EP1996798B1 - Hydraulic circuit, in particular for camshaft adjuster, and corresponding control element - Google Patents
Hydraulic circuit, in particular for camshaft adjuster, and corresponding control element Download PDFInfo
- Publication number
- EP1996798B1 EP1996798B1 EP20070712301 EP07712301A EP1996798B1 EP 1996798 B1 EP1996798 B1 EP 1996798B1 EP 20070712301 EP20070712301 EP 20070712301 EP 07712301 A EP07712301 A EP 07712301A EP 1996798 B1 EP1996798 B1 EP 1996798B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- hydraulic
- pressure
- connection
- valves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000903 blocking effect Effects 0.000 claims description 12
- 238000002485 combustion reaction Methods 0.000 description 20
- 239000003921 oil Substances 0.000 description 19
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 11
- 230000008961 swelling Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000010705 motor oil Substances 0.000 description 3
- 230000036316 preload Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000010009 beating Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/34409—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear by torque-responsive means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M1/00—Pressure lubrication
- F01M1/16—Controlling lubricant pressure or quantity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/34423—Details relating to the hydraulic feeding circuit
- F01L2001/34426—Oil control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/34423—Details relating to the hydraulic feeding circuit
- F01L2001/34426—Oil control valves
- F01L2001/3443—Solenoid driven oil control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/34423—Details relating to the hydraulic feeding circuit
- F01L2001/34436—Features or method for avoiding malfunction due to foreign matters in oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/34423—Details relating to the hydraulic feeding circuit
- F01L2001/34436—Features or method for avoiding malfunction due to foreign matters in oil
- F01L2001/3444—Oil filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
Definitions
- the invention relates to a motor vehicle-hydraulic circuit, in particular with a camshaft adjuster, and corresponding controls.
- hydraulic pistons are used to change the position of a connected mechanical element, such as a camshaft.
- a connected mechanical element such as a camshaft.
- One type of hydraulic piston may be a rotary motor-type rotary piston or radial piston, also known as a hydraulic motor, which can rotationally change its position within a certain angular range.
- the piston moves within a housing, the piston forms hydraulic chambers on both sides, which are changed in opposite directions. This means that when a hydraulic chamber increases due to a change in position of the hydraulic piston, the corresponding chamber opposite the piston is reduced to a corresponding extent, and vice versa.
- the hydraulic chambers are of a similar design, so that the volumetric growth of one hydraulic chamber contributes to the same volume reduction of the corresponding other chamber. In this case, changes in volume are equivalent in amount or even identical.
- a very important hydraulic motor vehicle circuit is the camshaft adjusting circuit starting in the engine sump, which adjusts the relative position of the camshaft relative to a driving shaft, such as, for example, the crankshaft or a further camshaft, via corresponding valves and a pivoting motor-type camshaft adjuster. The adjustments are made towards an earlier or later time with respect to the rotational angle of the driving shaft or with respect to the position of the piston.
- a driving shaft such as, for example, the crankshaft or a further camshaft
- Such a system unlike, for example, closed systems with a single hydraulic circuit, as known motor vehicle transmissions are constructed, is considered to be an open system operating with variable volumes of oil because there are multiple hydraulic circuits in the engine sump starting in the internal combustion engine.
- Other known hydraulic circuits in the motor vehicle may be, for example, transmission controls which are either supplied to the central, with engine oil Hang hydraulic circuit or an independent, self-contained hydraulic circuit.
- the use of the introduced from the camshaft on the camshaft adjuster torque for adjusting the camshaft adjuster to an early position is from the DE 101 58 530 A1 and the DE 10 2005 023 056 A1 known. While the DE 101 58 530 A1 wants to use the technology to get into the early position more quickly, when the engine drops from a hot run phase in a low speed range, wants the DE 10 2005 023 056 A1 especially in the event of a supply pump failure, ensure that the camshaft is turned into a position in which it is possible to continue operation in the early position. For this purpose uses the DE 101 58 530 A1 a check valve with a pressure compensation valve in the camshaft adjuster itself, while the DE 10 2005 023 056 A1 want to arrange several check valves around the pump around.
- the DE 602 07 308 T2 proposes to use a valve which distinguishes between two states, namely between a high speed range in which an oil pressure actuated camshaft adjustment takes place, and a low speed range in which a camshaft torque actuated camshaft adjustment takes place.
- the changeover switch switches between the two states depending on the operation.
- control quality is specified in camshaft adjusters, inter alia in angular degrees in which the camshaft adjuster shuttles, although a defined, constant position acc. Pressurization from the supply pump is desired.
- the deviation from the theoretically set position in angular degrees is then called control quality.
- a suitable valve can be taken from claim 1.
- Advantageous embodiments can be taken from the dependent claims.
- a hydraulic system is proposed according to the invention, which can get along with both swelling and with pure alternating torques , Depending on the load and reaction of the driven and displaced shaft, such as the camshaft, alternately swelling moments and alternating moments occur.
- the motor control unit serving to control the hydraulic switch for example the camshaft adjuster valve, is no longer dependent on constantly introduced alternating torques, but in one embodiment must actively activate only a single valve while the remainder of the hydraulic circuit is operated passively.
- alternating moments are moments on the hydraulic piston, which both temporarily have a positive, variable component and a temporary negative component.
- swelling moments are those moments which, although they change in magnitude, remain over a longer period of several milliseconds in the same sign range of the torque characteristic.
- the motor vehicle hydraulic circuit with a counter-rotating hydraulic piston with at least two hydraulic chambers acts an external moment, which acts either changing or swelling.
- the hydraulic circuit performs by different pressurization, which is removable from a hydraulic pump, the counter-rotating hydraulic chambers by a change in position.
- a hydraulic Weichenver ein preferably embodied by a valve which directs the pressurization of the hydraulic medium to the piston, the negative portion of the alternating torque is used to change the hydraulic piston in position.
- the swelling part of the moment will be by other means, such as check valves, hidden.
- hydraulic connection paths from one chamber of one type to the working connection for the other chamber type are respectively provided.
- the valve may pass the hydraulic pressure, which is derivable from the negative portion of the alternating torque on the one working port for one chamber type via at least one check valve, to the second working port of the other type of chamber. It can be done alternately.
- the pressurization of the pressurized port is forwarded to the second working port.
- the alternate passage of the hydraulic medium is carried out from both the one chamber and the other chamber to the corresponding counter-rotating chamber.
- the motor vehicle hydraulic circuit is constructed in the context of a camshaft adjuster, the motor vehicle hydraulic circuit is an engine oil-operated hydraulic circuit of an internal combustion engine whose hydraulic piston is a pivoting motor-type or helical camshaft adjuster into which the torques of at least one camshaft are introduced.
- the size of the gas exchange valve springs and their number has an influence on the frequency and type of introduced moments from the camshaft to the camshaft adjuster.
- a manufacturer of camshaft adjusters is asked to offer camshaft adjusters for internal combustion engines, which should be as universally applicable. Often a car manufacturer wants to use one and the same camshaft adjuster for different engines of different series.
- the manufacturer of the phaser may make specifications regarding the hydraulic circuit, so that it is possible to improve the behavior of the camshaft adjuster by selecting a suitable valve or a suitable valve assembly and a phaser together with the hydraulic interconnection.
- the function of the check valves can be referred to as a bypass, which feed only the negative part of the alternating force before the switch again.
- the check valve or if there are a plurality of non-return valves, the check valves is then arranged so that only in the direction of the pressure side of the switch, a passage of the hydraulic pressure originating from the chambers of the piston, is made possible.
- the divert activity in the automotive hydraulic circuit functions when the amount of pressure resulting from the alternating force exceeds the other pressure in one of the supply lines to the increasing chamber of the piston and then releases the check valve provided for directional determination.
- the remindschlaasventile may be arranged so that the two hydraulic chambers of the piston are indirectly connected. In this case, make a connection over the switch to get from one chamber to the other.
- Another variant is the direct connection, in which when opening the check valve, a direct hydraulic Connection is created from one hydraulic chamber to the other. Which of the two variants is to be selected depends on the respective framework conditions for the motor vehicle hydraulic circuit to be created.
- an alternative embodiment can be used to design an indirect connection via the hydraulic switch. Should it be desired to allow the fastest possible transhipment, if possible with little leakage, an immediate connection via the non-return valves from one chamber of the piston to the other chamber should be chosen.
- one of the check valves is arranged in a blocking direction so that a connection can be established from the hydraulic-pressure input side of the hydraulic switch to an output side of the hydraulic switch.
- the output side of the hydraulic switch is according to this embodiment with one of the hydraulic chambers of the piston in connection.
- the proposed embodiment is a fairly compact variant. It impresses with its simplicity and simplicity.
- the directional choice of the hydraulic piston can be adjusted by a hydraulically controlled valve.
- a hydraulically very stable system results from its feedback looping.
- a hydraulically controlled valve serves to pressurize one of the hydraulic chambers to the other Hydraulic chamber to connect.
- the hydraulic dependencies ensure stabilization of the hydraulic circuit.
- the central valve is arranged either in the axial center of the camshaft adjuster or as an axial extension of the camshaft adjuster.
- the central valve or assembly includes a pressure reducing valve, a check valve or a two-way valve.
- the hydraulic circuit may comprise a partial hydraulic circuit, which is composed of three hydraulically controlled valves.
- the three valves take on the task alternately obstruct two supply lines and two return lines or switch freely.
- the hydraulic circuit can be designed so that the essential component is a valve. It is then a valve for a motor vehicle hydraulic circuit.
- the valve is intended, in particular in the case of a pivoting motor-type camshaft adjuster, to pass through the torque fluctuations, which can occur both as alternating moments and as swelling moments, with the hydraulic pressure which is transmitted from the pressure source, which is transmitted to the pressurized connection of the valve.
- a typical cam phaser valve may be a four port valve.
- a connection is the connection that is switched directly or indirectly to the permanent pressure sources. It is the P port.
- Another connection is the tank connection, which usually leads into the engine sump.
- Working connections which lead to the chambers of the hydraulic piston, are alternately switched through or interrupted depending on the switching position of a hydraulic piston within the valve.
- check valves are used for passing the negative portion of the alternating torque.
- the check valves are arranged to prevent hydraulic fluid flow from the pressurized port of the valve on the working port when the pressure resulting from the amount of the negative portion of the alternating torque, calculated by the above formulas, is absolutely greater than the pressure of the pressurized port.
- the valves work as a directional drainage, so to speak.
- valves with two switching states apply as check valves according to the invention, if they are to realize the same function.
- technically subordinate solutions can also be chosen without falling outside the scope of equivalence or the meaning of the term check valve.
- a suitable measure is to bias the valve in particular with a spring and build the entire valve as a cartridge valve.
- the cartridge valve is called a camshaft cartridge valve for a phaser.
- Particularly suitable are check valves that represent a kickback strap.
- the band is shaped into a ring. The self-holding of the band, the valves open in one direction and close in the other direction.
- the entire cartridge valve thus forms an integrated component with non-return valves. All cross connections within the cartridge valve are realized by transverse bores and recesses in the sleeve and in the piston.
- the hydraulic piston can assume two or three switching positions. Actually, there are physically switching conditions.
- the valve is designed as a directional control valve. In the first position, which results from a bias, but does not require active control of the piston, there is an open position. It is a parallel connection.
- a parallel connection is understood to mean that the pressurized connection P leads to the first working connection A.
- the second working connection leads to the tank connection. If there is a connection from the P port to the second port B, and a connection from the first working port A to the tank port T, it is spoken of a cross-connected open position.
- the open position in parallel connection and the open position in cross-connection represent two of the two or three existing.
- the third position may be a broken or closed position. It can be arranged on the piston so that the interrupted position is between the first and the second open position.
- valves can be used which have more than three positions along their piston.
- the first check valve is arranged so that pressure peaks of the first working port are passed through the check valve.
- the second check valve is arranged so that pressure peaks of the second working port can be passed through this check valve.
- a third check valve is designed as a pump protection valve. To protect the pump one or two check valves in the reverse direction, so to speak contrary, introduced into the valve. Thus, only one of the two paired check valves can open.
- the valve can be installed in the cylinder head of the internal combustion engine or in the camshaft adjuster itself.
