EP1993923B1 - Cuve en materiau composite resistant a la corrosion - Google Patents

Cuve en materiau composite resistant a la corrosion Download PDF

Info

Publication number
EP1993923B1
EP1993923B1 EP07718014A EP07718014A EP1993923B1 EP 1993923 B1 EP1993923 B1 EP 1993923B1 EP 07718014 A EP07718014 A EP 07718014A EP 07718014 A EP07718014 A EP 07718014A EP 1993923 B1 EP1993923 B1 EP 1993923B1
Authority
EP
European Patent Office
Prior art keywords
polymeric compound
layer
tank
shell
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07718014A
Other languages
German (de)
English (en)
Other versions
EP1993923A2 (fr
Inventor
Benoît LACAZE
Florian Puech
Cécile CANCES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LACAZE ENERGIES
Original Assignee
LACAZE ENERGIES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LACAZE ENERGIES filed Critical LACAZE ENERGIES
Publication of EP1993923A2 publication Critical patent/EP1993923A2/fr
Application granted granted Critical
Publication of EP1993923B1 publication Critical patent/EP1993923B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/181Construction of the tank
    • F24H1/183Inner linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings

Definitions

  • the present invention belongs to the field of equipment intended to contain potentially corrosive fluids, especially intended for the production of hot water.
  • It relates to a vessel whose wall is made from a composite material comprising three associated layers, which ensures both the rigidity of the wall and its physical and chemical stability vis-à-vis a corrosive fluid or can be in certain conditions of use.
  • Another object of the invention is a method of manufacturing such a composite wall.
  • the balloons used to supply hot water to individual or collective equipment are generally made from a steel shell, covered with a thermal insulating material.
  • the internal surface must be treated to resist corrosion as the domestic hot water contains impurities and aggressive treatment products with respect to the steel, especially as the temperature is maintained at a high level to be distributed at 65 ° C. Not only does the installation deteriorate, which is a problem in itself, but also corrosion promotes biofouling by bacterial growth on the inner wall. It is obvious that the production of hot water, intended especially for food use, can not be subject to this kind of hazard.
  • the solution provided by the present invention is to coat the inner face of the tanks with a corrosion-resistant material, such as a plastic material.
  • a corrosion-resistant material such as a plastic material.
  • the walls of the tanks are commonly made of steel, a material that provides the rigidity and the necessary mechanical strength at a moderate cost price.
  • steel has no particular affinity for plastics, and on the other hand, it has a significant coefficient of expansion in the range of temperatures concerned, ranging from -20 ° C to 100 ° C during various handling, storage, transport and operation, while plastics have a very different coefficient of expansion.
  • the expansion can cause deviations of several millimeters, leading to the dissociation of the coating and the deterioration of the wall. It is therefore imperative to ensure a strong cohesion of the coating with the wall.
  • thermoplastic polymeric compounds can be used as anticorrosive inner lining of tanks, when they are applied to a metallized steel shell, i.e. the inner face of the shell has been spray-treated with a molten metal material, which has the effect of rendering the surface porous.
  • the coating technique used is inspired by well-known rotational molding techniques and brings an unexpected result. Indeed, the thermoplastic properties of many polymers are known and implemented to achieve all kinds of objects, by different molding techniques, and among them rotomolding.
  • This plastics transformation process is carried out in three stages: filling of a mold with a thermoplastic polymer in the form of granules or of powder, melting of the plastic material, then solidification. During cooling, the molded object retracts and unstands itself from the mold.
  • this phenomenon is totally contrary to the desired objective, which is to obtain a strong and durable adhesion of the plastic compound to the wall giving it its shape.
  • the pull-out tests that have been conducted by the inventors have shown that the coating carried out using the rotational molding technique of a thin layer of a thermoplastic polymer on a metallized surface, led to the desired result. .
  • the wall obtained, object of the present invention can be considered as a composite wall, and the new manufacturing process, also claimed as an object of the invention, can receive the name of "rotoenduction".
  • An object of the present invention is therefore to provide a tank useful for receiving corrosive liquids, for example for the production of hot water, the wall of which, while retaining its previous mechanical properties, is insensitive to chemical attack and more particularly to oxidation and chlorine.
  • Another object of the invention is to provide a vessel whose wall is resistant to stress due to thermal expansion.
  • Another object of the present invention is to provide a tank meeting the above requirements for periods of several years, and with a moderate manufacturing cost.
  • Another object of the invention is to provide a method of manufacturing said tanks which is reliable and easy to implement.
  • the present invention makes it possible to offer establishments such as hotels or hospital centers a means of distributing hot water in complete safety, without significant additional cost of equipment or operation.
  • the present invention relates to a vessel for containing a corrosive fluid, original in that it has a composite wall comprising a shell outer steel, a metal or ceramic interlayer, and an inner layer of a thermoplastic polymeric compound.
  • the outer shell is the element ensuring the mechanical strength of the composite wall. It gives its shape to the tank and also serves as a support for other layers. It is commonly made of steel. It is possible to use, for example, non-alloyed hot-rolled structural steels that meet the standards in force. Its thickness is chosen according to the operating pressure and the diameter of the tank, in accordance with the pressure vessel code and / or the regulations in force in the country of use. It can thus be between 2 mm and 15 mm, more frequently between 4 mm and 8 mm. Manufacturers of heating equipment are familiar with these standards and the qualities of steel to implement.
  • the surface of the part to be coated is previously prepared to remove oxides and calamines, increase its roughness and allow particles to anchor in the irregularities of the surface .
  • the method called impact treatment can be used. It consists in projecting a natural or artificial abrasive onto the surface to be treated. The projection can be done by compressed air, either by a vacuum system (suction, suction, Giffard effect), or by a direct pressure system (overpressure). Depending on the size of the abrasive particles we are talking about sanding (fine particles) or shot blasting (larger particles).
  • the depth of the roughness profile is between 5% and 25% of the thickness of the subsequent coating, with an optimum value around 25% which has the effect of increasing the contact area by a factor of 3 or 4.
