EP1998054B1 - Pneumatic cylinder with self-adjusting cushioning at the end of stroke and corresponding method - Google Patents

Pneumatic cylinder with self-adjusting cushioning at the end of stroke and corresponding method Download PDF

Info

Publication number
EP1998054B1
EP1998054B1 EP08156234.0A EP08156234A EP1998054B1 EP 1998054 B1 EP1998054 B1 EP 1998054B1 EP 08156234 A EP08156234 A EP 08156234A EP 1998054 B1 EP1998054 B1 EP 1998054B1
Authority
EP
European Patent Office
Prior art keywords
damping
pressure
cylinder
cylinder piston
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08156234.0A
Other languages
German (de)
French (fr)
Other versions
EP1998054A2 (en
EP1998054A3 (en
Inventor
Christian Bruder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parker Origa Holding AG
Original Assignee
Parker Origa Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT8282007A external-priority patent/AT504592B1/en
Application filed by Parker Origa Holding AG filed Critical Parker Origa Holding AG
Publication of EP1998054A2 publication Critical patent/EP1998054A2/en
Publication of EP1998054A3 publication Critical patent/EP1998054A3/en
Application granted granted Critical
Publication of EP1998054B1 publication Critical patent/EP1998054B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • F15B15/223Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke having a piston with a piston extension or piston recess which completely seals the main fluid outlet as the piston approaches its end position

Definitions

  • the invention relates to a pneumatic cylinder with a self-adjusting end position damping with a cylinder housing in which a movable cylinder piston is arranged, which is acted upon by a working pressure (p 1 ) on one side and by the movement of the cylinder piston in the region of the end position of the cylinder piston one of the not pressurized side of the cylinder piston forms limited damping volume, wherein the end position damping comprises a displacement which is limited by a movable therein lifting element and a part of the pneumatic cylinder, and wherein the lifting element on its one side via a damping channel of the pending in the damping vapor pressure (p 2 ) is acted upon and provided by the lifting element in response to the damping pressure (p 2 ) openable venting channel and a method for self-adjusting end position damping.
  • an end cushioning is often used to prevent the piston in the final position against the cylinder housing or against a stop beats, the aim of the end position damping is therefore, the speed of a moving mass (piston + load), the center of gravity usually located in the cylinder axis, to a level too in which neither the cylinder nor the machine in which the cylinder is installed is damaged or affected by shocks introduced.
  • a pneumatic cylinder with the features mentioned is of the generic type US 3,933,080 A known.
  • the cylinder piston is stepped at its associated end and moves at the end of its cylinder stroke with the protruding step in a recess formed in the end wall of the cylinder housing.
  • two damping volumes are formed in the known pneumatic cylinder, namely a first, by the retracting stage of the cylinder piston in the recess of the housing end wall closed Dämpfvolurnen, and a second, formed in the interior of the cylinder housing between the end wall and the opposite end face of the cylinder piston damping volume.
  • an exemplary embodiment provides a common relief control of the two damping volumes via a lifting element arranged movably in a displacement, wherein a connection between the first damping volume and an outlet opening on one side of the lifting element and a connection between the second damping volume and on the other side of the lifting element Outlet opening exists.
  • a throttle or a pressure relief valve is turned on, which provide for the construction of a corresponding vapor pressure.
  • a vent valve is provided, which is path-dependent and mechanically switched by the cylinder piston.
  • path-dependent Endiagendämpfonne are known, such as from the EP 949 422 A1 , which can change an exhaust air cross-section as a function of the piston position and thus can specify a progressive damping curve.
  • this Dämpfverlauf is dependent on the fixed geometry and can thus be optimal only for a certain combination of mass and speed. If the pneumatic cylinder is operated away from the optimum operating point, eg when the working pressure (and thus the speed) changes or when another load is moved, the damping is no longer optimal. But this is exactly the case in practice, as it has been shown that the positions at which the pressure peaks occur depending on the load and speed are awakeschledlich.
  • pneumatic shock absorbers are known, for example from the DE 37 40 669 A1 , with an outlet valve, over which the air compressed during a damping movement of the piston is discharged.
  • a valve tappet is biased by the working pressure and a spring force.
  • the exhaust valve opens abruptly and the compressed air is released through a throttle.
  • a scheme is provided with which the form, against which the piston is moved. Depending on the position of the piston is regulated. With such a scheme, a self-adjusting damping can be achieved, but only at great expense for the scheme.
  • the objective of the present invention has the object to provide a cushioning of a pneumatic cylinder, and an associated method, which automatically adjusts to different operating parameters, such as mass, speed and working pressure to Erzlelen in a wide range optimal damping and the simple and inexpensive designed.
  • This object is achieved in that the displacement on the opposite side of the lifting element via a connecting channel with the pressure of the working pressure (p 1 ) side of the cylinder piston or a voltage applied in an outlet vent pressure (p 3 ) is connected and in the connecting channel in front of the displacement a check valve is arranged which blocks in the direction of the working pressure (p 1 ) or the venting pressure (p 3 ), so that the lifting element the outflow cross section of the venting passage in dependence on the ratio of acting on its one side damping pressure (p 2 ) to the each on its opposite side in the displacement trapped working pressure (p 1 ) or venting pressure (p 3 ) releases.
  • the method according to the invention results accordingly in that the lifting element is moved by the damping pressure (p 2 ) acting on it against a closed pressure medium volume charged with the working pressure (p 1 ) or a venting pressure (p 3 ), so that the lifting element has the outflow cross section of the Venting channels depending on the ratio of the acting on its one side damping pressure (p 2 ) to each pending on its opposite side in the displacement working pressure (p 1 ) or venting pressure (p 3 ) releases.
  • the vapor volume is advantageously formed by a damping pin extending in the axial direction into the cylinder housing being arranged in the region of the end stop of the cylinder piston, and the cylinder piston being designed with a recess which is acceptable for the damping pin. Characterized the cylinder volume is divided when retracting the damping pin in the recess for forming the damping volume.
  • the damping volume may also be formed by arranging an exhaust duct laterally on the cylinder housing and axially spaced from the cylinder cover.
  • the lifting element is designed as guided in the displacement mounted damping piston.
  • the cubic capacity or the damping piston can be arranged, depending on the constructive Ausgesteitung, either in a pneumatic cylinder final cylinder cover or cylinder liners.
  • the lifting element may also be a sealing element between the damping pin and the cylinder piston, wherein the sealing element is hollow and is arranged in the cylinder piston.
  • a vent opening may be provided on the pneumatic cylinder which is connected to the damping volume.
  • the piston is decelerated by this pressure and should therefore not hit the cylinder cover or an end stop, but slowly retract with the time-delayed escape of air.
  • the valve needle is set during commissioning of the cylinder. This form of end position damping can be found in many pneumatic or hydraulic cylinders which have a cushioning, such as in a rodless pneumatic cylinder 1 as in Fig. 1 shown.
  • Fig. 2 is an end, here the completed by the cylinder cover 4 end of a pneumatic cylinder 1, here for example a rodless pneumatic cylinder, shown with a self-adjusting end position damping according to the invention in detail.
  • the cylinder piston 22 is, for example, a slide connected to a mass m, and moves under pressure on one side p 1 at a speed v In a cylinder housing 15 in the direction of the mechanical end stop (in the region of the cylinder cover 4).
  • the cylinder piston 22 is sealed relative to the cylinder housing in a known manner by means of sealing elements 20.
  • the direction of movement is In Fig. 2 indicated by the arrow.
  • the displaced by the movement of air on the non-pressurized side of the cylinder piston 22 is discharged via a channel 3 in the cylinder cover 4 and a connection not shown here.
  • a recess 23 is provided which can receive a axially extending into the cylinder housing 15 Dämpfzapfen 18.
  • the damping pin 18 is arranged in this example on the cylinder cover 4 and in the end region or in the region of an end position of the cylinder piston 22 of the pneumatic cylinder 1, resulting in a Dämpf Scheme.
  • An outlet channel 3 extends here in the axial direction through the cylinder cover 4 and through the damping pin 18.
  • such a damping volume 19 can also be formed differently, in particular without damping pin 18, for example by the outlet channel 3 being laterally spaced from the cylinder cover 4 in the axial direction is arranged on the cylinder housing 15, as in Flg. 2 indicated by dashed lines and indicated by reference numeral 3a.
  • the outlet channel 3a is closed during the movement of the cylinder piston 22, resulting in the end position of the cylinder piston 22 between the cylinder cover 4 and cylinder piston 22 again a corresponding damping volume 19.
  • a displacement 9 is provided - here a simple bore, which is closed by a disc 10.
  • the displacement 9 is limited by a lifting element, here a damper piston 7, the movable (as indicated by the double arrow in Fig. 2 indicated) and guided in the displacement 9 is arranged.
  • the displacement 9 is connected here via a channel 11 in the cylinder cover 4 and a cylinder housing 15 arranged in the connecting channel 14 with the working pressure p 1 on the pressurized side of the cylinder piston 22.
  • a check valve 12 is arranged that blocks in the direction of the working pressure p 1 .
  • the damping piston 7 is therefore pressurized on one side by the force acting in the displacement 9 working pressure p 1 .
  • the opposite side 6 of the damper piston 7 is executed stepped in this example and is connected via a damping channel 16 with the damping volume 19.
  • the damper piston 7 closes a venting channel 5 arranged in the cylinder cover 4 and connected to the outlet duct 3.
  • the damper piston 7 may be provided for sealing against the cylinder cover 4 with throttling grooves 8. Instead of throttling grooves 8 but also any other sealing elements may be provided.
  • a targeted leakage can be provided via the throttling grooves 8 or the other sealing elements at this point for pressure reduction in the displacement 9.
  • vent the displacement 9 between two strokes if necessary via other suitable means, such as a valve or throttle, or to pressurize it with the new working pressure p 1 .
  • end position damping can also be provided on the other side of the pneumatic cylinder, so that the opposite movement is endlagengedämpft accordingly.
  • the same arrangement can also be provided on the other side and the working pressure then acting is supplied via the second connecting channel 2 to the second displacement 9.
  • the displaced air is discharged through the outlet channel 3 on the side of the cylinder piston 22 facing away from the pressurized side.
  • the outlet channel 3 is advantageously dimensioned so that the entire displaced air without backflow (and thus without associated pressure increase) can be dissipated.
  • the opening function behaves almost linearly to the pressure.
  • the spring constant of this gas spring is determined by the volume and pressure of the air volume. If the working pressure varies, so does the spring constant of the gas spring changes. Changes the kinetic energy of the cylinder piston 22, for example by a higher speed v or another mass m, adapts itself to the new conditions via different pressure conditions of the stroke of the damping element 7 and thus also the damping behavior. This works in a certain energy range, whereby the maximum damping energy must not be exceeded. At different working pressures, the characteristic of the damping function shifts.
  • the oscillation is caused by the driving up of the cylinder piston 22 on the air cushion, which is formed in the damping chamber 19, since the trapped air can not escape.
  • This oscillation can be counteracted, for example, by deliberately introducing one (or more) vent opening (s) 17, for example in the damping journal 18 or in the cylinder housing 15.
  • the vent 17 can be adjusted in its shape, location and size the circumstances, such as the structural design or the expected kinetic energies.
  • Fig. 3 an alternative embodiment of a self-adjusting end position damping according to the invention is shown.
  • the displacement 9 in the cylinder piston 22 is arranged, as well as the connecting channel 14, the check valve 12, the damping channel 16 and the venting channel 5.
  • the function of this cushioning is identical to that with reference to Fig. 2 described.
  • Fig. 4 shows a further possible embodiment of the invention.
  • the lifting element is designed as an elastic damping seal 24.
  • the damping seal 24 is arranged on the recess 23 of the cylinder piston 22.
  • the damping seal 24 is hollow and thus forms a volume between the cylinder piston 22 and the damper seal - the displacement 9.
  • the damping seal 24 is compressed, as in Fig. 4 indicated by dashed lines.
  • the damping seal 24 lifts off from the damping pin 18 and creates an annular venting channel 5 between the damping seal 24 and the damping pin 18, through which the air trapped in the damping volume 19 can flow out again.
  • the displacement 9 is formed by the pressure load by the working pressure p 1 again a gas spring with progressive spring constant, which counteracts the compression of the damping seal 24.
  • the function of this embodiment is therefore again identical to that with reference to Fig. 2 described.
  • the displacement 9 is always acted upon by the working pressure p 1 .
  • a back pressure p 3 is present on the vent side, whose level is lower than that of the ventilation side.
  • the displacement 9 is connected in this embodiment via a connecting channel 14 and a channel 11 with the outlet channel 3, in which the venting pressure p 3 is applied.
  • a check valve 12 is arranged that blocks p 3 in the direction of the venting pressure.
  • the lifting element here again a damping piston 7, can be designed with piston surfaces of different sizes.
  • the cylinder piston 22 ascends with the damping seal 21 onto the damping pin 18, the pressure p 2 in the damping volume 19 and the venting pressure p 3 in the outlet channel 3 are the same.
  • the venting pressure p 3 is via the connecting channel 14, the check valve 12 and the channel 11 in the displacement 9 at. If the damping seal 21 closes off the damping volume 19, the venting pressure p 3 in the outlet channel 3 drops sharply. In displacement 9, however, this pressure is maintained due to the check valve 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Fluid-Damping Devices (AREA)

