EP1994116A1 - Méthode de traitements des puits par emulsions de petite taille contenant des additifs - Google Patents

Méthode de traitements des puits par emulsions de petite taille contenant des additifs

Info

Publication number
EP1994116A1
EP1994116A1 EP07730979A EP07730979A EP1994116A1 EP 1994116 A1 EP1994116 A1 EP 1994116A1 EP 07730979 A EP07730979 A EP 07730979A EP 07730979 A EP07730979 A EP 07730979A EP 1994116 A1 EP1994116 A1 EP 1994116A1
Authority
EP
European Patent Office
Prior art keywords
emulsion
oil
less
aqueous phase
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07730979A
Other languages
German (de)
English (en)
Inventor
Carolina Romero
Brigitte Bazin
Fernando Leal Calderon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1994116A1 publication Critical patent/EP1994116A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/528Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/54Compositions for in situ inhibition of corrosion in boreholes or wells

Definitions

  • the present invention relates to the field of treatment of wells in low to medium permeability reservoirs, in particular with a very small inverse emulsion.
  • the present invention aims to solve the disadvantages of the prior art.
  • the invention relates to the injection of the deposition inhibitor into an emulsion formulation consisting of water droplets dispersed in an oily phase.
  • the deposition inhibitor is preferably a biodegradable product dissolved in water.
  • the oil is also preferably a vegetable oil.
  • the surfactants that come into the formulation can be chosen preferably biodegradable.
  • the particularity of the present emulsion is the very small size obtained for the water droplets, which allows the injection of this formulation into reservoirs of low, medium, permeability. This emulsion formulation avoids damaging wells by trapping water.
  • the invention is not limited to deposit inhibitors, but can be implemented with other types of processing additives.
  • the biodegradability of the formulation of the emulsion is a definite but not limiting advantage.
  • the present invention relates to a method for treating a reservoir rock in which the following steps are carried out: a concentrated water-in-oil emulsion is produced comprising: between 50 and
  • said concentrated emulsion is sheared in such a way as to obtain an emulsion having drops of a substantially single size dispersed and mainly less than 1 ⁇ m, said mono dispersed emulsion dispersed by an oil phase to obtain an aqueous phase dispersed at a rate of less than 50; %
  • said diluted emulsion is injected into the reservoir rock.
  • the surfactant may be chosen from: PGPR, Simaline IE-201 TM.
  • the additive may be chosen from: a mineral deposit inhibitor (for example
  • MIC anti-corrosion
  • organic precipitation inhibitors eg asphaltenes, parafines, organic and inorganic acids, iron sequestrants (EDTA, NTA), additives consolidation of sands, stabilizers of clays.
  • the oil phase can be vegetable, for example rapeseed oil.
  • the shear may be such that the droplet size of the aqueous phase is less than 0.5 ⁇ m, and preferably less than 0.3 ⁇ m.
  • the concentrated emulsion has a composition, by weight, close to: 20% Simaline IE-201 TM, 72% brine, 8% CMI (Carboxy-Methyl-Inulin).
  • the invention also relates to an inverse emulsion of droplet size of aqueous phase less than 1 .mu.m, preferably less than 0.5 .mu.m, obtained by the preceding method.
  • FIGS. 1a and 1b show microscopic images of the pre-mix emulsions at 10% mass emulsifier, after quilt shearing: (FIG. 1a) Simaline IE-201 and (FIG. 1b) PGPR.
  • FIGS. 2a and 2b show microscopic images of pre-mix emulsions at 20% Simaline before (FIG. 2a) and after (FIG. 2b) at the quilt shear.
  • Figure 3 shows a microscopic image of the diluted emulsion based on 20% Simaline.
  • FIG. 4 shows the drop size distribution of the diluted emulsion based on 20% of Simaline.
  • Figure 5 shows the viscosity of the diluted emulsion based on 20% Simaline.
  • FIG. 6 shows the injectivity curve of the inhibitor in the form of an inverse emulsion at 40 ° C.
  • FIG. 7 shows the mobility reduction during the injection of the diluted emulsion and the reduction in permeability after the injection of the diluted emulsion.
  • FIG. 8 shows the permeability reduction after the injection of the diluted emulsion when the oil is injected at different flow rates.
  • FIG. 9 shows the tracer concentration profiles and the diluted emulsion at the outlet of the porous medium.
  • Emulsions can be defined as colloidal systems of liquid droplets, dispersed in another liquid phase. They are produced by shearing the two immiscible liquid phases, which provides the energy needed to access a metastable state by fragmentation from one phase to the other.
  • emulsions are those with continuous water phase, also called “direct emulsions", and water-in-oil emulsions known as “inverse emulsions”.
  • the present invention can utilize a very wide range of monomeric and polymeric non-toxic emulsifiers. These are used in the food industry to make emulsions. These surfactants (monoglycerydes, diglycerides, sorbitan ester fatty acids, better known as SPAN, phospholipids, and the like) generally have long fatty acid chains that provide the hydrophobic group associated with the oil phase of the interface. oil / water. The polar groups of these emulsifiers are more diverse, ranging from glycerol (to monoglycerides and diglycerides) and substituted phosphoglycerides (in the phospholipids) to highly substituted sorbitan with polyethylene oxide chains.
  • glycerol to monoglycerides and diglycerides
  • substituted phosphoglycerides in the phospholipids
  • Polyglycerol type polymerized surfactants such as polyglycerol esters
  • Macromolecular amphiphiles are adsorbed at the interface and generally give better coverage of the surface compared to monomeric emulsifiers. They provide very good stability to emulsions. This stability is attributed to steric and osmotic effects that prevent the coalescence of the emulsion droplets.
  • the best known of these is PGPR (Polyglycerol Polyricineoleate) used for the manufacture of water / oil inverse emulsions in the food industry.
  • a poly-hydroxystearate-PEG mixture with Span 80, sold under the name Simaline IE-201 (manufactured by the company SEPPIC - France) may also be advantageously used.
  • the mineral deposit inhibiting product may be Dequest PB-11625 (manufactured by Soplutia). It is a Carboxy-Methyl-Inulin (MIC) with a molecular weight of 5300 g / mol corresponding with a degree of polymerization of
  • anti-corrosion additives amines, amides, ammonium salts