- a bypass line is routed via the switch or a separate valve.
- This implementation reduces the component cost considerably and ensures easy to implement piston assembly within the valve.
- an external influence e.g. B. via a separate control valve.
- the absolute amount of pressure peaks resulting from the force or the moment has no influence on the concrete controllability. The fact increases the control quality. Also, the pressure differences in the system of subordinate importance.
- FIG. 1 a torque characteristic, starting from which the inventors to the embodiments of the FIGS. 2 to 6 a hydraulic circuit have arrived
- FIG. 7 shows a common camshaft adjuster with axial extension of the central axis for receiving a partial hydraulic circuit
- the FIGS. 8a to 8c represent a possible valve with check bands in three different positions
- the FIGS. 9 to 12 disclose further suitable embodiments for a hydraulic switch according to the invention
- FIG. 13 represents a measurement or computational protocol of various inventive, here disclosed systems, compared to a classical, known system.
- both phases of a swelling moment occur as phases of an alternating torque M, in which both negative and sometimes positive components can occur.
- the moment or the force
- the opposite moment can be used successfully. It is therefore desirable to have a circuit that can use the opposite moment as effectively as possible without actively influencing itself, so that the pressure 250 can be discharged therefrom.
- FIGS. 2 to 6 different embodiments of the invention are disclosed, where it depends on the concrete conditions in the design of the motor vehicle hydraulic circuit, in particular the camshaft hydraulic circuit, which can be applied to the illustrated hydraulic plans. Similar components or components with similar functions are in all embodiments of FIGS. 2 to 6 have been listed with the same reference numerals. For readability reasons, not all similar parts are named individually in each embodiment, but for a better understanding reference is made to similar embodiments.
- a camshaft adjuster 100 has at least two chambers A and B. As a rule, these chambers occur several times alternately.
- Two supply lines 28, 30 extend from the secondary side of the hydraulic switch 10 to the camshaft adjuster. The lines can be selected arbitrarily short or long, it depends on whether the hydraulic switch 10 is located far away at another location in the internal combustion engine, or whether the switch 10 and the camshaft adjuster 100 are integrated into one component.
- the hydraulic switch 10 On the primary side, the hydraulic switch 10, which is spring-biased by the spring 32, and is electrically adjustable via the electrically controlled plunger 64, a pressurized port P and a tank port T, which leads into the motor sump 7.
- the pressure supply line 34 leads.
- a first and second return line 16, 18 are connected, for example, by means of branch lines or cross-drilled lines.
- the first check line has a first return valve 12
- the second check line 18 has a second check valve 14.
- the check valves lead to the pressure supply line 34.
- the first check line 16 acts on the first working port A1
- the second check line 18 acts on the second working port B1.
- a summation point is present, on which lead both the check valves 12, 14 and a pump protection valve.
- the pump protection valve 44 and the check valves 12, 14 are arranged with respect to the node unlocking.
- a further pressure supply line 36 is provided, which is in communication with the hydraulic pump 5.
- a 4/3-way valve 60 has been selected, which has an opening position in Kneuzverscaria 50, a blocking position 52 and an open position in parallel connection 54. Without energization of the electrically controlled plunger 64, the spring 32 presses the hydraulic piston of the valve 10 in the open position in parallel connection 54.
- a first other position depending on the design of the valve can be selected.
- the pump protection valve 44 opens in the hydraulic oil-free state and hydraulic medium flows out of the motor sump or oil pan 7 via the valve 10 into the first hydraulic chamber A, which increases and thereby reduces the second hydraulic chamber B.
- the electrically controlled plunger 64 adjusts the hydraulic piston of the valve 10 and the open position is cross-connected 50, the hydraulic medium from the chamber A via the working port A1 to the tank port T is discharged, while new hydraulic medium, conveyed by the hydraulic pump 5, in the second Hydraulic chamber B is initiated.
- the hydraulic chamber B thereby increases, while the hydraulic chamber A is correspondingly reduced in size.
- the camshaft adjuster in addition to the normal adjustment a torque or force, and amplifies this introduction the adjustment, the respective check valve 12, 14 is opened. By an increasing pressure in the pressure node locks the pump protection valve 44 while the check valve 12 or the check valve 14 is opened by the introduction of force. Due to the hydraulic routes there is no instantaneous but almost immediate alternation between the types of valves.
- FIG. 3 A further embodiment of a hydraulic circuit according to the invention is in FIG. 3 to see.
- a valve 10 has been selected as a hydraulic switch, but which is directly via a pressure supply line 36 to the hydraulic pump 5 in conjunction, while another port of the valve 10, a 4/3-way valve 60 is on the motor sump 7 leads.
- the 4/3-way valve 60 has a first state, the open position in parallel connection 54, which is occupied by a spring bias of the biasing spring 32 in the de-energized or low-energized state of the electrically controlled plunger 64, a blocking position 52 and an open position 50 in cross-connection.
- valves 44, 46 which operate as pump protection valves, on one side and on hydraulically controlled tappet connections 66 of a further valve, which is a 4/2-way valve 62 with two positions.
- the throttle 38, 40 are supply chokes. The connection through the supply chokes 38, 40 from the valve 10 via distribution lines 70, 72.
- the pump protection valves 46, 47 have together with check valves 12, 14 to a P port of the 4/2 Directional valve 62.
- the four ports of the valve 62 are the P port for the pressure supply, the T port for the tank, a first working port A1 and a second working port B1.
- the working ports A1, B1 lead via supply lines 28, 30 to the hydraulic chambers A, B of the hydraulic piston 3 and the camshaft adjuster 100, which are mechanically fixedly connected to the camshaft 102.
- the hydraulic chambers A, B are also connected to non-return lines 16, 18, in which the non-return valves 12, 14 are installed opposite to each other.
- Leckagesrosseln 42 in the supply lines point to the trough in the motor sump 7.
- the hydraulic circuit 1 thus includes four check valves in addition to a 4/3-way valve 60 and a 4/2-way valve 62, the 4/3-way valve is mechanically biased and electrically adjustable and the 4/2-way valve 62 has a plunger 66 hydraulically clamped on both sides.
- the position of the camshaft adjuster is selected. If the selected early or late position of the camshaft with respect to the crankshaft or another camshaft is set, the valve remains in the blocking position 52.
- the hydraulic circuit beyond the supply throttles 38, 40 is decoupled from the hydraulic pump 5.
- the pump protection valves 44, 46 remain in the locked state.
- one of the two check valves 12, 14 opens and provides for a reverse transfer of the hydraulic fluid from one chamber to the other chamber.
- About the 4/2-way valve 62 and the set by the hydraulic bias ram position results in a possible hydraulic unloading one of the two chambers A, B.
- FIGS. 4 and 5 show two quite similar, inventive embodiments of a hydraulic circuit 1 with a camshaft adjuster 100, which is shown as a hydraulic piston 3.
- the hydraulic circuit 1 in the FIG. 4 schematically shows a hydraulic circuit for a hydraulic piston 3 and a camshaft adjuster 100, which moves the camshaft 102 in a relative phase.
- the camshaft adjuster 100 has a plurality of opposing chambers A and B, which can be hydraulically loaded to different pressure levels via the supply line 28 for the hydraulic chamber B and the supply line 30 for the hydraulic chamber A to a hydraulic medium to the camshaft 102 in an early or a To adjust late position.
- a supply line for a plurality of hydraulic chambers A, B reduces the leaks and thus the pressure losses in the system of the hydraulic circuit 1.
- From the output-side terminals A1 and B1 in the supply lines 28, 30 have check lines 16, 18, in the check valves 12, 14 are installed in the reverse direction to allow a passive, automatic transfer from a chamber to the corresponding counter chamber.
- the hydraulic switch 10 is a biased with a spring 32 4/2-valve that can take a changing position between an open position in Wienverscaria 50 in the idle state and an open position in parallel connection 54.
- the plunger of the valve is actuated hydraulically via a pressure reducing valve 22 or a similarly acting second pressure reducing valve 24.
- FIG. 4 are represented by the supply chokes 38, 40 which are arranged between the pressure generator, the hydraulic pump 5, and pressure reducing valve 24 on one side and the switch with the connected supply lines 16, 18, 28, 30 and the camshaft adjuster 100. Reflows of the system are at the pressure reducing valve 24 (embodiment of the FIG. 4 ) or pressure reducing valve 22 (embodiment of the FIG. 5 ), returned to the leaks 42 and the hydraulic switch 10 in the trough 7 of the tank of the engine sump.
- the pressure reducing valve 24 may be biased by a spring 33.
- the check valve 44 protects the pump 5.
- integrated components such as the hydraulic switch 10, the 4/2-valve, and numerous check valves 12, 14, 44 in the camshaft adjuster, preferably on the camshaft remote side.
- FIG. 4 is the hydraulic switch 10 as a 4/2 valve, also referred to as 4/2-way valve, which is biased on one side by the biasing spring 32, shown.
- the two states of the 4/2-way valve 62 are the open position in parallel connection 54 and the open position in Wienverscrien 50.
- the plunger of the valve 62 is a hydraulically controlled plunger 66.
- the P port opens into the oil pan 7 of the internal combustion engine.
- the two working ports A1 and B1 which lead via the two supply lines 28, 30 to the hydraulic chambers A, B of the hydraulic piston 3 are returned via the non-return lines 16, 18 with the two check valves 12, 14 to a hydraulic summation point of the pressure supply line 34, the to the P port of the 4/2-way valve 62 has.
- a further check valve 44 can be seen, which is arranged as a pump protection valve camshaft adjuster side before the leakage throttle 42 and the supply throttle 38 in the pressure supply line 36.
- a distribution line 70 leads to the pressure reducing valve 24, which is held biased by an adjustable biasing spring 33 in a rest position. Both the distribution line 70 and the pressure supply line 36 are supplied by the hydraulic pump 5.
- the pressure reducing valve 24 is arranged on the engine block side, hydraulically following in the direction of the hydraulically controlled plunger 66 acts a supply throttle 40 and a Leckagesrossel 42. The Leckagesrossel 42 also open into the oil pan 7.
- the hydraulic circuit 1 thus has four points at which oil in the Hydraulic trough 7 can disappear: the 4/2-way valve 62, behind the first supply throttle 38; behind the second supply throttle 40, in each case via the leakage throttle 42; on the Druckneduzierventil 24.
- the 4/2-way valve 62 has only two positions, it eliminates the blocking position 52. If a moment is introduced to the camshaft adjuster 100, so that the hydraulic chamber B and the hydraulic chambers B decrease, the excess hydraulic fluid on the Feed line 28, the check line 18, the check valve 14 introduced into the summation point of the pressure supply line 34. Approximately at the same time closes the pump protection valve 44, and thus disconnects the hydraulic pump 5 from.
- the pressure peak can not penetrate damaging to the hydraulic pump 5, but is directed via the 4/2-way valve 62 and the hydraulic switch 10, depending on the position of the hydraulically controlled plunger 66 either in the chamber A or back into the chamber B.
- the control quality can be adjusted via the setting of the pressure reducing valve.
- FIG. 5 From the FIG. 5 is a very similar hydraulic circuit 1 as after FIG. 4 can be seen, a difference, the pressure reducing valve 22 is the one-sided spring biased over the Biasing spring 32 is, and can be electrically adjusted, in which the electrically controlled plunger 64 is addressed.
- the hydraulic circuit reacts similarly to the description FIG. 4 with the exception that a valve position can be selected electrically from the vehicle control unit or the engine control unit.
- a valve position can be selected electrically from the vehicle control unit or the engine control unit.
- FIG. 6 shows another hydraulic circuit 1 according to the invention, which can be arranged as integrated components in the camshaft adjuster 100 as similar to that in the construction example according to FIG. 7 is disclosed.
- rotary unions which are shown as supply reactors 38, 40 with their associated, but often unwanted, leakage throttles 42, to the oil pan 7, the skilled person will recognize that in the present embodiment FIG. 6 except for the hydraulic switch 10, all components are installed in the camshaft adjuster 100.
- the hydraulic switch 10 which is a 4/3-valve with a spring preload for the defined rest position intake by the spring 32, lead to the camshaft adjuster 100, two distribution lines 70, 72, which in the camshaft adjuster 100 in two control lines 74, 76 before divide the check valves 46, 47 and two mareilineden lines.
