EP1995744A2 - Miniature relay switch - Google Patents

Miniature relay switch Download PDF

Info

Publication number
EP1995744A2
EP1995744A2 EP08007491A EP08007491A EP1995744A2 EP 1995744 A2 EP1995744 A2 EP 1995744A2 EP 08007491 A EP08007491 A EP 08007491A EP 08007491 A EP08007491 A EP 08007491A EP 1995744 A2 EP1995744 A2 EP 1995744A2
Authority
EP
European Patent Office
Prior art keywords
switch
miniature relay
additional
switches
protective resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08007491A
Other languages
German (de)
French (fr)
Other versions
EP1995744B1 (en
EP1995744A3 (en
Inventor
Werner Beutelspacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102007029874A external-priority patent/DE102007029874A1/en
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP1995744A2 publication Critical patent/EP1995744A2/en
Publication of EP1995744A3 publication Critical patent/EP1995744A3/en
Application granted granted Critical
Publication of EP1995744B1 publication Critical patent/EP1995744B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/42Impedances connected with contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/40Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc

Definitions

  • the invention relates to a miniature relay switch, in particular a so-called MEMS switch (M icro e lectro M echanical S ystem) having extremely small contact areas.
  • MEMS switch Micro e lectro M echanical S ystem
  • Miniature relay switches of this type are preferably used for broadband switching of high-frequency signals, since they have linear switching characteristics in a wide frequency range from DC or kHz to the GHz range. However, they have the problem that they are easily damaged or destroyed when switching between two different DC potentials. This effect is called hot switching. Since such switches are very low impedance already satisfy very small voltage differences of, for example, only 1 V and very low load capacity of, for example, only a few pF to produce very high pulse currents or pulse current densities at the very small contact surfaces. Therefore, such switches are extremely vulnerable, for example, in the input stages of receivers and could not be used for many possible applications for this reason.
  • Fig. 1 shows this effect using a switching example.
  • the MEMS switch A which is switched on and off via a control device S by means of electrostatic or magnetic forces, a high-frequency signal HF is to be switched through to a load L.
  • the MEMS switch A has a very small volume resistance of 300 mOhms, for example, the load L is only a small load capacity of 10 pF.
  • At the input of the switch A is in addition to the RF signal and a DC potential of, for example, 3 V, which is indicated schematically by the DC voltage source Q.
  • a DC potential of 3 V is present at one switching contact, and a DC voltage potential of 0 V at the other switching contact.
  • the protective resistor according to the invention which is connected in series with the switch when the switch is closed, or which is connected in parallel with the switch before the switch is closed, the DC potential equalization initially takes place via this protective resistor and the switch is thereby protected from damage. Only when the DC potential equalization is achieved, the protective resistor is switched off again via the additional switch and the high frequency signal is switched through the now again only effective miniature relay switch with its advantageous high-frequency switching properties.
  • the low switching time loss to DC potential equalization which may be on the order of microseconds, is compared with the great advantage that for the first time even such MEMS switches can be used as a high frequency switch without the risk of damage or destruction, negligible.
  • Fig. 2 shows a MEMS switch A, which is switched on and off by a control device S.
  • a protective resistor W is connected, which can be bridged via an additional switch B which can also be actuated by means of the switching device S.
  • the switch A is first controlled by the control device S, the switch B remains open.
  • the equipotential current between the DC voltage source Q and the load capacitance is limited by the resistance W for the switch A to an allowable level and thus protected.
  • the value of the resistor W is chosen so large that the maximum current density specified by the manufacturer at the switching contacts of the MEMS switch A is not exceeded. In practice this is done with a resistance of a few kOhms, for example 10 kOhm.
  • the resistor W is preferably a purely ohmic resistor.
  • the switch A can be closed immediately without danger. Only after the DC potential equalization at the contacts of the switch A, this resistor W is bridged by the second additional switch B.
  • the controlled via the controller S switch B is preferably constructed in the same technology as the switch A, so for example also a MEMS switch. Since the high-frequency signal is switched through to the load via both switches A and B after completion of the equipotential bonding, high demands must be made with respect to the transmission characteristics at these two switches.
  • the control of the two switches A and B can be done via the control device S either time-dependent or controlled by a measuring device, as in connection with the embodiment of FIG Fig. 3 will be described in more detail.
  • Fig. 3 again shows a MEMS switch A controlled via a control device S for switching an RF signal HF to a load L.
  • Fig. 3 the possibility of controlling the switch via a voltage measuring device.
  • the switch A is a DC potential difference Q.
  • the switch B can then be opened again. After the short switching time of only a few microseconds for the purpose of equipotential bonding, the high-frequency signal is switched through exclusively via the switch A to the load. Therefore, the requirements of the additional switch B lower requirements for transmission characteristics than in the series connection after Fig. 2 , The additional switch B can therefore also be realized in a completely different technology, for example as a field effect transistor switch or as a simple mechanical relay switch.
  • the dimensioning of the resistor W in the embodiment according to Fig. 3 depends on the maximum permissible current density at the contact of switch B.
  • the controller according to the embodiment Fig. 3 can again be time-dependent or controlled via a measuring device.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Relay Circuits (AREA)