  • organic precipitation inhibiting additives such as asphaltenes, paraffins, organic and inorganic acids (HCl, lactic acid, citric acid, acetic acid), iron sequestrants (EDTA, NTA), sand consolidation additives, clay stabilizers.
  • the aqueous solution is made of injection water, or production water, at a pH of between 4.7 and 5.1.
  • This pH is obtained by dissolving 13.60 g of trihydrated sodium acetate and 1.20 g of acetic acid in 100 ml of distilled water. At a rate of 4% by volume, the latter makes it possible to control the pH of the working solutions and to stabilize them at the pH value of 5.
  • the oily phase is rapeseed oil. It is also possible to use dodecane and more generally any oil which is chemically compatible with the brine, the surfactants of the formulation, and the well-treatment additive dissolved in the water.
  • the emulsion according to the invention is prepared by dilution of a concentrated emulsion called pre-mix.
  • a concentrated emulsion called pre-mix.
  • the document FR-99/11745 cited here by reference, describes a procedure for obtaining a concentrated emulsion of the pre-mix type.
  • the pre-mix is a concentrated and polydisperse emulsion which is then sheared into a type cell.
  • the pre-mix may contain from 50 to 80% of aqueous phase containing the pure used well treatment additive, from 20 to 50% oily phase containing the surfactant at the concentration of 10 to 20%. This technique makes it possible to obtain concentrated inverse emulsions with a drop size of less than 1 micrometer, with very high stabilities in the concentrated state.
  • the “duvet” cell consists of two concentric cylinders.
  • the inner cylinder has a radius of 20 mm. It is rotated by a motor at a selected angular velocity, ⁇ , which can reach up to 71.2 rad "1.
  • ⁇ ⁇ r ⁇ / e 14.200 s
  • the strain rate used for shearing the crude emulsion is 1000 s.
  • the pre-mix is injected by a piston which pushes the emulsion through the annular space.
  • the emulsion residence time in the cell is The quilt allows the production of a significant amount of emulsion (up to 1 1 / h) with droplet size distributions of less than 1 micrometer and dispersed phase fractions between 70% and 90%.
  • other industrial systems can be used to obtain larger concentrated emulsion volumes.
  • the pre-mix can be diluted without losing its stability until a concentration of the dispersed phase of 20%, containing 2% by weight of deposition inhibitor.
  • a diluted emulsion containing the deposition inhibitor in aqueous solution is obtained while keeping the size of the drops of the diluted emulsion substantially less than 1 micrometer.
  • pre-mix emulsion A very good pre-mix emulsion is obtained with PGPR.
  • the incorporation of the aqueous phase is easy and has a homogeneous texture.
  • the structure of this inverse emulsion in concentrated form (pre-mix) is very homogeneous, but with drop sizes greater than 3.0 microns. After passing to the "duvet" ( Figure Ib) the drop size is reduced, and at least less than 1 micrometer.
  • aqueous phase is easy and has a homogeneous and malleable texture.
  • the structure of this inverse emulsion is very homogeneous, but with drop sizes greater than 3.0 microns ( Figure 2a). After passing to the "duvet" ( Figure 2a) the drop size is reduced, and at least less than 1 micrometer.
  • a homogeneous stable drop size emulsion with an excellent response to the incorporation of the oil is obtained (illustration in FIG. 3).
  • the 20% aqueous phase inverse emulsion has a mean submicron drop size of 0.29 ⁇ m ( Figure 4).
  • the results of the Mastersizer analysis show a monomodal and quasi-monodisperse distribution for the Simaline emulsion, with 90% of droplets being less than 0.4 ⁇ m.
  • the average size (D50) is less than 0.3 ⁇ m.
  • the rheological curves of the inverse emulsion (system VII) are given in FIG. 5.
  • the behavior of the emulsion is Newtonian since there is no variation of the viscosity with the shear rate. No loss of stability or phase separation was observed by increasing the temperature of the system (T between 30 ° C. and 60 ° C.), which is very positive for the application of the product in emulsified form.
  • the viscosity is due to a large extent to the viscosity of the rapeseed oil. It can be reduced by using a less viscous oil in the formulation.
  • FIG. 6 to 9 show injectivity and "backflow" tests, following the implementation of the method according to the invention.
  • the porous medium is described below:
  • ⁇ P1 is the total differential pressure
  • ⁇ P2 is the inlet pressure of the porous mass.
  • ESI very large volume of emulsion
  • FIG. 7 shows the variation of the pressure difference between the inlet and the outlet of the porous medium (total ⁇ P) and inside the porous medium ( Internal ⁇ P).
  • the results of the pressure are translated into reduction of mobility. This is the ratio of the pressure drop measured during the injection of the emulsion ⁇ PE S I to the pressure loss measured before the injection of the emulsion ⁇ Po corrected for the viscosity ratio.
  • the mobility report is expressed by:
  • R m -i ⁇ . ⁇ L ⁇ si ⁇ p o
  • FIG. 8 shows the results of the experiment in which oil is injected backflow (in the production direction) after the injection of 440 times the pore volume of a diluted emulsion at the concentration of 2% aqueous phase. There is a progressive decrease in the permeability reduction when the flow rate is varied, which confirms that the porous mass is not damaged after the injection of the emulsion.
  • FIG. 8 also shows the concentration of the emulsion measured in the effluents during the injection of the oil in "backflow". There is a gradual desorption of the emulsion since there is still emulsion after the injection of 640 volumes of oil pore.
  • deposition inhibitor squeeze treatments are effective only if the deposition inhibitor is absorbed in the porous medium and then desorbed when the well is returned to production. This desorption of the inhibitor makes it possible to protect the well against mineral deposits.
  • the experiment according to FIG. 9 shows the adsorption of the emulsion.
  • the emulsion is injected with a tracer.
  • the delay of the concentration front of the emulsion with respect to the tracer front is the proof of the adsorption of the emulsion. It can therefore be considered that the injection of the emulsified phase inhibitor is an effective method for the squeeze treatment of producing wells.
  • the emulsion prepared according to the method described previously (according to Examples 1, 2, 3, and VII) has a very good injectivity in a porous medium, which makes it possible to carry out non-damaging well treatments, and very effective in view of the massive adsorption of treatment additives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