  • the inner face of the steel shell advantageously has a roughness Ra corresponding to the mean arithmetic mean deviation from the mean line of the surface, between 10 ⁇ m and 35 ⁇ m, preferably from 10 ⁇ m to 35 ⁇ m. about 15 ⁇ m. It is completely covered by the intermediate layer which adheres to it by a mechanical phenomenon with a force which can vary from 20 to 115 MPa after sanding, according to the processes and the materials.
  • the intermediate layer of the wall according to the invention is a layer of metallic or ceramic nature. It can consist essentially of a metal chosen from aluminum, zinc, copper, tin, nickel, molibdenum, manganese, or an alloy based on metals selected from zinc, copper, nickel, tin.
  • the intermediate layer consists essentially of a ceramic chosen from nitrides such as NiAl, NiCrBSi, aluminides such as Al 2 O 3 , Al 2 O 3 -TiO 2 , or oxides such as Cr 2 O 3 , ZrO 2 -CaO.
  • a treatment with a supply of reactive gas may be used.
  • a substrate here the steel shell
  • the reactive chemical species metal or ceramic to be supplied
  • LCVD laser assisted chemical vapor deposition
  • the material to be deposited is in the form of powder, wire, cord or rod. It is melted totally or partially in a source of heat (flame, electric arc, plasma).
  • a carrier gas allows spraying the material, and transporting the droplets thus formed to the surface to be coated on which they solidify. The surface of the substrate does not undergo any fusion.
  • the intermediate layer is porous, the porosity coming either from microcavities due to imperfect stacking of the droplets, or gas locked during solidification.
  • the porosity rate varies according to the process and the materials used. Whatever the nature of the intermediate layer chosen, it advantageously has a porosity level of 0.1% to 25%, preferably between 5% and 10%.
  • the deposits include inclusions such as oxides or other materials from the torches themselves, unmelted or partially melted particles that have not undergone a complete heat cycle (because of their size or their heat source). Due to the very fast cooling rate of the particles in contact with the substrate, the presence of intragranular microcracks within the deposits is possible. Furthermore, since the projections are made in the air, the droplets and the substrate are subjected to the oxidation phenomenon. It is not uncommon to see an increase in the oxygen level during the projection. It should be emphasized here that the characteristics of the intermediate layer (metallic or ceramic) should have led the inventors to dismiss such a layer of the solution of the problem posed by the present invention. On the contrary, the invention has made it possible to use, in order to meet the desired objective of chemical stability with respect to corrosive fluids, its fixing properties of a polymeric coating.
  • the wall of the vessel may further comprise an underlayer hooking between the steel shell and the intermediate layer.
  • an undercoating layer is then used, which can be made of different materials, among which mention may be made of nickel aluminide, molibdene, or alloys of the NiCr (80/20) or MCrAlY (M designating Ni) type. , Co or NiCo). It can be applied by any technique available to those skilled in the art, and advantageously according to the same technique as that used for the metallization of the steel shell.
  • the wall of the tank according to the present invention comprises a third layer, the innermost, intended to be in contact with a corrosive fluid and thus to protect the outermost layers of chemical attack.
  • a thermoplastic polymer that is to say softenable by heating and hardening by cooling without chemical reaction.
  • compounds available in various forms, for example in the form of powders or granules, which can be conveniently used in plastics processes.
  • additives or technological aids such as a load up to 40% by weight (talc or calcium carbonate for example), reinforcing additives, for example fiberglass or mica at 20 to 30% by weight.
  • said polymeric compound comprises polar groups of electronegative character. It has indeed been observed that the choice of such polymers leads to an even stronger cohesion between the inner layer and the intermediate layer. These groups may be originally present in the chosen polymer or provided by a suitable chemical reaction, for example by functional grafting or by chemical modification of the polymer.
  • the polymeric compound used for the inner layer according to the invention may for example be selected from ethylene polymers, propylene polymers, fluorocarbon resins, polyoxymethylenes.
  • polyethylene taken from the numerous types existing, for example from low density polyethylenes (or LDPE) having a density of between 0.92 g / cm 3 and 0.94 g / cm 3 , or from polyethylenes. high density (HDPE), having a density of between 0.95 g / cm 3 and 0.97 g / cm 3 . It is also possible to use polypropylenes, those used in the industry being almost always isotactic. They are often associated with a copolymer.
  • LDPE low density polyethylenes
  • HDPE high density
  • polypropylenes those used in the industry being almost always isotactic. They are often associated with a copolymer.
  • the fluorocarbon resins of formula [-CH 2 -CF 2 -] n are also usable for producing the inner layer of the tank according to the invention.
  • the main fluorocarbon resins are PTFE (polytetrafluoroethylene), FEP (fluorinated ethylene-propylene), PFA (perfluoroalkoxy), PVDF (polyfluorovinylidene), ETFE (modified copolymer of ethylene and tetrafluoroethylene) and ECTFE (ethylene / chlorotrifluoroethylene).
  • POM polyoxymethylene
  • They are technical thermoplastics which are distinguished by a high tensile strength, even at temperatures of -40 ° C, a Young's modulus of the order of 2800 to 3600 MPa, a very good dimensional stability when hot.
  • polystyrene polypropylenes grafted with acrylic acid, maleic anhydride or styrene, polypropylenes crosslinked with silanes can be used which are thus functionalized as required.
  • This list is not exhaustive and concerns all thermoplastics, including graft thermoplastic sub-families.
  • the polymeric compound is a diacid modified polymer.
  • the polymeric compound may be a polypropylene modified with maleic anhydride.
  • the insertion rate of the anhydride unit may be higher or lower.
  • the polymeric compound is a polypropylene modified with 5% to 50% maleic anhydride, in mole. So particularly preferred, the polymeric compound is a polypropylene modified with 20% maleic anhydride, in mole.
  • the intermediate layer must have a thickness of between a few microns and 200 microns. According to the preferred embodiment of the present invention, its thickness is about 120 microns.
  • the tank according to the invention intended to contain a corrosive fluid, has a composite wall comprising an outer steel shell, an aluminum intermediate layer and an inner layer of polypropylene modified with maleic anhydride.
  • the tank according to the invention can be manufactured by any known method for the deposition of metal or ceramic layers on the one hand and polymer on the other hand.