Abstract

The miniature relay switch, particularly micro-electromechanical system switch, has a protective resistor (W), which is adjustable is by an additional switch (B) to direct current voltage potential equalization at the contacts of the another switch (A), and is taken in row or parallel to the latter switch. The protective resistor is arranged in row to the latter switch and is controlled by additional switch in such a manner that two switches are bridgeable.

Description

Die Erfindung betrifft einen Miniaturrelais-Schalter, insbesondere einen sogenannten MEMS-Schalter (Micro Electro Mechanical System), der extrem kleine Kontaktflächen aufweist.The invention relates to a miniature relay switch, in particular a so-called MEMS switch (M icro e lectro M echanical S ystem) having extremely small contact areas.

Miniaturrelais-Schalter dieser Art werden bevorzugt zum breitbandigen Schalten von Hochfrequenzsignalen eingesetzt, da sie in einem großen Frequenzbereich von Gleichstrom bzw. kHz bis in den GHz-Bereich lineare Schalteigenschaften besitzen. Sie haben jedoch das Problem, dass sie sehr leicht beschädigt oder zerstört werden, wenn sie zwischen zwei verschiedenen Gleichspannungs-Potenzialen schalten. Dieser Effekt wird als Hot Switching bezeichnet. Da solche Schalter sehr niederohmig sind genügen bereits sehr kleine Spannungsdifferenzen von beispielsweise nur 1 V und sehr geringe Lastkapazitäten von beispielsweise nur wenigen pF, um an den sehr kleinen Kontaktflächen sehr hohe Impulsströme bzw. Impulsstromdichten zu erzeugen. Daher sind solche Schalter beispielsweise in Eingangsstufen von Empfängern extrem gefährdet und konnten aus diesem Grunde für viele mögliche Anwendungsfälle nicht eingesetzt werden.Miniature relay switches of this type are preferably used for broadband switching of high-frequency signals, since they have linear switching characteristics in a wide frequency range from DC or kHz to the GHz range. However, they have the problem that they are easily damaged or destroyed when switching between two different DC potentials. This effect is called hot switching. Since such switches are very low impedance already satisfy very small voltage differences of, for example, only 1 V and very low load capacity of, for example, only a few pF to produce very high pulse currents or pulse current densities at the very small contact surfaces. Therefore, such switches are extremely vulnerable, for example, in the input stages of receivers and could not be used for many possible applications for this reason.

Das Problem des Hot Switching ist z.B. in der DE 103 40 619 A1 beschrieben.The problem of the Hot Switching is eg in the DE 103 40 619 A1 described.

