EP2129486A1 - Mélange de gaz protecteurs et procédé de soudage - Google Patents
Mélange de gaz protecteurs et procédé de soudageInfo
- Publication number
- EP2129486A1 EP2129486A1 EP07723556A EP07723556A EP2129486A1 EP 2129486 A1 EP2129486 A1 EP 2129486A1 EP 07723556 A EP07723556 A EP 07723556A EP 07723556 A EP07723556 A EP 07723556A EP 2129486 A1 EP2129486 A1 EP 2129486A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- welding
- gas mixture
- nickel
- protective gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003466 welding Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000000203 mixture Substances 0.000 title claims abstract description 22
- 239000011261 inert gas Substances 0.000 title claims abstract description 9
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 15
- 238000002844 melting Methods 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 35
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 25
- 230000001681 protective effect Effects 0.000 claims description 19
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- 229910052734 helium Inorganic materials 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 239000001307 helium Substances 0.000 claims description 13
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 229910017052 cobalt Inorganic materials 0.000 claims description 9
- 239000010941 cobalt Substances 0.000 claims description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910000601 superalloy Inorganic materials 0.000 claims description 8
- 239000000945 filler Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000007711 solidification Methods 0.000 claims description 7
- 230000008023 solidification Effects 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 3
- 238000005275 alloying Methods 0.000 claims description 3
- 238000005552 hardfacing Methods 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 3
- 239000004615 ingredient Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 abstract description 3
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000005336 cracking Methods 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 239000012720 thermal barrier coating Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- YPFNIPKMNMDDDB-UHFFFAOYSA-K 2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate;iron(3+) Chemical compound [Fe+3].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O YPFNIPKMNMDDDB-UHFFFAOYSA-K 0.000 description 1
- 241000191291 Abies alba Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- CFQGDIWRTHFZMQ-UHFFFAOYSA-N argon helium Chemical compound [He].[Ar] CFQGDIWRTHFZMQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000009419 refurbishment Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/164—Arc welding or cutting making use of shielding gas making use of a moving fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0086—Welding welding for purposes other than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/10—Non-vacuum electron beam-welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/123—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/123—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
- B23K26/125—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/32—Bonding taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
- B23K35/304—Ni as the principal constituent with Cr as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/38—Selection of media, e.g. special atmospheres for surrounding the working area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/38—Selection of media, e.g. special atmospheres for surrounding the working area
- B23K35/383—Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/26—Alloys of Nickel and Cobalt and Chromium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
Definitions
- the invention relates to a protective gas mixture according to claim 1 and a method for welding according to claim 8.
- Components which are subjected to mechanical and / or thermal stresses e.g. Components of a gas or steam turbine, often have cracks after their use.
- Such components can be reused if the substrates of the components are repaired.
- the cracks are repaired, for example, by welding or surfacing.
- Nickel-based superalloys can crack during joint welding. The resulting cracks are called hot cracks.
- hot cracks leaflet DVS 1004-1: hot crack test method, basics, Dusseldorf, German Welding Association, 11/96.
- grain boundaries microstructure area melt, for example, since the material can melt in those structural areas whose solidus temperature is below the equilibrium solidus temperature of the average composition of the alloy.
- structural areas include phases which have already developed during the production of the material (for example low-melting sulfides,
- Allocation of the grain boundaries to foreign phases may favor the formation of hot cracks. This is for
- Grain boundaries form (constitutional melting of carbides, sulfides or borides, etc.).
- a protective gas mixture with 2.0% -3.7% N 2 and 0.5% -1.2% H 2 is known from EP 0 826 456 B1 for TIG welding of austenitic steels. nitric steels, where the austenite forms poorly at the welding temperatures during cooling (too fast cooling).
- the nitrogen is added to reduce the ferrite content at the weld of corrosion-resistant, austenitic steels, since nitrogen is known as Austenitstoryner because the unwanted ⁇ -ferrite phase is shifted in the phase diagram by nitrogen to higher temperatures, so that the phase range of ⁇ - Austenite increases and therefore prefers forms.
- Hydrogen is added to increase the service life of the tungsten electrode.
- EP 0 163 379 A2 discloses a welding method in which nitrogen is added to the inert gas. The nitrogen is only added because the process welds nitrogen-containing (0.15wt% -0.25wt%) alloys.
- EP 0 673 296 B1 discloses that argon or argon-helium mixtures are used during welding.
- EP 1 595 633 A1 discloses a protective gas mixture of argon and nitrogen.
- US Pat. No. 6,024,792 discloses a method for build-up welding.
- a laser beam or electron beam is used to melt powder. It is therefore an object of the invention, by reducing the oxide formation and the formation of low-melting crystalline or amorphous phases such as oxides, borides, carbides, nitrides, oxycarbonitrides, on the grain boundaries to overcome the susceptibility to cracking after welding.
