflektierende Materialien kommen alle Metalle und viele Metalllegierungen in Betracht. Beispiele für geeignete hochbrechende Materialien sind CaS, CrO2, ZnS, TiO2 oder SiOx. Vorteilhaft besteht ein signifikanter Unterschied in den Brechungsindizes des Mediums, in das das Gitterbild eingebracht ist, und des hochbrechenden Materials, vorzugsweise ist die Differenz sogar größer als 0,5. Das Gitterbild kann in eingebetteter oder nicht eingebetteter Ausgestaltung erzeugt werden. Zur Einbettung eignen sich beispielsweise PVC, PET, Polyester oder eine UV-Lackschicht.The grating image itself is preferably coated with a reflective or high refractive index material. Reflective materials are all metals and many metal alloys into consideration. Examples of suitable high-index materials are CaS, CrO 2 , ZnS, TiO 2 or SiO x . Advantageously, there is a significant difference in the refractive indices of the medium into which the grating image is introduced and the high refractive index material, preferably the difference is even greater than 0.5. The grid image may be generated in embedded or non-embedded configuration. For embedding, for example, PVC, PET, polyester or a UV lacquer layer are suitable.

In einer weiteren Ausführungsform kann das erfindungsgemäße Gitterbild mit einem farbkippenden Dünnschichtaufbau kombiniert werden. Dabei kann die Gesamtfläche des Gitterbildes oder auch nur eine Teilfläche des Gitterbildes mit dem Dünnschichtaufbau versehen werden. Der Dünnschichtaufbau kann je nach Anwendung opak oder auch semitransparent ausgeführt werden und umfasst mindestens drei Schichten. Beispielsweise kann der Schichtaufbau eine Reflexionsschicht, eine Absorberschicht und eine zwischen diesen beiden Schichten liegende Dielektrikumsschicht umfassen.In a further embodiment, the grating image according to the invention can be combined with a color-shifting thin-film structure. In this case, the total area of the lattice image or only a partial area of the lattice image can be provided with the thin-film structure. Depending on the application, the thin-film structure can be made opaque or semitransparent and comprises at least three layers. By way of example, the layer structure may comprise a reflection layer, an absorber layer and a dielectric layer lying between these two layers.

Alternativ besteht der Dünnschichtaufbau aus zwei Absorberschichten und einer zwischen den Absorberschichten liegenden Dielektrikumsschicht. Es ist auch denkbar, dass mehrere Absorber- und Dielektrikumsschichten alternierend vorliegen oder auch ausschließlich Dielektrikumsschichten vorgesehen sind, wobei aneinander grenzende Schichten stark unterschiedliche Brechungsindices besitzen, damit ein Farbkippeffekt erzeugt wird.Alternatively, the thin-film structure consists of two absorber layers and a dielectric layer lying between the absorber layers. It is also conceivable for a plurality of absorber and dielectric layers to be present alternately or else to be provided exclusively with dielectric layers where contiguous layers have very different refractive indices to produce a color shift effect.

Bei der Reflexionsschicht handelt es sich üblicherweise um eine Metallschicht, z.B. aus Aluminium.The reflective layer is usually a metal layer, e.g. made of aluminium.

Als Absorberschichten dienen typischerweise Metallschichten aus Materialien, wie Chrom, Eisen, Gold, Aluminium oder Titan, in einer Dicke von vorzugsweise 4 nm bis 20 nm. Als Absorberschichtmaterialien können auch Verbindungen, wie Nickel-Chrom-Eisen, oder seltenere Metalle, wie Vanadium, Palladium oder Molybdän, verwendet werden. Weitere geeignete Materialien sind z.B. Nickel, Cobalt, Wolfram, Niobium, Aluminium, Metallverbindungen, wie Metallfluoride, -oxide, -sulfide, -nitride, -carbide, -phosphide, -selenide, -silicide und Verbindungen davon, aber auch Kohlenstoff, Germanium, Cermet, Eisenoxid und dergleichen. Die Absorberschichten können identisch sein, können aber auch unterschiedlich dick sein und/ oder aus unterschiedlichem Material bestehen.As absorber layers are typically metal layers of materials such as chromium, iron, gold, aluminum or titanium, in a thickness of preferably 4 nm to 20 nm. As absorber layer materials can also compounds such as nickel-chromium-iron, or more rare metals such as vanadium, Palladium or molybdenum, can be used. Other suitable materials are e.g. Nickel, cobalt, tungsten, niobium, aluminum, metal compounds such as metal fluorides, oxides, sulfides, nitrides, carbides, phosphides, selenides, silicides and compounds thereof, but also carbon, germanium, cermet, iron oxide and the like , The absorber layers may be identical, but may also be different in thickness and / or consist of different materials.