Fig. 1 zeigt anhand eines Schaltbeispieles diesen Effekt. Mit dem dargestellten MEMS-Schalter A, der über eine Steuereinrichtung S mittels elektrostatischer oder magnetischer Kräfte ein- und ausschaltbar ist, soll ein Hochfrequenzsignal HF zu einer Last L durchgeschaltet werden. Der MEMS-Schalter A besitzt beispielsweise einen sehr kleinen Durchgangswiderstand von 300 mOhm, die Last L ist beispielsweise nur eine kleine Lastkapazität von 10 pF. Am Eingang des Schalters A liegt neben dem HF-Signal auch noch ein Gleichspannungspotenzial von beispielsweise 3 V an, das schematisch durch die Gleichspannungsquelle Q angedeutet ist. Bei offenem Schalter A liegt also an einem Schaltkontakt ein Gleichspannungspotenzial von 3 V, am anderen Schaltkontakt ein Gleichspannungspotenzial von 0 V. Beim Schließen des Schalters A durch die Steuereinrichtung S liegt am niederohmigen Schalter A eine Spannungsdifferenz von 3 V und es würde hierdurch kurzzeitig ein Impulsstrom von bis zu 10 A über die Kontaktflächen des Schalters A fließen, die extrem klein sind und nur wenige µm groß sind. Durch diese Gleichspannungsdifferenz am Schalter A würde dieser beschädigt oder sogar zerstört. Fig. 1 shows this effect using a switching example. With the illustrated MEMS switch A, which is switched on and off via a control device S by means of electrostatic or magnetic forces, a high-frequency signal HF is to be switched through to a load L. For example, the MEMS switch A has a very small volume resistance of 300 mOhms, for example, the load L is only a small load capacity of 10 pF. At the input of the switch A is in addition to the RF signal and a DC potential of, for example, 3 V, which is indicated schematically by the DC voltage source Q. When the switch A is open, therefore, a DC potential of 3 V is present at one switching contact, and a DC voltage potential of 0 V at the other switching contact. When the switch A is closed by the control device S, a voltage difference of 3 V is present at the low-resistance switch A, and this would briefly cause a pulse current of up to 10 A over the contact surfaces of the switch A flow, which are extremely small and only a few microns in size. This DC voltage difference at the switch A would damage this or even destroyed.

Es ist daher Aufgabe der Erfindung, einen Miniaturrelais-Schalter, insbesondere MEMS-Schalter, zu schaffen, der diesen Nachteil vermeidet und der ohne Gefahr von Hot Switching als Hochfrequenzschalter einsetzbar ist.It is therefore an object of the invention to provide a miniature relay switch, in particular MEMS switch, which avoids this disadvantage and which can be used without risk of hot switching as a high-frequency switch.

Diese Aufgabe wird gelöst durch einen Miniaturrelais-Schalter laut Hauptanspruch 1. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.This object is achieved by a miniature relay switch according to the main claim 1. Advantageous developments emerge from the dependent claims.

Durch den erfindungsgemäßen Schutzwiderstand, der beim Schließen des Schalters in Reihe zum Schalter liegt oder der vor dem Schließen des Schalters parallel zu diesem geschaltet ist, erfolgt der Gleichspannungs-Potentialausgleich zunächst über diesen Schutzwiderstand und der Schalter wird dadurch vor Beschädigung geschützt. Erst wenn der Gleichspannungs-Potenzialausgleich erreicht ist, wird über den zusätzlichen Schalter der Schutzwiderstand wieder ausgeschaltet und das Hochfrequenzsignal wird über den nunmehr wieder allein wirksamen Miniaturrelais-Schalter mit seinen vorteilhaften Hochfrequenz-Schalteigenschaften durchgeschaltet. Der geringe Schaltzeitverlust bis zum Gleichspannungspotenzialausgleich, der in der Größenordnung von Mikrosekunden liegen kann, ist verglichen mit dem großen Vorteil, dass damit erstmals auch solche MEMS-Schalter als Hochfrequenzschalter ohne der Gefahr einer Beschädigung oder Zerstörung eingesetzt werden können, vernachlässigbar.The protective resistor according to the invention, which is connected in series with the switch when the switch is closed, or which is connected in parallel with the switch before the switch is closed, the DC potential equalization initially takes place via this protective resistor and the switch is thereby protected from damage. Only when the DC potential equalization is achieved, the protective resistor is switched off again via the additional switch and the high frequency signal is switched through the now again only effective miniature relay switch with its advantageous high-frequency switching properties. The low switching time loss to DC potential equalization, which may be on the order of microseconds, is compared with the great advantage that for the first time even such MEMS switches can be used as a high frequency switch without the risk of damage or destruction, negligible.

Die Erfindung wird im Folgenden anhand schematischer Zeichnungen an Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
an einem Prinzipschaltbild den sogenannten Hot Switching Effekt eines MEMS-Schalters;
Fig. 2
an einem vergleichbaren Prinzipschaltbild wie Fig. 1 ein erstes erfindungsgemäßes Ausführungsbeispiel mit in Reihe zum Schalter liegenden, überbrückbaren Schutzwiderstand und
Fig. 3
wiederum an einem vergleichbaren Prinzipschaltbild wie Fig. 1 ein zweites erfindungsgemäßes Ausführungsbeispiel mit einem parallel zum Schalter liegenden, abschaltbaren Schutzwiderstand.
The invention will be explained in more detail below with reference to schematic drawings of exemplary embodiments. Show it:
Fig. 1
on a schematic diagram of the so-called hot switching effect of a MEMS switch;
Fig. 2
on a comparable circuit diagram like Fig. 1 a first embodiment of the invention with lying in series with the switch, bridgeable protective resistor and
Fig. 3
again on a similar schematic diagram as Fig. 1 a second embodiment according to the invention with a parallel to the switch, switchable protective resistor.