- the 4/3-valve has an open position in Wienverscnies 50, an open position in parallel connection 54 and a blocking position 52, wherein in the rest position, the open position is taken in parallel connection. Due to the hydraulic coupling between the valves 26, an inflow direction from the pressure supply of the hydraulic pump 5 into one of the chambers A, B of the camshaft adjuster 100 is alternately opened, while the other valve allows a discharge direction to the trough 7.
- the pressure compensation valve 56 is hydraulically clamped on both sides, so that depending on the supply position of the switch 10 one of the two lines 16, 18, which are also part of the check lines, the pressure-supplied chamber A, B can switch.
- the check valves 13, 15 together with the pressure compensating valve 56 release at hydraulic pressure over the supply pressure in the lines to the chambers a hydraulic path to allow discharges under pressure or momentum pulses from the camshaft from the reducing chamber in the enlarging chamber.
- FIG. 7 a constructive variant of the hydraulic circuit 1 of a camshaft adjuster 100 according to the invention with a camshaft 102 is shown.
- the rotor 108 merges into a rotor bearing 114, which is designed with a smaller diameter than the rotor 108 with its wings 104 and the axial extension 20.
- a rotor bearing 114 rotary unions are integrated, the are shown in the schematics as supply chokes 38.
- Some supply lines and control lines turn away from the wings 104 and lead first into the axial extension 20.
- the axial extension 20 is cap-like designed as a cylindrical, circular construction section, the approximately centrally, preferably arranged in the center of gravity of the rotor 108, provides space to include such components as check valves 46, 47 and two-way valves 26.
- Gem. Hydraulic plan 1 of FIG. 6 Lines from the cap to the wings 104 and the chambers A, B. In some wings 104 check valve 13, 15 are arranged, the Umladeoxyn from the chamber of the first type to the chambers of the second type of the camshaft adjuster 100 respectively, in particular together with the pressure compensation valve 56, release. In other wings 104 Veririegelungsö réelleen 106 can be arranged. A third type of wing has no other functions, it is designed massive.
- the term "beating" being understood to mean that there is no actual contact due to a damping hydraulic chamber 116 and a dirt collecting area 118, one of the chambers, e.g. B. the chamber A, in its maximum extent.
- the hydraulic medium of one chamber type, for. B. chamber type B in the chambers of the other type, for. B. chamber type A, via the associated check valve, z. B.
- check valve 15 are reloaded by the non-return valve yields the overpressure and thus clears the way, optionally via a pressure compensation valve 56, which may be, for example, in the axial extension 20, the deflected pulse from the camshaft 102 and its gas exchange check valves (not shown ) to use the energy in the hydraulic fluid to improve the control quality.
- a pressure compensation valve 56 which may be, for example, in the axial extension 20, the deflected pulse from the camshaft 102 and its gas exchange check valves (not shown ) to use the energy in the hydraulic fluid to improve the control quality.
- the supply chokes 38, 40 and the leakage chokes 42 are above the hydraulic switch 10, in the present example a 4/3-way valve 60 is shown.
- the position of the camshaft phaser 100 is adjusted by the electrical driving of the electrically controlled plunger 64 of the 4/3-way valve 60 against the biasing force of the biasing spring 32.
- the pressure on the hydraulic medium from the hydraulic pump 5 in the hydraulic chamber A or in the hydraulic chamber B of the camshaft adjuster 100 via one of the two hydraulically controlled Two-way valves 26 are routed.
- the two two-way valves 26 are alternately on and are in the passage position. If a hydraulic passage takes place through the one two-way valve, then a hydraulic lock by the other hydraulic valve takes place at the same time.
- To adjust the position of the plunger serve the control lines 74, 76, which are each connected to a distribution line 70, 72.
- the control line 74, 76 are connected in front of the pump protection valves 46, 47 and behind the supply throttles 38, 40.
- the pressure compensation valve 56 is also a two-way valve whose piston is clamped by the control line 74, 76 on both sides. Depending on the pressure conditions in the control lines, a connection via either one return line 16 or the second return line 18 takes place.
- On the other side of the pressure compensation valve 56 two antiparallel-connected check valves 13, 15 are arranged, the pressure peaks from the hydraulic chambers A and B or multiply A and B of the camshaft adjuster 100 directed to reload into the respective other chamber.
- the three valves 26 and 56 are installed together with the check valves 46, 47, 13, 15 camshaft adjuster side.
- a common 4/3-way valve 60 which is familiar to any expert used. The control quality improvement takes place via the camshaft adjuster, in particular via the non-return valves 13, 15 and the associated hydraulic switches.
- FIG. 7 shows a complete structural implementation of the camshaft adjuster side portion of the hydraulic circuit 1 of FIG. 6
- a rotor 108 In the camshaft adjuster 100 is a rotor 108 can be seen, the axial center is cylindrically elongated to accommodate the hydraulic arrangement of the valves 26, 56, 46 and 47 can.
- the rotor 108 moves in a pivoting manner in its stator 112. Components are introduced in the blades 104 of the rotor 108.
- Two of the wings 104 have the check valves 13, 15.
- a third wing has a locking aperture 106 for a known locking pin, such as shown in FIG DE 10 2005 004 281 A1 (Hydraulic Ring GmbH) known.
- FIG. 8a to FIG. 8c map the same valve with different plunger and piston positions in sectional drawings.
- the valve 200 comprises a magnetic part 218 and a hydraulic part 220.
- a hydraulic part 220 has been adapted to a known magnetic part 218.
- the selectively hydraulically or electrically controlled plunger here, for example, an electrically controlled plunger 64, moves the hydraulic piston 202 against the biasing spring 32.
- the biasing spring 32 is oil-filled, through which the oil flows to the trough 7 via the port T.
- the oil enters the
- the connections for the hydraulic chambers A, B have in each case two through openings A 1 and B 1.
- One of the existing openings in the sleeve A1, B1 is underlaid with a band-shaped check valve 204, 208. Due to the discharge edges on the hydraulic piston 202 alternately one of the openings is switched through.
- a filter 216 is arranged outside the sleeve 210, preferably permanently inserted, under which a further band-shaped ring 206 is placed, which also serves as a check valve like the two belts 204, 208 works.
- the check valve clears the path to the hydraulic piston 202, while the pump protection valve 404, consisting of the band-shaped ring 206, decouples the pressure source at the port P.
- the bands 204, 208, 206 are placed below the surface 212. Instead, depending on the position of the hydraulic piston 202, which is recessed along a substantial portion of its outer radius to form a continuous channel, the pressure peak can be reloaded from port A to port B.
- This very compact realization of a valve 200 schematically in FIG. 9 shown, shows an elegant realization of the ereindung in the form of a cartridge valve 214, the well-known Openings of cylinder heads of conventional internal combustion engines can be screwed.
- FIG. 9 The 4/3-way valve 62 of FIG. 9 can with reference to the FIGS. 2 to 6 in which similar parts have already been described, are easily understood by consideration, if any FIG. 8a to FIG. 8c is involved.
- FIG. 10 discloses a 4/3-way valve 60 with the four ports P, T, A1 and B1. The three states, the open position in Wienverscnies 50, the blocking position 52 and the open position in parallel connection 54. On one side, the valve is spring-biased by the biasing spring 32. The piston of the valve can be controlled by the electrically controlled Tappet 64 are moved against the spring. With the knowledge of how non-return valves 12, 14 and pump protection valves 46, 47 can be realized by means of belts 204, 206, 208, a similar implementation as in FIG FIG. 8 due to the valve shown schematically in FIG FIG. 10 possible. Pump protection valves 46, 47 and the check valves 12, 14 have in opposite directions of flow.
- the check valves 12, 14 establish a connection between the terminals A 1 and B 1, when on the non-pressure-supplied side, but the pressure-relieved side T, a pressure peak occurs.
- the pump protection valves 46 or 47 close at that moment.
- the hydraulic source for example in the form of the hydraulic pump 5, is decoupled and a compensation takes place between the chambers A and B of the camshaft adjuster 100 via one of the non-return valves 12, 14.
- the 4/3-way valve 60 with the biasing spring 32 and the electrically controlled plunger 64 of the FIG. 11 is similar to the valve of the FIG. 10 , wherein the flow direction limiting unilaterally opening valves 12, 14 and 44 have been removed from the actual piston portion 202 and apply as the valve upstream. It will be appreciated that such a hydraulic piston 202 must provide more cross-links between the ports A1, B1, P and T. In the connection forming positions, the first and the third state, the P-terminal is led to at least two output-side terminals. Two further connections, a P and a T connection, are also routed to the other side of the valve or to the working connections A1, B1.
- FIG. 12 Also, a 4/3-way valve 60 is shown, the check valves 12, 14 have not been positioned on the working port side, but are provided on the pressure supply side of the terminal P. Becomes FIG. 11 With FIG. 12 compared, it can be seen that the otherwise selected arrangement of the check valves, while maintaining the pump protection valve 44 at the P port, otherwise internal bridging over the edge selection of the hydraulic piston 202 of the valve 200 result.
- the valve shows, in each case viewed from the working ports A1, B1 ago, a double-connected connection to the ports P and T.
- the open position in Wienverscrien 50 and the open position in Parallel connection 54 find in individual positions next to the blocking position 52.
- FIG. 11 the positions defined above are not so directly applicable.
- the FIG. 13 represents the control deviation of a classic camshaft adjuster system (top characteristic curve) to the different systems according to the invention.
- the control deviation is noted on the y-axis.
- the engine speed is noted on the x-axis.
- the presented teaching shows various embodiments, as can be constructed by means of conveniently placed check valves within a camshaft adjuster or a camshaft adjuster and some non-return lines a passively operating camshaft adjuster system, which stabilized by rapid transhipment, caused by introduced torques or induced external forces, the camshaft adjuster system as a whole. Only a small number of moving parts is needed. The absolute pressure values are subordinate. It is worked with relative pressure differences compared to the pressure supply. Due to the short ways, especially in an integration or partial integration in the camshaft adjuster, no additional significant amounts of oil are to be provided.
- the illustrated hydraulic circuits even out the Winkelverstell austunus the camshaft adjuster with the knowledge of the easy-to-implement check valve, the multiple in the hydraulic Soft is integrable. It has been designed a fault-tolerant, easy to build system that manages with less moving parts. Therefore, the invention can be applied to a valve and a suitable hydraulic circuit, in particular for camshaft adjuster of an internal combustion engine, in which a number of non-return valves or non-return valves functioning two-way valves are placed to provide a fast camshaft adjuster with high control performance.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
Description
Die Erfindung betrifft einen kraftfahrzeuatauglichen Hydraulikkreis, insbesondere mit einem Nockenwellenversteller, und entsprechende Steuerelemente.The invention relates to a motor vehicle-hydraulic circuit, in particular with a camshaft adjuster, and corresponding controls.
In Hydraulikkreisen von Kraftfahrzeugen werden Hydraulikkolben eingesetzt, um die Position eines angeschlossenen mechanischen Elements, wie zum Beispiel einer Nockenwelle, zu verändern. Ein Typ eines Hydraulikkolbens kann ein schwenkmotorartiger Drehkolben oder auch Radialkolben, auch bekannt als Hydraulikmotor, sein, der innerhalb eines bestimmten Winkelbereichs rotatorisch seine Position verändern kann.In hydraulic circuits of motor vehicles, hydraulic pistons are used to change the position of a connected mechanical element, such as a camshaft. One type of hydraulic piston may be a rotary motor-type rotary piston or radial piston, also known as a hydraulic motor, which can rotationally change its position within a certain angular range.