Description

Die Erfindung betrifft einen Pneumatikzylinder mit einer selbsteinstellenden Endlagendämpfung mit einem Zylindergehäuse, in welchem ein beweglicher Zylinderkolben angeordnet ist, der an einer Seite von einem Arbeitsdruck (p1) beaufschlagt ist und sich durch die Bewegung des Zylinderkolbens im Bereich der Endlage des Zylinderkolbens ein von der nicht druckbeaufschlagten Seite des Zylinderkolbens begrenztes Dämpfvolumen ausbildet, wobei die Endlagendämpfung einen Hubraum umfasst, der von einem darin beweglichen Hubelement und einem Teil des Pneumatiltzylinders begrenzt ist, und wobei das Hubelement auf seiner einen Seite über einen Dämpfkanal von dem im Dämpfvolumen anstehenden Dampfdruck (p2) beaufschlagt ist und ein von dem Hubelement in Abhängigkeit von dem Dämpfdruck (p2) öffenbarer Entlüftungskanal vorgesehen ist sowie ein Verfahren zur selbsteinstellenden Endlagendämpfung.The invention relates to a pneumatic cylinder with a self-adjusting end position damping with a cylinder housing in which a movable cylinder piston is arranged, which is acted upon by a working pressure (p 1 ) on one side and by the movement of the cylinder piston in the region of the end position of the cylinder piston one of the not pressurized side of the cylinder piston forms limited damping volume, wherein the end position damping comprises a displacement which is limited by a movable therein lifting element and a part of the pneumatic cylinder, and wherein the lifting element on its one side via a damping channel of the pending in the damping vapor pressure (p 2 ) is acted upon and provided by the lifting element in response to the damping pressure (p 2 ) openable venting channel and a method for self-adjusting end position damping.

In Hydraulik- oder Pneumatikzylindern wird oftmals eine Endlagendämpfung verwendet, um zu verhindern, dass der Kolben in der Endlage gegen das Zylindergehäuse oder gegen einen Anschlag schlägt, Ziel der Endlagendämpfung ist es folglich, die Geschwindigkeit einer bewegten Masse (Kolben + Last), deren Schwerpunkt in der Regel in der Zylinderachse liegt, auf ein Niveau zu verringern, bei der weder der Zylinder noch die Maschine, in der der Zylinder eingebaut ist, beschädigt oder durch eingeleitete Stöße beeinträchtigt wird.In hydraulic or pneumatic cylinders, an end cushioning is often used to prevent the piston in the final position against the cylinder housing or against a stop beats, the aim of the end position damping is therefore, the speed of a moving mass (piston + load), the center of gravity usually located in the cylinder axis, to a level too in which neither the cylinder nor the machine in which the cylinder is installed is damaged or affected by shocks introduced.

Ein Pneumatikzylinder mit den eingangs genannten Merkmalen ist aus der gattungsgemäßen US 3 933 080 A bekannt. Hierbei ist der Zylinderkolben an seinem zugeordneten Ende gestuft ausgebildet und fährt am Ende seines Zylinderhubes mit der vorstehenden Stufe in eine in der Stirnwand des Zylindergehäuses ausgebildete Ausnehmung ein. Hierdurch werden bei dem bekannten Pneumatikzylinder zwei Dämpfvolumina ausgebildet, nämlich ein erstes, durch die einfahrende Stufe des Zylinderkolbens in der Ausnehmung der Gehäusestirnwand abgeschlossenes Dämpfvolurnen, und ein zweites, im Inneren des Zylindergehäuses zwischen dessen Stirnwand und der dagegen fahrenden Stirnseite des Zylinderkolben gebildetes Dämpfvolumen. Soweit sich bei Annäherung des Zylinderkolbens an die Stirnwand des Zylindergehäuses in beiden Dämpfvolumina ein die Bewegung des Zylinderkolbens abbremsender Dämpfdruck aufbaut, ist jeweils eine ventilgesteuerte Entlastung jedes der beiden Dämpfvolumina zur Atmosphäre hin vorgesehen. Dabei sieht ein Ausführungsbeispiel eine gemeinsame Entlastungssteuerung der beiden Dämpfvolumina über ein in einem Hubraum beweglich angeordnetes Hubelement vor, wobei auf einer Seite des Hubelements eine Verbindung zwischen dem ersten Dämpfvolumen und einer Auslassöffnung und auf der anderen Seite des Hubelements eine Verbindung zwischen dem zweiten Dämpfvolumen und einer Auslassöffnung besteht. Durch diese druckgesteuerte Endlagendämpfung soll ein durch einen eventuell zu hohen Dämpfungsdruck bedingtes Rückschlagen des Zylinderkolbens beim Dämpfungsvorgang verhindert werden.A pneumatic cylinder with the features mentioned is of the generic type US 3,933,080 A known. Here, the cylinder piston is stepped at its associated end and moves at the end of its cylinder stroke with the protruding step in a recess formed in the end wall of the cylinder housing. In this way, two damping volumes are formed in the known pneumatic cylinder, namely a first, by the retracting stage of the cylinder piston in the recess of the housing end wall closed Dämpfvolurnen, and a second, formed in the interior of the cylinder housing between the end wall and the opposite end face of the cylinder piston damping volume. As far as an approach of the cylinder piston to the end wall of the cylinder housing in both Dämpfvolumina a movement of the cylinder piston decelerating damping pressure builds up, each a valve-controlled discharge of each of the two Dämpfvolumina is provided to the atmosphere. In this case, an exemplary embodiment provides a common relief control of the two damping volumes via a lifting element arranged movably in a displacement, wherein a connection between the first damping volume and an outlet opening on one side of the lifting element and a connection between the second damping volume and on the other side of the lifting element Outlet opening exists. By this pressure-controlled cushioning intended to be prevented by a possibly excessive damping pressure rebounding of the cylinder piston during the damping process.

Aus der DE 295 17 364 U1 ist eine Endlagendämpfung bei einem Pneumatikzylinder bekannt, bei der das am Ende des Kolbenweges zwischen der stirnseitigen Zylinderwand und dem Zylinderkolben entstehende Dämpfvolumen über einen angeschlossenen Dämpferkanal zur Atmosphäre hin entlastet wird.From the DE 295 17 364 U1 is a cushioning in a pneumatic cylinder known in which the resulting at the end of the piston stroke between the front-side cylinder wall and the cylinder piston damping volume is relieved via a connected damper channel to the atmosphere.

