EP1996740A1 - Materiau de remplissage pour soudure, utilisation du materiau de remplissage pour soudure, procede de soudage et element de construction - Google Patents

Materiau de remplissage pour soudure, utilisation du materiau de remplissage pour soudure, procede de soudage et element de construction

Info

Publication number
EP1996740A1
EP1996740A1 EP07712229A EP07712229A EP1996740A1 EP 1996740 A1 EP1996740 A1 EP 1996740A1 EP 07712229 A EP07712229 A EP 07712229A EP 07712229 A EP07712229 A EP 07712229A EP 1996740 A1 EP1996740 A1 EP 1996740A1
Authority
EP
European Patent Office
Prior art keywords
nickel
welding
based material
maximum
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07712229A
Other languages
German (de)
English (en)
Inventor
Uwe Paul
Nikolai Arjakine
Rolf WILKENHÖNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07712229A priority Critical patent/EP1996740A1/fr
Publication of EP1996740A1 publication Critical patent/EP1996740A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05B2230/232Manufacture essentially without removing material by permanently joining parts together by welding

Definitions

  • the invention relates to a filler metal according to claim 1, a use thereof according to claim 7, a method of welding according to claim 15 and a component according to claim 17.
  • Nickel-based superalloys have the most favorable combination of mechanical properties, corrosion resistance, and processability for gas turbine construction for aircraft and power plants, of all high temperature materials.
  • the high increase in strength is made possible in particular by the particle hardening with very high volume fractions of the coherent ⁇ 'phase Ni 3 (Al-Ti, Ta, Nb).
  • alloys with a higher ⁇ 'content are generally considered to be only partially weldable. This low weldability is due to:
  • Nickel alloys generally have a relatively low thermal conductivity and a relatively high thermal expansion coefficient, similar to the values of austenitic steels and Co alloys. The introduced welding heat is therefore removed relatively slowly, and the inhomogeneous heating leads to high thermal stresses, which leads to thermal fatigue, which can be controlled only with great effort.
  • Nickel alloys are very sensitive to hot cracks with rapid change of temperature cycles in the higher temperature range.
  • Cause are Kornskyschmelzonne due to variations in the chemical composition (segregations) or formation of low-melting phases such as sulfides or borides.
  • Nickel alloys generally have a high proportion of the ⁇ 'phase in a ⁇ matrix.
  • the proportion of the ⁇ 'phase is for nickel-based superalloys for turbine components to greater than 40vol%. This requires high strength, but also low ductility of the material, in particular at low temperatures and in the region of the temperature field in which the ⁇ / ⁇ 'precipitation processes can take place ("Ductility-Dip Temperature Range” or "Subsolidus Ductility Dip”). , depending on the alloy about 700 0 C to 1100 0 C). Occurring stresses can therefore be less degraded by plastic flow, which generally increases the risk of cracking.
  • Nickel alloys show the phenomenon of Post-Weld Heat Treatment Cracks, also called Strain-Age Cracking.
  • cracks are characteristically generated in the first heat treatment after welding by ⁇ / ⁇ 'precipitation processes in the heat affected zone or - if the welding additive can form the ⁇ ' phase - in the weld metal as well.
  • the cause is local stresses that arise during the departure of the ⁇ 'phase due to the contraction of the surrounding matrix.
  • the sensitivity for strain-age cracking increases with increasing proportion of ⁇ '-forming alloying constituents such as Al and Ti, since this also increases the proportion of ⁇ ' phase in the microstructure.
  • One way to avoid cracks when welding nickel-base superalloys with high-strength filler metals (also nickel-based superalloys) is to reduce the temperature difference and thus the stress gradient between the weld and the rest of the component. This is achieved by preheating the component during welding.