Fig. 2 zeigt einen MEMS-Schalter A, der durch eine Steuereinrichtung S ein- und ausschaltbar ist. In Reihe zu diesem MEMS-Schalter A ist ein Schutzwiderstand W geschaltet, der über einen ebenfalls mittels der Schalteinrichtung S betätigbaren zusätzlichen Schalter B überbrückbar ist. Zum Durchschalten des HF-Signals zur Last L wird zunächst gesteuert über die Steuereinrichtung S der Schalter A geschlossen, der Schalter B bleibt offen. Der Potentialausgleichsstrom zwischen der Gleichspannungsquelle Q und der Lastkapazität wird durch den Widerstand W für den Schalter A auf ein erlaubtes Maß begrenzt und dieser damit geschützt. Der Wert des Widerstandes W wird so groß gewählt, dass die vom Hersteller angegebene maximale Stromdichte an den Schaltkontakten des MEMS-Schalters A nicht überschritten wird. In der Praxis wird dies mit einem Widerstand von einigen kOhm, beispielsweise 10 kOhm erreicht. Der Widerstand W ist vorzugsweise ein rein Ohm'scher Widerstand. Fig. 2 shows a MEMS switch A, which is switched on and off by a control device S. In series with this MEMS switch A, a protective resistor W is connected, which can be bridged via an additional switch B which can also be actuated by means of the switching device S. For switching the RF signal to the load L, the switch A is first controlled by the control device S, the switch B remains open. The equipotential current between the DC voltage source Q and the load capacitance is limited by the resistance W for the switch A to an allowable level and thus protected. The value of the resistor W is chosen so large that the maximum current density specified by the manufacturer at the switching contacts of the MEMS switch A is not exceeded. In practice this is done with a resistance of a few kOhms, for example 10 kOhm. The resistor W is preferably a purely ohmic resistor.

Der Schalter A kann ohne Gefährdung sofort geschlossen werden. Erst nach erfolgtem Gleichspannungs-Potenzialausgleich an den Kontakten des Schalters A wird dieser Widerstand W durch den zweiten zusätzlichen Schalter B überbrückt. Der über die Steuereinrichtung S gesteuerte Schalter B ist vorzugsweise in gleicher Technologie aufgebaut wie der Schalter A, also beispielsweise ebenfalls ein MEMS-Schalter. Da das Hochfrequenzsignal nach Abschluss des Potenzialausgleiches über beide Schalter A und B zur Last durchgeschaltet wird, müssen an diese beiden Schalter hohe Anforderungen bezüglich der Übertragungseigenschaften gestellt werden.The switch A can be closed immediately without danger. Only after the DC potential equalization at the contacts of the switch A, this resistor W is bridged by the second additional switch B. The controlled via the controller S switch B is preferably constructed in the same technology as the switch A, so for example also a MEMS switch. Since the high-frequency signal is switched through to the load via both switches A and B after completion of the equipotential bonding, high demands must be made with respect to the transmission characteristics at these two switches.

Die Steuerung der beiden Schalter A und B kann über die Steuereinrichtung S entweder zeitabhängig oder gesteuert über eine Messeinrichtung erfolgen, wie dies im Zusammenhang mit dem Ausführungsbeispiel nach Fig. 3 näher beschrieben wird.The control of the two switches A and B can be done via the control device S either time-dependent or controlled by a measuring device, as in connection with the embodiment of FIG Fig. 3 will be described in more detail.

Fig. 3 zeigt wieder einen MEMS-Schalter A gesteuert über eine Steuereinrichtung S zum Durchschalten eines HF-Signals HF zu einer Last L. Zusätzlich zeigt Fig. 3 die Möglichkeit einer Steuerung der Schalter über eine Spannungsmesseinrichtung. Außerdem liegt am Schalter A eine Gleichspannungs-Potentialdifferenz Q. Fig. 3 again shows a MEMS switch A controlled via a control device S for switching an RF signal HF to a load L. In addition shows Fig. 3 the possibility of controlling the switch via a voltage measuring device. In addition, the switch A is a DC potential difference Q.