Für die Dielektrikumsschicht kommen hauptsächlich transparente Materialien mit einem niedrigen Brechungsindex < 1,7 in Betracht, wie beispielsweise SiO2, MgF, SiOx mit 1 < x < 2 und Al2O3. Grundsätzlich kommen fast alle aufdampfbaren, durchsichtigen Verbindungen infrage, insbesondere also auch höherbrechende Beschichtungsmaterialien, wie ZrO2 ZnS, TiO2 und Indiumzinnoxide (ITO). Die Schichtdicke der Dielektrikumsschicht D liegt im Bereich von 100 nm bis 1000 nm, bevorzugt 200 nm bis 500 nm.For the dielectric layer are mainly transparent materials with a low refractive index <1.7 into consideration, such as SiO 2 , MgF, SiO x with 1 <x <2 and Al 2 O 3 . Basically, almost all vapor-deposited, transparent compounds come into consideration, in particular also higher refractive coating materials, such as ZrO 2 ZnS, TiO 2 and indium tin oxides (ITO). The layer thickness of the dielectric layer D is in the range of 100 nm to 1000 nm, preferably 200 nm to 500 nm.

Die Erfindung umfasst auch Verfahren zum Herstellen von Gitterbildern sowie ein Sicherheitselement mit einem Gitterbild der oben beschriebenen Art. Das Sicherheitselement kann insbesondere ein Sicherheitsfaden, ein Etikett oder ein Transferelement sein. Die Erfindung umfasst ferner ein Sicherheitspapier mit einem solchen Sicherheitselement sowie einen Datenträger, der mit einem Gitterbild, einem Sicherheitselement oder einem Sicherheitspapier der beschriebenen Art ausgestattet ist. Bei dem Datenträger kann es sich insbesondere um eine Banknote, ein Wertdokument, einen Pass, eine Ausweiskarte oder eine Urkunde handeln. Selbstverständlich kann das Sicherheitselement zur Absicherung jeglicher Produkte eingesetzt werden.The invention also encompasses methods for producing lattice images and a security element with a lattice image of the type described above. The security element can in particular be a security thread, a label or a transfer element. The invention further comprises a security paper with such a security element and a data carrier which is equipped with a grid image, a security element or a security paper of the type described. In particular, the data carrier may be a banknote, a value document, a passport, an identity card or a certificate. Of course, the security element can be used to secure any product.

Unterschiedlichste Bedampfungsverfahren sind zur Erzeugung der Schichten geeignet. Eine methodische Gruppe bildet Physical Vapor Deposition (PVD) mit Schiffchenbedampfung, Bedampfung durch Widerstandsheizung, Bedampfung durch Induktionsheizung oder auch Elektronenstrahlbedampfung, Sputtern (DC oder AC) und Lichtbogenbedampfung. Andererseits kann die Bedampfung auch als Chemical Vapor Deposition (CVD) erfolgen, wie z.B. Sputtern im reaktiven Plasma oder jede andere plasmaunterstützte Bedampfungsart. Es besteht grundsätzlich auch die Möglichkeit, Dielektrikumsschichten aufzudrucken.Different steaming processes are suitable for producing the layers. A methodological group is Physical Vapor Deposition (PVD) with Schiffchenbedampfung, evaporation by resistance heating, vapor deposition by induction heating or electron beam evaporation, sputtering (DC or AC) and arc vapor deposition. On the other hand, the vapor deposition can also take place as chemical vapor deposition (CVD), such as e.g. Sputtering in the reactive plasma or any other plasma-assisted evaporation method. In principle, it is also possible to print on dielectric layers.