  • An example is the manual TIG welding in a protective gas, wherein the weld is inductively preheated (by means of induction coils) to temperatures greater than 900 0 C.
  • this complicates and increases the cost of the welding process significantly.
  • due to lack of accessibility this can not be done for all areas to be welded.
  • welding methods are used, which ensure a very low heat input into the base material. These methods include laser welding and electron beam welding. Both methods are very expensive. In addition, they require programming and automation effort, which can be uneconomical in repair welding with frequently changing damage patterns and damage sites.
  • B 0.001% - 0.007% boron
  • B 0.005% B
  • maximum 1.5% iron (Fe) in particular maximum 0.5% Fe
  • Mn manganese
  • Si maximum 0.15% silicon
  • Si in particular not more than 0.1% Si, balance nickel.
  • the proposal is for a filler metal filler and a use thereof which enables repair welding of gas turbine blades and other nickel base superalloy hot gas components by manual or automated room temperature welding.
  • the filler metal is also a gamma-hardened nickel base superalloy, but differs in particular from the material of a substrate of a component to be repaired.
  • the weld repair provides low cycle fatigue (LCF) that is approximately 50% and more of the properties of the base material (the weld holds 50% of the LCF cycles of the base material).
  • FIG. 1 shows a list of the composition of materials that can be welded with the filler according to the invention
  • FIG. 2 shows a gas turbine
  • FIG. 3 is a perspective view of a turbine blade
  • FIG. 4 is a perspective view of a combustion chamber element.
  • a welding process is proposed for the welding of components such as hot gas components 138, 155 (FIGS. 3, 4) and turbine blades 120, 130 (FIG. 2) of nickel-base superalloys, which preferably has the following characteristics:
  • shielding gas containing nitrogen to suppress hot cracking and / or hydrogen to reduce oxidation
  • the shielding gas is disclosed in EP 04011321.9 and US Pat the composition of the protective gas is part of this disclosure.
  • Solution annealing • Heat treatment after welding to homogenize Basic and welding filler material: Solution annealing.
  • the solution annealing temperature should be matched to the base material.
  • the solution annealing temperature must be above the solution annealing temperature, but below the solidus temperature of the filler metal.
  • the one- or multi-stage aging for setting the desired ⁇ 'morphology can take place directly after or later during the processing of the hot gas components.
  • the welding consumable material is differentiated into a base alloy alloy SC 60 and these variants alloy SC 60+.
  • This filler has relatively good welding properties at room temperature.
  • the proportions of Al and Ti in the alloy were chosen so that a very low
  • the Al content was chosen to be less than 1.7% and the Cr content to 18-20%, so that the alloy forms a corrosion-resistant Cr 2 C> 3 cover layer and contains a sufficient reservoir for regeneration of this layer under operating conditions.
  • Silicon is preferably limited to 0.1wt% maximum to minimize hot cracking.
  • oxides and in particular sulfides can form at the grain boundaries.
  • sulfur-containing and oxygen-containing, thin, intergranular eutectics embrittle the grain boundaries.
  • they have a low melting temperature, resulting in a large grain boundary crack susceptibility due to local melting of the grain boundaries.
  • Application example is the welding of the alloy Rene 80, especially when it is operational, by means of manual TIG welding and plasma powder plating. Other welding processes and repair applications are not excluded.
  • the weld repair sites have properties that allow "structural" repairs in the transition radius airfoil platform or in the airfoil of a turbine blade.
  • nickel-based additives can be selected according to how large the proportion of the ⁇ 'phase is, namely preferably greater than or equal to 35 vol% with a preferably given maximum upper limit of 75 vol%.