L'invention concerne une méthode de traitement d'une roche réservoir dans laquelle on effectue les étapes suivantes : - on fabrique une émulsion concentrée eau dans l'huile comportant : entre 50 et 80% de phase aqueuse dans laquelle au moins un additif de traitement est dissous, entre 20 et 50% de phase huileuse contenant au moins un tensioactif polymérique, - on cisaille l' émulsion concentrée de manière à obtenir une émulsion ayant des gouttes de taille sensiblement mono disperse et principalement inférieure à 1 µm, - on dilue l'émulsion mono disperse par une phase huile pour obtenir une phase aqueuse dispersée à un taux inférieur à 50%, - on injecte l'émulsion diluée dans la roche réservoir.

Description

MÉTHODE DE TRAITEMENTS DES PUITS PAR EMULSIONS DE
PETITE TAILLE CONTENANT DES ADDITIFS
La présente invention concerne le domaine du traitement des puits dans des réservoirs de faible à moyenne perméabilité, en particulier avec une émulsion inverse de très petite taille.
L'injection d'un inhibiteur de dépôt minéral autour d'un puits permet d'améliorer sa productivité. Ce traitement intervient en particulier lorsqu'un puits est endommagé, du fait de la précipitation de sels minéraux insolubles dans les conditions thermodynamiques du fond de puits. On injecte un inhibiteur de dépôt qui agit par un processus d'adsorption sur la roche, puis de désorption progressive dans l'eau de production quand le puits est remis en production. Cependant, les traitements par injection d'inhibiteur de dépôt en phase aqueuse peuvent créer des endommagements par augmentation de la saturation en eau au voisinage du puits. L'injection d'inhibiteurs de dépôt sous forme d'émulsion inverse a déjà été proposée dans la profession, notamment Lawless, Smith et Collins « Lawless, T. A., Smith, R. N., and Collins, I. R.: "Investigations into the potential for invert émulsion squeeze technology." RSC Symposium, Ambleside, Cumbria, UK, 1997 ». La formulation de l'émulsion avait comme phase huile un kérosène de bas contenu aromatique. La taille moyenne de gouttelettes de ce système est de 1 à 2 micromètres.
Jordan et al. « Jordan, M. M., Collins, I. R., Gyani, G., and Graham, G. M.: "Coreflood studies to examine potential application ofnovel scale inhibitor products to minimize intervention duringfield life cycle. " SPE 74666-Aberdeen, UK, January 30- 31, 2002.) réalisent des études d'injection des inhibiteurs formulés par Collins et al. et trouvent que dans certaines conditions, cette injection dans les milieux poreux peut causer une diminution de la perméabilité.
La présente invention a pour objet de résoudre les inconvénients de l'art antérieur. L'invention concerne l'injection de l'inhibiteur de dépôt dans une formulation sous forme d'émulsion constituée de gouttelettes d'eau dispersée dans une phase huileuse. L'inhibiteur de dépôt est, de préférence, un produit biodégradable dissous dans l'eau. L'huile est aussi, de préférence, une huile végétale. Les tensioactifs qui entrent dans la formulation peuvent être choisis de préférence biodégradables. La particularité de la présente émulsion est la très petite taille obtenue pour les gouttelettes d'eau, ce qui permet l'injection de cette formulation dans des réservoirs de faible, à moyenne, perméabilité. Cette formulation en émulsion évite l'endommagement des puits par piégeage de l'eau. L'invention ne se limite pas aux inhibiteurs de dépôts, mais peut être mise en œuvre avec d'autres types d'additifs de traitement. La biodégradabilité de la formulation de l' émulsion est un avantage certain, mais non limitatif.
Ainsi, la présente invention concerne une méthode de traitement d'une roche réservoir dans laquelle on effectue les étapes suivantes : - on fabrique une émulsion concentrée eau dans l'huile comportant : entre 50 et
80% de phase aqueuse dans laquelle au moins un additif de traitement est dissous, entre 20 et 50% de phase huileuse contenant au moins un tensioactif polymérique,
- on cisaille ladite émulsion concentrée de manière à obtenir une émulsion ayant des gouttes de taille sensiblement mono disperse et principalement inférieure à 1 μm, - on dilue ladite émulsion mono disperse par une phase huile pour obtenir une phase aqueuse dispersée à un taux inférieur à 50%,
- on injecte ladite émulsion diluée dans la roche réservoir.
Le tensioactif peut être choisi parmi : le PGPR, la Simaline IE-201™. L'additif peut être choisi parmi : un inhibiteur de dépôt minéral (par exemple
CMI, les anti corrosion (par exemple aminés, amides, sels d'ammonium), les inhibiteurs de précipitation organiques (par exemple les asphaltènes, les parafines, les acides organiques et inorganiques, les séquestrants du fer (EDTA, NTA), les additifs de consolidation des sables, les stabilisateurs des argiles.
La phase huile peut être végétale, par exemple de l'huile de colza.
Le cisaillement peut être tel que la taille des gouttes de la phase aqueuse est inférieure à 0,5 μm, et de préférence inférieure à 0,3 μm.
L'émulsion concentrée a une composition, en poids, voisine de : 20% Simaline IE-201™, 72% de saumure, 8% de CMI (Carboxy-Méthyl-Inuline).