Die Kombination von achromatischen Gitterbereichen und farbkippenden Dünnschichtaufbauten ist sehr schwer zu fälschen, da die Technologien zur Herstellung dieser Elemente äußerst schwer zu beschaffen sind. Darüber hinaus kann das Design der achromatischen Gitterbereichen und des Dünnschichtaufbaus aufeinander genau abgestimmt werden, so dass völlig neuartige optische Effekte erzielt werden können.The combination of achromatic grating areas and color-shifting thin-film structures is very difficult to falsify, as the technologies for producing these elements are extremely difficult to obtain. In addition, the design of the achromatic grating areas and the thin-film structure can be precisely matched to each other, so that completely new optical effects can be achieved.

Selbstverständlich lassen sich die erfindungsgemäßen Gitterbilder mit weiteren optischen und/ oder maschinenlesbaren Sicherheiteselementen kombinieren. So kann das Gitterbild mit weiteren Funktionsschichten, wie polarisierende, phasenverschiebende, leitfähige, magnetische oder lumineszierende Schichten, ausgestattet werden.Of course, the lattice images according to the invention can be combined with other optical and / or machine-readable security elements. Thus, the lattice image with other functional layers, such as polarizing, phase-shifting, conductive, magnetic or luminescent layers.

Weitere Ausführungsbeispiele sowie Vorteile der Erfindung werden nachfolgend anhand der Figuren erläutert. Zur besseren Anschaulichkeit ist in den Figuren auf eine maßstabs- und proportionsgetreue Darstellung verzichtet.Further embodiments and advantages of the invention are explained below with reference to the figures. For better clarity is omitted in the figures on a scale and proportionate representation.

Es zeigen:

Fig.1
eine schematische Darstellung einer Banknote mit eingebettetem Sicherheitsfaden und aufgeklebtem Transferelement, jeweils nach einem Ausführungsbeispiel der Erfindung,
Fig. 2
in (a) ein Gittermuster mit Gitterlinien, die eine zufällige Variation in der Orientierung aufweisen, in (b) ein Gittermuster mit Gitterlinien, die eine zufällige Variation in einem eingeschränkten Winkelbereich aufweisen,
Fig. 3
ein Gitterbild mit achromatischen Gitterbereichen,
Fig. 4
ein Gitterbild mit achromatischen Gitterbereichen und diffraktiven Strukturen,
Fig. 5
einen Querschnitt durch ein Sicherheitselement mit Dünnschichtaufbau.
Show it:
Fig.1
a schematic representation of a banknote with embedded security thread and glued transfer element, each according to an embodiment of the invention,
Fig. 2
in (a) a grid pattern with grid lines having a random variation in orientation, in (b) a grid pattern with grid lines having a random variation in a restricted angle range,
Fig. 3
a lattice image with achromatic grating areas,
Fig. 4
a lattice image with achromatic lattice regions and diffractive structures,
Fig. 5
a cross section through a security element with thin-film construction.

Fig. 1 zeigt eine schematische Darstellung einer Banknote 10, die zwei erfindungsgemäße Sicherheitselemente aufweist, nämlich einen Sicherheitsfaden 12 und ein aufgeklebtes Transferelement 16. Der Sicherheitsfaden 12 ist als Fenstersicherheitsfaden ausgebildet, der in bestimmten Fensterbereichen 14 an der Oberfläche der Banknote 10 hervortritt, während er in den dazwischen liegenden Bereichen im Inneren der Banknote 10 eingebettet ist. Beide Sicherheitselemente 12,16 sind mit Gitterbildern der nachfolgend beschriebenen Art ausgestattet. Fig. 1 shows a schematic representation of a banknote 10, which has two security elements according to the invention, namely a security thread 12 and a glued transfer element 16. The security thread 12 is formed as a window security thread, which emerges in certain window areas 14 on the surface of the banknote 10, while it is embedded in the intervening areas inside the banknote 10. Both security elements 12,16 are equipped with grid images of the type described below.

Die allgemeine Gestalt eines achromatischen Gitterbereiches wird in der Fig. 2 verdeutlicht.The general shape of an achromatic grating area is in the Fig. 2 clarified.