Der Kolben bewegt sich innerhalb eines Gehäuses, wobei der Kolben beidseitig hydraulische Räume bildet, die gegenläufig verändert werden. Das bedeutet, wenn durch eine Positionsveränderung des Hydraulikkolbens die eine Hydraulikkammer anwächst, reduziert sich in einem korrespondierenden Maße die entsprechende dem Kolben gegenüberliegende Kammer und umgekehrt. Bekanntermaßen sind die Hydraulikkammern gleichartig gestaltet, so dass das volumenmäßige Anwachsen der einen Hydraulikammer zu der gleichen volumenmäßigen Reduktion der korrespondierenden anderen Kammer beiträgt. In diesem Fall sind die Veränderungen des Volumens betragsmäßig äquivalent oder sogar identisch.The piston moves within a housing, the piston forms hydraulic chambers on both sides, which are changed in opposite directions. This means that when a hydraulic chamber increases due to a change in position of the hydraulic piston, the corresponding chamber opposite the piston is reduced to a corresponding extent, and vice versa. As is known, the hydraulic chambers are of a similar design, so that the volumetric growth of one hydraulic chamber contributes to the same volume reduction of the corresponding other chamber. In this case, changes in volume are equivalent in amount or even identical.
Ein sehr wichtiger hydraulischer Kraftfahrzeugkreis ist der im Motorsumpf startende Nockenwellenverstellerkreis, der über entsprechende Ventile und einem schwenkmotorartigen Nockenwellenversteller die relative Lage der Nockenwelle gegenüber einer antreibenden Welle, wie zum Beispiel der Kurbelwelle oder einer weiteren Nockenwelle, verstellt. Die Verstellungen erfolgen in Richtung auf einen früheren oder einen späteren Zeitpunkt in Bezug auf den Drehwinkel der antreibenden Welle oder in Bezug auf die Position des Kolbens. Ein solches System wird im Gegensatz zu zum Beispiel abgeschlossenen Systemen mit einem einzigen Hydraulikkreislauf, so wie bekannte Kraftfahrzeuggetriebe aufgebaut sind, als offenes System betrachtet, das mit veränderlichen Ölvolumina arbeitet, weil mehrere Hydraulikkreises im Motorsumpf startend in der Verbrennungskraftmaschine vorhanden sind.A very important hydraulic motor vehicle circuit is the camshaft adjusting circuit starting in the engine sump, which adjusts the relative position of the camshaft relative to a driving shaft, such as, for example, the crankshaft or a further camshaft, via corresponding valves and a pivoting motor-type camshaft adjuster. The adjustments are made towards an earlier or later time with respect to the rotational angle of the driving shaft or with respect to the position of the piston. Such a system, unlike, for example, closed systems with a single hydraulic circuit, as known motor vehicle transmissions are constructed, is considered to be an open system operating with variable volumes of oil because there are multiple hydraulic circuits in the engine sump starting in the internal combustion engine.
Andere bekannte hydraulische Kreise im Kraftfahrzeug können zum Beispiel Getriebesteuerungen sein, die entweder an dem zentralen, mit Motoröl versorgten Hydraulikkreis oder einem unabhängigen, selbstständig abgeschlossenen Hydraulikkreis hängen.Other known hydraulic circuits in the motor vehicle may be, for example, transmission controls which are either supplied to the central, with engine oil Hang hydraulic circuit or an independent, self-contained hydraulic circuit.
Insbesondere bei mehrfachen, hydraulischen Belastungen durch ein aufgefädeltes Hydrauliksystem fordern Automobilhersteller eine möglichst geringe Belastung, der hydraulischen Pumpe, die alle Verbraucher versorgen muss. Hierdurch werden die parasitären Belastungen der Verbrennungskraftmaschine gesenkt, was wiederum zur Wirkungsgradsteigerung beiträgt.Particularly in the case of multiple hydraulic loads due to a threaded hydraulic system, automobile manufacturers demand the least possible load, the hydraulic pump that must supply all consumers. As a result, the parasitic loads on the internal combustion engine are lowered, which in turn contributes to the increase in efficiency.
Zahlreiche Ausführungsformen, wie die Überversorgung der hydraulischen Verbraucher reduziert werden können, ist der
Eine weitere wichtige Forderung von Verbrennungsmotorenherstellern ist der Wunsch, möglichst schnelle Nockenwellenversteller in den Verbrennungsmotor einbauen zu können.
In der Regel wird die Verstellgeschwindigkeit der Nockenwellenversteller durch entsprechend große Ölfördermengen erhöht. Viele Kraftfahrzeughersteller fordern Versteller mit Verstellgeschwindigkeiten von 100 °/sec. In der Literatur findet man häufig Versteller, deren Verstellgeschwindigkeit mit einem einzigen Extremwert angegeben werden. Wichtig ist aber die Verstellgeschwindigkeit über alle Drehzahlen der Verbrennungskraftmaschine, die möglichst konstant bzw. linear sein soll. So werden teilweise punktuelle Verstellgeschwindigkeit von mehr als 200 °/sec beschrieben, die bei näherer Untersuchung einen reinen singulären Charakter in Bezug auf die Drehzahl aufweisen. Betrachtet man die Angaben näher, so ist festzustellen, dass diese Angaben sich häufig auf hohe Drehzahlen mit niedrigen Öltemperaturen beziehen. Durch Einbau einer größeren Ölpumpe erhält man zwar einen schnellen Nockenwellenversteller, der Wirkungsgrad bzw. die Effizienz der Verbrennungskraftmaschine sinkt aber.Another important requirement of internal combustion engine manufacturers is the desire to be able to install the fastest possible camshaft adjusters in the internal combustion engine.
In general, the adjustment of the camshaft adjuster is increased by correspondingly large oil flow rates. Many motor vehicle manufacturers require adjusters with adjustment speeds of 100 ° / sec. In the literature you will often find adjusters, the adjustment speed are given with a single extreme value. But important is the adjustment speed over all speeds of the internal combustion engine, which should be as constant or linear. Thus, partially punctual adjustment speeds of more than 200 ° / sec are described which, on closer examination, have a purely singular character in relation to the rotational speed. Looking more closely at the data, it can be seen that these figures often refer to high speeds with low oil temperatures. By installing a larger oil pump while you get a fast camshaft adjuster, but the efficiency and the efficiency of the internal combustion engine decreases.
Aus der Druckschrift
In der Fachliteratur, insbesondere in dem Artikel "A camschaft torque acutated vane style VCT phaser" der Autoren Frank Smith und Roger Simpson, abgedruckt als SAE-Artikel 2005-01-0764, wird zum Beispiel vorgeschlagen, die Pumpe des Hydraulikkreises dadurch zu entlasten, dass die Pumpe nur noch Leckagen des Verstellers ausgleicht, während zwischen den beiden gegenläufigen Kammern des Verstellers ein normaler Weise abgeschlossenes, hydraulisches Ausgleichssystem vorliegt. Die in den Diagrammen vorgestellten Verstellgeschwindigkeiten lassen vermuten, dass das vorgestellte System nur mit entsprechend großen Ölmengen im Hydraulikkreis des Verstellers arbeitet. Bei klassischen Motoren von Kleinkraftfahrzeugen, vor allem bekannt in Westeuropa und in Japan, dürfte das beschriebene System wenig Anwendung finden, weil solche Motoren auch mit deutlich geringeren Befüllmengen auskommen sollen (häufig unter 5 Litern Motoröl). Ein in die gleiche Kategorie gehörendes Patent kann in der
Die Nutzung des von der Nockenwelle auf den Nockenwellenversteller eingeleiteten Moments zur Verstellung des Nockenwellenverstellers in eine Frühposition ist aus der
Die
Wie zu erkennen ist, lehrt der Stand der Technik die Nutzung von Nockenwellenmomente für bestimmte Betriebsweisen und Betriebsarten. Die hydraulischen Schaltungen sind entsprechend für die Aufgabenstellung ausgelegt worden.As can be seen, the prior art teaches the use of camshaft torques for certain operations and modes of operation. The hydraulic circuits have been designed accordingly for the task.
Zur Verbesserung der Verstellgeschwindigkeit ist aus der
Bei vorliegender Erfindung wurde also ein Ansatz gesucht, ein hydraulisches System zu entwerfen, dass eine hohe und auch nahezu gleichbleibende Verstellgeschwindigkeit, möglichst unabhängig von den Betriebsparametern, des hydraulischen Kolbens bietet, gleichzeitig eine gute Regelgüte anbietet, eine geringe Belastung für die Ölpumpe der Verbrennungskraftmaschine darstellt und auch bei kleinvolumigen Motoren, z. B. 1,3 oder 1,8 Litermaschinen, eingebaut werden können, die weniger Gaswechselventilrückstellfedern aufweisen als zum Beispiel der V6-Motor des oben beschriebenen Fachartikels.In the present invention, therefore, an approach was sought to design a hydraulic system that offers a high and almost constant adjustment speed, as independent of the operating parameters of the hydraulic piston, at the same time offers a good control quality, a small burden on the oil pump of the internal combustion engine and also for small volume engines, eg. B. 1.3 or 1.8 liter machines, can be installed, which have fewer Gaswechselventilrückstellfedern than, for example, the V6 engine of the technical article described above.
Die Regelgüte wird bei Nockenwellenverstellern unter anderem in Winkelgrad angegeben, in denen der Nockenwellenversteller pendelt, obwohl eine definierte, gleichbleibende Position gem. Druckbeaufschlagung aus der Versorgungspumpe gewünscht ist. Die Abweichung von der theoretisch eingestellten Position in Winkelgrad wird dann als Regelgüte bezeichnet.The control quality is specified in camshaft adjusters, inter alia in angular degrees in which the camshaft adjuster shuttles, although a defined, constant position acc. Pressurization from the supply pump is desired. The deviation from the theoretically set position in angular degrees is then called control quality.
Weiterhin setzten die Erfinder sich die Aufgabe, das zu entwerfende System auch bei vollvariablen Ventiltrieben einsetzen zu können, die zum Beispiel in den Patentanmeldungen
Ein geeignetes Ventil ist aus Anspruch 1 entnehmbar. Vorteilhafte Ausgestaltungen sind aus den abhängigen Ansprüchen entnehmbar.A suitable valve can be taken from
Im Gegensatz zu der Nutzung eines reinen Wechselmoments, das zum Beispiel aus den Gaswechselventilrückstellfedern und der Nockenwelle bei einem Nockenwellenversteller stammt, bzw. durch eine reine Fremdverstellung mittels druckbeaufschlagtem Hydraulikmedium, wird erfindungsgemäß ein Hydrauliksystem vorgeschlagen, das sowohl mit schwellenden als auch mit reinen Wechselmomenten auskommen kann. Je nach Belastung und Rückwirkung der angetriebenen und verstellten Welle, wie zum Beispiel der Nockenwelle, treten wechselweise schwellende Momente und Wechselmomente auf. Das zur Ansteuerung der hydraulischen Weiche, zum Beispiel dem Nockenwellenverstellerventil, dienende Motorsteuergerät ist nicht mehr auf konstant eingeleitete Wechselmomente angewiesen, sondern muss bei einer Ausführungsform nur ein einziges Ventil aktiv ansteuern, während der Rest des hydraulischen Kreises passiv betrieben wird.In contrast to the use of a pure alternating torque, which comes for example from the gas exchange valve return springs and the camshaft in a camshaft adjuster, or by a pure external adjustment by means of pressurized hydraulic medium, a hydraulic system is proposed according to the invention, which can get along with both swelling and with pure alternating torques , Depending on the load and reaction of the driven and displaced shaft, such as the camshaft, alternately swelling moments and alternating moments occur. The motor control unit serving to control the hydraulic switch, for example the camshaft adjuster valve, is no longer dependent on constantly introduced alternating torques, but in one embodiment must actively activate only a single valve while the remainder of the hydraulic circuit is operated passively.
In diesem Zusammenhang sind Wechselmomente Momente an dem hydraulischen Kolben, der sowohl zeitweilig einen positiven, veränderlichen Anteil als auch einen zeitweise negativen Anteil aufweisen. Demgegenüber sind schwellende Momente solche Momente, die sich zwar betragsmäßig verändern, jedoch über einen längeren Zeitraum von mehreren Millisekunden im gleichen Vorzeichenbereich der Momentenkennlinie verbleiben.In this context, alternating moments are moments on the hydraulic piston, which both temporarily have a positive, variable component and a temporary negative component. By contrast, swelling moments are those moments which, although they change in magnitude, remain over a longer period of several milliseconds in the same sign range of the torque characteristic.