L'invention concerne également une émulsion inverse de taille de gouttes de phase aqueuse inférieure à 1 μm, de préférence inférieure à 0,5 μm, obtenue par la méthode précédentes.
La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture de la description qui suit, comprenant des exemples nullement limitatifs, illustrés par les figures ci-après annexées parmi lesquelles :
Les figures la et Ib montrent des images microscopiques des émulsions pré-mix à 10% d'émulsifïant en masse, après cisaillement au couette: (figure la) Simaline IE-201 et (figure Ib) PGPR.
- Les figures 2a et 2b montrent des images microscopiques des émulsions pré-mix à 20%de Simaline avant (Figure 2a) et après (Figure 2b) cisaillement au couette.
La figure 3 montre une image microscopique de l'émulsion diluée à base de 20% de Simaline.
- La figure 4 montre la distribution de taille de gouttes de l'émulsion diluée à base de 20% de Simaline.
La figure 5 montre la viscosité de l'émulsion diluée à base de 20% de Simaline. - La figure 6 montre la courbe d'injectivité de l'inhibiteur sous forme d'émulsion inverse à 400C.
- La figure 7 montre la réduction de mobilité pendant l'injection de l'émulsion diluée et la réduction de perméabilité après l'injection de l'émulsion diluée.
- La figure 8 montre la réduction de perméabilité après l'injection de l'émulsion diluée quand l'huile est injectée à différents débits.
- La figure 9 montre les profils de concentration de traceur et de l'émulsion diluée à la sortie du milieu poreux.
Les émulsions peuvent êtres définies comme des systèmes colloïdaux de gouttelettes liquides, dispersées dans une autre phase liquide. Elles sont produites en cisaillant les deux phases liquides immiscibles, ce qui fournit l'énergie nécessaire pour accéder à un état métastable par fragmentation d'une phase dans l'autre.
La stabilité de telles dispersions est généralement assurée par la présence d'espèces tensioactives (soit des agents tensioactifs ou des polymères) qui sont connues pour s'adsorber sur l'interface et retardent de manière significative la coalescence des gouttelettes.
Les émulsions les plus courantes sont celles à phase continue eau, aussi appelées "émulsions directes", et des émulsions d'eau dans l'huile connues comme des "émulsions inverses".
La présente invention peut utiliser une gamme très large d'émulsifiants non toxiques monomériques et polymériques. Ceux-ci sont utilisés dans l'industrie alimentaire pour fabriquer des émulsions. Ces tensioactifs (monoglycerydes, diglycerides, acides gras d'esters de sorbitan plus connus sous le nom de SPAN, phospholipides, et autres) ont généralement des longues chaînes d'acide gras qui fournissent le groupe hydrophobe lié à la phase huile de l'interface huile/eau. Les groupes polaires de ces émulsifiants sont plus divers, s'étendant du glycérol (en monoglycérides et diglycerides) et phosphoglycérides substitués (dans les phospholipides) au sorbitan fortement substitué avec des chaînes de polyoxyde d'éthylène.
Des tensioactifs polymérisés de type polyglycérol, comme les esters de polyglycérol, peuvent aussi être utilisés comme des tensioactifs biocompatibles et biodégradables. Les amphiphiles macromoléculaires s'adsorbent à l'interface et donnent en générale une meilleure couverture de la surface par rapport aux émulsifiants monomériques. Ils assurent une très bonne stabilité aux émulsions. Cette stabilité est attribuée à des effets stériques et osmotiques qui empêchent la coalescence des gouttelettes de Pémulsion. Le plus connu d'entre eux est le PGPR (Polyglycérol Polyricineoleate) utilisée pour la fabrication des émulsions inverses eau/huile dans l'industrie alimentaire. Un mélange de poly-hydroxystéarate-PEG avec le Span 80, commercialisé sous le nom de Simaline IE-201 (fabriqué par la société SEPPIC - France) peut aussi être avantageusement utilisé.
Par exemple, le produit inhibiteur de dépôt minéral peut être le Dequest PB- 11625 (fabriqué par Soplutia). C'est une Carboxy-Méthyl-Inuline (CMI) de masse moléculaire en poids de 5300 g/mol correspondant avec un degré de polymérisation de
10 et un degré de substitution de 2,5. Bien entendu, sans sortir du cadre de cette invention, on peut utiliser d'autres produits (tous les produits hydrosolubles de traitement de puits) comme: les additifs anticorrosion (aminés, amides, sels d'ammonium), les additifs inhibiteurs de précipitation organiques comme les asphaltènes, les parafmes, les acides organiques et inorganiques (HCl, acide lactique, citrique, acétique), les séquestrants du fer (EDTA, NTA), les additifs de consolidation des sables, les stabilisateurs des argiles.
Selon une mise en œuvre de l'invention, la solution aqueuse est faite d'eau d'injection, ou d'eau de production, à pH compris entre 4,7 et 5,1. Ce pH est obtenu en dissolvant 13,60 g d'acétate de sodium tri hydraté et 1,20 g d'acide acétique dans 100 ml d'eau distillée. A raison de 4% en volume, cette dernière permet de contrôler les pH des solutions de travail et de les stabiliser à la valeur de pH 5.