  • FIG. 2 shows by way of example a gas turbine 100 in a partial longitudinal section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in by the compressor 105 through the intake housing 104 and compressed.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 relaxes on the rotor blades 120 in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the highest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloys.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 3 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the blade 406.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloy.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a single-crystal structure or structures are used as components for machines that are in operation high mechanical, thermal and / or chemical stresses are exposed.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the warm flow and form either a prismatic crystalline grain structure (columnar, i.e. grains extending throughout the length of the work piece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, i. the whole work consists of a single crystal.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 Bl, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • the density is preferably 95% of the theoretical density.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrÜ2, Y2Ü3 Zr ⁇ 2, ie it is not, partially ⁇ or fully stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer. Suitable coating processes, such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • the heat-insulating layer may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 4 shows a combustion chamber 110 of the gas turbine 100.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of burners 107 arranged in the circumferential direction around a rotation axis 102 open into a common combustion chamber space 154, which produce flames 156 ,
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C. to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • Each heat shield element 155 made of an alloy is equipped on the working medium side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • a ceramic thermal barrier coating consists for example of ZrC> 2, Y2 ⁇ 3-ZrC> 2, ie it is not, partially or fully ⁇ dig stabilized by yttrium and / or calcium oxide and / or magnesium oxide.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that turbine blades 120, 130, heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un matériau de remplissage pour soudure, une utilisation du matériau de remplissage pour soudure, un procédé de soudage et un élément de construction, permettant d'améliorer nettement la soudabilité d'un superalliage à base de nickel en utilisant un matériau de remplissage pour soudure et présentant les proportions suivantes (en % en poids) : de 18,0 % à 20,0 % de chrome (Cr), de 9,0 % à 11,0 % de cobalt (Co), de 7,0 % à 10,0 % de molybdène (Mo), de 2,0 % à 2,5 % de titane, de 1,0 % à 1,7 % d'aluminium (Al), de 0,04 % à 0,08 % de carbone (C), le reste étant du nickel (Ni).
EP07712229A 2006-03-17 2007-02-16 Materiau de remplissage pour soudure, utilisation du materiau de remplissage pour soudure, procede de soudage et element de construction Withdrawn EP1996740A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07712229A EP1996740A1 (fr) 2006-03-17 2007-02-16 Materiau de remplissage pour soudure, utilisation du materiau de remplissage pour soudure, procede de soudage et element de construction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06005565A EP1835040A1 (fr) 2006-03-17 2006-03-17 Matériau d'apport, utilisation du matériau d'apport et procédé de soudage d'une composante structurelle
EP07712229A EP1996740A1 (fr) 2006-03-17 2007-02-16 Materiau de remplissage pour soudure, utilisation du materiau de remplissage pour soudure, procede de soudage et element de construction
PCT/EP2007/051496 WO2007107419A1 (fr) 2006-03-17 2007-02-16 Materiau de remplissage pour soudure, utilisation du materiau de remplissage pour soudure, procede de soudage et element de construction