Auf den Kraftfahrzeughydraulikkreis mit einem gegenläufigen Hydraulikkolben mit wenigstens zwei Hydraulikkammern wirkt ein äußeres Moment, das entweder wechselnd oder schwellend einwirkt. Der Hydraulikkreis führt durch unterschiedliche Druckbeaufschlagung, die einer Hydraulikpumpe entnehmbar ist, der gegenläufigen Hydraulikkammern eine Positionsveränderung durch. Neben einer hydraulische Weichenverstellung, vorzugsweise durch ein Ventil verkörpert, die die Druckbeaufschlagung auf das Hydraulikmedium auf den Kolben leitet, wird der negative Anteil des Wechselmoments genutzt, um den Hydraulikkolben in seiner Position zu verändern. Der schwellende Anteil des Moments wird hingegen durch weitere Mittel, wie zum Beispiel Rückschlagsventile, ausgeblendet. Die selektive Nutzung von Momenten, insbesondere durch die Freigabe über Rückschlagsventile, führt zu einer Linearisierung der Verstellgeschwindigkeit über die Drehzahl des Motors, während die fortdauernde Nutzung einer möglichst kleinen Hydraulikversoraung aus einer Pumpe zur Verstellung des Kolbens auch bei reinen Schwellanteilen des Moments die hohe Verstellaeschwindiakeit sicherstellt.On the motor vehicle hydraulic circuit with a counter-rotating hydraulic piston with at least two hydraulic chambers acts an external moment, which acts either changing or swelling. The hydraulic circuit performs by different pressurization, which is removable from a hydraulic pump, the counter-rotating hydraulic chambers by a change in position. In addition to a hydraulic Weichenverstellung, preferably embodied by a valve which directs the pressurization of the hydraulic medium to the piston, the negative portion of the alternating torque is used to change the hydraulic piston in position. The swelling part of the moment will be by other means, such as check valves, hidden. The selective use of moments, in particular by the release via check valves, leads to a linearization of the adjustment speed on the speed of the engine, while the continued use of the smallest possible Hydraulikversoraung from a pump for adjusting the piston ensures the high Verstellaeschwindiakeit even with pure Schwellanteilen the moment ,
Nach einer Ausgestaltung sind jeweils hydraulische Verbindungswege von einer Kammer des einen Typs auf den Arbeitsanschluss für den anderen Kammertyp vorgesehen. Somit ergibt sich ein Hydraulikkreis mit einem Ventil. Das Ventil kann den Hydraulikdruck, der aus dem negativen Anteil des Wechselmoments auf dem einen Arbeitsanschluss für jeweils einen Kammertyp über wenigstens ein Rückschlagsventil ausleitbar ist, auf den zweiten Arbeitsanschluss des jeweils anderen Kammertyps durchreichen. Es kann eine wechselweise Durchreichung erfolgen. Im Übrigen wird die Druckbeaufschlagung des druckbeaufschlagten Anschlusses zu dem zweiten Arbeitsanschluss weitergeleitet. Die wechselweise Durchreichung des hydraulischen Mediums ist sowohl von der einen Kammer als auch von der anderen Kammer auf die korrespondierende gegenläufige Kammer durchzuführen.According to one embodiment, hydraulic connection paths from one chamber of one type to the working connection for the other chamber type are respectively provided. This results in a hydraulic circuit with a valve. The valve may pass the hydraulic pressure, which is derivable from the negative portion of the alternating torque on the one working port for one chamber type via at least one check valve, to the second working port of the other type of chamber. It can be done alternately. Incidentally, the pressurization of the pressurized port is forwarded to the second working port. The alternate passage of the hydraulic medium is carried out from both the one chamber and the other chamber to the corresponding counter-rotating chamber.
Wird der Kraftfahrzeughydraulikkreis im Rahmen eines Nockenwellenverstellers aufgebaut, so ist der Kraftfahrzeughydraulikkreis ein mit Motoröl operierender Hydraulikkreis einer Verbrennungskraftmaschine, deren Hydraulikkolben ein schwenkmotorartiger bzw. schrägverzahnter Nockenwellenversteller ist, in den die Momente von wenigstens einer Nockenwelle eingeleitet werden.If the motor vehicle hydraulic circuit is constructed in the context of a camshaft adjuster, the motor vehicle hydraulic circuit is an engine oil-operated hydraulic circuit of an internal combustion engine whose hydraulic piston is a pivoting motor-type or helical camshaft adjuster into which the torques of at least one camshaft are introduced.
Die Größe der Gaswechselventilfedern und deren Anzahl hat einen Einfluss auf die Häufigkeit und Art der eingeleiteten Momente aus der Nockenwelle auf den Nockenwellenversteller. Ein Hersteller von Nockenwellenverstellern ist aufgefordert, Nockenwellenversteller für Verbrennungskraftmaschinen anzubieten, die möglichst universell einsetzbar sein sollen. Häufig möchte ein Kraftfahrzeughersteller ein und den gleichen Nockenwellenversteller für unterschiedliche Motoren verschiedener Baureihen verwenden können. Der Nockenwellenverstellerhersteller darf jedoch Vorgaben bezüglich des Hydraulikkreises machen, so dass es möglich ist, das Verhalten des Nockenwellenverstellers durch die Auswahl eines geeigneten Ventils oder einer geeigneten Ventilbaugruppe und einem Versteller zusammen mit der hydraulischen Verschaltung zu verbessern.The size of the gas exchange valve springs and their number has an influence on the frequency and type of introduced moments from the camshaft to the camshaft adjuster. A manufacturer of camshaft adjusters is asked to offer camshaft adjusters for internal combustion engines, which should be as universally applicable. Often a car manufacturer wants to use one and the same camshaft adjuster for different engines of different series. The manufacturer of the phaser, however, may make specifications regarding the hydraulic circuit, so that it is possible to improve the behavior of the camshaft adjuster by selecting a suitable valve or a suitable valve assembly and a phaser together with the hydraulic interconnection.
Im Falle der Verwendung von schwenkmotorartigen Nockenwellenverstellern wird anstelle von Kräften die Momentenschwankungen, das Wechselmoment und das schwellende Moment, die von der Nockenwelle auf den Nockenwellenversteller eingeleitet werden, näher betrachtet, so dass in diesen Fällen anstelle der Kraft vom Moment gesprochen wird. Nach gängigen Kenntnissen jedes Physikers oder Maschinenbauers kann aus dem Moment M die Kraft F ermittelt werden, und aus der Kraft F kann der entsprechende Hydraulikdruck P abgeleitet werden, wobei r den Radius des schwenkmotorartigen Nockenwellenverstellers darstellt und x und y die Fläche beschreiben. Die Formeln hierzu sind:
Die Funktion der Rückschlagsventile kann als Bypass bezeichnet werden, die nur den negativen Anteil der wechselnden Kraft vor der Weiche wieder einspeisen. Nach einem Ausführungsbeispiel ist ein geeigneter Ort der Wiedereinspeisung der P-Anschluss, der dauerdruckbeaufschlagte Anschluss der Weiche. Das Rückschlagsventil bzw. wenn mehrere Rückschlagsventile vorhanden sind, die Rückschlagsventile, wird dann so angeordnet, dass nur in Richtung auf die Druckseite der Weiche eine Durchleitung des Hydraulikdrucks, der aus den Kammern des Kolbens stammt, ermöglicht wird. Durch den Einsatz von Rückschlaasventilen im Rahmen des Bypassaufbaus ist eine technisch elegante Lösung gefunden worden, wie zum Beispiel mit der Lehre, die in der
Die Umleitetätigkeit in dem Kraftfahrzeughydraulikkreis funktioniert, wenn der Betrag des aus der Wechselkraft entstehenden Drucks den anderen Druck in einer der Zuführleitungen zu der sich vergrößernden Kammer des Kolbens überschreitet und dann das zur Richtungsbestimmung vorhandene Rückschlagsventil frei schaltet. Die Rückschlaasventile können so angeordnet sein, dass die beiden Hydraulikkammern des Kolbens mittelbar in Verbindung stehen. In diesem Falle ist eine Verbindung über die Weiche zu nehmen, um von einer Kammer zur anderen Kammer zu gelangen. Eine andere Variante ist die unmittelbare Verbindung, bei der bei einem Öffnen des Rückschlagsventils eine direkte hydraulische Verbindung von einer Hydraulikkammer auf die andere geschaffen wird. Welche von den beiden Varianten zu wählen ist, hängt von den jeweiligen Rahmenbedingungen für den zu schaffenden Kraftfahrzeughydraulikkreis ab. Bietet der Zylinderkopf, in dem die Weiche angeordnet wird, ausreichend Platz, um mehrfach hydraulische Leitungen aufzubauen, kann nach einer Ausführungsvariante eine mittelbare Verbindung über die hydraulische Weiche entworfen werden. Sollte es erwünscht sein, eine möglichst schnelle Umladung, wenn möglich mit wenig Leckage, zu ermöglichen, ist eine unmittelbare Verbindung über die Rückschlagsventile von einer Kammer des Kolbens auf die andere Kammer zu wählen.The divert activity in the automotive hydraulic circuit functions when the amount of pressure resulting from the alternating force exceeds the other pressure in one of the supply lines to the increasing chamber of the piston and then releases the check valve provided for directional determination. The Rückschlaasventile may be arranged so that the two hydraulic chambers of the piston are indirectly connected. In this case, make a connection over the switch to get from one chamber to the other. Another variant is the direct connection, in which when opening the check valve, a direct hydraulic Connection is created from one hydraulic chamber to the other. Which of the two variants is to be selected depends on the respective framework conditions for the motor vehicle hydraulic circuit to be created. If the cylinder head, in which the switch is arranged, provides enough space to build multiple hydraulic lines, an alternative embodiment can be used to design an indirect connection via the hydraulic switch. Should it be desired to allow the fastest possible transhipment, if possible with little leakage, an immediate connection via the non-return valves from one chamber of the piston to the other chamber should be chosen.
Die Hydraulikweiche ist vorgespannt. Geeignete Lösungen zur Erzeugung der Vorspannung können sein:
- eine hydraulische, eine mechanische, eine mechanisch-hydraulische Kombination, eine elektrische, eine magnetische oder eine elektro-magnetische Kombination. Hydraulische Vorspannungen werden gewählt, wenn mit mehr Hydraulikmengen gearbeitet werden kann. Mechanische Vorspannungen werden in der Regel einmal eingestellt, sie sind danach nicht weiter zu kalibrieren. Elektrische und magnetische Vorspannungen können gut auf das Kraftfahrzeussteuergerät der Verbrennungskraftmaschine geleitet werden. Hierdurch wird eine Software-mäßige Beeinflussung ermöglicht.
- a hydraulic, a mechanical, a mechanical-hydraulic combination, an electrical, a magnetic or an electromagnetic combination. Hydraulic preloads are selected if more hydraulic power can be used. Mechanical preloads are usually set once, then they should not be further calibrated. Electrical and magnetic biases can be well directed to the motor vehicle control unit of the internal combustion engine. This allows a software-influenced influence.
Nach einem Ausführungsbeispiel der vorliegenden Erfindung wird eines der Rückschlagsventile so in Sperrrrichtung angeordnet, dass von der mit Hydraulikdruck beaufschlagten Eingangsseite der Hydraulikweiche auf eine Ausgangsseite der Hydraulikweiche eine Verbindung hergestellt werden kann. Die Ausgangsseite der Hydraulikweiche steht nach dieser Ausführungsform mit einer der Hydraulikkammern des Kolbens in Verbindung. Die vorgeschlagene Ausführungsform ist eine recht kompakte Variante. Sie besticht durch ihre Einfachheit und Schlichtheit.According to an embodiment of the present invention, one of the check valves is arranged in a blocking direction so that a connection can be established from the hydraulic-pressure input side of the hydraulic switch to an output side of the hydraulic switch. The output side of the hydraulic switch is according to this embodiment with one of the hydraulic chambers of the piston in connection. The proposed embodiment is a fairly compact variant. It impresses with its simplicity and simplicity.
Nach einem anderen Ausführungsbeispiel kann die Richtungswahl des Hydraulikkolbens durch ein hydraulisch gesteuertes Ventil verstellt werden. Im Rahmen der hydraulischen Geschwindigkeiten ergibt sich ein hydraulisch sehr stabiles System durch seine Rückkopplunasschleifen.According to another embodiment, the directional choice of the hydraulic piston can be adjusted by a hydraulically controlled valve. In the context of hydraulic speeds, a hydraulically very stable system results from its feedback looping.