- Another object of the invention is to improve the hot crack resistance.
- the object is achieved by a protective gas mixture according to claim 1 and a method for welding according to claim 8.
- FIG. 4 shows a component 1 after completion of the method
- FIG. 5 shows a list of usable alloys
- FIG. 6 shows a turbine blade as an exemplary component and FIG. 7 shows a gas turbine.
- FIG. 1 shows a component 1 with a substrate 4, which has a weld seam 8, which was produced with a tungsten anode 6.
- the weld 8 of the weld 11 in the substrate 4 consists of grains 14.
- argon and helium are noble gases.
- the nitrogen in the nickel- or cobalt-based materials used here has no influence on the phase formation in the grains of the material, which are austenites, since the iron content is less than 1.5wt% or, in particular, not at all contained as alloying constituent (Fe * 0%) is, but at most contained in the form of undesirable impurities.
- the nickel- or cobalt-based materials very preferably form stable austenites, so there is no need to use austenite formers such as nitrogen in welding.
- Figure 5 shows a listing of such materials for which the shielding gas can be used.
- FIG. 2 shows a component 1 which is treated by means of the method according to the invention.
- the component 1 comprises a substrate 4 which consists in particular of a nickel- or cobalt-based superalloy and not of an iron-based alloy.
- the alloy of component 1 or superalloy is precipitation hardened.
- the component 1 is, for example, a turbine blade 120, 130 (FIG. 7) of a turbine, in particular a gas turbine 100 (FIG. 8) for a power plant or an aircraft.
- the substrate 4, after manufacture or after use, has a crack 13 which is to be repaired.
- an electrode 7 for example, a tungsten electrode, or a laser or electron beam 7, the crack 13 is closed.
- electrodes for example, a tungsten electrode, or a laser or electron beam 7, the crack 13 is closed.
- electrodes are used in welding, electrodes other than tungsten electrodes may be used.
- the protective gas 25 according to the invention is used, which is rinsed around the crack 13 or in a box (not shown), which surrounds the crack 13 is present.
- FIG. 3 shows a component 1 which is likewise treated by means of a further method according to the invention.
- the substrate 4 has an area 19 (recess), e.g. has exhibited a crack or corroded surface areas. These have been removed and must be filled up to the surface 16 of the substrate 4 for the reuse of the component 1 with new material 28.
- the inert gas mixture 25 according to the invention is used, which surrounds or lavages the molten or hot regions 19 in order to reduce the formation of oxides and / or low-melting phases on the grain boundaries 12.
- FIG. 4 shows a component 1 after carrying out the method according to FIG. 1 or 2.
- the substrate 4 no longer has cracks 13 or regions 19 that have been removed. Indicated by dashed lines is the area 22 in which cracks 13 were previously present or material was removed.
- the component 1 can now be used again as a newly manufactured component and coated again.
- One way of avoiding hot cracks in the method according to FIGS. 3 or 4 is to reduce the temperature gradient and thus the voltage gradient between the weld point and the remainder of the component. This is achieved by preheating the component during welding, for example during manual TIG welding in a protective gas box, wherein the weld is preheated inductively (by means of induction coils) to temperatures greater than 900 ° C.
- the protective gas 25, which is used during the welding process, has proportions of nitrogen and / or hydrogen and / or the inert gas helium.
- the hydrogen in the shielding gas 25 bonds with oxygen that comes from the alloy or the environment.
- the oxidation of the weld metal is avoided or reduced.
- large-area welds in good quality without mechanical processing of each previously applied weld bead (it represents a surface of a weld bead and a grain boundary 12) for the removal of tarnished / oxidized areas are allowed.
- intercrystalline corrosion is prevented, which would weaken the grain boundaries. This reduces the susceptibility to cracking and improves the mechanical properties of the materials.
- additions of hydrogen in the range of 0.3vol% to 25vol% are suitable, in particular 0, 5vol% -3vol% or about 0.7vol%.
- Nitrogen can e.g. suppress or reduce the formation of coarser primary carbides on the grain boundaries. Less and finer primary carbides are formed. Partly carbonitrides rather than primary carbides are formed. This also reduces the susceptibility to hot cracking. Additions of nitrogen in the range from lvol% to 20 vol% are suitable, in particular lvol% -12vol% or about 3vol%.
- One application example is the welding of the alloy Rene ⁇ O, a nickel-based material that has been precipitation-hardened, by means of manual plasma powder deposition welding.
- the aim is the welding repair of operational gas turbines.
- the welding repair should have properties in the range of the base material, so that must be welded the same way.
- Application example is the welding of the alloy Rene 80, especially when it is operational, by means of manual TIG welding and plasma powder plating. Other welding processes and repair applications are not excluded.
- the weld repair sites have properties that allow "structural" repairs in the transition radius of the airfoil platform or in the airfoil of a turbine blade.