In den Dämpferkanal ist eine Drossel bzw. eine Überdruckventil eingeschaltet, welche für den Aufbau eines entsprechenden Dampfdruckes sorgen. Damit beim Erreichen der Kolbenendlage kein Überdruck mehr in dem gebildeten Dämpfvolumen herrscht, so dass der Kolben eine Bewegungsumkehr erfahren könnte, ist zusätzlich ein Entlüftungsventil vorgesehen, welches vom Zylinderkolben wegabhängig und mechanisch geschaltet wird.In the damper channel, a throttle or a pressure relief valve is turned on, which provide for the construction of a corresponding vapor pressure. Thus, when reaching the Kolbenendlage no overpressure prevails in the formed damping volume, so that the piston could experience a reversal of motion, in addition, a vent valve is provided, which is path-dependent and mechanically switched by the cylinder piston.

Weiters sind wegabhängige Endiagendämpfungen bekannt, wie z.B. aus der EP 949 422 A1 , die einen Abluftquerschnitt In Abhängigkeit von der Kolbenposition verändern und somit einen progressiven Dämpfverlauf vorgeben können. Dieser Dämpfverlauf ist aber von der fest vorgegebenen Geometrie abhängig und kann somit nur für eine bestimmte Kombination von Masse und Geschwindigkeit optimal sein. Wird der Pneumatikzylinder abselts des optimalen Betriebspunktes betrieben, z.B. wenn sich der Arbeltsdruck (und damit die Geschwindigkeit) ändert oder wenn eine andere Last bewegt wird, ist die Dämpfung nicht mehr optimal. Aber genau das ist In der Praxis der Fall, da es sich gezeigt hat, dass die Positionen, an denen die Druckspitzen auftreten je nach Belastung und Geschwindigkeit unterschledlich sind.Furthermore, path-dependent Endiagendämpfungen are known, such as from the EP 949 422 A1 , which can change an exhaust air cross-section as a function of the piston position and thus can specify a progressive damping curve. However, this Dämpfverlauf is dependent on the fixed geometry and can thus be optimal only for a certain combination of mass and speed. If the pneumatic cylinder is operated away from the optimum operating point, eg when the working pressure (and thus the speed) changes or when another load is moved, the damping is no longer optimal. But this is exactly the case in practice, as it has been shown that the positions at which the pressure peaks occur depending on the load and speed are unterschledlich.

Ebenfalls sind pneumatische Stoßdämpfer bekannt, z.B. aus der DE 37 40 669 A1 , mit einem Auslassventil, Ober das die bei einer Dämpfungsbewegung des Kolbens komprimierte Luft ausgelassen wird. Dazu wird ein Ventilstößel durch den Arbeitsdruck und eine Federkraft vorgespannt. Wenn der Druck der komprimierten Luft die Vorspannung überstelgt, öffnet das Auslassventil schlagartig und die komprimierte Luft wird über eine Drossel entspannt. Um einen solchen Stoßdämpfer optimal betreiben zu können, ist eine Regelung vorgesehen, mit der der Vordruck, gegen den der Kolben bewegt wird. In Abhängigkeit von der Position des Kolbens geregelt wird. Mit einer solchen Regelung kann ein sich einstellende Dämpfung erzielt werden, allerdings nur unter hohem Aufwand für die Regelung.Also pneumatic shock absorbers are known, for example from the DE 37 40 669 A1 , with an outlet valve, over which the air compressed during a damping movement of the piston is discharged. For this purpose, a valve tappet is biased by the working pressure and a spring force. When the pressure of the compressed air exceeds the preload, the exhaust valve opens abruptly and the compressed air is released through a throttle. In order to operate such a shock absorber optimally, a scheme is provided with which the form, against which the piston is moved. Depending on the position of the piston is regulated. With such a scheme, a self-adjusting damping can be achieved, but only at great expense for the scheme.

Die gegenständliche Erfindung hat sich die Aufgabe gestellt, eine Endlagendämpfung eines Pneumatikzylinders, sowie ein zugehöriges Verfahren, anzugeben, die sich selbsttätig auf unterschiedliche Betriebsparameter, wie z.B. Masse, Geschwindigkeit und Arbeitsdruck, einstellt, um eine in einem weiten Bereich optimale Dämpfung zu erzlelen und die einfach und kostengünstig ausgestaltet ist.The objective of the present invention has the object to provide a cushioning of a pneumatic cylinder, and an associated method, which automatically adjusts to different operating parameters, such as mass, speed and working pressure to Erzlelen in a wide range optimal damping and the simple and inexpensive designed.

Diese Aufgabe wird dadurch gelöst, dass der Hubraum auf der gegenüberliegenden Seite des Hubelements über einen Verbindungskanal mit der vom Arbeitsdruck (p1) druckbeaufschlagten Seite des Zylinderkolbens oder einem in einem Auslasskanal anliegenden Entlüftungsdruck (p3) verbunden ist und in dem Verbindungskanal vor dem Hubraum ein Rückschlagventil angeordnet ist, welches in Richtung des Arbeitsdruckes (p1) bzw. des Entlüftungsdruckes (p3) sperrt, so dass das Hubelement den Abströmquerschnitt des Entlüftungskanals in Abhängigkeit von dem Verhältnis des auf seiner einen Seite einwirkenden Dämpfdrucks (p2) zu dem jeweils auf seiner gegenüberliegenden Seite in dem Hubraum eingeschlossenen Arbeitsdruck (p1) bzw. Entlüftungsdruck (p3) freigibt. Das erfindungsgemäße Verfahren ergibt sich entsprechend dadurch, dass dass das Hubelement durch den dieses beaufschlagenden Dämpfdruck (p2) gegen ein mit dem Arbeitdruck (p1) oder einem Entlüftungsdruck (p3) beaufschlagtes abgeschlossenes Druckmittelvolumen bewegt wird, so dass das Hubelement den Abströmquerschnitt des Entlüftungskanals in Abhängigkeit von dem Verhältnis des auf seiner einen Seite einwirkenden Dämpfdrucks (p2) zu dem jeweils auf seiner gegenüberliegenden Seite in dem Hubraum anstehenden Arbeitsdruck (p1) bzw. Entlüftungsdruck (p3) freigibt.This object is achieved in that the displacement on the opposite side of the lifting element via a connecting channel with the pressure of the working pressure (p 1 ) side of the cylinder piston or a voltage applied in an outlet vent pressure (p 3 ) is connected and in the connecting channel in front of the displacement a check valve is arranged which blocks in the direction of the working pressure (p 1 ) or the venting pressure (p 3 ), so that the lifting element the outflow cross section of the venting passage in dependence on the ratio of acting on its one side damping pressure (p 2 ) to the each on its opposite side in the displacement trapped working pressure (p 1 ) or venting pressure (p 3 ) releases. The method according to the invention results accordingly in that the lifting element is moved by the damping pressure (p 2 ) acting on it against a closed pressure medium volume charged with the working pressure (p 1 ) or a venting pressure (p 3 ), so that the lifting element has the outflow cross section of the Venting channels depending on the ratio of the acting on its one side damping pressure (p 2 ) to each pending on its opposite side in the displacement working pressure (p 1 ) or venting pressure (p 3 ) releases.

Durch diese Anordnung bzw. dieses Verfahren entsteht im Hubraum eine adaptive Gasfeder mit einer progressiven Federsteifigkeit, die vom Arbeitsdruck bzw. vom Entlüftungsdruck und vom Druck im Endlagendämpfraum abhängig ist. Dadurch wird der effektive Abströmquerschnitt abschnittsweise geöffnet, wodurch eine nahezu lineare Öffnungsfunktion vorhanden ist. Die Federkonstante dieser Gasfeder verändert sich dabei selbständig in Abhängigkeit von den herrschenden Drücken und es wird eine gleich bleibende Dämpfwirkung auch bei unterschiedlichen Betriebsdrücken und unterschiedlichen kinetischen Energien erzielt. Vorteilhaft wird in der adaptiven Gasfeder der Entlüftungsdruck verwendet, da der Druckverlauf auf der Entlüftungsseite eine ausgeprägtere Abhängigkeit von der Verfahrgeschwindigkeit des Zylinderkolbens zeigt und damit als Regelgröße besser geeignet ist. Die Erfindung erhöht dadurch den Komfort, die Funktionssicherheit und die Nutzerfreundlichkeit des pneumatischen Antriebs. Durch die selbständig Anpassung der Endlagendämpfung an die Betriebsbedingungen entfallen darüber hinaus auch die Kosten für die manuelle Einstellung und die Zykluszeiten verringern sich.By this arrangement or this method arises in the displacement of an adaptive gas spring with a progressive spring stiffness, which is dependent on the working pressure or the venting pressure and the pressure in Endlagendämpfraum. As a result, the effective outflow cross section is opened in sections, whereby a nearly linear opening function is present. The spring constant of this gas spring changes independently depending on the prevailing pressures and it is achieved a constant damping effect even at different operating pressures and different kinetic energies. Advantageously, the venting pressure is used in the adaptive gas spring, since the pressure profile on the vent side shows a more pronounced dependence on the travel speed of the cylinder piston and is thus better suited as a controlled variable. The This invention increases the comfort, reliability and ease of use of the pneumatic drive. The automatic adjustment of the end position damping to the operating conditions also eliminates the costs for manual adjustment and the cycle times are reduced.

Das Dampfvolumen wird vorteilhaft gebildet, Indem Im Bereich des Endanschlags des Zylinderkolbens ein sich in axialer Richtung In das Zylindergehäuse erstreckender Dämpfzapfen angeordnet ist und der Zylinderkolben mit einer den Dämpfzapfen annehmbaren Ausnehmung ausgeführt ist. Dadurch wird das Zylindervolumen beim Einfahren des Dämpfzapfens in die Ausnehmung zur Ausbildung des Dämpfvolumens geteilt. Alternativ kann das Dämpfvolumen auch gebildet werden, indem ein Auslasskanal seitlich am Zylindergehäuse und axial beabstandet vom Zylinderdeckel angeordnet wird.The vapor volume is advantageously formed by a damping pin extending in the axial direction into the cylinder housing being arranged in the region of the end stop of the cylinder piston, and the cylinder piston being designed with a recess which is acceptable for the damping pin. Characterized the cylinder volume is divided when retracting the damping pin in the recess for forming the damping volume. Alternatively, the damping volume may also be formed by arranging an exhaust duct laterally on the cylinder housing and axially spaced from the cylinder cover.