Dans les exemples, la phase huileuse est de l'huile de colza. On peut également utiliser du dodécane et plus généralement toute huile compatible chimiquement avec la saumure, les tensioactifs de la formulation, et l'additif de traitement de puits dissous dans l'eau.
L'émulsion selon l'invention est préparée par dilution d'une émulsion concentrée appelée pre-mix. Le document FR-99/11745, cité ici en référence, décrit un mode opératoire pour obtenir une émulsion concentrée de type pré-mix. Le pre-mix est une émulsion concentrée et polydisperse qui est ensuite cisaillée dans une cellule de type
« couette » pour obtenir une émulsion monodisperse par fragmentation des gouttes. Le pré-mix peut contenir de 50 à 80% de phase aqueuse contenant l'additif de traitement de puits utilisé pur, de 20 à 50% de phase huileuse contenant le tensioactif à la concentration de 10 à 20%. Cette technique permet d'obtenir des émulsions inverses concentrées de taille de goutte inférieure à 1 micromètre, avec des stabilités très élevées dans l'état concentré.
Le cellule de « couette » consiste en deux cylindres concentriques. Le cylindre interne à un rayon de 20 mm. Il est mis en rotation par un moteur à une vitesse angulaire sélectionnée, ω, qui peut atteindre jusqu'à 71,2 rad"1. Le cylindre externe est fixe et l'espace entre les deux cylindres est fixe, à e=100 uni. Pour la vitesse angulaire maximale on peut atteindre des vitesses de déformation très élevées γ ≈ rω/e = 14.200 s"
. La vitesse de déformation utilisée pour cisailler l'émulsion brute est de 1000 s" . Le pré-mix est injecté par un piston qui pousse l'émulsion à travers l'espace annulaire. Le temps de résidence de l'émulsion dans la cellule est d'environ 10 secondes. Le couette permet la production d'une quantité significative d'émulsion (jusqu'à 1 1/h) avec des distributions de taille de goutte inférieures à 1 micromètre et des fractions de phase dispersée entre 70% et 90%. Bien entendu, d'autres systèmes industriels peuvent être utilisés pour obtenir des volumes d'émulsion concentrée plus importants.
Le pre-mix peut être dilué sans perdre sa stabilité jusqu'à une concentration de la phase dispersée de 20%, contenant 2% en masse d'inhibiteur de dépôt. On obtient une émulsion diluée contenant l'inhibiteur de dépôt en solution aqueuse tout en conservant la taille des gouttes de l'émulsion diluée sensiblement inférieure à 1 micromètre.
Le tableau ci-dessous donne la composition des exemples des systèmes pre-mix selon l'invention : Systèmes Tensioactif Tensioactif (%) Huile Colza (%) Saumure (%) CMI (%)
Exemple 1 PGPR 10 10 72
Exemple 2 Simaline IE 201 10 10 72
Exemple 3 Simaline IE 201 20 — 72
Exemple 1- Préparation d'une émulsion à base de PGPR
Une très bonne émulsion pre-mix est obtenue avec le PGPR. L'incorporation de la phase aqueuse est facile et elle a une texture homogène. La structure de, cette émulsion inverse sous forme concentrée (pre-mix) est très homogène, mais avec des tailles de goutte supérieures à 3,0 microns. Après leur passage au "couette" (figure Ib) la taille de goutte est réduite, et au moins inférieure à 1 micromètre.
Exemple 3 — Préparation d'une émulsion à base de Simaline IE-201 :
Avec 20% de Simaline IE 201 (exemple 3), on obtient une très bonne émulsion.
L'incorporation de la phase aqueuse est facile et elle a une texture homogène et malléable. La structure de cette émulsion inverse est très homogène, mais avec des tailles de goutte supérieures à 3,0 microns (figure 2a). Après leur passage au "couette" (figure 2a) la taille de goutte est réduite, et au moins inférieure à 1 micromètre.
Après cisaillement du pre-mix au couette, on constate que le système à base de
Simaline conduit à une fragmentation complète des grandes gouttelettes. L'émulsion qui est injectée en milieu poreux a été diluée à 20% de phase dispersée, en ajoutant de l'huile colza, selon le système VII :
Système Tensioactif Tensioactif (%) HuUe Colza (%] ) Saumure (%) CMI (%)
VII Simaline IE 201 5 75 18 2
On obtient une émulsion homogène de taille de goutte stable avec une excellente réponse à l'incorporation de l'huile (illustration par la figure 3). L'émulsion inverse à 20% de phase aqueuse a une taille de goutte submicronique moyenne de 0,29 μm (Figure 4). Les résultats de l'analyse du Mastersizer montrent une distribution monomodale et quasi-monodisperse pour l'émulsion de Simaline, avec 90% de gouttelettes étant inférieur a 0,4 μm. De préférence, la taille moyenne (D50) est inférieure à 0,3 μm.
Les courbes rhéologiques de l'émulsion inverse (système VII) sont données sur la figure 5. Le comportement de l'émulsion est newtonien puisqu'il n'y a pas de variation de la viscosité avec le taux de cisaillement. Aucune perte de stabilité ou séparation de phases n'a été observée en augmentant la température du système (T entre 30°C et 600C), ce qui est très positif pour l'application du produit sous forme émulsionnée. La viscosité est due dans une large mesure à la viscosité de l'huile de colza. Elle peut être diminuée par utilisation d'une huile moins visqueuse dans la formulation.