Nach einer weiterhin vorteilhaften Weiterbildung dient ein hydraulisch gesteuertes Ventil dazu, die Druckbeaufschlaaung einer der Hydraulikkammern auf die andere Hydraulikkammer zu verbinden. Auch hier sorgen die hydraulischen Abhängigkeiten für eine Stabilisierung des Hydraulikkreises.According to a further advantageous development, a hydraulically controlled valve serves to pressurize one of the hydraulic chambers to the other Hydraulic chamber to connect. Here, too, the hydraulic dependencies ensure stabilization of the hydraulic circuit.
Mit der unveröffentlichten Erkenntnis aus der
Noch weiter zu integrieren ist die gesamte Anordnung, wenn das Ventil und der Nockenwellenversteller zu einem Nockenwellenversteller mit Zentralventilen zusammengefasst werden. Das Zentralventil wird hierbei entweder in der axialen Mitte des Nockenwellenverstellers angeordnet oder als axiale Verlängerung des Nockenwellenverstellers. Das Zentralventil bzw. die Anordnung umfasst ein Druckreduzierventil, ein Rückschlagsventil oder ein Zweiwegeventil. Mit der Offenbarung dieser Erfindung ist es einem Kraftfahrzeugtechniker oder Hydrauliker möglich, die geeigneten Bauteile auszuwählen, um wahlweise mit zum Beispiel einem Druckreduzierventil und drei Rückschlagsventilen im Nockenwellenversteller die Erfindung zu realisieren.Even further to integrate is the entire arrangement, when the valve and the camshaft adjuster are combined to form a camshaft adjuster with central valves. The central valve is arranged either in the axial center of the camshaft adjuster or as an axial extension of the camshaft adjuster. The central valve or assembly includes a pressure reducing valve, a check valve or a two-way valve. With the disclosure of this invention, it is possible for an automotive technician or hydraulician to select the appropriate components to selectively implement the invention with, for example, a pressure reducing valve and three check valves in the phaser.
Nach einer günstigen Weiterbildung kann der Hydraulikkreis einen Teilhydraulikkreis umfassen, der aus drei hydraulisch gesteuerten Ventilen aufgebaut ist. Die drei Ventile übernehmen die Aufgabe, wechselweise zwei Zuleitungen und zwei Rückleitungen zu versperren oder frei zu schalten.After a favorable development of the hydraulic circuit may comprise a partial hydraulic circuit, which is composed of three hydraulically controlled valves. The three valves take on the task alternately obstruct two supply lines and two return lines or switch freely.
Der Hydraulikkreis kann so gestaltet werden, dass das wesentliche Bauteil ein Ventil ist. Es handelt sich dann um ein Ventil für ein Kraftfahrzeughydraulikkreis. Das Ventil soll insbesondere bei einem schwenkmotorartigen Nockenwellenversteller die Momentenschwankungen, die sowohl als Wechselmomente als auch als schwellende Momente auftreten können, mit dem Hydraulikdruck, der aus der Druckquelle, die an dem druckbeaufschlagten Anschluss des Ventils weitergegeben werden, durchreichen. Ein typisches Ventil für Nockenwellenversteller kann ein Ventil mit vier Anschlüssen sein. Ein Anschluss ist der Anschluss, der direkt oder indirekt auf die Dauerdruckquellen geschaltet wird. Es ist der P-Anschluss. Ein weiterer Anschluss ist der Tankanschluss, der in der Regel in den Motorsumpf führt. Arbeitsanschlüsse, die auf die Kammern des Hydraulikkolbens führen, werden je nach Schaltstellung eines Hydraulikkolbens innerhalb des Ventils wechselweise durchgeschaltet bzw. unterbrochen. Ohne Momentenschwankungen leitet das Ventil den Hydraulikdruck zeitweilig in eine der Kammern des Schwenkmotors, In dem Hydraulikkreis entsteht ein weiterer Hydraulikdruck, der aus dem negativen Anteil des Wechselmoments stammt. Der Hydraulikdruck, der aus dem negativen Anteil des Wechselmoments herrührt, ist immer wenigstens über ein Rückschlagsventil ausleitbar. Der ausgeleitete Druck wird auf den zweiten Arbeitsanschluss durchgereicht. Der beschriebene Zustand ist ein ungewöhnlicherer, bzw. Sonderzustand, weil die meiste Zeit die Druckbeaufschlagung, die vom druckbeaufschlagten Anschluss der hydraulischen Weiche bzw. des Ventils stammt, zu dem entsprechenden Arbeitsanschluss weitergeleitet wird. Es findet eine weitergehende Nutzung von Drücken innerhalb des Hydraulikkreises über den Dauerdruck hinaus statt. Die sich aus dem Rückschlagsventil ergebende Bypassleitung nützt das negative Moment, während die Standardverstellung durch die gewählte Standardposition des Hydraulikkolbens sichergestellt wird. Neben einer vorteilhaften energetischen Nutzung von zusätzlichen Druckressourcen wird durch diese Rückkoppelung die Regelgüte und sogar die Verstellgeschwindigkeit vergleichmäßigt oder verbessert.The hydraulic circuit can be designed so that the essential component is a valve. It is then a valve for a motor vehicle hydraulic circuit. The valve is intended, in particular in the case of a pivoting motor-type camshaft adjuster, to pass through the torque fluctuations, which can occur both as alternating moments and as swelling moments, with the hydraulic pressure which is transmitted from the pressure source, which is transmitted to the pressurized connection of the valve. A typical cam phaser valve may be a four port valve. A connection is the connection that is switched directly or indirectly to the permanent pressure sources. It is the P port. Another connection is the tank connection, which usually leads into the engine sump. Working connections, which lead to the chambers of the hydraulic piston, are alternately switched through or interrupted depending on the switching position of a hydraulic piston within the valve. Without torque fluctuations that leads Valve the hydraulic pressure temporarily in one of the chambers of the swing motor, in the hydraulic circuit creates another hydraulic pressure, which comes from the negative portion of the alternating torque. The hydraulic pressure resulting from the negative portion of the alternating torque is always at least via a check valve ausleitbar. The discharged pressure is passed on to the second working connection. The described condition is a more unusual condition because most of the time the pressurization from the pressurized port of the hydraulic diverter or valve is passed to the appropriate service port. There is a wider use of pressures within the hydraulic circuit beyond the steady-state pressure. The bypass line resulting from the check valve takes advantage of the negative moment, while the standard adjustment is ensured by the selected standard position of the hydraulic piston. In addition to an advantageous energetic use of additional pressure resources, the feedback quality and even the adjustment speed are evened out or improved by this feedback.
Insbesondere für das Durchreichen des negativen Anteils des Wechselmoments werden zwei Rückschlagsventile verwendet. Die Rückschlagsventile sind so angeordnet, dass sie einen Hydraulikmittelfluss von dem druckbeaufschlagten Anschluss des Ventils auf dem Arbeitsanschluss verhindern, wenn der sich aus dem Betrag des negativen Anteils des Wechselmoments ergebende Druck, nach obigen Formeln berechenbar, absolut den Druck des druckbeaufschlagten Anschlusses übersteigt. Die Ventile funktionieren sozusagen als Richtungsdrossein. Mit dieser Betrachtungsweise gelten auch Ventile mit zwei Schaltzuständen als erfindungsgemäße Rückschlagsventile, wenn sie die gleiche Funktion realisieren sollen. Anstelle eines besonders vorteilhaften Bandes können auch technisch nachgeordnete Lösungen gewählt werden, ohne aus dem Äquivalenzbereich bzw. dem Sinn des Begriffs Rückschlagsventils hinauszufallen.In particular, for passing the negative portion of the alternating torque two check valves are used. The check valves are arranged to prevent hydraulic fluid flow from the pressurized port of the valve on the working port when the pressure resulting from the amount of the negative portion of the alternating torque, calculated by the above formulas, is absolutely greater than the pressure of the pressurized port. The valves work as a directional drainage, so to speak. With this approach, valves with two switching states apply as check valves according to the invention, if they are to realize the same function. Instead of a particularly advantageous band, technically subordinate solutions can also be chosen without falling outside the scope of equivalence or the meaning of the term check valve.
Eine geeignete Maßnahme ist es, das Ventil insbesondere mit einer Feder vorzuspannen und das gesamte Ventil als Cartridge-Ventil aufzubauen. Das Cartridge-Ventil wird für einen Nockenwellenversteller als Nockenwellencartridge-Ventil bezeichnet. Besonders geeignet sind Rückschlagsventile, die ein Rückschlagsband darstellen. Das Band ist zu einem Ring geformt. Durch die Selbsthaltung des Bandes öffnen die Ventile in die eine Richtung und schließen in die andere Richtung. Das gesamte Cartridge-Ventil bildet so ein integriertes Bauteil mit Rückschlagsventilen. Sämtliche Querverbindungen innerhalb des Cartridge-Ventils werden durch Querbohrungen und Ausnehmungen in der Hülse und in dem Kolben realisiert.A suitable measure is to bias the valve in particular with a spring and build the entire valve as a cartridge valve. The cartridge valve is called a camshaft cartridge valve for a phaser. Particularly suitable are check valves that represent a kickback strap. The band is shaped into a ring. The self-holding of the band, the valves open in one direction and close in the other direction. The entire cartridge valve thus forms an integrated component with non-return valves. All cross connections within the cartridge valve are realized by transverse bores and recesses in the sleeve and in the piston.
Der Hydraulikkolben kann zwei oder drei Schaltstellungen einnehmen. Tatsächlich liegen physikalisch Schaltstellungsbeieiche vor. Das Ventil ist als Wegeventil ausgestaltet. In der ersten Stellung, die sich durch eine Vorspannung ergibt, jedoch keine aktive Ansteuerung des Kolbens benötigt, liegt eine Öffnungsstellung vor. Es handelt sich um eine Parallelverschaltung. Eine Parallelverschaltung wird so verstanden, dass der druckbeaufschlagte Anschluss P auf den ersten Arbeitsanschluss A leitet. Der zweite Arbeitsanschluss führt auf den Tankanschluss. Liegt eine Verbindung vom P-Anschluss auf den zweiten Anschluss B vor, und eine Verbindung von dem ersten Arbeitsanschluss A auf den Tankanschluss T, so wird von einer kreuzverschalteten Öffnungsstellung gesprochen. Die Öffnungsstellung in Parallelverschaltung und die Öffnungsstellung in Kreuzverschaltung stellen zwei der zwei oder drei vorhandenen dar. Die dritte Stellung, kann eine unterbrochene oder geschlossene Stellung sein. Sie kann am Kolben so angeordnet werden, dass die unterbrochene Stellung zwischen der ersten und der zweiten Öffnungsstellung liegt. Natürlich können auch Ventile eingesetzt werden, die mehr als drei Stellungen entlang ihres Kolbens aufweisen.The hydraulic piston can assume two or three switching positions. Actually, there are physically switching conditions. The valve is designed as a directional control valve. In the first position, which results from a bias, but does not require active control of the piston, there is an open position. It is a parallel connection. A parallel connection is understood to mean that the pressurized connection P leads to the first working connection A. The second working connection leads to the tank connection. If there is a connection from the P port to the second port B, and a connection from the first working port A to the tank port T, it is spoken of a cross-connected open position. The open position in parallel connection and the open position in cross-connection represent two of the two or three existing. The third position, may be a broken or closed position. It can be arranged on the piston so that the interrupted position is between the first and the second open position. Of course, valves can be used which have more than three positions along their piston.