  • a particularly suitable method has been developed for producing the composite wall as described above. In principle, it involves making the metal or ceramic deposition by the techniques commonly used for the manufacture of conventional metallized tanks, then to coat this surface by an original process, which we will call "rotoenduction".
  • the term "metallization” refers to the operation of depositing a metal or ceramic compound on the inner face of the steel shell, leading to the formation of the intermediate layer.
  • the term “metallized shell” means a steel tank whose inner face is covered with a metal or ceramic layer.
  • the deposition of the intermediate layer on the steel shell can be achieved by a technique known per se.
  • the flame-wire projection technique is preferred for the practice of the present invention.
  • the flame serves to melt the supplied material, which is introduced in the form of wire, cord, or rod at its center.
  • the filler material is then projected onto the surface of the shell by a stream of compressed air.
  • the wire drive can be driven by an automatically regulated electric motor, which allows a perfect regularity of wire feed.
  • the particle velocity is about 150 m / s and the distance between the nozzle and the substrate is between 100 mm and 200 mm.
  • the deposited thicknesses can range from a few tenths of a millimeter to a few millimeters, at very variable hourly rates depending on the materials, the wire diameters used, and the properties of deposits required: of 1 kg / h, for some ceramics prepared in the form of flexible cord or baguette, more than 30 kg / h for anticorrosive threads such as zinc.
  • the intermediate layer is formed by aluminum projection according to the flame-wire technique.
  • the steel shell before the metallization step, may be subjected to an impact treatment to increase its roughness.
  • This treatment consists in projecting a natural or artificial abrasive onto the surface to be treated.
  • the conditions of implementation are chosen easily by the person skilled in the art who already practices these techniques of sanding (fine particles) or blasting (larger particles).
  • a sub-layer of attachment is applied to the shell. It can be carried out according to the same process as that used for the deposition of the intermediate layer, with different materials, among which mention may be made of nickel aluminide, molibdene, or alloys of the NiCr type (80/20). ) or MCrAIY (M denoting Ni, Co or NiCo).
  • the third layer can be applied. This is to reproduce the inner shape of a cavity (the inner surface of the wall of the tank) which can range from one to 100,000 liters.
  • a cavity the inner surface of the wall of the tank
  • one proceeds in three phases, by analogy with discontinuous processes of plastics processing: filling the cavity, melting of the polymeric material, solidification of the polymeric material.
  • a first step after a possible preheating, the cavity is loaded with powder of polymer material, whose weight corresponds to that of the coating to be obtained.
  • the tank is then closed and is rotated by a mechanical system that allows it to rotate about two axes oriented differently, generally perpendicular to each other.
  • the tank rotating in all directions, is then heated to the temperature of good melting, the melting temperature of the thermoplastic polymers being generally between 150 ° C and 300 ° C.
  • the molten plastic powder flows by gravity on the walls.
  • the rotational speeds being low the effect of the centrifugal force is negligible.
  • the melting of the powdered polymeric compound is obtained by heating the metallized shell containing it by an external heating means.
  • the heat input is achieved by means of an oven, a gas ramp or infrared panels.
  • the heated tank transmits its heat to the powder whose grains melt and stick on the wall.
  • the thermoplastic whose temperature is above its melting point has a viscous consistency.
  • the device is removed from the oven and allowed to cool. Cooling can be accelerated by projecting fresh air and / or water mist onto the tank.
  • thermoplastic polymers can be used in the process as just described.
  • the polymers used in the process according to the invention are chosen from those which are implemented in the wall of the tank described above.
  • a particularly advantageous embodiment of the process according to the invention uses a powdered polymeric compound comprising polar groups of electronegative character.
  • the polymeric powder compound used in the process according to the invention may be chosen from ethylene polymers, propylene polymers, fluorocarbon resins, polyoxymethylenes.
  • said polymeric powder compound is a diacid modified polymer. More preferably, said polymeric powder compound is a polypropylene modified with maleic anhydride.
  • the tank as described and claimed in the present application may be manufactured by the method of the invention or by any other suitable method. It finds application in various industrial fields, such as the production of hot water, but also the industrial production of chemical or biological substances in reactors, or the road or rail transport of corrosive fluids.
  • the fluids used in these applications may be at low, medium to high temperatures and may be more or less aggressive.
  • the characteristics of the tank allow its use in all conditions without long term degradation.
  • another object of the present invention is a device for storing, transporting, storing or producing a corrosive fluid, comprising a composite wall vessel as described above. More particularly, is claimed a hot water production device comprising a composite wall vessel according to the invention.
  • This wall was made from a steel shell of unalloyed construction, complying with the European standard bearing the EN 10025: 1993 (symbolic designation: S235JR, numerical designation: 1.0037) and to the French standard N ° NF A 35-501 (designation: E 24-2), of thickness 3 mm, and forming a cylindrical tank with a volume of 50 liters.
  • the inner side has undergone impact treatment using a sandblaster equipped with a cylindrical nozzle projecting corundum with an air pressure of about 7 bars.
  • the projection angle is practically tangential to the surface (30 to 40 degrees).
  • the ambient temperature is at 20 ° C to avoid oxidation as much as possible.
  • the inner face of the steel shell has a Ra roughness of 15 microns, which represents 25% of the thickness of the intermediate layer which will now be deposited.
  • the intermediate layer is high purity aluminum (99.9%). It is deposited by thermal spraying using the flame-wire technique.
  • the spray gun used is automatically regulated.
  • the lead feed is driven by an electric motor at a fixed speed of one meter per minute. For both bottoms, the layer is applied manually.
  • the movements of the spray gun are automated and regulated by sensors.
  • the metallization is carried out at 20 ° C., in order to reduce the oxidation.
  • the aluminum layer thus deposited has a thickness of 120 ⁇ m with a porosity of 8%.
  • the inner layer of the wall consists of a polypropylene modified with maleic anhydride.
  • the degree of insertion of the anhydride unit is 20 mol%.
  • Such polypropylene modified with maleic anhydride is obtained by the known methods for producing the polymeric raw materials.
  • the tank is mounted on a mechanical system that allows it to rotate about two perpendicular axes.