Um eine Beschädigung des Schalters A durch diese Potenzialdifferenz zu vermeiden, ist im Ausführungsbeispiel nach Fig. 3 parallel zum Schalter A die Serienschaltung eines Widerstandes W und eines ebenfalls über die Steuereinrichtung S gesteuerten zusätzlichen Schalters B angeordnet. Zum Durchschalten des HF-Signals HF wird gesteuert über die Steuereinrichtung S zunächst der Schalter B geschlossen und es wird damit über den Parallelzweig mit dem Widerstand W das Gleichspannungspotenzial am Ein- und Ausgang des Schalters A ausgeglichen. Nach erfolgtem Potenzialausgleich wird dann der Schalter A über die Steuereinrichtung S ohne Gefahr einer Beschädigung geschlossen.In order to avoid damage to the switch A by this potential difference is in the embodiment after Fig. 3 arranged parallel to the switch A, the series connection of a resistor W and also controlled by the control device S additional switch B. For switching the RF signal HF is controlled via the control device S first, the switch B is closed and it is thus on the parallel branch with the resistance W the DC potential at the input and output of the switch A balanced. After the potential equalization, the switch A is then closed by the control device S without risk of damage.

Zur Verminderung parasitärer Effekte kann anschließend der Schalter B wieder geöffnet werden. Nach der kurzen Schaltzeit von nur einigen µsec zwecks Potenzialausgleich wird das Hochfrequenzsignal ausschließlich über den Schalter A zur Last durchgeschaltet. Daher sind an den zusätzlichen Schalter B geringere Anforderungen bezüglich Übertragungseigenschaften zu stellen als bei der Serienschaltung nach Fig. 2. Der zusätzliche Schalter B kann daher auch in einer völlig anderen Technologie realisiert werden, beispielsweise als Feldeffekttransistor-Schalter oder als einfacher mechanischer Relaisschalter.To reduce parasitic effects, the switch B can then be opened again. After the short switching time of only a few microseconds for the purpose of equipotential bonding, the high-frequency signal is switched through exclusively via the switch A to the load. Therefore, the requirements of the additional switch B lower requirements for transmission characteristics than in the series connection after Fig. 2 , The additional switch B can therefore also be realized in a completely different technology, for example as a field effect transistor switch or as a simple mechanical relay switch.

Die Dimensionierung des Widerstandes W im Ausführungsbeispiel nach Fig. 3 richtet sich nach der maximalen zulässigen Stromdichte am Kontakt des Schalters B.The dimensioning of the resistor W in the embodiment according to Fig. 3 depends on the maximum permissible current density at the contact of switch B.

Die Steuerung beim Ausführungsbeispiel nach Fig. 3 kann wieder zeitabhängig oder gesteuert über eine Messeinrichtung erfolgen. Am einfachsten ist es, den zeitlichen Ablauf der beiden Schalter A und B in den Ausführungsbeispielen nach Fig. 2 und 3 zeitabhängig über die Steuereinrichtung S zu steuern. Da die Dimensionierung des Schutzwiderstandes W und die zu erwartende Gleichspannungs-Potenzialdifferenz am Schalter A und auch die angrenzenden Kapazitäten am Schalter bzw. an der Last in der Regel bekannt sind, kann die Wartezeit, die zum Potentialausgleich erforderlich ist, berechnet werden. Z. B. gilt: t = 5 τ = 5 R Schutz C Last

Figure imgb0001
mit τ =Zeitkonstante, RSchutz =Widerstandswert von W,
CLast =Kapazität von L.The controller according to the embodiment Fig. 3 can again be time-dependent or controlled via a measuring device. The easiest way is, the timing of the two switches A and B in the embodiments according to Fig. 2 and 3 To control time dependent on the control device S. Since the dimensioning of the protective resistor W and the expected DC potential difference at the switch A and also the adjacent capacitances at the switch or at the load are generally known, the waiting time required for equipotential bonding can be calculated. For example: t = 5 τ = 5 R protection C load
Figure imgb0001
with τ = time constant, R protection = resistance value of W,
C load = capacity of L.