Publications (1)

Publication Number Publication Date
EP1996740A1 true EP1996740A1 (fr) 2008-12-03

Family

ID=36463370

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06005565A Withdrawn EP1835040A1 (fr) 2006-03-17 2006-03-17 Matériau d'apport, utilisation du matériau d'apport et procédé de soudage d'une composante structurelle
EP07712229A Withdrawn EP1996740A1 (fr) 2006-03-17 2007-02-16 Materiau de remplissage pour soudure, utilisation du materiau de remplissage pour soudure, procede de soudage et element de construction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06005565A Withdrawn EP1835040A1 (fr) 2006-03-17 2006-03-17 Matériau d'apport, utilisation du matériau d'apport et procédé de soudage d'une composante structurelle

Country Status (6)

Country Link
US (1) US20090285715A1 (fr)
EP (2) EP1835040A1 (fr)
KR (1) KR20080113229A (fr)
CN (1) CN101405416A (fr)
RU (1) RU2008141148A (fr)
WO (1) WO2007107419A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480983A (zh) * 2013-09-18 2014-01-01 张盘 一种9Ni钢的高强高韧气保焊缝金属

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018708A1 (de) 2008-04-14 2009-10-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Schweißen in Abhängigkeit einer Vorzugsrichtung des Substrats
JP5248197B2 (ja) 2008-05-21 2013-07-31 株式会社東芝 Ni基鋳造合金およびそれを材料とする蒸気タービン用鋳造部品
EP2182084A1 (fr) * 2008-11-04 2010-05-05 Siemens Aktiengesellschaft Matériau d'apport de soudure, utilisation du matériau d'apport de soudure et composant
CN102312154A (zh) * 2010-07-02 2012-01-11 北京中煤大田耐磨材料有限公司 一种含铝高铬铸铁型耐磨合金
CN103635284B (zh) * 2011-03-23 2017-03-29 思高博塔公司 用于抗应力腐蚀裂开的细粒镍基合金及其设计方法
CH705662A1 (de) * 2011-11-04 2013-05-15 Alstom Technology Ltd Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
CN104039483B (zh) 2011-12-30 2017-03-01 思高博塔公司 涂层组合物
US9738959B2 (en) 2012-10-11 2017-08-22 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
US9393644B2 (en) * 2013-01-31 2016-07-19 Siemens Energy, Inc. Cladding of alloys using flux and metal powder cored feed material
US8925792B1 (en) * 2013-06-14 2015-01-06 General Electric Company Joining process for superalloys
WO2015054637A1 (fr) 2013-10-10 2015-04-16 Scoperta, Inc. Procédés de sélection de compositions de matériau et de conception de matériaux ayant une propriété cible
WO2015081209A1 (fr) 2013-11-26 2015-06-04 Scoperta, Inc. Alliage à rechargement dur résistant à la corrosion
DE102014204408A1 (de) * 2014-03-11 2015-09-17 Siemens Aktiengesellschaft Nickelbasis-Superlegierung mit erhöhter Oxidationsbeständigkeit, Pulver, Verfahren zum Schweißen und Bauteil
WO2015191458A1 (fr) 2014-06-09 2015-12-17 Scoperta, Inc. Alliages de rechargement dur résistant aux fissures
WO2016014851A1 (fr) 2014-07-24 2016-01-28 Scoperta, Inc. Alliages de surfaçage de renfort résistants à la fissuration à chaud et au craquèlement
US10465269B2 (en) 2014-07-24 2019-11-05 Scoperta, Inc. Impact resistant hardfacing and alloys and methods for making the same
CN107532265B (zh) 2014-12-16 2020-04-21 思高博塔公司 含多种硬质相的韧性和耐磨铁合金
CN105014258A (zh) * 2015-06-26 2015-11-04 北京北冶功能材料有限公司 700℃以上超超临界煤发电设备用镍基高温合金焊丝
WO2017040775A1 (fr) 2015-09-04 2017-03-09 Scoperta, Inc. Alliages résistant à l'usure sans chrome et à faible teneur en chrome
EP3347501B8 (fr) 2015-09-08 2021-05-12 Oerlikon Metco (US) Inc. Alliages non magnétiques de formation de carbures forts destinés à la fabrication de poudres
JP2018537291A (ja) 2015-11-10 2018-12-20 スコペルタ・インコーポレイテッドScoperta, Inc. 酸化抑制ツインワイヤーアークスプレー材料
CA3017642A1 (fr) 2016-03-22 2017-09-28 Scoperta, Inc. Revetement issu de la projection thermique entierement lisible
EP3257956B2 (fr) 2016-06-13 2022-02-16 General Electric Technology GmbH Superalliage à base de composition et procédé pour modulateur spatial de lumière (slm) traitement de ladite composition de superalliage à base de ni
JP6756165B2 (ja) * 2016-06-16 2020-09-16 日本製鉄株式会社 Ni基耐熱合金溶接金属
CN106676331B (zh) * 2016-12-22 2018-10-09 钢铁研究总院 一种耐高温高弹镍铬合金带材及其制备方法
CN108380692A (zh) * 2018-02-12 2018-08-10 湘潭市智全机械有限公司 一种厚壁不锈钢小直径转鼓筒成型方法
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
CA3136967A1 (fr) 2019-05-03 2020-11-12 Oerlikon Metco (Us) Inc. Charge d'alimentation pulverulente destinee au soudage en vrac resistant a l'usure, concue pour optimiser la facilite de production