Fig. 2(a) zeigt ein in der WO2005/071444 A2 offenbartes Gitterfeld 20 mit einem Gittermuster, dessen Strichgitterlinien 22 völlig zufällig zueinander orientiert sind, so dass der Parameter Orientierung über der Fläche des Gitterfelds 20 zufällig und sprunghaft variiert. Ein derartiges elektromagnetische Strahlung beeinflussendes Gittermuster erzeugt eine Mattstruktur, die aus allen Betrachtungswinkeln das gleiche Erscheinungsbild aufweist. Das kartesische Koordinatensystem mit x- und y-Achse ist selbstverständlich nicht Teil des Gitterfeldes, sondern soll lediglich als Hilfsmittel zur Abschätzung der Orientierungen für die einzelnen Gitterlinien dienen. Fig. 2 (a) shows one in the WO2005 / 071444 A2 disclosed grating field 20 with a grid pattern whose grating lines 22 are completely randomly oriented to each other, so that the parameter orientation varies randomly and abruptly over the surface of the grid array 20. A grid pattern influencing such electromagnetic radiation produces a matt structure which has the same appearance from all viewing angles. The Cartesian coordinate system with x- and y-axis is of course not part of the grid field, but should serve only as an aid for estimating the orientations for the individual grid lines.

Fig. 2(b) zeigt einen achromatischen Gitterbereich, bei dem die Orientierung der Gitterlinien ebenfalls zufällig variiert, aber nicht völlig regellos über den gesamten möglichen Winkelbereich, wie in Fig. 2(a) gezeigt, sondern in einem beschränkten Winkelbereich, in diesem Falle von +/- 30°. Die Eckwerte des Winkelbereichs sind mit den Gitterlinien 26 und 28 verdeutlicht, wobei der Winkel α = + 30° und der Winkel β = -30° beträgt. Der abzulesende Winkel ergibt sich in einfacher Weise dadurch, dass der Nullpunkt des Koordinatensystems so horizontal oder vertikal verschoben wird, dass die betreffende Gitterlinie im Nullpunkt zu liegen kommt. Dann wird der spitze Winkel zwischen der Gitterlinie und der x-Achse, der im ersten bzw. zweiten Quadrant liegt, angegeben. Liegt der Winkel im ersten Quadranten, ist sein Wert positiv, liegt er im zweiten Quadrant ist der Wert negativ. Der Einfachheit halber sind die Gitterlinien 26, 28 bereits im Nullpunkt des Koordinatensystems angeordnet. Alle weiteren Gitterlinien weisen Winkel auf, die in dem gewünschten Winkelbereich liegen. Zur besseren Übersicht wurden lediglich die Gitterlinien 27, 29,31 gezeichnet. Je nach gewünschter Helligkeit des Gitterbereichs ist die Belegungsdichte entsprechend zu wählen. Bei der vorliegenden Ausführungsform sind die Gitterlinienabstände nicht konstant. Fig. 2 (b) shows an achromatic grating region in which the orientation of the grating lines also varies randomly, but not completely randomly over the entire possible angular range, as in FIG Fig. 2 (a) but in a limited angular range, in this case +/- 30 °. The basic values of the angular range are illustrated by the grating lines 26 and 28, wherein the angle α = + 30 ° and the angle β = -30 °. The angle to be read results in a simple manner in that the zero point of the coordinate system is shifted horizontally or vertically so that the grid line concerned comes to rest at zero. Then the acute angle between the grid line and the x-axis lying in the first and second quadrant, respectively. If the angle is in the first quadrant, its value is positive; if it is in the second quadrant, the value is negative. For the sake of simplicity, the grid lines 26, 28 are already arranged at the zero point of the coordinate system. All other grid lines have angles which are within the desired angular range. For a better overview, only the grid lines 27, 29,31 were drawn. Depending on the desired brightness of the grid area, the occupation density should be selected accordingly. In the present embodiment, the grid line pitches are not constant.