In einer bevorzugten Ausgestaltung ist das Hubelement als im Hubraum geführt gelagerter Dämpfkolben ausgeführt. Der Hubraum bzw. der Dämpfkolben kann dabei, je nach konstruktiver Ausgesteitung, entweder in einen den Pneumatikzylinder abschließenden Zylinderdeckel oder im Zylinderkölben angeordnet sein.In a preferred embodiment, the lifting element is designed as guided in the displacement mounted damping piston. The cubic capacity or the damping piston can be arranged, depending on the constructive Ausgesteitung, either in a pneumatic cylinder final cylinder cover or cylinder liners.

Das Hubelement kann aber alternativ auch ein Dichtelement zwischen Dämpfzapfen und Zylinderkolben sein, wobei das Dichtelement hohl ist und im Zylinderkolben angeordnet ist. Mit einer solchen Anordnung kann die Anzahl der benötigten Komponenten für die Endlagendampfung raduziertwerden.Alternatively, the lifting element may also be a sealing element between the damping pin and the cylinder piston, wherein the sealing element is hollow and is arranged in the cylinder piston. With such an arrangement, the number of required end-of-line vapor deposition components can be reduced.

Um ein mögliches Schwingen des Zylinderkolbens beim Auffahren auf das im Dämpfvolumen eingesperrte Luftvolumen zu vermeiden bzw. zu reduzieren, kann am Pneumatikzylinder eine Entlüftungsöffnung vorgesehen sein, die mit dem Dämpfvolumen verbunden ist.In order to avoid or reduce possible swinging of the cylinder piston when driving onto the volume of air trapped in the damping volume, a vent opening may be provided on the pneumatic cylinder which is connected to the damping volume.

Die gegenständliche Erfindung wird im Nachfolgenden anhand der schematischen, nicht einschränkenden, bevorzugte Ausgestaltungen der Erfindung zeigenden Figuren 1 bis 4 beschrieben. Dabei zeigt

  • Flg. 1 einen bekannten kolbenstangenlosen Pneumatikzylinder,
  • Fig. 2 eine Ausführung der Erfindung mit der Endlagendämpfung im Zylinderdeckel,
  • Fig. 3 eine Ausführung der Erfindung mit der Endlagendämpfung Im Zylinderkolben,
  • Fig. 4 eine Ausführung der Endlagendämpfung als Dämpfdichtung und
  • Fig. 5 eine Ausführung der Erfindung mit Druckversorgung der adaptiven Gasfeder von der Entlüftungsseite.
The subject invention will be described below with reference to the schematic, non-limiting, preferred embodiments of the invention FIGS. 1 to 4 described. It shows
  • Flg. 1 a known rodless pneumatic cylinder,
  • Fig. 2 an embodiment of the invention with the end position damping in the cylinder cover,
  • Fig. 3 an embodiment of the invention with the end position damping in the cylinder piston,
  • Fig. 4 an embodiment of the end position damping as a damping seal and
  • Fig. 5 an embodiment of the invention with pressure supply of the adaptive gas spring from the vent side.

Bei einer bekannten Endlagendämpfung nach Fig. 1 wird am Ende des Arbeitshubes, Im Bereich des Endanschlags des Zylinderkolbens 22 ein Dämpfzapfen 18 durch eine Dämpfdichtung 21 In einer Ausnehmung 23 des Zylinderkolbens 22 geführt (strichliert angedeutet), wodurch eine zusätzliche Kammer In der nicht Druck beaufschlagten Zylinderseite geschaffen wird - das Dämpfvolumen 19. Das nun entstandene Dämpfvolumen 19 kann nur über eine vorgesehene, hier nicht dargestellte, Ventilnadel, z.B. Im Zylinderdeckel 4, entweichen. Beim Einfahren des Zylinderkolbens 22 wird die Luft, die sich in dieser Kammer sammelt, komprimiert und durch die Bewegung des Kolbens an der Ventilnadel vorbeigeführt. Das Volumen kann aber nicht in derselben Zeit abgeführt werden, In der der Kolben einfährt, weshalb es In dieser Kammer zu einem Druckanstieg kommt. Der Kolben wird durch diesen Druck verzögert und soll dadurch nicht auf den Zylinderdeckel bzw. einen Endanschlag aufschlagen, sondern mit dem zeitverzögerten Entweichen der Luft langsam einfahren. Die Ventilnadel wird dabei bei Inbetriebnahme des Zylinders eingestellt. Diese Form der Endlagendämpfung ist In vielen Pneumatik- oder Hydraulikzylindern zu finden die eine Endlagendämpfung aufweisen, wie z.B. In einem kolbenstangenlosen Pneumatikzylinder 1 wie in Fig. 1 dargestellt.In a known end position damping after Fig. 1 At the end of the working stroke, in the region of the end stop of the cylinder piston 22, a damping pin 18 is guided through a damping seal 21 in a recess 23 of the cylinder piston 22 (indicated by dashed lines), whereby an additional chamber is created in the non-pressurized cylinder side - the damping volume 19. The now resulting damping volume 19 can escape only via an intended, not shown here, valve needle, for example in the cylinder cover 4. When retracting the cylinder piston 22, the air that collects in this chamber, compressed and passed by the movement of the piston to the valve needle. However, the volume can not be dissipated in the same time that the piston retracts, which is why a pressure increase occurs in this chamber. The piston is decelerated by this pressure and should therefore not hit the cylinder cover or an end stop, but slowly retract with the time-delayed escape of air. The valve needle is set during commissioning of the cylinder. This form of end position damping can be found in many pneumatic or hydraulic cylinders which have a cushioning, such as in a rodless pneumatic cylinder 1 as in Fig. 1 shown.

In Fig. 2 ist ein Endbereich, hier das durch den Zylinderdeckel 4 abgeschlossene Ende, eines Pneumatikzylinders 1, hier z.B. eines kolbenstangenlosen Pneumatikzylinders, mit einer erfindungsgemäßen selbsteinstellenden Endlagendämpfung im Detail gezeigt. Der Zylinderkolben 22 ist, z.B. Ober einen Schlitten, mit einer Masse m verbunden und bewegt sich unter Druckbeaufschlagung p1 an einer seiner Seiten mit einer Geschwindigkeit v In einem Zylindergehäuse 15 in Richtung des mechanischen Endanschlags (Im Bereich des Zylinderdeckels 4). Der Zylinderkolben 22 ist gegenüber dem Zylindergehäuse in bekannter Weise mittels Dichtelementen 20 abgedichtet. Die Bewegungsrichtung ist In Fig. 2 durch den Pfeil angedeutet. Die durch die Bewegung verdrängte Luft auf der nicht druckbeaufschlagten Seite des Zylinderkolbens 22 wird dabei über einen Kanal 3 im Zylinderdeckel 4 und einen hier nicht dargestellten Anschluss abgeführt.In Fig. 2 is an end, here the completed by the cylinder cover 4 end of a pneumatic cylinder 1, here for example a rodless pneumatic cylinder, shown with a self-adjusting end position damping according to the invention in detail. The cylinder piston 22 is, for example, a slide connected to a mass m, and moves under pressure on one side p 1 at a speed v In a cylinder housing 15 in the direction of the mechanical end stop (in the region of the cylinder cover 4). The cylinder piston 22 is sealed relative to the cylinder housing in a known manner by means of sealing elements 20. The direction of movement is In Fig. 2 indicated by the arrow. The displaced by the movement of air on the non-pressurized side of the cylinder piston 22 is discharged via a channel 3 in the cylinder cover 4 and a connection not shown here.

Im Zylinderkolben 22 ist eine Ausnehmung 23 vorgesehen, die einen sich axial in das Zylindergehäuse 15 erstreckenden Dämpfzapfen 18 aufnehmen kann. Der Dämpfzapfen 18 ist in diesem Beispiel am Zylinderdeckel 4 und im Endbereich bzw. im Bereich einer Endlage des Zylinderkolbens 22 des Pneumetikzylinders 1 angeordnet, wodurch sich ein Dämpfbereich ergibt. Ein Auslasskanal 3 erstreckt sich hier In axialer Richtung durch den Zylinderdeckel 4 und durch den Dämpfzapfen 18. Ein solches Dämpfvolumen 19 kann natürlich auch anders, Insbesondere ohne Dämpfzapfen 18, gebildet werden, z.B. indem der Auslasskanal 3 seitlich und in axialer Richtung beabstandet vom Zylinderdeckel 4 am Zylindergehäuse 15 angeordnet wird, wie in Flg. 2 strichliert angedeutet und durch Bezugszeichen 3a gekennzeichnet. Dadurch wird der Auslasskanal 3a bei der Bewegung des Zylinderkolbens 22 verschlossen, wodurch sich im Bereich der Endlage des Zylinderkolbens 22 zwischen Zylinderdeckel 4 und Zylinderkolben 22 wieder ein entsprechendes Dämpfvolumen 19 ergibt.In the cylinder piston 22, a recess 23 is provided which can receive a axially extending into the cylinder housing 15 Dämpfzapfen 18. The damping pin 18 is arranged in this example on the cylinder cover 4 and in the end region or in the region of an end position of the cylinder piston 22 of the pneumatic cylinder 1, resulting in a Dämpfbereich. An outlet channel 3 extends here in the axial direction through the cylinder cover 4 and through the damping pin 18. Of course, such a damping volume 19 can also be formed differently, in particular without damping pin 18, for example by the outlet channel 3 being laterally spaced from the cylinder cover 4 in the axial direction is arranged on the cylinder housing 15, as in Flg. 2 indicated by dashed lines and indicated by reference numeral 3a. As a result, the outlet channel 3a is closed during the movement of the cylinder piston 22, resulting in the end position of the cylinder piston 22 between the cylinder cover 4 and cylinder piston 22 again a corresponding damping volume 19.