- nickel-based additives can be selected according to how large the proportion of the ⁇ 'phase is, namely preferably greater than or equal to 35vol% with a preferably given maximum upper limit of 75vol%.
- materials IN 738, IN 738 LC, IN 939, PWA 1483 SX or IN 6203 DS can be welded with the welding consumable material.
- the process with the protective gas mixture can also be used for welding without welding consumables.
- FIG. 6 shows a perspective view of a blade 120, 130 as an exemplary component 1, which extends along a longitudinal axis 121.
- the blade 120 may be a blade 120 or stator 130 of a turbomachine.
- the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
- the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406.
- the blade at its blade tip 415 may have another platform (not shown).
- a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
- the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
- the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the blade 406.
- the blade 120, 130 can in this case by a casting process, also by means of directional solidification, by a Schmiedever- drive, be made by a milling process or combinations thereof.
- Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
- directionally solidified structures generally refers to single crystals that have no grain boundaries or at most small angle grain boundaries, as well as stem crystal structures that have grain boundaries running in the longitudinal direction but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
- Refurbishment means that components 120, 130 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, will also
- the blade 120, 130 may be hollow or solid. When the blade 120, 130 is to be cooled, it is hollow and may still have film cooling holes (not shown). As a protection against corrosion, the blade 120, 130, for example, corresponding mostly metallic coatings and as protection against heat usually still a ceramic coating.
- FIG. 7 shows by way of example a gas turbine 100 in a longitudinal partial section.
- the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner. Along the rotor 103 successively follow an intake housing 104, a compressor 105, for example, a torus-like
- Combustion chamber 110 in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109.
- the annular combustion chamber 106 communicates with an example annular hot gas channel 111.
- Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
- the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103, for example by means of a turbine disk 133.
- Coupled to the rotor 103 is a generator or work machine (not shown).
- air 105 is sucked in by the compressor 105 through the intake housing 104 and compressed.
- the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
- the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
- the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
- the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
- the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
- the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.
- substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
- SX structure monocrystalline
- DS structure longitudinal grains
- iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
- the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths) and heat through a thermal barrier coating.
- M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
- X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths) and heat through a thermal barrier coating.
- the thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
- suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
- the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
- the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Les procédés classiques de rechargement par soudage ont l'inconvénient d'entraîner la formation de fissures après le soudage ou lors de l'utilisation, en raison de la formation de phases ou oxydes à bas point de fusion. Le mélange de gaz protecteurs et le procédé de rechargement par soudage selon la présente invention permettent la réduction de ces phases ou oxydes.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2007/002608 WO2008116478A1 (fr) | 2007-03-23 | 2007-03-23 | Mélange de gaz protecteurs et procédé de soudage |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2129486A1 true EP2129486A1 (fr) | 2009-12-09 |
Family
ID=38814312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07723556A Withdrawn EP2129486A1 (fr) | 2007-03-23 | 2007-03-23 | Mélange de gaz protecteurs et procédé de soudage |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100032414A1 (fr) |
EP (1) | EP2129486A1 (fr) |
WO (1) | WO2008116478A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007033291A1 (de) * | 2007-07-17 | 2009-01-22 | Linde Ag | Verfahren zum Lichtbogenfügen |
US9174314B2 (en) * | 2011-11-03 | 2015-11-03 | Siemens Energy, Inc. | Isothermal structural repair of superalloy components including turbine blades |
US10543570B2 (en) | 2016-02-22 | 2020-01-28 | Bwxt Nuclear Operations Group, Inc. | Metal carbide/nitride precipitation control in fusion welding |
US11673204B2 (en) | 2020-11-25 | 2023-06-13 | The Esab Group, Inc. | Hyper-TIG welding electrode |