Anstelle einer zeitabhängigen Steuerung könnte die Steuerung der Schalter A und B auch über eine die Potentialdifferenz messende Messeinrichtung erfolgen, wie dies schematisch in Fig. 3 dargestellt ist. In der Steuereinrichtung S ist eine hochohmige Spannungsmesseinrichtung vorgesehen, beispielsweise eine Spannungskomparatorschaltung, die die Gleichspannungsdifferenz zwischen den Schaltpunkten 1 und 2 des Schalters A erfasst. Wenn die Potentialdifferenz zwischen diesen Schaltpunkten 1 und 2 einen vorgegebenen Minimalwert erreicht, also ausreichender Potentialausgleich erreicht ist, wird gesteuert über diese Messeinrichtung der Steuereinrichtung S im Ausführungsbeispiel nach Fig. 3 der Schalter A geschlossen und der Schalter B gegebenenfalls geöffnet. Beim Ausführungsbeispiel nach Fig. 2 wird die Potentialdifferenz wieder an den Schaltpunkten 1 und 2 gemessen und wenn Potentialausgleich erreicht ist, wird der Schalter B geschlossen.Instead of a time-dependent control, the control of the switches A and B could also take place via a measuring device measuring the potential difference, as shown schematically in FIG Fig. 3 is shown. In the control device S, a high-impedance voltage measuring device is provided, for example, a voltage comparator circuit which detects the DC voltage difference between the switching points 1 and 2 of the switch A. When the potential difference between these switching points 1 and 2 reaches a predetermined minimum value, that is, sufficient equipotential bonding is achieved, the control device S in the exemplary embodiment is controlled by this measuring device Fig. 3 the switch A is closed and the switch B opened if necessary. According to the embodiment Fig. 2 the potential difference is again measured at the switching points 1 and 2 and when equipotential bonding is reached, the switch B is closed.

Die beschriebenen Maßnahmen können sowohl mit eigenständigen Bauteilen realisiert werden oder in integrierter Technik beispielsweise im MEMS-Schalter. Alle beschriebenen und/oder gezeichneten Merkmale sind im Rahmen der Erfindung beliebig miteinander kombinierbar.The measures described can be implemented both with independent components or in integrated technology, for example in the MEMS switch. All described and / or drawn features can be combined with each other in the context of the invention.

Claims (10)