  • the whole is introduced into an oven and is preheated to 220 ° C for 20 minutes.
  • 1.4 kg of modified polypropylene powder is introduced into the cavity of the tank and the tank is closed by quick couplings. It is set in motion and is maintained at a temperature of 220 ° C for 14 minutes.
  • the device is removed from the oven and fresh air is projected onto the tank until the temperature reaches 50 ° C.
  • cooling is continued to room temperature, at least two hours.
  • the polymeric layer thus obtained has a constant thickness of about 120 microns over the entire internal surface of the vessel.
  • the composite wall has been subjected to various tests to evaluate its performance. It has been found on the one hand that during temperature variations, the layers remain united even though their coefficient of expansion is different. This result is assumed to be the intermediate layer absorbs the differential expansion between the materials of the outer and inner layers of the wall.
  • Each test piece 1 consists of an aluminum metallized steel plate 2 covered with a layer 3 of polypropylene melt-modified in an oven at 220 ° C.
  • the specimen 1 is removed from the furnace and a second aluminum metallized steel plate 4 is deposited on its surface, identical to the previous one, and provided with a hook 5 placed perpendicularly to the plane of the test tube 1. Then the whole is put back into the oven for 14 minutes.
  • a sandwich structure is obtained with a polymeric layer 3 fixed to the two metal plates 2, 4.
  • the lower plate 2 has a dimension of 200 mm ⁇ 100 mm, it is further provided with mass suspension means, by example of rings 6, while the upper plate 4 has a surface of only 50 mm x 50 mm. Their thickness is about 3 mm, as well as that of the polymeric layer.
  • the polymer layer 3 is sliced in its thickness around the upper plate 4, so as to laterally isolate a polymeric coating sample 7 of 50 mm side centered on the axis of the hook 5.
  • the test piece 1 is suspended by the hook 5 and attaches loads to the rings 6, mass increasingly high (10 kg in 10 kg).
  • the mass needed to take off the sample 7 from at least one of the plates 2 or 4 is thus measured in less than one minute and the corresponding force, expressed in daNcm -2, is calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

  • La présente invention appartient au domaine des équipements destinés à contenir des fluides potentiellement corrosifs, notamment destinés à la production d'eau chaude.
  • Elle a pour objet une cuve dont la paroi est fabriquée à partir d'un matériau composite comprenant trois couches associées, qui assure à la fois la rigidité de la paroi et sa stabilité physique et chimique vis-à-vis d'un fluide corrosif ou pouvant l'être dans certaines conditions d'utilisation. Un autre objet de l'invention est un procédé de fabrication d'une telle paroi composite.
  • Les ballons servant à alimenter en eau chaude les équipements individuels ou collectifs sont généralement fabriqués à partir d'une coque en acier, recouverte d'un matériau isolant thermique. La surface interne doit être traitée de façon à résister à la corrosion car l'eau chaude domestique contient des impuretés et des produits de traitement agressifs vis-à-vis de l'acier, d'autant plus que température est maintenue à un niveau élevé afin d'être distribuée à 65°C. Non seulement l'installation se détériore, ce qui est un problème en soi, mais aussi la corrosion favorise l'encrassement biologique par le développement bactérien sur la paroi intérieure. Il est bien évident que la production d'eau chaude, destinée notamment à un usage alimentaire, ne peut être soumise à ce genre d'aléas.
  • Pour lutter contre la corrosion, on a recours à un traitement consistant à déposer une matière protectrice sur la surface interne de la coque d'acier en contact avec le liquide (voir par example EP 0 143 731 ). Le matériau déposé doit être choisi de telle sorte que son coefficient de dilatation soit voisin de celui de l'acier afin que la couche de protection reste solidaire de la coque en acier lors des variations de température du système. Il est par exemple connu de projeter un matériau métallique en fusion sur la coque dont la surface a été préalablement rendue rugueuse. Cette technique aussi appelée "métallisation" du fait de l'apport de matière est réalisé sous forme de fines gouttelettes métalliques vaporisées et refroidies, est communément mise en oeuvre avec l'aluminium, qui offre en plus l'avantage d'une protection cathodique de l'acier.
  • Cependant, les techniques de projection de matériaux donnent des surfaces poreuses, qui présentent encore une certaine susceptibilité à la corrosion et à l'encrassement biologique. En effet, des microfissures intragranulaires peuvent se former à l'intérieur de la couche déposée, et d'autre part, lorsque les projections sont réalisée dans l'air, ce qui est la méthode la moins onéreuse, les particules métalliques projetées et le substrat sont soumis aux phénomènes d'oxydation. Cette fragilité qui restait marginale dans les conditions d'utilisation habituelles, est maintenant devenue un inconvénient majeur.
  • En effet, les installations de production d'eau chaude sont soumises depuis quelques années à des contraintes sanitaires accrues, suite à l'apparition de plusieurs cas de légionellose, notamment dans des établissements d'hébergement collectif. Des mesures strictes ont été prises pour s'assurer que les installations sont exemptes de tout germe, en réalisant un traitement préventif périodique particulièrement puissant. Il consiste à augmenter pendant quelques heures la concentration en chlore et à porter le fluide à une température supérieure à 72°C, la légionelle résistant jusqu'à des températures voisines de 70°C. La conjugaison du chlore et de la chaleur constitue un traitement efficace, mais qui répété chaque mois est agressif pour les parois des cuves et conduit à une dégradation accélérée des installations.
  • Il était donc nécessaire de proposer un moyen pour améliorer la résistance du corps de chauffe à cette corrosion accrue. La solution apportée par la présente invention consiste à enduire la face interne des cuves à l'aide d'un matériau résistant à la corrosion, tel qu'une matière plastique. La réalisation de ce principe pose néanmoins un certain nombre de problèmes, liés à l'exigence de cohésion de cette couche avec la paroi métallique.