Im Zylinderdeckel 4 ist ein Hubraum 9 vorgesehen - hier eine einfache Bohrung, die durch eine Scheibe 10 verschlossen wird. Der Hubraum 9 wird durch ein Hubelement, hier ein Dämpfkolben 7, begrenzt, das beweglich (wie durch den Doppelpfeil in Fig. 2 angedeutet) und geführt im Hubraum 9 angeordnet ist. Der Hubraum 9 ist hier über einen Kanal 11 im Zylinderdeckel 4 und einen im Zylindergehäuse 15 angeordneten Verbindungskanal 14 mit dem Arbeitsdruck p1 auf der druckbeaufschlagten Seite des Zylinderkolbens 22 verbunden. Im Verbindungskanal 14 oder alternativ wie in diesem Beispiel im Kanal 11 im Zylinderdeckel 4 ist ein Rückschlagventil 12 angeordnet, dass in Richtung des Arbeitsdruckes p1 sperrt. Der Dämpfkolben 7 wird daher an einer Seite durch den im Hubraum 9 wirkenden Arbeitsdruck p1 druckbeaufschlagt. Die gegenüberliegende Seite 6 des Dämpfkolbens 7 ist in diesem Beispiel abgestuft ausgeführt und ist über einen Dämpfkanal 16 mit dem Dämpfvolumen 19 verbunden. Der Dämpfkolben 7 verschließt einen im Zylinderdeckel 4 angeordneten Entlüftungskanal 5, der mit dem Auslasskanal 3 verbunden ist. Der Dämpfkolben 7 kann zur Abdichtung gegenüber dem Zylinderdeckel 4 mit Drosselnuten 8 versehene sein. Anstelle der Drosselnuten 8 können aber auch beliebige andere Dichtelemente vorgesehen sein. Um bei einer Arbeitsdruckänderung von einem Hub zum nächsten den neuen Arbeitsdruck p1 im Hubraum 9 einstellen zu können, kann über die Drosselnuten 8 oder den anderen Dichtelementen an dieser Stelle zum Druckabbau im Hubraum 9 auch eine gezielte Leckage vorgesehen sein. Ebenso ist aber natürlich denkbar, den Hubraum 9 zwischen zwei Hüben wenn notwendig über andere geeignete Einrichtungen, wie z.B. ein Ventil oder eine Drossel, zu entlüften bzw. mit dem neuen Arbeitsdruck p1 zu beaufschlagen.In the cylinder cover 4, a displacement 9 is provided - here a simple bore, which is closed by a disc 10. The displacement 9 is limited by a lifting element, here a damper piston 7, the movable (as indicated by the double arrow in Fig. 2 indicated) and guided in the displacement 9 is arranged. The displacement 9 is connected here via a channel 11 in the cylinder cover 4 and a cylinder housing 15 arranged in the connecting channel 14 with the working pressure p 1 on the pressurized side of the cylinder piston 22. In the connecting channel 14 or alternatively as in this example in the channel 11 in the cylinder cover 4, a check valve 12 is arranged that blocks in the direction of the working pressure p 1 . The damping piston 7 is therefore pressurized on one side by the force acting in the displacement 9 working pressure p 1 . The opposite side 6 of the damper piston 7 is executed stepped in this example and is connected via a damping channel 16 with the damping volume 19. The damper piston 7 closes a venting channel 5 arranged in the cylinder cover 4 and connected to the outlet duct 3. The damper piston 7 may be provided for sealing against the cylinder cover 4 with throttling grooves 8. Instead of throttling grooves 8 but also any other sealing elements may be provided. In order to adjust the new working pressure p 1 in the displacement 9 at a change in working pressure from one stroke to the next, a targeted leakage can be provided via the throttling grooves 8 or the other sealing elements at this point for pressure reduction in the displacement 9. Likewise, however, it is of course conceivable to vent the displacement 9 between two strokes, if necessary via other suitable means, such as a valve or throttle, or to pressurize it with the new working pressure p 1 .

Eine solche Endlagendämpfung kann natürlich auch an der anderen Seite des Pneumatikzylinders vorgesehen sein, so dass auch die entgegen gesetzte Bewegung entsprechend endlagengedämpft ist. Dazu kann dieselbe Anordnung auch auf der anderen Seite vorgesehen sein und der dann wirkende Arbeitsdruck wird über den zweiten Verbindungskanal 2 dem zweiten Hubraum 9 zugeführt.Of course, such end position damping can also be provided on the other side of the pneumatic cylinder, so that the opposite movement is endlagengedämpft accordingly. For this purpose, the same arrangement can also be provided on the other side and the working pressure then acting is supplied via the second connecting channel 2 to the second displacement 9.

Im Nachfolgenden wird nun die Funktion der erfindungsgemäßen Endlagendämpfung beschrieben.In the following, the function of the end position damping according to the invention will now be described.

Während der Bewegung des Zylinderkolbens 22 wird die verdrängte Luft auf der der druckbeaufschlagt Seite abgewandten Seite des Zylinderkolbens 22 durch den Auslasskanal 3 abgeführt. Der Auslasskanal 3 ist dabei vorteilhaft so dimensioniert, dass die gesamte verdrängte Luft ohne Rückstau (und damit ohne einhergehenden Druckanstieg) abgeführt werden kann. Wenn der Zylinderkolben 22 im Bereich der Endlage des Zylinderkolben 22 durch die Bewegung auf den Dämpfzapfen 18 auffährt, wird dieser durch eine in der Ausnehmung 23 des Zylinderkolbens 22 angeordnete Dämpfdichtung 21 geführt, wodurch der Zylinderraum durch die Dämpfdichtung 21 geteilt wird. Dadurch entsteht am Ende der Bewegung des Zylinderkolbens 22 eine abgeschlossene Kammer - das Dämpfvolumen 19, in dem die darin verbleibende Luft zur Dämpfung des Zylinderkolbens 22 durch dessen Bewegung komprimiert wird. Dieser Dämpfdruck p2 im Dämpfvolumen 19 wirkt über den Dämpfkanal 16 auf die Seite 6 des Dämpfkolbens 7, dessen dem Hubraum 9 zugewandte Seite gleichzeitig über den Verbindungskanal 14 mit dem Arbeitsdruck p1 beaufschlagt ist. Übersteigt der Dämpfdruck p2 im Dämpfvolumen 19 durch die weitere Bewegung des Zylinderkolbens 22 nun den Arbeitsdruck p1 wird der Dämpfkolben 7 angehoben, wodurch die Luft im Hubraum 9 komprimiert wird, da durch das Rückschlagventil 12 ein Zurückströmen der Luft verhindert wird. Durch den Hub des Dämpfkolbens 7 wird der Entlüftungskanal 5 geöffnet und die im Dämpfvolumen 19 eingeschlossene Luft beginnt über den Dämpfkanal 16, den Entlüftungskanal 5 und den Abströmkanal 3 abzuströmen. Durch das im Hubraum 9 eingeschlossene Luftvolumen entsteht im Hubraum 9 eine Gasfeder mit einer progressiven Federsteifigkeit
C L = A K 2 V E L ,

Figure imgb0001

mit AK der Fläche des Dämpfkolbens, V dem eingeschlossenen Volumen, das von den wirkenden Drücken abhängig ist, und EL, dem Elastizitätsmodul der Luft, der sich ergibt aus P*n, dem Druck multipliziert mit dem Polytropenexponent. Diese adaptive Gasfeder wirkt dem Hub des Dämpfelements 7 entgegen, wodurch der Abströmquerschnitt nicht schlagartig, sondern progressiv und in Abhängigkeit vom herrschenden Arbeitsdruck p1 geöffnet wird. Dabei verhält sich die Öffnungsfunktion annähernd linear zum Druck. Die Federkonstante dieser Gasfeder wird durch das Volumen und den Druck des Luftvolumens bestimmt. Wird der Arbeitsdruck variiert, ändert sich damit auch die Federkonstante der Gasfeder. Ändert sich die kinetische Energie des Zylinderkolbens 22, z.B. durch eine höhere Geschwindigkeit v oder eine andere Masse m, passt sich über unterschiedliche Druckverhältnisse der Hub des Dämpfelementes 7 und damit auch das Dämpfverhalten selbstständig an die neuen Gegebenheiten an. Dies funktioniert in einem gewissen Energiebereich, wobei die maximale Dämpfenergie nicht überschritten werden darf. Bei unterschiedlichen Arbeitsdrücken verschiebt sich die Kennlinie der Dämpffunktion.During the movement of the cylinder piston 22, the displaced air is discharged through the outlet channel 3 on the side of the cylinder piston 22 facing away from the pressurized side. The outlet channel 3 is advantageously dimensioned so that the entire displaced air without backflow (and thus without associated pressure increase) can be dissipated. When the cylinder piston 22 ascends in the region of the end position of the cylinder piston 22 by the movement on the damping pin 18, this is guided by a arranged in the recess 23 of the cylinder piston 22 damping seal 21, whereby the cylinder space is divided by the damping seal 21. This creates at the end of the movement of the Cylinder piston 22 a sealed chamber - the damping volume 19, in which the air remaining therein for damping the cylinder piston 22 is compressed by the movement thereof. This damping pressure p 2 in the damping volume 19 acts via the damping channel 16 on the side 6 of the damping piston 7, the displacement of which 9 facing side is acted upon simultaneously via the connecting channel 14 with the working pressure p 1 . If the damping pressure p 2 in the damping volume 19 exceeds the working pressure p 1 due to the further movement of the cylinder piston 22, the damping piston 7 is raised, as a result of which the air in the displacement 9 is compressed, because the air is prevented from flowing back through the check valve 12. By the stroke of the damping piston 7, the venting channel 5 is opened and the air trapped in the damping volume 19 begins to flow away via the damping channel 16, the venting channel 5 and the outflow channel 3. Due to the trapped in the displacement 9 air volume in the displacement 9, a gas spring with a progressive spring stiffness
C L = A K 2 V e L .
Figure imgb0001

with A K the area of the damping piston, V the trapped volume which is dependent on the acting pressures, and E L , the modulus of elasticity of the air resulting from P * n, the pressure multiplied by the polytropic exponent. This adaptive gas spring counteracts the stroke of the damping element 7, whereby the outflow cross section is opened not abruptly, but progressively and in dependence on the prevailing working pressure p 1 . The opening function behaves almost linearly to the pressure. The spring constant of this gas spring is determined by the volume and pressure of the air volume. If the working pressure varies, so does the spring constant of the gas spring changes. Changes the kinetic energy of the cylinder piston 22, for example by a higher speed v or another mass m, adapts itself to the new conditions via different pressure conditions of the stroke of the damping element 7 and thus also the damping behavior. This works in a certain energy range, whereby the maximum damping energy must not be exceeded. At different working pressures, the characteristic of the damping function shifts.