Fig. 3 zeigt ein erfindungsgemäßes Gitterbild, bei dem achromatische Gitterbereiche 31, 32, 33, 34, 35 in Form von kleinen Quadraten mit einer Kantenlänge von 2 mm direkt aneinander gereiht sind und so ein streifenförmiges Gebilde ergeben. Die mittlere Orientierung der einzelnen Gitterbereiche ist in Fig. 3 mit Pfeilen in den Gitterbereichen angedeutet und so ausgelegt, dass diese im Gitterbereich 31 den Wert -40°, im Gitterbereich 32 den Wert -20°, im Gitterbereich 33 den Wert 0°, im Gitterbereich 34 den Wert 20° und im Gitterbereich 35 den Wert 40° aufweist. Jeder Gitterbereich ist nur unter einem bestimmten Betrachtungswinkel erkennbar. Bei seitlichem Kippen unter einem Kippwinkel von -40° ist so nur der Gitterbereich 31 sichtbar. Bei einem Kippwinkel von -20° sieht man nur den Gitterbereich 32 usw. Weiterhin ist die Belegungsdichte mit Gitterlinien in allen Gitterbereichen gleich, so dass sie einem Betrachter mit gleicher Helligkeit erscheinen. Das optische Gesamtbild, das sich einem Betrachter bei entsprechend seitlichem Kippen des Gitterbildes ergibt, ist ein silbrig matt erscheinendes, je nach Belegungsdichte mehr oder weniger helles Quadrat, das sich von links nach rechts bewegt. Fig. 3 shows a grating image according to the invention, in which achromatic grating regions 31, 32, 33, 34, 35 are lined up in the form of small squares with an edge length of 2 mm directly to each other, thus resulting in a strip-like structure. The mean orientation of the individual grid areas is in Fig. 3 indicated with arrows in the grating areas and designed so that they are the value -40 ° in the grating area 31, the value -20 ° in the grating area 32, the value 0 ° in the grating area 33, the value 20 ° in the grating area 34 and the grating area 35 the Value 40 °. Each grid area can only be seen at a certain viewing angle. With lateral tilting at a tilt angle of -40 ° so only the grating area 31 is visible. At a tilt angle of -20 °, only the grating area 32 is seen, etc. Furthermore, the occupancy density is equal to grating lines in all grating areas, so that they appear to a viewer with the same brightness. The overall visual picture, which results for a viewer with a corresponding lateral tilting of the lattice image, is a silvery dull appearing, depending on the occupation density more or less bright square, which moves from left to right.

Fig.4 zeigt ein Gitterbild, in dem ringförmige, achromatische Gitterbereiche mit streifenartigen, diffraktiven Sinusgittem kombiniert sind. Die achromatischen Gitterbereiche 41, 42, 43, 44, 45 sind konzentrisch angeordnet. Die mittlere Orientierung des Gitterbereichs 41 weist den Wert -60°, des Gitterbereichs 42 den Wert -30°, des Gitterbereichs 43 den Wert 0°, des Gitterbereichs 44 den Wert +30° und des Gitterbereichs 45 den Wert +60°auf. Auch hier ist die Belegungsdichte der Gitterbereiche mit Gitterlinien gleich. Selbstverständlich ist es aber auch möglich, durch Änderung der Belegungsdichte in den einzelnen Gitterbereichen unterschiedliche Helligkeitsstufen in den Gitterbereichen einzustellen. Zwischen den achromatischen Gitterbereichen befinden sich diffraktive Gitterstrukturen 46, 47, 48, 49, die in Abhängigkeit vom Betrachtungswinkel eine bestimmte Farbe aufweisen sollen. Beim seitlichen Kippen des Gitterbildes ergibt sich dem Betrachter folgendes Bild. Ein silbrig matt erscheinendes, ringförmiges Gebilde sowie farbige, rechteckartige Formen laufen auf ein Zentrum zu bzw. von diesem weg. Die matten und farbigen Bereiche können dabei gleichzeitig zum Zentrum laufen oder aber auch während die matten Bereiche ins Zentrum laufen, können die farbigen Bereiche von diesem weglaufen. Figure 4 shows a grating image in which annular, achromatic grating areas are combined with strip-like, diffractive sine grating. The achromatic ones Grating areas 41, 42, 43, 44, 45 are arranged concentrically. The mean orientation of the grating region 41 has the value -60 °, the grating region 42 the value -30 °, the grating region 43 the value 0 °, the grating region 44 the value + 30 ° and the grating region 45 the value + 60 °. Again, the occupation density of the grid areas with grid lines is the same. Of course, it is also possible to set different brightness levels in the grid areas by changing the occupation density in the individual grid areas. Between the achromatic grating areas are diffractive grating structures 46, 47, 48, 49, which should have a certain color depending on the viewing angle. When the lattice image is tilted sideways, the observer has the following picture. A silvery dull, ring-shaped structure and colored, rectangular shapes run towards and away from a center. The matt and colored areas can run simultaneously to the center or even while the matte areas run into the center, the colored areas can run away from this.