  • En effet, les parois des cuves sont communément en acier, matériau qui apporte la rigidité et la résistance mécanique nécessaire à un prix de revient modéré. Or, d'une part l'acier ne présente pas d'affinité particulière pour les matières plastiques, et d'autre part, il présente un coefficient de dilatation important dans l'intervalle de températures concernées, pouvant aller de -20°C à 100°C lors des différentes manipulations, stockage, transport et fonctionnement, alors que les matières plastiques ont un coefficient de dilatation très différent. Sur des cuves de volume important, la dilatation peut entraîner des écarts de plusieurs millimètres, conduisant à la dissociation du revêtement et à la détérioration de la paroi. Il est donc impératif d'assurer une cohésion forte du revêtement avec la paroi.
  • De manière surprenante, il a été trouvé que des composés polymériques thermoplastiques pouvaient être employés comme revêtement intérieur anticorrosion des cuves, quand ils sont appliqués sur une coque en acier métallisé, c'est-à-dire que la face interne de la coque a été traitée par projection d'un matériau métallique en fusion, ce qui a pour effet de rendre la surface poreuse. La technique d'enduction employée s'inspire des techniques bien connues de rotomoulage et apporte un résultat inattendu. En effet, les propriétés thermoplastiques de nombreux polymères sont connues et mises en ouvre pour réaliser toute sorte d'objets, par différentes techniques de moulage, et parmi elles le rotomoulage.
  • Ce procédé de transformation des matières plastiques est réalisé en trois étapes : remplissage d'un moule par un polymère thermoplastique sous forme de granulé ou de poudre, fusion de la matière plastique, puis solidification. Durant le refroidissement l'objet moulé se rétracte et se décolle de lui-même du moule. Or, ce phénomène est totalement contraire à l'objectif recherché, qui est d'obtenir une adhésion forte et durable du composé plastique à la paroi lui donnant sa forme. Néanmoins, les tests à l'arrachement qui ont été conduits par les inventeurs ont montré que l'enduction réalisée en s'appuyant sur la technique du rotomoulage d'une couche mince d'un polymère thermoplastique sur une surface métallisée, conduisait au résultat recherché. La paroi obtenue, objet de la présente invention, peut ainsi être considérée comme une paroi composite, et le procédé de fabrication nouveau, également revendiqué comme objet de l'invention, peut recevoir le nom de "rotoenduction".
  • Il a été par ailleurs mis en évidence que l'emploi d'un composé polymérique comportant des groupements polaires à caractère électronégatif renforce encore la cohésion du composite obtenu. Sans que des études poussées aient été réalisées pour expliquer cet état de fait, l'hypothèse a été formulée que les métaux employés pour la métallisation de la coque étant électropositifs, ils présentent une affinité plus forte pour les composés dotés de groupements portant des charges partielles ∂- négatives, avec lesquels ils peuvent former des liaisons de type liaisons de Van der Waals.
  • Un objectif de la présente invention est donc d'offrir une cuve utile pour recevoir des liquides corrosifs, par exemple pour la production d'eau chaude, dont la paroi, tout en conservant ses propriétés mécaniques antérieures, est insensible aux agressions chimiques et plus particulièrement à l'oxydation et au chlore. Un autre objectif de l'invention est de fournir une cuve dont la paroi résiste aux contraintes due à la dilatation thermique. Un autre objectif de la présente invention est de fournir une cuve répondant aux exigences ci-dessus durant des périodes de plusieurs années, et avec un coût de fabrication modéré. Un autre objectif de l'invention, est de proposer un procédé de fabrication desdites cuves qui soit fiable et facile à mettre en oeuvre.
  • Finalement en réalisant ces objectifs, la présente invention permet d'offrir aux établissements tels que les hôtels ou les centres hospitaliers, un moyen de distribuer l'eau chaude en toute sécurité, sans surcoût significatif d'équipement ou de fonctionnement.
  • Plus précisément, la présente invention a pour objet une cuve destinée à contenir un fluide corrosif, originale en ce qu'elle possède une paroi composite comprenant une coque externe en acier, une couche intermédiaire métallique ou céramique, et une couche interne à base d'un composé polymérique thermoplastique.
  • La coque externe est l'élément assurant la résistance mécanique de la paroi composite. Elle confère sa forme à la cuve et sert également de support aux autres couches. Elle est communément en acier. On peut utiliser par exemple des aciers de construction non alliés laminés à chaud, répondant aux normes en vigueur. Son épaisseur est choisie en fonction de la pression d'utilisation et du diamètre de la cuve, conformément au code des appareils à pression et/ou à la réglementation en vigueur dans le pays d'utilisation. Elle peut ainsi être comprise entre 2 mm et 15 mm, plus fréquemment entre 4 mm et 8 mm. Les fabricants d'équipement de chauffage connaissent bien ces normes et les qualités d'acier à mettre à oeuvre.
  • De préférence, afin de réaliser un bon accrochage mécanique de la couche intermédiaire, la surface de la pièce à revêtir est préalablement préparée pour éliminer les oxydes et les calamines, augmenter sa rugosité et permettre aux particules de s'ancrer dans les irrégularités de la surface. De nombreux procédés sont connus des professionnels et peuvent être valablement mis en oeuvre. Par exemple, le procédé appelé traitement par impact peut être employé. Il consiste à projeter un abrasif naturel ou artificiel sur la surface à traiter. La projection peut se faire par air comprimé, soit par un système à dépression (aspiration, succion, effet Giffard), soit par un système à pression directe (surpression). Selon la taille des particules abrasives projetées on parle de sablage (particules fines) ou de grenaillage (particules plus grosses). Là encore, ces techniques étant communément employées en métallurgie, l'homme de l'art est à même de choisir sans difficulté les modes opératoires adaptés. On estime que la profondeur du profil de rugosité se situe entre 5% et 25% de l'épaisseur du revêtement ultérieur, avec une valeur optimale autour de 25 % ce qui a pour effet d'augmenter la surface de contact d'un facteur 3 ou 4.
  • Ainsi dans la cuve selon l'invention, la face intérieure de la coque en acier présente avantageusement une rugosité Ra correspondant à l'écart moyen arithmétique par rapport à la ligne moyenne de la surface, comprise entre 10 µm et 35 µm, de préférence d'environ 15 µm. Elle est totalement recouverte par la couche intermédiaire qui y adhère par un phénomène mécanique avec une force pouvant varier de 20 à 115 MPa après sablage, suivant les procédés et les matériaux.