Nach einer Ausgestaltung ist das erste Rückschlagsventil so angeordnet, dass Druckspitzen des ersten Arbeitsanschlusses durch das Rückschlagsventil durchgeleitet werden. Unterdessen ist das zweite Rückschlagsventil so angeordnet, dass Druckspitzen des zweiten Arbeitsanschlusses über dieses Rückschlagsventil durchgeleitet werden können. Ein drittes Rückschlagsventil ist als Pumpenschutzventil ausgestaltet. Zum Schutz für die Pumpe werden ein oder zwei Rückschlagsventile in umgekehrter Richtung, sozusagen gegensperrlich, in das Ventil eingebracht. Somit kann immer nur eines der beiden zum Pärchen zusammengefassten Rückschlagsventile öffnen. Das Ventil kann im Zylinderkopf der Verbrennungskraftmaschine oder auch im Nockenwellenversteller selber eingebaut werden.According to one embodiment, the first check valve is arranged so that pressure peaks of the first working port are passed through the check valve. Meanwhile, the second check valve is arranged so that pressure peaks of the second working port can be passed through this check valve. A third check valve is designed as a pump protection valve. To protect the pump one or two check valves in the reverse direction, so to speak contrary, introduced into the valve. Thus, only one of the two paired check valves can open. The valve can be installed in the cylinder head of the internal combustion engine or in the camshaft adjuster itself.
Entgegen schon bekannter Bypassrealisierungen, in denen geschachtelte Kolbenanordnungen aufzubauen sind, wird vorliegend eine Bypassleitung über die Weiche oder ein gesondert bestimmtes Ventil geführt. Diese Realisierung reduziert den Bauteilaufwand erheblich und sorgt für leicht zu realisierende Kolbenanordnung innerhalb des Ventils. Ohne einen Schieber in einem Schieber, wie in anderen hausinternen Lösungen schon untersucht, zu realisieren, ist ein System geschaffen worden, das passiv angesprochen werden kann. Das System arbeitet ohne äußere Einflussnahme, wobei das System auch so realisiert werden kann, dass wunschgemäß eine äußere Einflussnahme, z. B. über ein separates Steuerventil, möglich ist. Der absolute Betrag der Druckspitzen, der sich aus der Kraft oder dem Moment ergibt, hat keinen Einfluss auf die konkrete Regelbarkeit. Die Tatsache steigert die Regelgüte. Auch sind die Druckdifferenzen im System von nachgeordneter Bedeutung. Im Sinne dieser Erfindung wird als Rückschlagsventil neben dem zuvor offenbarten auch jede andere geeignete Anordnung verstanden, die im Ergebnis eine Richtungsbeeinflussung hat.Contrary to known bypass implementations in which nested piston arrangements are to be constructed, in the present case a bypass line is routed via the switch or a separate valve. This implementation reduces the component cost considerably and ensures easy to implement piston assembly within the valve. Without realizing a slide in a slide, as already explored in other in-house solutions, is a system has been created that can be passively addressed. The system works without external influence, whereby the system can also be realized in such a way that, as desired, an external influence, e.g. B. via a separate control valve, is possible. The absolute amount of pressure peaks resulting from the force or the moment has no influence on the concrete controllability. The fact increases the control quality. Also, the pressure differences in the system of subordinate importance. For the purposes of this invention, as a check valve in addition to the previously disclosed, any other suitable arrangement understood that has the result of a directional influence.
Die vorliegende Erfindung kann noch besser verstanden werden, unter Bezugnahme auf die im Folgenden näher beschriebenen Ausführungsbeispiele, auf die aber die Erfindung nicht beschränkt ist. Hierbei zeigt
die
die
the
the
Wie in
In den
wobei es von den konkreten Rahmenbedingungen beim Entwurf des Kraftfahrzeughydraulikkreises, insbesondere des Nockenwellenhydraulikkreises abhängt, welche der dargestellten Hydraulikpläne angewendet werden können. Ähnliche Bauteile bzw. Bauteile mit ähnlichen Funktionen sind in allen Ausführungsbeispielen der
where it depends on the concrete conditions in the design of the motor vehicle hydraulic circuit, in particular the camshaft hydraulic circuit, which can be applied to the illustrated hydraulic plans. Similar components or components with similar functions are in all embodiments of
In dem Ausführungsbeispiel nach
Ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Hydraulikkreises ist in
Die
In dem Ausführungsbeispiel der
Aus der
Die weitere Ausführungsvariante für einen hydraulischen Kolben 3, insbesondere einen Nockenwellenversteller 100 mit einer Nockenwelle 102, gem. der
Zweiwegeventile 26 geleitet werden. Die beiden Zweiwegeventile 26 sind wechselweise auf und befinden sich in der Durchleitungsstellung. Findet eine hydraulische Durchleitung durch das eine Zweiwegeventil statt, so findet eine hydraulische Sperre durch das andere Hydraulikventil zum gleichen Zeitpunkt statt. Zur Positionseinstellung des Stößels dienen die Steuerleitungen 74, 76, die jeweils an einer Verteilleitung 70, 72 angeschlossen sind. Die Steuerleitung 74, 76 sind vor den Pumpenschutzventilen 46, 47 und hinter den Versorgungsdrosseln 38, 40 angeschlossen. Das Druckausgleichsventil 56 ist ebenfalls ein Zweiwegeventil, dessen Kolben durch die Steuerleitung 74, 76 beidseitig eingespannt ist. Je nach den Druckverhältnissen in den Steuerleitungen findet eine Verbindung über entweder die eine Rückschlagsleitung 16 oder die zweite Rückschlagsleitung 18 statt. Auf der anderen Seite des Druckausgleichsventils 56 sind zwei antiparallel geschaltete Rückschlagsventile 13, 15 angeordnet, die Druckspitzen aus den Hydraulikkammern A und B bzw. mehrfach A und B des Nockenwellenverstellers 100 gerichtet in die jeweilige andere Kammer umladen lassen. Die drei Ventile 26 und 56 sind zusammen mit den Rückschlagsventilen 46, 47, 13, 15 nockenwellenverstellerseitig verbaut. Als hydraulische Weiche kann ein gängiges 4/3-Wegeventil 60, das jedem Fachmann geläufig ist, eingesetzt werden. Die Regelgüteverbesserung erfolgt über den Nockenwellenversteller, insbesondere über die Rückschlagsventile 13, 15 und die zugehörigen hydraulischen Weichen.The further embodiment variant for a
Two-
Anstelle der Anordnung der Rückschlagsventile und der Hilfsventile in dem Nockenwellenversteller 100 selber kann eine große Funktionalitätsgruppe in einem Ventil 200 gemäß den
Das 4/3-Wegeventil 62 der
Stößel 64 gegen die Feder verschoben werden. Mit der Kenntnis, wie mittels Bänder 204, 206, 208 Rückschlagsventile 12, 14 und Pumpenschutzventile 46, 47 realisiert werden können, ist eine ähnliche Umsetzung wie nach
Das 4/3-Wegeventil 60 mit der Vorspannfeder 32 und dem elektrisch gesteuerten Stößel 64 der
In der
Parallelverschaltung 54 in einzelnen Stellungen neben der Sperrstellung 52 wiederfinden. Auf die Realisierung nach
Die
Die dargelegte Lehre zeigt verschiedene Ausführungsbeispiele, wie mittels günstig platzierter Rückschlagsventile innerhalb eines Nockenwellenverstellers oder eines Nockenwellenverstellerventils und einigen Rückschlagsleitungen ein passiv operierendes Nockenwellenverstellersystem aufgebaut werden kann, das durch schnelle Umladungen, hervorgerufen durch eingeleitete Drehmomente oder eingeleitete Fremdkräfte, das Nockenwellenverstellersystem insgesamt stabilisiert. Es wird nur eine geringe Anzahl sich bewegender Teile benötigt. Die absolute Druckwerte sind nachrangig. Es wird mit relativen Druckdifferenzen gegenüber der Druckversorgung gearbeitet. Aufgrund der kurzen Wege, insbesondere bei einer Integration oder einer Teilintegration in dem Nockenwellenversteller, sind keine zusätzlichen erheblichen Ölmengen vorzuhalten. Die dargestellten Hydraulikkreise vergleichmäßigen die Winkelverstellgeschwindigkeit des Nockenwellenverstellers mit der Kenntnis des einfach zu realisierenden Rückschlagsventils, das mehrfach in der hydraulischen Weiche integrierbar ist. Es ist ein fehlertolerantes, leicht aufzubauendes System entworfen worden, das mit wenig sich bewegenden Teilen auskommt. Daher lässt sich die Erfindung auf ein Ventil und einen geeigneten Hydraulikkreis, insbesondere für Nockenwellenversteller einer Verbrennungskraftmaschine, anwenden, in dem eine Anzahl Rückschlagsventile bzw. wie Rückschlagsventile funktionierende Zweiwegeventile platziert werden, um einen schnellen Nockenwellenversteller mit hoher Regelgüte zu schaffen.The presented teaching shows various embodiments, as can be constructed by means of conveniently placed check valves within a camshaft adjuster or a camshaft adjuster and some non-return lines a passively operating camshaft adjuster system, which stabilized by rapid transhipment, caused by introduced torques or induced external forces, the camshaft adjuster system as a whole. Only a small number of moving parts is needed. The absolute pressure values are subordinate. It is worked with relative pressure differences compared to the pressure supply. Due to the short ways, especially in an integration or partial integration in the camshaft adjuster, no additional significant amounts of oil are to be provided. The illustrated hydraulic circuits even out the Winkelverstellgeschwindigkeit the camshaft adjuster with the knowledge of the easy-to-implement check valve, the multiple in the hydraulic Soft is integrable. It has been designed a fault-tolerant, easy to build system that manages with less moving parts. Therefore, the invention can be applied to a valve and a suitable hydraulic circuit, in particular for camshaft adjuster of an internal combustion engine, in which a number of non-return valves or non-return valves functioning two-way valves are placed to provide a fast camshaft adjuster with high control performance.