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58908611D1 (de) 1989-08-10 1994-12-08 Siemens Ag Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile.
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
KR100354411B1 (ko) 1994-10-14 2002-11-18 지멘스 악티엔게젤샤프트 부식,산화및과도한열응력으로부터부품을보호하기위한보호층및그제조방법
EP0861927A1 (fr) 1997-02-24 1998-09-02 Sulzer Innotec Ag Procédé de fabrication de structures monocristallines
EP0892090B1 (fr) 1997-02-24 2008-04-23 Sulzer Innotec Ag Procédé de fabrication de structure monocristallines
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6120624A (en) * 1998-06-30 2000-09-19 Howmet Research Corporation Nickel base superalloy preweld heat treatment
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
WO2001009403A1 (fr) 1999-07-29 2001-02-08 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
DE50104022D1 (de) 2001-10-24 2004-11-11 Siemens Ag Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
US20040115086A1 (en) 2002-09-26 2004-06-17 Framatome Anp Nickel-base alloy for the electro-welding of nickel alloys and steels, welding wire and use
EP1428897A1 (fr) 2002-12-10 2004-06-16 Siemens Aktiengesellschaft Méthode de fabrication d'un composant en alliage à soudabilité et/ou formabilité améliorée
DE502004009962D1 (de) 2004-05-12 2009-10-08 Siemens Ag Verwendung eines Schutzgasgemisches beim Schweissen
US20060051234A1 (en) * 2004-09-03 2006-03-09 Pike Lee M Jr Ni-Cr-Co alloy for advanced gas turbine engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007107419A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480983A (zh) * 2013-09-18 2014-01-01 张盘 一种9Ni钢的高强高韧气保焊缝金属
CN103480983B (zh) * 2013-09-18 2016-03-09 海宁瑞奥金属科技有限公司 一种9Ni钢的高强高韧气保焊缝金属

Also Published As

Publication number Publication date
KR20080113229A (ko) 2008-12-29
WO2007107419A1 (fr) 2007-09-27
US20090285715A1 (en) 2009-11-19
EP1835040A1 (fr) 2007-09-19
CN101405416A (zh) 2009-04-08
RU2008141148A (ru) 2010-04-27

Similar Documents

Publication Publication Date Title
EP1777312B1 (fr) Matériau d'apport pour soudage, utilisation du matériau d'apport pour soudage et procédé de soudage
EP2347022B1 (fr) Matériau d'apport de soudure, utilisation du matériau d'apport de soudure et composant
EP1996740A1 (fr) Materiau de remplissage pour soudure, utilisation du materiau de remplissage pour soudure, procede de soudage et element de construction
EP1957685B1 (fr) Procede de reparation de fissures dans des composants
EP2311597B1 (fr) Procédé de soudage laser de pièces en superalliages haute température avec contrôle de certains paramètres du soudage laser pour obtenir une vitesse de refroidissement particulière
EP2280801B1 (fr) Procédé de soudage de pièces d'usinage en alliages superréfractaires
EP2322313A1 (fr) Procédé de soudure de pièces usinées en superalliages résistant aux températures avec un débit particulier du matériau d'apport de soudage
WO2013007461A1 (fr) Alliage à base de nickel, utilisation et procédé
WO2008107282A1 (fr) Procédé pour réparer par brasage une pièce, sous vide et pression partielle d'oxygène réglée
EP1716965A1 (fr) Brasure comprenant de la poudre d'apport métallique sous forme élémentaire
EP1924395B1 (fr) Alliage d'apport a base de nickel et procede pour reparer un composant
EP2257402A2 (fr) Chauffage de fil sans potentiel lors du soudage et dispositif destiné à cet effet
WO2008110454A1 (fr) Alliages de brasage et dispositif pour la réparation d'un élément de construction
EP2240293A1 (fr) Procédé et dispositif pour fondre des surfaces incurvées
EP2491156B1 (fr) Alliage pour une solidification directionelle et l'article à grains en forme de colonne
EP2129486A1 (fr) Mélange de gaz protecteurs et procédé de soudage
EP1595633B1 (fr) utilisation d'un mélange gazeux en soudage.
EP1970156A1 (fr) Alliage de brasage et procédé destiné à la réparation d'un composant
EP1790746B1 (fr) Alliage, couche de protection et composant
DE202005021294U1 (de) Geschweißtes Bauteil mit Schweißzusatzwerkstoff
EP1808572A1 (fr) Procédé de soudage suivi d'un traitement de diffusion
WO2008087083A2 (fr) Matière d'apport pour le soudage et procédé de soudage avec matière d'apport
WO2009018839A1 (fr) Alliage de brasage et procédé de réparation d'un composant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110901