  • La couche intermédiaire de la paroi selon l'invention est une couche de nature métallique ou céramique. Elle peut être constituée essentiellement d'un métal choisi parmi l'aluminium, le zinc, le cuivre, l'étain, le nickel, le molibdène, le manganèse, ou bien d'un alliage à base de métaux choisis parmi le zinc, le cuivre, le nickel, l'étain.
  • Selon un autre mode de réalisation, la couche intermédiaire est constituée essentiellement d'une céramique choisie parmi les nitrures tels que NiAl, NiCrBSi, les aluminures comme Al2O3, Al2O3-TiO2 , ou les oxydes comme Cr2O3 , ZrO2-CaO.
  • Elle peut être obtenue par une des techniques de traitement thermique avec apport de matière à la disposition de l'homme de l'art. On peut par exemple avoir recours à un traitement avec apport de gaz réactif. Dans ce cas, un substrat (ici la coque en acier) est chauffé superficiellement à l'aide d'un laser. Les espèces chimiques réactives (métal ou céramique à apporter) sont alors adsorbées sur la surface, se dissocient et diffusent dans la matrice du substrat en phase solide ou liquide (traitements thermodiffusionnels assistés par laser), ou bien s'accumulent et conduisent à la formation d'un dépôt sur la surface (dépôt chimique en phase vapeur assisté par laser, dit LCVD).
  • On peut également recourir à une méthode d'apport de matière par projection thermique. Dans ce cas, la matière à déposer se présente sous la forme de poudre, de fil, de cordon ou de baguette. Elle est fondue totalement ou partiellement dans une source de chaleur (flamme, arc électrique, plasma). Un gaz vecteur permet une pulvérisation de la matière, et le transport des gouttelettes ainsi formées jusqu'à la surface à revêtir sur laquelle elles se solidifient. La surface du substrat ne subit quant à elle aucune fusion.
  • La couche intermédiaire est poreuse, la porosité provenant soit de microcavités dues à un empilage imparfait des gouttelettes, soit de gaz enfermés pendant la solidification. Le taux de porosité varie suivant le process et les matériaux utilisés. Quelle que soit la nature de la couche intermédiaire choisie, celle-ci présente avantageusement un taux de porosité de 0,1 % à 25 %, de préférence compris entre 5 % et 10 %.
  • Les dépôts comportent des inclusions telles que des oxydes ou encore d'autres matériaux provenant des chalumeaux eux-mêmes, des particules non fondues ou partiellement fondues n'ayant pas subi un cycle thermique complet (en raison de leur taille ou de leur cheminement dans la source de chaleur). En raison de la très grande vitesse de refroidissement des particules au contact du substrat, la présence de microfissures intragranulaires à l'intérieur des dépôts est possible. Par ailleurs, les projections étant réalisées dans l'air, les gouttelettes et le substrat sont soumis au phénomène d'oxydation. Il n'est ainsi pas rare de constater une augmentation du taux d'oxygène pendant la projection. Il doit être souligné ici que les caractéristiques de la couche intermédiaire (métallique ou céramique) auraient dû conduire les inventeurs à écarter une telle couche de la solution du problème posé par la présente invention. Au contraire l'invention a su tirer parti, pour répondre à l'objectif recherché de stabilité chimique vis-à-vis des fluides corrosifs, de ses propriétés fixantes d'un revêtement polymérique.
  • Selon un mode particulier de réalisation de l'invention, la paroi de la cuve peut comprendre en outre une sous-couche d'accrochage entre la coque en acier et la couche intermédiaire. En effet, dans certains cas, notamment pour des métallisations par projection d'oxydes, la rugosité de la coque doit être renforcée. On utilise alors une sous-couche d'accrochage, pouvant être réalisée en différents matériaux, parmi lesquels on peut citer l'aluminure de nickel, le molibdène, ou encore les alliages du type NiCr (80/20) ou MCrAIY (M désignant Ni, Co ou NiCo). Elle peut être appliquée par n'importe quelle technique à la disposition de l'homme du métier, et avantageusement selon la même technique que celle employée pour la métallisation de la coque d'acier.
  • La paroi de la cuve selon la présente invention comporte une troisième couche, la plus interne, destinée à être en contact avec un fluide corrosif et ainsi à protéger les couches plus externes des agressions chimiques. Elle est fabriquée à base d'un polymère thermoplastique, c'est-à-dire pouvant être ramolli par chauffage et durcissant par refroidissement sans réaction chimique. Il existe de nombreux composés utilisés dans l'industrie que l'on peut se procurer sous différentes formes, par exemple sous forme de poudres ou de granulés, pouvant être commodément mis en oeuvre dans les procédés de plasturgie.
  • Ils sont souvent mélangés à des additifs ou à des aides technologiques, tels qu'une charge pouvant aller jusqu'à 40 % en masse (talc ou carbonate de calcium par exemple), des additifs de renforcement, par exemple de fibre de verre ou de mica à hauteur de 20 à 30 % en masse.
  • De manière avantageuse, pour la réalisation de la couche interne de la cuve selon l'invention, ledit composé polymérique comporte des groupements polaires à caractère électronégatif. Il a en effet été observé que le choix de tels polymères conduit à une cohésion encore plus forte entre la couche interne et la couche intermédiaire. Ces groupements peuvent être originellement présents dans le polymère choisi ou apportés par une réaction chimique appropriée, par exemple par greffage de fonctions ou par modification chimique du polymère.
  • Qu'il comprenne des groupements polaires ou non, le composé polymérique utilisé pour la couche interne selon l'invention peut par exemple être choisi parmi les polymères d'éthylène, les polymères de propylène, les résines fluorocarbonées, les polyoxyméthylènes.
  • On peut employer un polyéthylène pris parmi les nombreux types existant, par exemple parmi les polyéthylènes basse densité (ou PEBD) dont la masse volumique est comprise entre 0,92 g/cm3 et 0,94 g/cm3, ou parmi les polyéthylènes haute densité (PEHD), de masse volumique comprise entre 0,95 g/cm3 et 0,97 g/cm3. On peut également employer des polypropylènes, ceux qui sont utilisés dans l'industrie étant quasiment toujours isotactiques. Ils sont souvent associés à un copolymère.