Les figures 6 à 9 montrent des tests d'injectivité et de « backflow », à la suite de la mise en œuvre de la méthode selon l'invention. Le milieu poreux est décrit ci-après :
Caractéristiques du milieu poreux
Longueur, L (cm) 9,67
Diamètre, d (cm) 1,50
Porosité, φ 0,41
Volume Poreux, VP (cm3) 7,00
Perméabilité mesurée, k (rnD) 462 On a injecté une émulsion concentrée à une concentration de 20% de phase aqueuse (système VII) à un débit de 1 cm3/heure. Les résultats de l'expérience sont représentés sur la figure 6. On observe sur ce graphique une augmentation de la pression différentielle au moment où l'émulsion inverse entre dans le milieu poreux. Celle-ci est due à la viscosité de l'émulsion, qui est plus grande que celle de l'huile de colza qui s'écoulait précédemment. L'augmentation graduelle du AP pendant l'injection de l'émulsion, met en évidence une rétention continue de l'émulsion. Une preuve de cette rétention est le AP résiduel, faible mais significatif, qu'on observe après la réinjection d'huile à la fin de l'expérience. ΔP1 est la pression différentielle totale, et ΔP2 est la pression à l'entrée du massif poreux. Dans l'expérience illustrée par la figure 7, on injecte un très grand volume d'émulsion, dénommée ESI, représentant 50 fois le volume du milieu poreux. Les conditions sont identiques à celle de l'expérience montrée sur la figure 6. La figure 7 montre la variation de la différence de pression entre l'entrée et la sortie du milieu poreux (ΔP total) et à l'intérieur du milieu poreux (ΔP interne). Les résultats de la pression sont traduits en réduction de mobilité. C'est le rapport de la perte de charge mesurée pendant l'injection de l'émulsion ΔPESI à la perte de charge mesurée avant l'injection de l'émulsion ΔPo corrigé du rapport de viscosité. Le rapport de mobilité s'exprime par :
Rm =-i^.^L μεsi Δpo
On observe une très bonne injectivité de l'émulsion, avec un rapport de mobilité compris entre 1 et 2 à l'entrée du massif et une valeur constante du rapport de mobilité à l'intérieur du milieu poreux. Ce résultat confirme que la propagation de l'émulsion s'effectue sans endommagement interne du milieu poreux et ceci pendant 50 volumes de pore de solution inj ectée.
Quand l'huile est injectée après l'émulsion, on a une stabilisation de la perte de charge. L'injection de l'huile en « backflow », c'est à dire dans le sens de la production du réservoir, montre que l'on retrouve un massif avec une perméabilité très comparable à la perméabilité du milieu poreux avant l'injection de l'émulsion puisque la réduction de perméabilité est de 1 , 1. On rappelle que la réduction de perméabilité s'exprime par:
A p
R "17 huile en back flow k = —
ΔP0
Cette expérience montre que l'injection de l'émulsion diluée VII se fait sans endommagement interne du milieu poreux.
La figure 8 montre les résultats de l'expérience dans laquelle on injecte de l'huile en « backflow » (dans le sens de la production) après l'injection de 440 fois le volume des pores d'une émulsion diluée à la concentration de 2% de phase aqueuse. On observe une diminution progressive de la réduction de perméabilité quand on fait varier le débit, ce qui confirme que le massif poreux ne subit pas d'endommagement après l'injection de l'émulsion.
Cette expérience confirme la très bonne injectivité de cette formulation qui est attribuée à la très petite taille des gouttelettes de l'émulsion. Elle montre que lorsque le puits est remis en production après le traitement, le puits peut être dégorgé même si le débit est faible au départ. La diminution progressive et sensible de la réduction de perméabilité à fort débit indique qu'aux temps longs, le puits ne subira aucun endommagement lié à l'injection de l'émulsion.
On a reporté également sur la figure 8 la concentration de l'émulsion mesurée dans les effluents au cours de l'injection de l'huile en « backflow ». On constate une désorption progressive de l'émulsion puisque on trouve encore de l'émulsion après l'injection de 640 volumes de pore d'huile.
On rappelle que les traitements par squeeze d'inhibiteur de dépôt ne sont efficaces que si l'inhibiteur de dépôt s'absorbe dans le milieu poreux et se désorbe ensuite quand le puits est remis en production. Cette désorption de l'inhibiteur permet de protéger le puits contre les dépôts minéraux.
L'expérience selon la figure 9 montre l'adsorption de l'émulsion. On injecte l'émulsion avec un traceur. Le retard du front de concentration de l'émulsion par rapport au front de traceur est la preuve de l'adsorption de l'émulsion. On peut par conséquent considérer que l'injection de l'inhibiteur en phase émulsionnée est un procédé efficace pour le traitement en squeeze des puits producteurs.
L'émulsion préparée suivant la méthode décrite précédemment (selon les exemples 1, 2, 3, et VII) a une très bonne injectivité en milieu poreux, ce qui permet de réaliser des traitements de puits non endommageant, et très efficace compte tenu de l'adsorption sur le massif des additifs de traitement.