Fig. 5 zeigt ein Sicherheitselement 50 mit dem in Fig.4 gezeigten erfindungsgemäßen Gitterbild 57 und einem vollflächig aufgebrachten Dünnschichtaufbau 56. In der vorliegenden Ausführungsform wurde auf ein transparentes Folienmaterial 51 ein Lack 52 aufgebracht, in den das Gitterbild 57 eingebracht wurde. Darüber wurde vollflächig ein Dünnschichtaufbau aufgedampft, der in diesem Fall aus einer Absorberschicht 53, einer hochbrechende, dielektrischen Schicht 54 und einer reflektierende Schicht 55 besteht. Die Schichten des Dünnschichtaufbaus wurden im Vakuumdampfverfahren aufgebracht. Fig. 5 shows a security element 50 with the in Figure 4 In the present embodiment, a paint 52 was applied to a transparent film material 51, in which the grating image 57 has been introduced. In addition, a thin-film structure was vapor-deposited over the whole area, which in this case consists of an absorber layer 53, a high-index dielectric layer 54 and a reflective layer 55. The layers of the thin film construction were applied by the vacuum vapor method.

Claims (21)

  1. A grating image having achromatic grating regions that have a viewing-angle-dependent appearance and are arranged such that, when the viewing angle changes, a visually observable movement effect results in which the achromatic grating regions seemingly move on a movement path with a certain direction and speed, characterized in that
    - each grating region comprises an electromagnetic-radiation-influencing grating pattern having grating lines that are characterized by the parameters orientation, curvature, spacing and profile, for which at least the parameter orientation varies randomly across the surface of the grating region in a limited angle range, and
    - each grating region has an average orientation that defines the viewing angle range at which the grating region is visually perceptible.
  2. The grating image according to claim 1, characterized in that the average orientation of successively arranged grating regions is different.
  3. The grating image according to claim 1 or 2, characterized in that the value of the average orientation of the successively arranged grating regions increases or decreases.
  4. The grating image according to at least one of claims 1 to 3, characterized in that achromatic grating regions whose average orientation toward one another is rotated by a certain value are arranged successively in the grating image.
  5. The grating image according to at least one of claims 1 to 4, characterized in that the achromatic grating regions have differing optical brightnesses at a certain viewing angle.
  6. The grating image according to at least one of claims 1 to 5, characterized in that the achromatic grating regions are visible only at a certain viewing angle.
  7. The grating image according to at least one of claims 1 to 6, characterized in that the achromatic grating regions are arranged concentrically.
  8. The grating image according to at least one of claims 1 to 7, characterized in that the grating image additionally comprises diffractive grating patterns, especially linear gratings.
  9. The grating image according to claim 8, characterized in that the diffractive grating patterns have a viewing-angle-dependent appearance and are arranged such that, when the viewing angle changes, a visually observable movement effect results in which the diffractive grating regions seemingly move on a movement path with a certain direction and speed.
  10. The grating image according to at least one of claims 8 to 9, characterized in that the achromatic grating regions and diffractive grating patterns are pictorially coordinated with each other.
  11. The grating image according to at least one of claims 1 to 10, characterized in that the achromatic grating regions are produced by electron beam lithography.
  12. The grating image according to at least one of claims 1 to 11, characterized in that the achromatic grating regions comprise grating lines having a line profile depth between about 100 nm and about 400 nm.
  13. The grating image according to at least one of claims 1 to 12, characterized in that the grating image is coated with a reflective or high-index material.
  14. The grating image according to at least one of claims 1 to 13, characterized in that the grating image includes a machine-readable marking that is not visible with the naked eye.
  15. The grating image according to at least one of claims 1 to 14, characterized in that the grating image comprises a color-shifting thin-film structure.
  16. A method for manufacturing a grating image, in which, in a substrate, achromatic grating regions that are each separately perceptible with the naked eye are produced, and the achromatic grating regions are arranged in such a way that, when the viewing angle changes, a visually observable movement effect results in which the achromatic grating regions seemingly move on a movement path with a certain direction and speed, characterized in that
    - the achromatic grating regions of the grating image in each case are filled with an electromagnetic-radiation-influencing grating pattern having grating lines that are characterized by the parameters orientation, curvature, spacing and profile, for which at least the parameter orientation varies randomly in a limited angle range across the surface of the grating region,
    - each grating region being produced having an average orientation that defines the viewing angle range at which the grating region is visually perceptible.
  17. A security element having a grating image according to at least one of claims 1 to 15.
  18. The security element according to claim 17, characterized in that the security element is a security thread, a label or a transfer element.
  19. A security paper having a security element according to claim 17 or 18.
  20. A data carrier having a grating image according to at least one of claims 1 to 15, a security element according to claim 17 or 18, or a security paper according to claim 19.
  21. The data carrier according to claim 20, characterized in that the data carrier is a banknote, a value document, a passport, an identification card or a certificate.
EP07711798.4A 2006-03-17 2007-03-06 Grating image Active EP1999726B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006012732A DE102006012732A1 (en) 2006-03-17 2006-03-17 grid image
PCT/EP2007/001889 WO2007107235A1 (en) 2006-03-17 2007-03-06 Grating image