  • Les résines fluorocarbonées de formule [-CH2-CF2-]n sont aussi utilisables pour la réalisation de la couche interne de la cuve selon l'invention. Les principales résines fluorocarbonées sont le PTFE (polytétrafluoroéthylène), le FEP (éthylène-propylène fluoré), le PFA (perfluoroalkoxy), lé PVDF (polyfluorovinylidène), ETFE (copolymère modifié d'éthylène et de tétrafluoroéthylène) et l'ECTFE (éthylène/chlorotrifluoroéthylène).
  • Sont également utilisables les composés de la famille des polyoxyméthylène (POM). Ce sont des thermoplastiques techniques qui se distinguent par une résistance à la rupture élevée, même à des températures de - 40 °C, un module de Young de l'ordre de 2 800 à 3 600 MPa, une très bonne stabilité dimensionnelle à chaud.
  • Dans le cas où le polymère n'est pas lui-même porteur de groupements électronégatifs, il est possible de lui associer de tels groupements, par toute technique appropriée connue de l'homme de l'art. Par exemple, on peut utiliser des polypropylènes greffés avec l'acide acrylique, l'anhydride maléique ou le styrène, des polypropylènes réticulés avec des silanes qui sont ainsi fonctionnalisés selon les besoins. Cette liste est non exhaustive et concerne tous les thermoplastiques, y compris les sous-familles de thermoplastiques greffés.
  • Selon un mode de réalisation intéressant, le composé polymérique est un polymère modifié par un diacide. En particulier, le composé polymérique peut être un polypropylène modifié par l'anhydride maléique. Le taux d'insertion du motif anhydride peut être plus ou moins élevé. De préférence, selon l'invention; le composé polymérique est un polypropylène modifié par 5 % à 50 % d'anhydride maléique, en mole. De manière particulièrement préférée, le composé polymérique est un polypropylène modifiée par 20 % d'anhydride maléique, en mole.
  • Pour remplir sa fonction de protection de manière satisfaisante, la couche intermédiaire doit avoir une épaisseur comprise entre quelques microns et 200 µm. Selon le mode de réalisation préféré de la présente invention, son épaisseur est d'environ 120 µm.
  • De manière particulièrement préférée, la cuve selon l'invention, destinée à contenir un fluide corrosif possède une paroi composite comprenant une coque externe en acier, une couche intermédiaire en aluminium et une couche interne en polypropylène modifié par l'anhydride maléique.
  • La cuve selon l'invention peut être fabriquée par tout procédé connu permettant le dépôt de couches métallique ou céramique d'une part et polymérique d'autre part. Toutefois, un procédé particulièrement adapté a été mis au point pour réaliser la paroi composite telle que décrite ci-dessus. Dans son principe, il consiste à réaliser le dépôt métallique ou céramique par les techniques employées couramment pour la fabrication des cuves métallisées classiques, puis à enduire cette surface par un procédé original, que nous appellerons "rotoenduction".
  • Plus précisément, est revendiqué un procédé de fabrication d'une cuve destinée à contenir un fluide corrosif, ladite cuve possédant une paroi composite comprenant une coque externe en acier, une couche intermédiaire métallique ou céramique et une couche interne à base d'un composé polymérique thermoplastique, procédé qui comprend essentiellement les étapes suivantes :
    • une étape de métallisation consistant à déposer un composé métallique ou céramique sur la face interne de ladite coque en acier, pour former ladite couche intermédiaire, et
    • une étape d'enduction consistant à :
      • introduire un composé polymérique en poudre dans la coque métallisée fixée à un système de rotation biaxial,
      • mettre la coque métallisée contenant le composé polymérique en poudre en rotation biaxiale et chauffer à une température égale ou supérieure à la température de fusion du composé polymérique, jusqu'à formation d'une couche polymérique continue,
      • refroidir en poursuivant la rotation jusqu'à solidification de la couche polymérique.
  • Dans la présente demande, le terme "métallisation" s'entend de l'opération de dépôt d'un composé métallique ou céramique sur la face interne de la coque en acier, conduisant à la formation de la couche intermédiaire. Par analogie, on entend par "coque métallisée" une cuve en acier dont la face interne est recouverte d'une couche métallique ou céramique.
  • Selon une caractéristique intéressante, dans le procédé selon l'invention, la couche intermédiaire est formée par projection thermique
    • soit i) d'un métal choisi parmi l'aluminium, le zinc, le cuivre, l'étain, le nickel, le molibdène, le manganèse;
    • soit ii) d'un alliage à base de métaux choisis parmi le zinc, le cuivre, le nickel, l'étain;
    • soit iii) d'une céramique choisie parmi NiAl, NiCrBSi, Al2O3-TiO2, Al2O3, Cr2O3 , ZrO2-CaO.
  • Comme déjà indiqué, le dépôt de la couche intermédiaire sur la coque en acier peut être réalisé par une technique connue en soi. La technique de projection flamme - fil est préférée pour la mise en oeuvre de la présente invention. Dans ce cas, la flamme sert à fondre la matière apportée, qui est introduite sous forme de fil, de cordon, ou de baguette, en son centre. La matière d'apport est ensuite projetée sur la surface de la coque par un courant d'air comprimé.
  • Cette opération est réalisée à l'aide d'un pistolet de projection flamme-fil. L'entraînement du fil peut être animé par un moteur électrique régulé automatiquement, ce qui permet une régularité parfaite de l'avance du fil. De manière commune, la vitesse des particules est d'environ 150 m/s et la distance entre la buse et le substrat est comprise entre 100 mm et 200 mm. Les épaisseurs déposées peuvent aller de quelques dixièmes de millimètre à quelques millimètres, à des taux horaires très variables suivant les matériaux, les diamètres de fil utilisés, et les propriétés de dépôts recherchées : de 1 kg/h, pour certaines céramiques préparées sous forme de cordon souple ou de baguette, à plus de 30 kg/h pour des fils anticorrosion tels que le zinc.