Claims

REVENDICATIONS
1) Méthode de traitement d'une roche réservoir dans laquelle on effectue les étapes suivantes : - on fabrique une émulsion concentrée eau dans l'huile comportant : entre 50 et 80% de phase aqueuse dans laquelle au moins un additif de traitement est dissous, entre 20 et 50% de phase huileuse contenant au moins un tensioactif polymérique,
- on cisaille ladite émulsion concentrée de manière à obtenir une émulsion ayant des gouttes de taille sensiblement mono disperse et principalement inférieure à 1 μm, on dilue ladite émulsion mono disperse par une phase huile pour obtenir une phase aqueuse dispersée à un taux inférieur à 50%,
- on injecte ladite émulsion diluée dans la roche réservoir. 2) Méthode selon la revendication 1, dans laquelle ledit tensioactif est choisi parmi : le PGPR, la Simaline IE-201™.
3) Méthode selon l'une des revendications précédentes, dans laquelle l'additif est choisi parmi : un inhibiteur de dépôt minéral (par exemple CMI, les anti corrosion (par exemple aminés, amides, sels d'ammonium), les inhibiteurs de précipitation organiques (par exemple les asphaltènes, les parafmes, les acides organiques et inorganiques, les séquestrants du fer (EDTA, NTA), les additifs de consolidation des sables, les stabilisateurs des argiles.
4) Méthode selon l'une des revendications précédentes, dans laquelle la phase huile est végétale, par exemple de l'huile de colza. 5) Méthode selon l'une des revendications précédentes, dans laquelle le cisaillement est tel que la taille des gouttes de la phase aqueuse est inférieure à 0,5 μm, et de préférence inférieure à 0,3 μm. 6) Méthode selon l'une des revendications précédentes, dans laquelle ladite émulsion concentrée a une composition, en poids, voisine de : 20% Simaline IE-201™, 72% de saumure, 8% de CMI (Carboxy-Méthyl-Inuline).
7) Emulsion inverse de taille de gouttes de phase aqueuse inférieure à 1 μm, de préférence inférieure à 0,5 μm, obtenue par la méthode selon l'une des revendications précédentes.
EP07730979A 2006-02-13 2007-02-13 Méthode de traitements des puits par emulsions de petite taille contenant des additifs Withdrawn EP1994116A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0601231A FR2897362B1 (fr) 2006-02-13 2006-02-13 Methode de traitement des puits par emulsions de petite taille contenant des additifs
PCT/FR2007/000268 WO2007093708A1 (fr) 2006-02-13 2007-02-13 Méthode de traitements des puits par emulsions de petite taille contenant des additifs

Publications (1)