Miniaturrelais-Schalter, insbesondere MEMS-Schalter, mit einem Schutzwiderstand (W), der durch einen zusätzlichen Schalter (B) bis zum erfolgten Gleichspannungs-Potentialausgleich an den Kontakten des Schalters (A) in Reihe oder parallel zum Schalter (A) schaltbar ist.Miniature relay switch, in particular MEMS switch, with a protective resistor (W), which can be switched by an additional switch (B) until the DC potential equalization at the contacts of the switch (A) in series or parallel to the switch (A). Miniaturrelais-Schalter nach Anspruch 1,
dadurch gekennzeichnet,
dass der Schutzwiderstand (W) in Reihe zum Schalter (A) angeordnet und mittels des zusätzlichen Schalters (B) überbrückbar ist und die beiden Schalter (A, B) so gesteuert sind, dass bis zum Gleichspannungs-Potenzialausgleich am geschlossenen Schalter (A) bei zunächst offenem zusätzlichem Schalter (B) der Schutzwiderstand (W) in Reihe zum Schalter (A) geschaltet ist und erst nach Potentialausgleich der Schutzwiderstand (W) durch den zusätzlichen Schalter (B) überbrückt wird.
Miniature relay switch according to claim 1,
characterized,
in that the protective resistor (W) is arranged in series with the switch (A) and can be bridged by means of the additional switch (B) and the two switches (A, B) are controlled so that the DC potential equalization at the closed switch (A) initially open additional switch (B) of the protective resistor (W) in series with the switch (A) is connected and only after equipotential bonding of the protective resistor (W) by the additional switch (B) is bridged.
Miniaturrelais-Schalter nach Anspruch 2,
dadurch gekennzeichnet,
dass der zusätzliche Schalter (B) von gleicher Technologie wie der Schalter (A) ist, insbesondere beide Schalter MEMS-Schalter sind.
Miniature relay switch according to claim 2,
characterized,
that the additional switch (B) of the same technology as the switch (A), in particular both switches MEMS switch.
Miniaturrelais-Schalter nach Anspruch 2 oder 3,
dadurch gekennzeichnet,
dass parallel zum Schalter (A) die Serienschaltung von Schutzwiderstand (W) und zusätzlichem Schalter (B) angeordnet ist und die beiden Schalter (A, B) so gesteuert sind, dass zunächst nur die Serienschaltung von Schutzwiderstand und zusätzlichem Schalter eingeschaltet wird und der Schalter (A) erst nach erfolgtem Potentialausgleich geschlossen wird.
Miniature relay switch according to claim 2 or 3,
characterized,
in that the series connection of the protective resistor (W) and additional switch (B) is arranged parallel to the switch (A) and the two switches (A, B) are controlled so that initially only the series connection of protective resistor and additional switch is switched on and the switch (A) is closed only after the potential equalization has been carried out.
Miniaturrelais-Schalter nach Anspruch 4,
dadurch gekennzeichnet,
dass nach erfolgtem Potenzialausgleich und Schließen des Schalters (A) der zusätzliche Schalter (B) wieder geöffnet wird.
Miniature relay switch according to claim 4,
characterized,
that after the potential equalization and closing of the switch (A), the additional switch (B) is opened again.
Miniaturrelais-Schalter nach Anspruch 4 oder 5,
dadurch gekennzeichnet,
dass der zusätzliche Schalter (B) von anderer Technologie wie der Schalter (A) ist, insbesondere ein FET-Schalter ist.
Miniature relay switch according to claim 4 or 5,
characterized,
that the additional switch (B) is of a different technology than the switch (A), in particular a FET switch.
Miniaturrelais-Schalter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Schaltfolge der beiden Schalter (A, B) zeitgesteuert ist.
Miniature relay switch according to one of the preceding claims,
characterized,
that the switching sequence of the two switches (A, B) is time-controlled.
Miniaturrelais-Schalter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass dem Schaltkontakt (A) eine Gleichspannungs-Potential-Messvorrichtung zugeordnet ist und die Schaltfolge der beiden Schalter (A, B) in Abhängigkeit von der gemessenen Potentialdifferenz am Schalter (A) gesteuert ist.
Miniature relay switch according to one of the preceding claims,
characterized,
that the switching contact (A) is assigned to a DC potential measuring device and the switching sequence of the two switches (A, B) in dependence on the measured difference in potential at the counter (A) is controlled.
Miniaturrelais-Schalter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Schutzwiderstand (W) so groß gewählt ist, dass die maximal zulässige Stromdichte des Schalters (A) und/oder des Schalters (B) nicht überschritten wird.
Miniature relay switch according to one of the preceding claims,
characterized,
that the protective resistance (W) is chosen so large that the maximum permissible current density of the switch (A) and / or the switch (B) is not exceeded.
Miniaturrelais-Schalter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Schutzschaltung einschließlich Schutzwiderstand (W) und/ oder zusätzlichem Schalter (B) und/ oder einer Steuereinrichtung (S) in den Miniaturrelais-Schalter integriert ist.
Miniature relay switch according to one of the preceding claims,
characterized,
that the protection circuit, including protection resistor (W) and / or additional switch (B) and / or a control device (S) is integrated into the miniature relay switch.
EP08007491.7A 2007-05-25 2008-04-16 Miniature relay switch Expired - Fee Related EP1995744B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007024458 2007-05-25
DE102007029874A DE102007029874A1 (en) 2007-05-25 2007-06-28 Miniature relay switch, particularly micro-electromechanical system switch, has protective resistor, which adjustable is by additional switch to direct current voltage potential equalization at contacts of another switch

Publications (3)

Publication Number Publication Date
EP1995744A2 true EP1995744A2 (en) 2008-11-26
EP1995744A3 EP1995744A3 (en) 2009-09-30
EP1995744B1 EP1995744B1 (en) 2014-03-19

Family

ID=39688538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08007491.7A Expired - Fee Related EP1995744B1 (en) 2007-05-25 2008-04-16 Miniature relay switch

Country Status (1)