Wird der Öffnungsdruck im Dämpfraum 19 nicht erreicht, z.B. durch sehr niedrige Geschwindigkeiten beim Transport sehr kleiner Massen, besteht die Gefahr des Schwingens. Das Schwingen entsteht durch das Auffahren des Zylinderkolbens 22 auf das Luftpolster, das im Dämpfraum 19 gebildet wird, da die eingesperrte Luft nicht entweichen kann. Diesem Schwingen kann z.B. durch gezieltes Einbringen einer (oder mehrerer) Entlüftungsöffnung(en) 17, z.B. im Dämpfzapfen 18 oder im Zylindergehäuse 15, entgegengewirkt werden. Die Entlüftungsöffnung 17 kann dabei in ihrer Form, Lage und Größe den Gegebenheiten, z.B. der konstruktiven Ausgestaltung oder den zu erwartenden kinetischen Energien, angepasst werden.If the opening pressure in the damping chamber 19 is not reached, for example due to very low speeds when transporting very small masses, there is a risk of oscillation. The oscillation is caused by the driving up of the cylinder piston 22 on the air cushion, which is formed in the damping chamber 19, since the trapped air can not escape. This oscillation can be counteracted, for example, by deliberately introducing one (or more) vent opening (s) 17, for example in the damping journal 18 or in the cylinder housing 15. The vent 17 can be adjusted in its shape, location and size the circumstances, such as the structural design or the expected kinetic energies.

In Fig. 3 ist eine alternative Ausgestaltung einer erfindungsgemäßen selbsteinstellenden Endlagendämpfung gezeigt. In dieser Ausführung ist der Hubraum 9 im Zylinderkolben 22 angeordnet, ebenso wie der Verbindungskanal 14, das Rückschlagventil 12, der Dämpfkanal 16 und der Entlüftungskanal 5. Ansonsten ist die Funktion dieser Endlagendämpfung identisch mit der unter Bezug auf Fig. 2 beschriebenen.In Fig. 3 an alternative embodiment of a self-adjusting end position damping according to the invention is shown. In this embodiment, the displacement 9 in the cylinder piston 22 is arranged, as well as the connecting channel 14, the check valve 12, the damping channel 16 and the venting channel 5. Otherwise, the function of this cushioning is identical to that with reference to Fig. 2 described.

Fig. 4 zeigt eine weitere mögliche Ausgestaltung der Erfindung. In diesem Beispiel ist das Hubelement als elastische Dämpfdichtung 24 ausgeführt. Die Dämpfdichtung 24 ist dabei an der Ausnehmung 23 des Zylinderkolbens 22 angeordnet. Die Dämpfdichtung 24 ist dabei hohl ausgeführt und bildet somit ein Volumen zwischen dem Zylinderkolben 22 und der Dämpfdichtung - den Hubraum 9. Beim Auffahren des Zylinderkolbens 22 auf den Dämpfzapfen 18 teilt die Dämpfdichtung 24 wieder das Zylindervolumen, wodurch wieder das Dämpfvolumen 19 entsteht. Durch die weitere Bewegung des Zylinderkolbens 22 und der damit verbundenen Druckerhöhung im Dämpfraum 19 wird die Dämpfdichtung 24 zusammengedrückt, wie in Fig. 4 strichliert angedeutet. Dadurch hebt die Dämpfdichtung 24 vom Dämpfzapfen 18 ab und es entsteht ein ringförmiger Entlüftungskanal 5 zwischen Dämpfdichtung 24 und Dämpfzapfen 18, durch den die im Dämpfvolumen 19 eingesperrte Luft wieder abströmen kann. Im Hubraum 9 wird durch die Druckbelastung durch den Arbeitsdruck p1 wieder eine Gasfeder mit progressiver Federkonstante gebildet, die dem Zusammendrücken der Dämpfdichtung 24 entgegen wirkt. Die Funktion dieser Ausführung ist daher wieder identisch mit der unter Bezug auf Fig. 2 beschriebenen. Fig. 4 shows a further possible embodiment of the invention. In this example, the lifting element is designed as an elastic damping seal 24. The damping seal 24 is arranged on the recess 23 of the cylinder piston 22. The damping seal 24 is hollow and thus forms a volume between the cylinder piston 22 and the damper seal - the displacement 9. When driving the cylinder piston 22 on the damper pin 18 divides the damping seal 24 again the cylinder volume, which again the damping volume 19 is formed. Due to the further movement of the cylinder piston 22 and the associated pressure increase in the damping chamber 19, the damping seal 24 is compressed, as in Fig. 4 indicated by dashed lines. As a result, the damping seal 24 lifts off from the damping pin 18 and creates an annular venting channel 5 between the damping seal 24 and the damping pin 18, through which the air trapped in the damping volume 19 can flow out again. In the displacement 9 is formed by the pressure load by the working pressure p 1 again a gas spring with progressive spring constant, which counteracts the compression of the damping seal 24. The function of this embodiment is therefore again identical to that with reference to Fig. 2 described.

In den obigen Ausführungsbeispielen wird der Hubraum 9 immer durch den Arbeitsdruck p1 beaufschlagt. Es ist aber auch denkbar, den Hubraum 9 bzw. die adaptive Gasfeder von der Entlüftungsseite her zu beaufschlagen, wie nachfolgen anhand der Fig. 5 beschrieben wird. Auf Grund der üblichen Abluftdrosselung zur Geschwindigkeitsregulierung des Zylinderkolbens 22 ist auf der Entlüftungsseite ein Gegendruck p3 vorhanden, dessen Niveau niedriger ist als das der Belüftungsseite. Der Hubraum 9 wird in dieser Ausgestaltung über einen Verbindungskanal 14 und einem Kanal 11 mit dem Auslasskanal 3 verbunden, in dem der Entlüftungsdruck p3 anliegt. Im Verbindungskanal 14 bzw. im Kanal 11 ist wiederum ein Rückschlagventil 12 angeordnet, dass in Richtung des Entlüftungsdruckes p3 sperrt. Zum Ausgleich des nun niedrigeren Drucks im Hubraum 9 der adaptiven Gasfeder kann das Hubelement, hier wieder ein Dämpfkolben 7, mit unterschiedlich großen Kolbenflächen ausgeführt werden. Bis der Zylinderkolben 22 mit der Dämpfdichtung 21 auf den Dämpfzapfen 18 auffährt, sind der Druck p2 im Dämpfvolumen 19 und der Entlüftungsdruck p3 im Auslasskanal 3 gleich groß. Der Entlüftungsdruck p3 steht über den Verbindungskanal 14, das Rückschlagventil 12 und dem Kanal 11 auch im Hubraum 9 an. Schließt die Dämpfdichtung 21 das Dämpfvolumen 19 ab, fällt der Entlüftungsdruck p3 im Auslasskanal 3 stark ab. Im Hubraum 9 hingegen, bleibt dieser Druck auf Grund des Rückschlagventils 12 erhalten. Am Dämpfkolben 7 steht auf Seite 6 steht wieder der ansteigende Druck p2 im Dämpfvolumen 19 an und auf der anderen Seite des Dämpfkolbens 7 der Entlüftungsdruck p3 vor Dämpfbeginn. Ansonsten ist die Funktion dieser Endlagendämpfung identisch mit der unter Bezug auf Fig. 2 beschriebenen, wobei die adaptive Gasfeder nun vom Entlüftungsdruck p3 abhängig ist.In the above embodiments, the displacement 9 is always acted upon by the working pressure p 1 . But it is also conceivable to apply the displacement 9 and the adaptive gas spring from the vent side, as follows based on the Fig. 5 is described. Due to the usual exhaust throttling for regulating the speed of the cylinder piston 22, a back pressure p 3 is present on the vent side, whose level is lower than that of the ventilation side. The displacement 9 is connected in this embodiment via a connecting channel 14 and a channel 11 with the outlet channel 3, in which the venting pressure p 3 is applied. In the connecting channel 14 and in the channel 11, in turn, a check valve 12 is arranged that blocks p 3 in the direction of the venting pressure. To compensate for the now lower pressure in the displacement 9 of the adaptive gas spring, the lifting element, here again a damping piston 7, can be designed with piston surfaces of different sizes. Until the cylinder piston 22 ascends with the damping seal 21 onto the damping pin 18, the pressure p 2 in the damping volume 19 and the venting pressure p 3 in the outlet channel 3 are the same. The venting pressure p 3 is via the connecting channel 14, the check valve 12 and the channel 11 in the displacement 9 at. If the damping seal 21 closes off the damping volume 19, the venting pressure p 3 in the outlet channel 3 drops sharply. In displacement 9, however, this pressure is maintained due to the check valve 12. On the damping piston 7 is on page 6 is again the increasing pressure p 2 in the damping volume 19 and on the other side of the damping piston 7, the venting pressure p 3 before Dämpfbeginn. Otherwise, the function of this cushioning is identical to that with reference to Fig. 2 described, wherein the adaptive gas spring is now dependent on the venting pressure p 3 .

Selbstverständlich können die adaptiven Gasfedern der Endlagendämpfungen gemäß den Ausführungen nach den Figuren 3 und 4 wie oben beschrieben ebenfalls von der Entlüftungsseite, d.h. durch den Entlüftungsdruck p3, beaufschlagt werden.Of course, the adaptive gas springs of Endlagendämpfungen according to the embodiments of the Figures 3 and 4 as described above also from the vent side, ie by the venting pressure p 3 , are applied.