US20220395904A1 (en) * | 2021-06-15 | 2022-12-15 | Arcam Ab | Devices, systems, and methods for calibrating and maintaining a temperature of materials in an additive manufacturing build chamber |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5106010A (en) * | 1990-09-28 | 1992-04-21 | Chromalloy Gas Turbine Corporation | Welding high-strength nickel base superalloys |
US5083002A (en) * | 1991-01-10 | 1992-01-21 | Haynes International, Inc. | Shielding gas mixture for welding superalloys |
US5554837A (en) * | 1993-09-03 | 1996-09-10 | Chromalloy Gas Turbine Corporation | Interactive laser welding at elevated temperatures of superalloy articles |
FR2712307B1 (fr) * | 1993-11-10 | 1996-09-27 | United Technologies Corp | Articles en super-alliage à haute résistance mécanique et à la fissuration et leur procédé de fabrication. |
DE19543222C1 (de) * | 1995-11-20 | 1997-02-20 | Degussa | Silber-Eisen-Werkstoff für elektrische Schaltkontakte (I) |
US5897801A (en) * | 1997-01-22 | 1999-04-27 | General Electric Company | Welding of nickel-base superalloys having a nil-ductility range |
EP0861927A1 (fr) * | 1997-02-24 | 1998-09-02 | Sulzer Innotec Ag | Procédé de fabrication de structures monocristallines |
CA2306149A1 (fr) * | 1997-11-03 | 1999-05-14 | Messer Griesheim Gmbh | Gaz protecteur pour le soudage a tungstene et a gaz inerte |
US6054672A (en) * | 1998-09-15 | 2000-04-25 | Chromalloy Gas Turbine Corporation | Laser welding superalloy articles |
US6124568A (en) * | 1998-12-31 | 2000-09-26 | General Electric Company | Heating apparatus for a welding operation and method therefor |
US6037563A (en) * | 1999-03-01 | 2000-03-14 | Chromalloy Gas Turbine Corporation | Protective gas shroud for welding |
EP1097779B1 (fr) * | 1999-11-03 | 2005-10-05 | ALSTOM Technology Ltd | Méthode de revêtement et de soudage de vannes statoriques d'une turbine à gaz |
US6333484B1 (en) * | 2000-03-17 | 2001-12-25 | Chromalloy Gas Turbine Corporation | Welding superalloy articles |
FR2809645B1 (fr) * | 2000-05-31 | 2002-09-27 | Air Liquide | Application d'un procede hybride laser-arc au soudage de tube |
DE10062564A1 (de) * | 2000-12-15 | 2002-06-20 | Linde Ag | Schutzgas und Verfahren zum Lichtbogenschweißen |
EP1428897A1 (fr) * | 2002-12-10 | 2004-06-16 | Siemens Aktiengesellschaft | Méthode de fabrication d'un composant en alliage à soudabilité et/ou formabilité améliorée |
US20060219330A1 (en) * | 2005-03-29 | 2006-10-05 | Honeywell International, Inc. | Nickel-based superalloy and methods for repairing gas turbine components |
FR2887481B1 (fr) * | 2005-06-22 | 2008-12-26 | Air Liquide | Soudo-brasage tig avec transfert de metal par pont liquide |
-
2007
- 2007-03-23 US US12/532,489 patent/US20100032414A1/en not_active Abandoned
- 2007-03-23 WO PCT/EP2007/002608 patent/WO2008116478A1/fr active Application Filing
- 2007-03-23 EP EP07723556A patent/EP2129486A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2008116478A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20100032414A1 (en) | 2010-02-11 |
WO2008116478A1 (fr) | 2008-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1777312B1 (fr) | Matériau d'apport pour soudage, utilisation du matériau d'apport pour soudage et procédé de soudage | |
EP2347022B1 (fr) | Matériau d'apport de soudure, utilisation du matériau d'apport de soudure et composant | |
EP2311597B1 (fr) | Procédé de soudage laser de pièces en superalliages haute température avec contrôle de certains paramètres du soudage laser pour obtenir une vitesse de refroidissement particulière | |
EP1835040A1 (fr) | Matériau d'apport, utilisation du matériau d'apport et procédé de soudage d'une composante structurelle | |
EP2117758B1 (fr) | Réparation par soudage de défauts intérieurs | |
EP1957685B1 (fr) | Procede de reparation de fissures dans des composants | |
EP2280801B1 (fr) | Procédé de soudage de pièces d'usinage en alliages superréfractaires | |
EP2322313A1 (fr) | Procédé de soudure de pièces usinées en superalliages résistant aux températures avec un débit particulier du matériau d'apport de soudage | |
EP2078579A1 (fr) | Procédé de soudage d'un composant et composant doté d'emplacements de soudure et de brasure | |
WO2008107282A1 (fr) | Procédé pour réparer par brasage une pièce, sous vide et pression partielle d'oxygène réglée | |
EP1716965A1 (fr) | Brasure comprenant de la poudre d'apport métallique sous forme élémentaire | |
EP2100687A1 (fr) | Chauffage de fil en acier sans potentiel lors de la soudure et son dispositif | |
EP1924395B1 (fr) | Alliage d'apport a base de nickel et procede pour reparer un composant | |
EP2129486A1 (fr) | Mélange de gaz protecteurs et procédé de soudage | |
EP1595633B1 (fr) | utilisation d'un mélange gazeux en soudage. | |
WO2009100794A1 (fr) | Procédé et dispositif pour fondre des surfaces incurvées | |
EP1808572A1 (fr) | Procédé de soudage suivi d'un traitement de diffusion | |
EP1946881A1 (fr) | Matériau d'apport destiné au soudage de superalliages et procédé de soudage avec matériau d'apport | |
DE202005021294U1 (de) | Geschweißtes Bauteil mit Schweißzusatzwerkstoff |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090904 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20100309 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100720 |