Country Link
EP (1) EP1995744B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057091A (en) * 2017-10-13 2020-05-25 제네럴 일렉트릭 컴퍼니 Real-time delay beamformer and its operation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215001A1 (en) 2016-08-11 2018-02-15 Siemens Aktiengesellschaft Switching cell with semiconductor switching element and microelectromechanical switching element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340619A1 (en) 2003-09-03 2005-04-28 Rohde & Schwarz Step attenuator with attenuation members switched via micro electro mechanical system (MEMS) switches in stages between input and output, with semiconductor switches between input and/or output and gauge line for protection
US20070009202A1 (en) 2005-07-08 2007-01-11 Cammen Chan MEMS switching device protection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864458A (en) * 1995-09-14 1999-01-26 Raychem Corporation Overcurrent protection circuits comprising combinations of PTC devices and switches
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
DE19927762A1 (en) * 1999-06-17 2001-01-04 Abb Research Ltd New electrical switching device for overcurrent protection
DE10029853A1 (en) * 2000-06-16 2002-01-03 Helbako Elektronik Baugruppen Circuit for reducing contact current during contact bounce in switch device e.g. for use in motor vehicles, has drop resistor which receives switch-on current until parallel switch responds
US6683768B2 (en) * 2000-09-28 2004-01-27 Turnstone Systems, Inc. Circuit topology for protecting vulnerable micro electro-mechanical system (MEMS) and electronic relay devices
TW539934B (en) * 2001-12-06 2003-07-01 Delta Electronics Inc Inrush current suppression circuit
US7504841B2 (en) * 2005-05-17 2009-03-17 Analog Devices, Inc. High-impedance attenuator
US7276991B2 (en) * 2005-09-09 2007-10-02 Innovative Micro Technology Multiple switch MEMS structure and method of manufacture
JP2007103312A (en) * 2005-10-07 2007-04-19 Fujitsu Media Device Kk Switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340619A1 (en) 2003-09-03 2005-04-28 Rohde & Schwarz Step attenuator with attenuation members switched via micro electro mechanical system (MEMS) switches in stages between input and output, with semiconductor switches between input and/or output and gauge line for protection
US20070009202A1 (en) 2005-07-08 2007-01-11 Cammen Chan MEMS switching device protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057091A (en) * 2017-10-13 2020-05-25 제네럴 일렉트릭 컴퍼니 Real-time delay beamformer and its operation method

Also Published As

Publication number Publication date
EP1995744B1 (en) 2014-03-19
EP1995744A3 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
DE19714972C2 (en) Device for monitoring the application of a neutral electrode
DE3688438T2 (en) AC MOSFET switch.
EP3832324B1 (en) Circuit assembly with active measuring voltage for determining an insulation resistance to ground potential in an unearthed power supply system
EP3740771B1 (en) Electrical circuit for testing primary internal signals on an asic
DE102013202796B4 (en) cut-off
DE102008034121A1 (en) Delay line for use in test signal-generating device i.e. test signal-generator, has passive elements provided in signal line, where sections of signal line has different electrical lengths and impedances between pairs of adjacent elements
EP1995744B1 (en) Miniature relay switch
EP1906534B1 (en) Method for determining a switching threshold and associated circuit .
DE102014219130A1 (en) Diagnostic circuit and method for operating a diagnostic circuit
DE102007029874A1 (en) Miniature relay switch, particularly micro-electromechanical system switch, has protective resistor, which adjustable is by additional switch to direct current voltage potential equalization at contacts of another switch
EP0696849B1 (en) Control apparatus with a circuit arrangement for its protection when the earth connection is interrupted
DE19604041C1 (en) High-side switch load current detection circuit
DE102007014268A1 (en) Switching arrangement with at least two output stages electrically connected in series switching stages
DE10340619B4 (en) attenuator
EP3652860B1 (en) Level converter and a method for converting level values in vehicle control devices
WO2016207382A2 (en) Circuit arrangement for a secure digital switched output, test method for - and output module comprising a digital circuit arrangement of this type
EP1844382B1 (en) Filter circuit
EP4070353B1 (en) Sensing a switching state of an electromechanical switching element
DE102007018165A1 (en) Switchable RF power divider
DE102009002229B4 (en) Device with a circuit breaker circuit
DE1922382B2 (en) ELECTRONIC COUPLING DEVICE WITH FIELD EFFECT TRANSISTORS
DE10104515B4 (en) Electronic high voltage switch assembly
WO2009065791A1 (en) System for adjusting, setting and/or programming electronic devices, in particular measuring devices having sensors, and circuit arrangement for adjusting, setting or programming electronic elements such as digital potentiometers
DE102004023201B4 (en) Sensor device for detecting a switchable contact's position in a low-voltage current circuit has an evaluatory device with a rated voltage
EP1191348B1 (en) Circuit arrangement for switchable amplification of analogue signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090901

17Q First examination report despatched

Effective date: 20091116

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008011472

Country of ref document: DE

Effective date: 20140430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140312

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140325

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140627

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011472

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011472

Country of ref document: DE

Effective date: 20141222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008011472

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150416

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430