Die obigen Beispiele wurden zwar mit Luft als Druckmittel beschrieben, es ist aber selbstverständlich ebenso möglich, anstelle von Luft ein beliebiges anderes geeignetes Gas als Druckmittel zu verwenden.Although the above examples have been described with air as a pressure medium, it is of course also possible to use any other suitable gas as a pressure medium instead of air.

Claims (10)

  1. A pneumatic cylinder having a self-adjusting end position damping system having a cylinder housing (15), in which a movable cylinder piston (22) is arranged, which is loaded on one side by a working pressure (p1), and a damping volume (19), which is delimited by the non-pressure-loaded side of the cylinder piston (22), is formed by the movement of the cylinder piston (22) in the region of the end position of the cylinder piston (22), wherein the end position damping system comprises a stroke space (9), which is delimited by a stroke element (7, 24) that is movable therein and a part of the pneumatic cylinder (1), and wherein the stroke element (7, 24) is loaded on one side by the damping pressure (p2) present in the damping volume (19) via a damping duct (16), and a ventilation duct (5) is provided, which can be opened by the stroke element (7, 24) depending on the damping pressure (p2),
    characterised in that
    the stroke space (9) on the opposite side of the stroke element (7, 24) is connected via a connection duct (14) to the side of the cylinder piston (22) that is pressure-loaded by the working pressure (p1) or a ventilation pressure (p3) present in an outlet duct (3), and a check valve (12) is arranged in the connection duct (14) upstream of the stroke space (9), which check valve blocks in the direction of the working pressure (p1) or the ventilation pressure (p3), so that the stroke element (7, 24) opens the outflow cross section of the ventilation duct (5) depending on the ratio of the damping pressure (p2) effective on its one side to the working pressure (p1) or ventilation pressure (p3) enclosed in the stroke space (9) on its opposite side.
  2. The pneumatic cylinder according to claim 1,
    characterised in that
    a damping bolt (18), which extends into the cylinder housing (15) in the axial direction, is arranged in the region of the end stop of the cylinder piston (22), and the cylinder piston (22) is configured with a recess (23), which receives the damping bolt (18).
  3. The pneumatic cylinder according to claim 1,
    characterised in that
    the outlet duct (3) is arranged laterally on the cylinder housing (15) and at an axial distance from a cylinder cover (4).
  4. The pneumatic cylinder according to any one of claims 1 to 3,
    characterised in that
    the stroke element is configured as a damping piston (7), which is mounted such that it is guided in the stroke space (9).
  5. The pneumatic cylinder according to claim 4,
    characterised in that
    the stroke space (9) is arranged in a cylinder cover (4), which closes off the pneumatic cylinder (1).
  6. The pneumatic cylinder according to claim 4,
    characterised in that
    the stroke space (9) is arranged in the cylinder piston (22).
  7. The pneumatic cylinder according to claim 2,
    characterised in that
    an elastic sealing element (24) is provided as the stroke element between the damping bolt (18) and the cylinder piston (22), wherein the sealing element (24) is hollow and is arranged in the cylinder piston (22).
  8. The pneumatic cylinder according to any one of claims 1 to 7,
    characterised in that
    a ventilation opening (17), which is connected to the damping volume (19), is provided on the pneumatic cylinder (1).
  9. The pneumatic cylinder according to any one of claims 1 to 8,
    characterised in that
    a self-adjusting end position damping system is arranged at both end positions of the cylinder piston (22).
  10. A method for self-adjusting end position damping of a cylinder piston (22) of a pneumatic cylinder (1), which is moved in a cylinder housing (15) and is loaded on one side by a working pressure (p1), and wherein a damping volume (19), which is delimited by the non-pressure-loaded side of the cylinder piston (22), is formed by the movement of the cylinder piston (22) in the region of the end position of the cylinder piston (22), wherein a damping pressure (p2) is produced in the damping volume (19) by the movement of the cylinder piston (22), with which a stroke element (7, 24) is loaded, by means of the movement of which a ventilation duct (5) is opened for the damping pressure (p2),
    characterised in that
    the stroke element (7, 24) is moved by the damping pressure (p2) loading said stroke element against a closed off pressure medium volume, which is loaded with the working pressure (p1) or a ventilation pressure (p3), so that the stroke element (7, 24) opens the outflow cross section of the ventilation duct (5) depending on the ratio of the damping pressure (p2) effective on its one side to the working pressure (p1) or ventilation pressure (p3) present on its opposite side in the stroke space (9).
EP08156234.0A 2007-05-24 2008-05-15 Pneumatic cylinder with self-adjusting cushioning at the end of stroke and corresponding method Not-in-force EP1998054B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT8282007A AT504592B1 (en) 2007-05-24 2007-05-24 Piston-rod-less pneumatic cylinder, has stroke elements acted on damping duct, where ventilation duct to be opened by stroke elements, where stroke element connected to outlet duct
AT7142008A AT505441B1 (en) 2007-05-24 2008-05-05 PNEUMATIC CYLINDER WITH A METHOD AND DEVICE FOR SELF-ADJUSTING SUPPLEMENTAL DAMPING

Publications (3)

Publication Number Publication Date
EP1998054A2 EP1998054A2 (en) 2008-12-03
EP1998054A3 EP1998054A3 (en) 2012-08-15
EP1998054B1 true EP1998054B1 (en) 2014-08-13

Family

ID=39829770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08156234.0A Not-in-force EP1998054B1 (en) 2007-05-24 2008-05-15 Pneumatic cylinder with self-adjusting cushioning at the end of stroke and corresponding method

Country Status (2)

Country Link
US (1) US8596431B2 (en)
EP (1) EP1998054B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235400A (en) * 2010-04-22 2011-11-09 郑文瑞 Buffer device
DE102011051400B3 (en) * 2011-06-28 2012-06-06 Parker Hannifin Gmbh Pneumatic cylinder with self-adjusting cushioning
JP5960034B2 (en) * 2012-11-21 2016-08-02 株式会社ショーワ Pressure damper and suspension
CN103104572A (en) * 2012-12-11 2013-05-15 江苏锐成机械有限公司 Collision-proof hydraulic cylinder for high-speed machine tool
US9447834B2 (en) * 2013-09-19 2016-09-20 Dadco, Inc. Overtravel pressure relief for a gas spring
US20150076753A1 (en) * 2013-09-19 2015-03-19 Dadco, Inc. Overtravel Pressure Relief For A Gas Spring
CN103821790A (en) * 2013-11-29 2014-05-28 安徽凯信机电科技有限公司 Hydraulic cylinder with buffering mechanism
DE102016002705A1 (en) * 2016-03-05 2017-09-07 Wabco Gmbh Pneumatic switching device of an automated manual transmission
JP7447689B2 (en) * 2020-06-10 2024-03-12 Smc株式会社 gas cylinder