Publications (2)

Publication Number Publication Date
EP1999726A1 EP1999726A1 (en) 2008-12-10
EP1999726B1 true EP1999726B1 (en) 2016-05-11

Family

ID=38002150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07711798.4A Active EP1999726B1 (en) 2006-03-17 2007-03-06 Grating image

Country Status (3)

Country Link
EP (1) EP1999726B1 (en)
DE (1) DE102006012732A1 (en)
WO (1) WO2007107235A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063275A1 (en) * 2007-12-27 2009-07-02 Giesecke & Devrient Gmbh Security feature for high tilt angles
DE102009004739A1 (en) 2008-06-14 2009-12-17 Helling, Günter, Dr. Multilayer degradable polymer system as security element
DE102008036481A1 (en) 2008-08-05 2010-02-11 Giesecke & Devrient Gmbh Method for producing security elements with matched motifs
DE102008036480A1 (en) 2008-08-05 2010-02-11 Giesecke & Devrient Gmbh Method for producing security elements with adapted motif layers
DE102008047641A1 (en) 2008-09-17 2010-04-15 Giesecke & Devrient Gmbh Security element transfer material with multilayer support
DE102008049513A1 (en) * 2008-09-29 2010-04-01 Giesecke & Devrient Gmbh Lattice image with achromatic lattice fields
DE102009052792A1 (en) 2009-11-11 2011-05-12 Giesecke & Devrient Gmbh Method for producing a security element with matched metallizations and security element available therefrom
DE102010047250A1 (en) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Security element, value document with such a security element and manufacturing method of a security element
DE102009057572A1 (en) 2009-12-09 2011-06-16 Helling Innovation UG (haftungsbeschränkt) Use of material comprising multilayered removable polymer system, as information- and/or security element that is useful as safety strips or labels, and in selling products and/or unprinted, printed or embossed packaging materials
DE102011107154A1 (en) 2011-07-14 2013-01-17 Giesecke & Devrient Gmbh Optically variable element, in particular security element for a data carrier
DE102013005937A1 (en) 2013-04-05 2014-10-09 Giesecke & Devrient Gmbh Method for producing a security element with negative writing
GB201400910D0 (en) 2014-01-20 2014-03-05 Rue De Int Ltd Security elements and methods of their manufacture
US11054551B2 (en) 2015-04-16 2021-07-06 Rolic Ag Multiple image scattering device
DE102017008918A1 (en) 2017-09-22 2019-03-28 Giesecke+Devrient Currency Technology Gmbh Platelet-shaped pigment, printing ink, security element and manufacturing process
DE102018000920A1 (en) 2018-02-05 2019-08-08 Giesecke+Devrient Currency Technology Gmbh A method of manufacturing a security element transfer material and security element transfer material
DE102018004062A1 (en) 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Security element with micro-reflectors
EP3800062A1 (en) * 2019-10-03 2021-04-07 Hueck Folien Gesellschaft m.b.H. Security element comprising an optical effect layer formed as a thin film element
EP3800063A1 (en) * 2019-10-03 2021-04-07 Hueck Folien Gesellschaft m.b.H. Security element for securities or security papers
EP3800060A1 (en) * 2019-10-03 2021-04-07 Hueck Folien Gesellschaft m.b.H. Security element with at least one colour change area
EP3800061A1 (en) * 2019-10-03 2021-04-07 Hueck Folien Gesellschaft m.b.H. Security element with an optical effect layer
DE102020005769A1 (en) 2020-09-21 2022-03-24 Giesecke+Devrient Currency Technology Gmbh Security element transfer material for register-accurate transfer of security elements on documents of value