Claims (6)
- Valve (200) for a motor vehicle hydraulic circuit (1), in which moment fluctuations (M+, M-) in the form of either an alternating moment (M+, M-) or a pulsating moment (M+) occur, with a connection (P) to which pressure is applied, a tank connection (T), and at least two working connections (A1, B1), which can be connected alternately to the connection (P) to which pressure is applied by adjusting the hydraulic piston (202) of the valve (200),
characterized in that
the valve (200) passes on the hydraulic pressure (250), which can be diverted from the negative portion of the alternating moment (M-) on the one working connection (A1, B1) via at least one non-return valve (12, 14), to the second working connection (B1, A1), if otherwise the application of pressure to the connection (P) to which pressure is applied is passed on to the second working connection (B1, A1). - Valve (200) according to Claim 1, characterized in that
the passing on of the negative portion of the alternating moment (M-) is implemented by means of non-return valves (12, 14), in particular two, the non-return valves (12, 14) preventing a hydraulic medium flow from the connection (P) to which pressure is applied to the appropriate working connection (A1, B1) if the pressure resulting from the absolute value of the negative portion of the alternating moment (M-) absolutely exceeds the pressure of the connection (P) to which pressure is applied. - Valve (200) according to one of the preceding claims,
characterized in that
the valve is a prestressed, in particular prestressed by a spring (32), cartridge valve (214), in particular a camshaft cartridge valve, the non-return valves (12, 14, 44, 46, 47) of which, in the form of band-shaped rings (204, 206, 208) below the surface (212) of the sleeve (210), form an integrated component. - Valve (200) according to one of the preceding claims,
characterized in that
the hydraulic piston (202), with two or three positions (50, 52, 54), is in the form of a directional valve, the first, unadjusted position of which is an open position in parallel connection (54), and a further, adjusted position is an open position in cross connection (50). - Valve (200) according to one of the preceding claims,
characterized in that
the first non-return valve (12) is arranged so that pressure peaks of the first working connection (A1) can be passed through, whereas the second non-return valve (14) is arranged so that pressure peaks of the second working connection (B1) can be passed through, and a third non-return valve (44, 46, 47) is in the form of a pump protection valve. - Valve (200) according to Claim 5, characterized in that
as pump protection valves, two non-return valves (46, 47), which are oppositely blocking to the non-return valves (12, 14) of the non-return conduits (16, 18), are provided.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610012775 DE102006012775B4 (en) | 2006-03-17 | 2006-03-17 | Fast cam phaser hydraulic circuit, in particular for camshaft adjuster, and corresponding control |
DE102006030906 | 2006-07-02 | ||
PCT/EP2007/051754 WO2007107426A1 (en) | 2006-03-17 | 2007-02-23 | Hydraulic circuit, in particular for camshaft adjuster, and corresponding control element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1996798A1 EP1996798A1 (en) | 2008-12-03 |
EP1996798B1 true EP1996798B1 (en) | 2010-02-17 |
Family
ID=38134641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20070712301 Active EP1996798B1 (en) | 2006-03-17 | 2007-02-23 | Hydraulic circuit, in particular for camshaft adjuster, and corresponding control element |
Country Status (6)
Country | Link |
---|---|
US (1) | US7836857B2 (en) |
EP (1) | EP1996798B1 (en) |
KR (1) | KR101318321B1 (en) |
DE (1) | DE502007002866D1 (en) |
ES (1) | ES2339289T3 (en) |
WO (1) | WO2007107426A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023036356A1 (en) * | 2021-09-07 | 2023-03-16 | Schaeffler Technologies AG & Co. KG | Camshaft adjuster with reset function |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007042046A1 (en) | 2007-09-05 | 2009-03-12 | Hydraulik-Ring Gmbh | Drive motor, has camshaft adjuster with electromagnetic hydraulic valve, and housing with form fit engaging region and thread for screwing valve with solid casting or forging housing part of motor |
DE102009022869A1 (en) * | 2009-05-27 | 2010-12-09 | Hydraulik-Ring Gmbh | Vane phaser system |
DE102009050779B4 (en) | 2009-10-27 | 2016-05-04 | Hilite Germany Gmbh | Schwenkmotornockenwellenversteller with a friction disc and mounting method |
DE102010045358A1 (en) | 2010-04-10 | 2011-10-13 | Hydraulik-Ring Gmbh | Schwenkmotornockenwellenversteller with a hydraulic valve |
DE102010019005B4 (en) | 2010-05-03 | 2017-03-23 | Hilite Germany Gmbh | Schwenkmotorversteller |
DE102010061337B4 (en) | 2010-12-20 | 2015-07-09 | Hilite Germany Gmbh | Hydraulic valve for a Schwenkmotorversteller |
JP5168372B2 (en) * | 2011-02-10 | 2013-03-21 | トヨタ自動車株式会社 | Oil supply device for internal combustion engine |
JP5993251B2 (en) | 2012-08-31 | 2016-09-14 | 株式会社山田製作所 | Engine lubrication control system |
JP6006047B2 (en) * | 2012-08-31 | 2016-10-12 | 株式会社山田製作所 | Engine lubrication control system |
US9797276B2 (en) | 2013-03-11 | 2017-10-24 | Husco Automotive Holdings Llc | System for varying cylinder valve timing in an internal combustion engine |
US9200547B2 (en) * | 2013-10-08 | 2015-12-01 | GM Global Technology Operations LLC | Efficient phaser actuation supply system |
US9341090B2 (en) * | 2014-02-06 | 2016-05-17 | Hilite Germany Gmbh | Oscillating-motor camshaft adjuster having a hydraulic valve |
EP3121396B1 (en) * | 2015-07-24 | 2019-09-11 | HUSCO Automotive Holdings LLC | System for varying cylinder valve timing in an internal combustion engine |
SE541128C2 (en) | 2016-05-24 | 2019-04-16 | Scania Cv Ab | High frequency switching variable cam timing phaser |
SE541810C2 (en) * | 2016-05-24 | 2019-12-17 | Scania Cv Ab | Variable cam timing phaser having two central control valves |
SE539977C2 (en) | 2016-06-08 | 2018-02-20 | Scania Cv Ab | Variable cam timing phaser utilizing hydraulic logic element |
SE539980C2 (en) | 2016-06-08 | 2018-02-20 | Scania Cv Ab | Variable cam timing phaser utilizing series-coupled check valves |
SE539979C2 (en) | 2016-06-08 | 2018-02-20 | Scania Cv Ab | Rotational hydraulic logic device and variable cam timing phaser utilizing such a device |
DE102017107718A1 (en) * | 2017-04-10 | 2018-10-11 | Avl List Gmbh | Valve mechanism for a length-adjustable connecting rod |
JP6780573B2 (en) * | 2017-04-21 | 2020-11-04 | 株式会社デンソー | Valve timing adjuster |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1212327A (en) | 1969-06-25 | 1970-11-11 | Freital Plastmaschinen | Improvements in or relating to hydraulic circuits for drives of processing machines |
DE3601643A1 (en) | 1986-01-21 | 1987-07-23 | Schrupp Gmbh | Hydraulic control arrangement for the rapid motion of consumers |
FR2641832B1 (en) | 1989-01-13 | 1991-04-12 | Melchior Jean | COUPLING FOR TRANSMISSION OF ALTERNATE COUPLES |
DE4024057C1 (en) | 1990-07-28 | 1991-09-19 | Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De | |
DE4210580C2 (en) * | 1992-03-31 | 2001-06-28 | Bosch Gmbh Robert | Device for adjusting the angle of the camshaft of an internal combustion engine |
US5657725A (en) * | 1994-09-15 | 1997-08-19 | Borg-Warner Automotive, Inc. | VCT system utilizing engine oil pressure for actuation |
GB9813660D0 (en) | 1998-06-24 | 1998-08-26 | British Aerospace | Actuator system for aerospace controls and functions |
DE19844669B4 (en) | 1998-09-29 | 2014-06-05 | Linde Hydraulics Gmbh & Co. Kg | Hydrostatic drive system with a regeneration device |
US6267041B1 (en) | 1999-12-15 | 2001-07-31 | Caterpillar Inc. | Fluid regeneration circuit for hydraulic cylinders |
JP4159241B2 (en) | 2000-11-30 | 2008-10-01 | 株式会社デンソー | Valve timing adjusting device for internal combustion engine |
US6453859B1 (en) | 2001-01-08 | 2002-09-24 | Borgwarner Inc. | Multi-mode control system for variable camshaft timing devices |
DE10202415C1 (en) * | 2002-01-22 | 2003-04-17 | Stabilus Gmbh | Gas spring, for an automobile motor hood/trunk lid, has a ring seal within the cylinder and around the piston rod, which distorts on an overload to form an escape passage for the pressure from the cylinder into the ambient environment |
DE10205415A1 (en) | 2002-02-09 | 2003-08-28 | Porsche Ag | Device for the relative rotation angle adjustment of a camshaft of an internal combustion engine to a drive wheel |
DE10213081A1 (en) | 2002-03-20 | 2003-10-02 | Hydraulik Ring Gmbh | Valve control for adjusting the stroke of valves in motor vehicles |
DE10216352A1 (en) | 2002-04-13 | 2003-10-23 | Hydraulik Ring Gmbh | Control device for at least one consumer, such as camshaft adjusters, automatic transmissions and the like, of vehicles, preferably motor vehicles |
GB0303571D0 (en) * | 2003-02-17 | 2003-03-19 | Delphi Tech Inc | Oil flow control valve for a cam phaser |
CN102322308B (en) | 2003-03-29 | 2013-07-10 | 科尔本施密特皮尔博格创新有限公司 | Variable valve lift control system for heat engine |
DE10314683B4 (en) | 2003-03-29 | 2009-05-07 | Entec Consulting Gmbh | Variable valve lift control for a combustion engine with a bottom camshaft |
JP4202297B2 (en) | 2004-05-20 | 2008-12-24 | 株式会社日立製作所 | Valve timing control device for internal combustion engine |
US7387097B2 (en) * | 2004-10-08 | 2008-06-17 | Ina-Schaeffler Jg | INA-schaeffler KG, industriestrasse 1-3, 91074 herzogenaurach ANR 12 88 48 20 |
DE102005004281B3 (en) | 2005-01-28 | 2006-01-05 | Hydraulik-Ring Gmbh | Camshaft setter with no-clearance locking for internal combustion engine is in form of slide valve with two sectors, between which power transfer takes place |
DE102005013085B3 (en) | 2005-03-18 | 2006-06-01 | Hydraulik-Ring Gmbh | Hydraulic valve for automobile, has check valve with band formed of closed ring, which serves as opening-free band and is made of spring steel, where steel forms ring by overlap of section of bands at about one hundred and eighty degree |
-
2007
- 2007-02-23 WO PCT/EP2007/051754 patent/WO2007107426A1/en active Application Filing
- 2007-02-23 KR KR1020087007018A patent/KR101318321B1/en active IP Right Grant
- 2007-02-23 DE DE200750002866 patent/DE502007002866D1/en active Active
- 2007-02-23 EP EP20070712301 patent/EP1996798B1/en active Active
- 2007-02-23 ES ES07712301T patent/ES2339289T3/en active Active
-
2008
- 2008-09-15 US US12/283,881 patent/US7836857B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023036356A1 (en) * | 2021-09-07 | 2023-03-16 | Schaeffler Technologies AG & Co. KG | Camshaft adjuster with reset function |
Also Published As
Publication number | Publication date |
---|---|
EP1996798A1 (en) | 2008-12-03 |
ES2339289T3 (en) | 2010-05-18 |
WO2007107426A1 (en) | 2007-09-27 |
DE502007002866D1 (en) | 2010-04-01 |
KR101318321B1 (en) | 2013-10-15 |
KR20080104257A (en) | 2008-12-02 |
US20090071140A1 (en) | 2009-03-19 |
US7836857B2 (en) | 2010-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1996798B1 (en) | Hydraulic circuit, in particular for camshaft adjuster, and corresponding control element | |
EP1996819B1 (en) | Hydraulic circuit, especially for camshaft adjusters, and corresponding control element | |
DE102006012733B4 (en) | Fast cam phaser hydraulic circuit, in particular for camshaft adjuster, and corresponding control | |
DE102006012775B4 (en) | Fast cam phaser hydraulic circuit, in particular for camshaft adjuster, and corresponding control | |
DE112011103133B4 (en) | Cam torque actuated torsion assisted phaser | |
EP2215331B1 (en) | Apparatus for variably adjusting the control times of gas exchange valves in an internal combustion engine | |
EP3219941B1 (en) | Hydraulic slider valve for a vane cell camshaft adjuster for a camshaft | |
DE102007012967B4 (en) | Valve, in particular cartridge valve, with integrated non-return valve | |
EP2488764A1 (en) | Valve assembly | |
DE102009024026A1 (en) | Control valve for controlling pressure medium flows with integrated non-return valve | |
WO2017157900A1 (en) | Hydraulic valve for a swivel motor adjuster of a camshaft | |
DE1601729B2 (en) | Hydraulic control valve device working with pilot control | |
EP0455763B1 (en) | Hydraulic control device for the valves of a multi-cylinder internal-combustion engine | |
DE2758234C2 (en) | Brake valve | |
DE112009001211T5 (en) | Solenoid valve for variable valve timing control devices, and variable valve timing control system | |
DE102011111416A1 (en) | Energy exchange device for use in hydraulic drive system, has one sub-drive system and another sub-drive system, where each sub-drive system has hydraulic pump, discharge pressure control unit and multiple regulator control elements | |
DE102017126172B3 (en) | Hydraulic camshaft adjuster | |
DE102016118962A1 (en) | Camshaft adjuster and associated switch body | |
EP1875084A1 (en) | Directional control valve and control system provided therewith | |
DE4206696A1 (en) | Hydraulic lifter for vehicle IC engine - has oil supply diverted from main oil circuit through rapidly-closing solenoid valve to intake valve control unit | |
DE102009056021A1 (en) | Device for variably setting the control times of gas exchange valves of an internal combustion engine | |
EP1711715B1 (en) | Metering orifice arrangement for a hydraulic current divider and current adding device | |
EP1521902B1 (en) | Device for the control of gas exchange valves | |
DE102017102156B4 (en) | Arrangement of a switching element in a connecting rod of a reciprocating piston internal combustion engine and connecting rod for a reciprocating piston internal combustion engine with an adjustable compression ratio with a corresponding switching element | |
DE3519148C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080226 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KNECHT, ANDREAS Inventor name: BARTZSCH, JENS Inventor name: POHL, DIRK Inventor name: NEUDOERFER, GORDON |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502007002866 Country of ref document: DE Date of ref document: 20100401 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2339289 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20101118 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110223 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502007002866 Country of ref document: DE Owner name: HILITE GERMANY GMBH, DE Free format text: FORMER OWNER: HYDRAULIK-RING GMBH, 97828 MARKTHEIDENFELD, DE Effective date: 20130521 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220216 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220426 Year of fee payment: 16 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240219 Year of fee payment: 18 |