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1039844B (en) * 1957-05-23 1958-09-25 Pumpenfabrik Urach Hydraulic working cylinder with damping device
FR1527946A (en) * 1967-04-05 1968-06-07 Cie Parisienne Outil Air Compr Improvement in damping jacks
SE346468B (en) * 1969-02-24 1972-07-10 Lkb Medical Ab
US3613503A (en) 1969-04-28 1971-10-19 Cessna Aircraft Co Hydraulic cylinder with pressure control
US3889576A (en) * 1969-06-13 1975-06-17 Sheffer Corp Locking cylinder with improved locking structure
FR2138342B1 (en) * 1971-05-24 1974-03-08 Poclain Sa
GB1351958A (en) * 1971-09-14 1974-05-15 Martonair Ltd Pneumatic actuators
FR2182672B1 (en) * 1972-05-03 1975-03-21 Poclain Sa
NL182162C (en) 1977-01-10 1988-01-18 Hydraudyne Bv DEVICE FOR HYDRAULIC OR PNEUMATIC DRIVING AND BRAKING OF A TOOL.
ES226859Y (en) * 1977-03-03 1977-11-16 RHYTHM CONTROLLED CARDIAC PACEMAKERS BY REGULATORY SIGNALS DETECTED IN THE TRUNKS AND NOT THE NERVOUS RECEPTORS.
JPS57103947A (en) * 1980-12-18 1982-06-28 Kuroda Precision Ind Ltd Pneumatic shock absorber
JPS63143392A (en) * 1986-12-05 1988-06-15 Toyota Autom Loom Works Ltd Control method of wabble type variable capacity compressor
DE3740669A1 (en) * 1987-12-01 1989-06-15 Festo Kg PNEUMATIC SHOCK ABSORBER
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
SE467424B (en) * 1990-11-09 1992-07-13 Mecman Ab DEVICE FOR ABSORPTION ATTRACTION AND SPEED CONTROL OF A MOVEMENT OF A PISTON IN A PRESSURE CYLINDER
US5437285A (en) * 1991-02-20 1995-08-01 Georgetown University Method and apparatus for prediction of sudden cardiac death by simultaneous assessment of autonomic function and cardiac electrical stability
US5403341A (en) * 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US6039749A (en) * 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
JPH0893719A (en) * 1994-09-20 1996-04-09 Futaba Denki Kogyo Kk Stroke adjusting device of hydraulic or pneumatic cylinder
US5707400A (en) * 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
DE29517364U1 (en) * 1995-11-02 1996-01-04 Festo Kg End position damping device
US5727558A (en) * 1996-02-14 1998-03-17 Hakki; A-Hamid Noninvasive blood pressure monitor and control device
SE510463C2 (en) * 1996-11-26 1999-05-25 Pos Line Ab Method and apparatus for eliminating piston rod rust when starting a pneumatic motor
GB9710905D0 (en) * 1997-05-27 1997-07-23 Imperial College Stent for blood vessel
CH691846A5 (en) * 1997-06-20 2001-11-15 Ecole Polytech intravascular implant expansion deflector.
DE29803739U1 (en) 1998-03-04 1998-05-28 Buemach Engineering Internatio End position damping
US6663617B1 (en) * 1998-05-28 2003-12-16 Georgia Tech Research Corporation Devices for creating vascular grafts by vessel distension using fixed post and moveable driver elements
US6413273B1 (en) * 1998-11-25 2002-07-02 Israel Aircraft Industries Ltd. Method and system for temporarily supporting a tubular organ
US6442424B1 (en) * 1999-05-26 2002-08-27 Impulse Dynamics N.V. Local cardiac motion control using applied electrical signals
EP1072282A1 (en) * 1999-07-19 2001-01-31 EndoArt S.A. Flow control device
US6375666B1 (en) * 1999-12-09 2002-04-23 Hans Alois Mische Methods and devices for treatment of neurological disorders
US6764498B2 (en) * 1999-12-09 2004-07-20 Hans Alois Mische Methods and devices for treatment of neurological disorders
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US7158832B2 (en) * 2000-09-27 2007-01-02 Cvrx, Inc. Electrode designs and methods of use for cardiovascular reflex control devices
US8086314B1 (en) * 2000-09-27 2011-12-27 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US7499742B2 (en) * 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US6985774B2 (en) * 2000-09-27 2006-01-10 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7623926B2 (en) * 2000-09-27 2009-11-24 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7616997B2 (en) * 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US20080167699A1 (en) * 2000-09-27 2008-07-10 Cvrx, Inc. Method and Apparatus for Providing Complex Tissue Stimulation Parameters
US6522926B1 (en) * 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US6681136B2 (en) * 2000-12-04 2004-01-20 Science Medicus, Inc. Device and method to modulate blood pressure by electrical waveforms
US6585753B2 (en) * 2001-03-28 2003-07-01 Scimed Life Systems, Inc. Expandable coil stent
US7163553B2 (en) * 2001-12-28 2007-01-16 Advanced Cardiovascular Systems, Inc. Intravascular stent and method of use
JP2005519680A (en) * 2002-03-14 2005-07-07 ブレインズゲート リミティド Blood pressure control technology
DE60223535T2 (en) * 2002-09-04 2008-09-18 Endoart S.A. Device for closing surgical rings
ATE369820T1 (en) * 2002-09-04 2007-09-15 Endoart Sa SURGICAL RING WITH REMOTE CONTROL DEVICE FOR REVERSIBLE DIAMETER CHANGES
US7901419B2 (en) * 2002-09-04 2011-03-08 Allergan, Inc. Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use
DE10246766B3 (en) 2002-10-07 2004-07-01 Bosch Rexroth Ag Pneumatic cylinder damped in the end position
US7647931B2 (en) * 2002-12-30 2010-01-19 Quiescence Medical, Inc. Stent for maintaining patency of a body region
US7044981B2 (en) * 2003-01-22 2006-05-16 Boston Scientific Scimed, Inc. Ureteral stent configured for improved patient comfort and aftercare
US9271825B2 (en) * 2003-02-06 2016-03-01 Mike Arkusz Pulsating stent graft
JP4054990B2 (en) * 2003-03-07 2008-03-05 Smc株式会社 Cylinder device
US20060111626A1 (en) * 2003-03-27 2006-05-25 Cvrx, Inc. Electrode structures having anti-inflammatory properties and methods of use
US7201772B2 (en) * 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
US7479157B2 (en) * 2003-08-07 2009-01-20 Boston Scientific Scimed, Inc. Stent designs which enable the visibility of the inside of the stent during MRI
US7502650B2 (en) * 2003-09-22 2009-03-10 Cvrx, Inc. Baroreceptor activation for epilepsy control
US7480532B2 (en) * 2003-10-22 2009-01-20 Cvrx, Inc. Baroreflex activation for pain control, sedation and sleep
US7643875B2 (en) * 2003-12-24 2010-01-05 Cardiac Pacemakers, Inc. Baroreflex stimulation system to reduce hypertension
US7869881B2 (en) * 2003-12-24 2011-01-11 Cardiac Pacemakers, Inc. Baroreflex stimulator with integrated pressure sensor
US7486991B2 (en) * 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US7706884B2 (en) * 2003-12-24 2010-04-27 Cardiac Pacemakers, Inc. Baroreflex stimulation synchronized to circadian rhythm
KR20050071956A (en) * 2004-01-05 2005-07-08 삼성전자주식회사 Semiconductor memory device and manufacturing method thereof
DE102004012083A1 (en) * 2004-03-12 2005-09-29 Bosch Rexroth Teknik Ab Pressure cylinder
US8003122B2 (en) * 2004-03-31 2011-08-23 Cordis Corporation Device for local and/or regional delivery employing liquid formulations of therapeutic agents
US20060004417A1 (en) * 2004-06-30 2006-01-05 Cvrx, Inc. Baroreflex activation for arrhythmia treatment
WO2006012050A2 (en) * 2004-06-30 2006-02-02 Cvrx, Inc. Connection structures for extra-vascular electrode lead body
WO2006012033A2 (en) * 2004-06-30 2006-02-02 Cvrx, Inc. Lockout connector arrangement for implantable medical device
US7373204B2 (en) * 2004-08-19 2008-05-13 Lifestim, Inc. Implantable device and method for treatment of hypertension
US20060074453A1 (en) * 2004-10-04 2006-04-06 Cvrx, Inc. Baroreflex activation and cardiac resychronization for heart failure treatment
US7395119B2 (en) * 2005-05-19 2008-07-01 Cvrx, Inc. Implantable electrode assembly having reverse electrode configuration
US20080114439A1 (en) * 2005-06-28 2008-05-15 Venkatesh Ramaiah Non-occluding dilation device
US8923972B2 (en) * 2005-07-25 2014-12-30 Vascular Dynamics, Inc. Elliptical element for blood pressure reduction
EP1962949B1 (en) * 2005-12-20 2015-02-25 The Cleveland Clinic Foundation Apparatus for modulating the baroreflex system
US9026215B2 (en) * 2005-12-29 2015-05-05 Cvrx, Inc. Hypertension treatment device and method for mitigating rapid changes in blood pressure
US20080004673A1 (en) * 2006-04-03 2008-01-03 Cvrx, Inc. Implantable extravascular electrostimulation system having a resilient cuff
US20080051767A1 (en) * 2006-05-19 2008-02-28 Cvrx, Inc. Characterization and modulation of physiologic response using baroreflex activation in conjunction with drug therapy
US20080009916A1 (en) * 2006-05-19 2008-01-10 Cvrx, Inc. Applications of heart rate variability analysis in electrotherapy affecting autonomic nervous system response
US20080046054A1 (en) * 2006-06-23 2008-02-21 Cvrx, Inc. Implantable electrode assembly utilizing a belt mechanism for sutureless attachment
US8620422B2 (en) * 2006-09-28 2013-12-31 Cvrx, Inc. Electrode array structures and methods of use for cardiovascular reflex control
US20080132966A1 (en) * 2006-12-05 2008-06-05 G&L Consulting, Llc Stimulation of coronary artery baroreceptors
US20080161865A1 (en) * 2006-12-28 2008-07-03 Cvrx, Inc. Implantable vessel stimulation device coating
US20080167696A1 (en) * 2006-12-28 2008-07-10 Cvrx, Inc. Stimulus waveforms for baroreflex activation
US20080161887A1 (en) * 2006-12-28 2008-07-03 Cvrx, Inc. Noble metal electrodes with nanostructures
US20080167690A1 (en) * 2007-01-05 2008-07-10 Cvrx, Inc. Treatment of peripheral vascular disease by baroreflex activation

Also Published As

Publication number Publication date
EP1998054A2 (en) 2008-12-03
US8596431B2 (en) 2013-12-03
EP1998054A3 (en) 2012-08-15
US20080289920A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
EP1998054B1 (en) Pneumatic cylinder with self-adjusting cushioning at the end of stroke and corresponding method
EP1775495A2 (en) Vibration damper with adjustable damping force
AT402542B (en) INTAKE CONTROL VALVE
DE4114940C2 (en) Press arrangement
DE4202847A1 (en) Hydraulic tensioner or adjuster - has groove at piston ends to allow escape of air from pressure chamber
DE19901639B4 (en) Pressure-responsive valve, especially for a vibration damper
WO2010051907A1 (en) Device for compensating for hydraulic effective pressures
DE1936858C3 (en) Self-pumping hydraulic strut with internal level control for vehicles
DE102013107826A1 (en) Air spring for a motor vehicle
EP1625011B1 (en) Hydraulic drive
EP2483115B1 (en) Integrated hydraulic accumulator arrangement
DE4128623A1 (en) Piston and cylinder assembly
DE102011112553A1 (en) Control valve for automatic air brakes with sliding guides
DE4238790C2 (en) Air suspension unit
DE102008006777B4 (en) Valve train with a pneumatic reset system and method of operating the valve train
EP1729030B1 (en) Adjustable damper with gaseous damping medium
AT505441B1 (en) PNEUMATIC CYLINDER WITH A METHOD AND DEVICE FOR SELF-ADJUSTING SUPPLEMENTAL DAMPING
DE19709593C2 (en) Device for decelerating a moving mass
DE19804374B4 (en) Axial piston machine with medium pressure opening
DE102009013152A1 (en) Damping system for stop damping
EP1283143A1 (en) Gas-hydraulic damping device
EP2175161A2 (en) Valve device with amplitude-dependent damping force
DE102008058526B4 (en) Damping device for damping the return stroke of a convertible from a plunger of a press working piston
EP1616771B1 (en) Buffer for railway vehicles
DE102014215571A1 (en) damping valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PARKER ORIGA HOLDING AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 15/22 20060101AFI20120709BHEP

17P Request for examination filed

Effective date: 20130214

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140411

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 682426

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008012097

Country of ref document: DE

Effective date: 20140925

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140813

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141113

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008012097

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150515

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 682426

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210527

Year of fee payment: 14

Ref country code: IT

Payment date: 20210524

Year of fee payment: 14

Ref country code: FR

Payment date: 20210525

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210527

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008012097

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515