Publication Number Publication Date
EP1994116A1 true EP1994116A1 (fr) 2008-11-26

Family

ID=37075494

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07730979A Withdrawn EP1994116A1 (fr) 2006-02-13 2007-02-13 Méthode de traitements des puits par emulsions de petite taille contenant des additifs

Country Status (4)

Country Link
US (1) US20090298723A1 (fr)
EP (1) EP1994116A1 (fr)
FR (1) FR2897362B1 (fr)
WO (1) WO2007093708A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015124214A1 (fr) * 2014-02-24 2015-08-27 Statoil Petroleum As Prévention contre les instabilités d'ondes de translation dans des conduites d'écoulement de condensat de gaz à trois phases

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232910A (en) * 1988-12-19 1993-08-03 Henkel Kommanditgesellschaft Auf Aktien Use of selected ester oils in drilling fluids and muds
DE19643857A1 (de) * 1996-10-30 1998-05-07 Henkel Kgaa Verwendung biologisch abbaubarer Alkoxylierungsprodukte zum Reinigen von Bohrlöchern, Bohrgeräten oder Bohrklein
NL1009356C2 (nl) * 1998-06-09 1999-12-10 Cooperatie Cosun U A Werkwijze voor het voorkomen van afzetting bij de winning van olie.
FR2781498B1 (fr) * 1998-07-21 2002-06-28 Elf Exploration Prod Procede d'utilisation des boues de forage biodegradables
FR2798601B1 (fr) * 1999-09-20 2001-12-21 Centre Nat Rech Scient Emulsion double polydisperse, emulsion double monodisperse correspondante et procede de preparation de l'emulsion monodisperse
GB9930219D0 (en) * 1999-12-21 2000-02-09 Bp Exploration Operating Process
NL1014985C2 (nl) * 2000-04-19 2001-10-24 Co Peratie Cosun U A Sequestreren.
FR2808703B1 (fr) * 2000-05-09 2002-08-02 Centre Nat Rech Scient Procede de preparation d'une emulsion double monodisperse
FR2861397B1 (fr) * 2003-10-22 2006-01-20 Soc Dexploitation De Produits Pour Les Industries Chimiques Seppic Nouveau latex inverse concentre, procede pour sa preparation et utilisation dans l'industrie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007093708A1 *

Also Published As

Publication number Publication date
FR2897362A1 (fr) 2007-08-17
FR2897362B1 (fr) 2008-04-18
WO2007093708A1 (fr) 2007-08-23
US20090298723A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US11001748B2 (en) Method of preparing and using a drag-reducing additive having a dispersion polymer
Youssif et al. Silica nanofluid flooding for enhanced oil recovery in sandstone rocks
CA1255840A (fr) Procede de preparation de microlatex inverses de copolymeres hydrosolubles, les microlatex inverses obtenus et leur utilisation pour l'amelioration de la production des hydrocarbures
EP2431443B1 (fr) Procédé amélioré de récupération assistée du pétrole utilisant la technique dite ASP
EP2369222B1 (fr) Procédé d'augmentation du débit de transport du pétrole depuis le puits producteur
US20190345374A1 (en) Densifying carbon dioxide with a dispersion of carbon dioxide-philic water capsules
EP2185665B1 (fr) Fluide de forage contenant des nanotubes de carbone
RU2359112C2 (ru) Способы регулирования свойств потери текучей среды из текучих сред на основе вязкоупругих поверхностно-активных веществ
AU2008236474B2 (en) Compositions and methods for water and gas shut-off in subterranean wells with VES fluids
Agi et al. Application of polymeric nanofluid in enhancing oil recovery at reservoir condition
EP2607405B1 (fr) Procédé de synthèse d'un système nanoparticulaire de polyélectrolytes de charges opposées et utilisation pour le traitement de formations géologiques
EP1208898B1 (fr) Formulation désémulsionnante organique et son utilisation dans le traitement des puits forés en boue à l'huile
WO2014167056A1 (fr) Fluides de fracturation a base de polymeres associatifs et de tensioactifs labiles
CA2463466A1 (fr) Methode de forage de puits et fluide de forage
JP4269078B2 (ja) S/o/wエマルション及びその製造方法
FR2774385A1 (fr) Compositions liquides viscosifiantes ou gelifiantes de facon reversible sous l'effet de cisaillement
JP2009084293A (ja) S/oサスペンション及びその製造方法
Sun et al. Properties of multi-phase foam and its flow behavior in porous media
EP1190754B1 (fr) Formulation désémulsionnante en base huile et son utilisation dans le traitement des drains forés en boue à l'huile
WO2016049486A2 (fr) Suspensions stabilisées de nanotubes de carbone
Nasr et al. Nitrogen-doped graphene quantum dot nanofluids to improve oil recovery from carbonate and sandstone oil reservoirs
WO2007093708A1 (fr) Méthode de traitements des puits par emulsions de petite taille contenant des additifs
Dai et al. Synthesis and characterization of water-sensitive core-shell type microspheres for water shut-off in the oil field
CA2728489C (fr) Methode de recuperation assistee d'hydrocarbures utilisant des polymeres associatifs
Son et al. The effect of concentration of silica nanoparticles surface-modified by zwitterionic surfactants for enhanced oil recovery (EOR)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090414

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120120