EP4015231A1 (en) * 2020-12-18 2022-06-22 Hueck Folien Gesellschaft m.b.H. Security element with an optical effect layer
EP4306329A1 (en) * 2022-07-15 2024-01-17 Hueck Folien Gesellschaft m.b.H. Safety element
EP4306330A1 (en) * 2022-07-15 2024-01-17 Hueck Folien Gesellschaft m.b.H. Safety element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7694196A (en) * 1995-11-28 1997-06-19 Landis & Gyr Technology Innovation Ag Optically variable surface pattern
CN100427323C (en) * 2001-12-22 2008-10-22 Ovd基尼格拉姆股份公司 Diffractive safety element
DE10216563B4 (en) * 2002-04-05 2016-08-04 Ovd Kinegram Ag Security element as photocopy protection
DE102004003984A1 (en) 2004-01-26 2005-08-11 Giesecke & Devrient Gmbh Lattice image with one or more grid fields

Also Published As

Publication number Publication date
WO2007107235A1 (en) 2007-09-27
EP1999726A1 (en) 2008-12-10
DE102006012732A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
EP1999726B1 (en) Grating image
EP1713645B2 (en) Grid image with several grid fields
EP1853763B2 (en) Security element and method for the production thereof
EP2040934B1 (en) Security element
WO2009024265A1 (en) Grid image
DE102008046128B4 (en) Optically variable security element with matt area
EP3337674B1 (en) Valuable document
CH707652B1 (en) Nanoparticle ink optical safety device and method of manufacture.
EP2155963B8 (en) Inspection security element
EP2121320A1 (en) Security element
EP2934904B1 (en) Security element with a lenticular image
EP2522529B1 (en) Security element and data carrier provided therewith
EP2335100B1 (en) Grid image having achromatic grid fields
WO2008104277A1 (en) Grid image
EP2782765B1 (en) Security device
EP3302995A1 (en) Visually variable security element
WO2018172528A2 (en) Security element, and method for producing a security element
EP2489524B1 (en) Grid image with bulge effect
EP4353486A2 (en) Security element with refractive structures and colour change
WO2012055544A1 (en) Grating image having mutually adjoining grating fields
EP2312345A2 (en) Diffraction grating image with adjoining grating fields

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120816

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GERHARDT, THOMAS

Inventor name: DICHTL, MARIUS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 799189

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014803

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014803

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20170323

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007014803

Country of ref document: DE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE & DEVRIENT GMBH, 81677 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE AND DEVRIENT GMBH, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170306

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180118 AND 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170306

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 799189

Country of ref document: AT

Kind code of ref document: T

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180426

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 17

Ref country code: AT

Payment date: 20230317

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230323

Year of fee payment: 17

Ref country code: DE

Payment date: 20230331

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 17

Ref country code: CH

Payment date: 20230402

Year of fee payment: 17