  • Cette technique de projection permet de réaliser le dépôt de toutes les matières citées précédemment. De préférence, la couche intermédiaire est formée par projection d'aluminium selon la technique flamme-fil.
  • Selon une variante de réalisation du procédé selon l'invention, avant l'étape de métallisation, la coque en acier peut être soumise à un traitement par impact pour accroître sa rugosité. Ce traitement consiste à projeter un abrasif naturel ou artificiel sur la surface à traiter. Les conditions de mise en oeuvre sont choisies aisément par l'homme du métier qui pratique déjà ces techniques de sablage (particules fines) ou de grenaillage (particules plus grosses).
  • Selon une autre variante de réalisation, avant l'étape de métallisation, une sous-couche d'accrochage est appliquée sur la coque. Elle peut être réalisée selon le même procédé que celui qui est employé pour le dépôt de la couche intermédiaire, avec différents matériaux, parmi lesquels on peut citer l'aluminure de nickel, le molibdène, ou encore les alliages du type NiCr (80/20) ou MCrAIY (M désignant Ni, Co ou NiCo).
  • Une fois que la métallisation est réalisée, la troisième couche peut être appliquée. Il s'agit ici de reproduire la forme intérieure d'une cavité (la surface interne de la paroi de la cuve) qui peut aller de un à 100.000 litres. Pour cela, selon l'invention, on procède en trois phases, par analogie avec les procédés discontinus de transformation des matières plastiques : remplissage de la cavité, fusion de la matière polymérique, solidification de la matière polymérique.
  • Dans un premier temps, après un préchauffage éventuel, la cavité est chargée de poudre de matière polymère, dont le poids correspond à celui du revêtement à obtenir. La cuve est alors fermée et est mise en rotation grâce à un système mécanique qui permet de la faire tourner autour de deux axes orientés différemment, généralement perpendiculaires l'un par rapport à l'autre.
  • La cuve, tournant dans tous les sens, est alors chauffée jusqu'à la température de bonne fusion, la température de fusion des polymères thermoplastiques se situant généralement entre 150°C et 300°C. La poudre de matière plastique fondue ruisselle par gravité sur les parois. Les vitesses de rotation étant faibles l'effet de la force centrifuge est négligeable. Selon une caractéristique particulièrement intéressante du procédé de fabrication, la fusion du composé polymérique en poudre est obtenue par chauffage de la coque métallisée le contenant, par un moyen de chauffage externe. Par exemple, l'apport de chaleur est réalisé au moyen d'un four, d'une rampe à gaz ou de panneaux infrarouges. Ainsi, la cuve chauffée transmet sa chaleur à la poudre dont les grains fondent et se collent sur la paroi. A la fin de la période de chauffage, la matière thermoplastique dont la température est supérieure à son point de fusion, a une consistance visqueuse. Le dispositif est retiré du four et mis à refroidir. Le refroidissement peut être accéléré en projetant sur la cuve de l'air frais et/ou un brouillard d'eau.
  • Différents types de polymères thermoplastiques peuvent être mis en oeuvre dans le procédé tel qu'il vient d'être exposé. De manière préférée, les polymères employés dans le procédé selon l'invention sont choisis parmi ceux qui sont mis en oeuvre dans la paroi de la cuve décrite plus haut.
  • Un mode de réalisation particulièrement avantageux du procédé selon l'invention met en oeuvre un composé polymérique en poudre comportant des groupements polaires à caractère électronégatif.
  • Qu'il comprenne des groupements polaires ou non, le composé polymérique en poudre utilisé dans le procédé selon l'invention peut être choisi parmi les polymères d'éthylène, les polymères de propylène, les résines fluorocarbonées, les polyoxyméthylènes. De préférence, ledit composé polymérique en poudre est un polymère modifié par un diacide. De manière encore préférée, ledit composé polymérique en poudre est un polypropylène modifié par l'anhydride maléique.
  • La cuve telle que décrite et revendiquée dans la présente demande peut être fabriquée par le procédé objet de l'invention ou par tout autre procédé adéquat. Elle trouve une application dans différents domaines industriels, tels que la production d'eau chaude, mais aussi la production industrielle de substances chimiques ou biologiques en réacteurs, ou encore le transport routier ou ferroviaire de fluides corrosifs. Les fluides utilisés dans ces applications peuvent être à des températures faibles, moyennes à élevées et peuvent être plus ou moins agressifs. Les caractéristiques de la cuve permettent son utilisation dans toutes conditions sans dégradation à long terme.
  • Ainsi, un autre objet de la présente invention est un dispositif destiné à emmagasiner, transporter, stocker ou produire un fluide corrosif, comprenant une cuve à paroi composite telle que décrite précédemment. Plus particulièrement, est revendiqué un dispositif de production d'eau chaude comprenant une cuve à paroi composite selon l'invention.
  • EXEMPLE 1 Cuve à paroi composite destinée à la production d'eau chaude
  • D'autres particularités et avantages de l'invention seront mieux compris à l'aide de l'exemple non limitatif ci-après. Il concerne la paroi composite d'une cuve destinée à la production d'eau chaude et son mode de fabrication.
  • Cette paroi a été réalisée à partir d'une coque en acier de construction non allié, répondant à la norme européenne portant le N° EN 10025:1993 (désignation symbolique : S235JR, désignation numérique :1.0037) et à la norme française N° NF A 35-501 (désignation : E 24-2), d'épaisseur 3 mm, et formant une cuve cylindrique d'un volume de 50 litres.
  • La face interne a subit un traitement par impact à l'aide d'une sableuse munie d'une buse cylindrique projettant du corindon à pession d'air d'environ 7 bars. L'angle de projection est pratiquement tangentiel par rapport à la surface (30 à 40 degrés) La température ambiante est à 20°C pour éviter autant que possible l'oxydation. A l'issue du sablage, la face intérieure de la coque en acier présente une rugosité Ra de15 µm, ce qui représente 25 % de l'épaisseur de la couche intermédiaire qui va être maintenant déposée.
  • La couche intermédiaire est en aluminium haute pureté (99,9 %). Elle est déposée par projection thermique selon la technique flamme-fil. Le pistolet de projection utilisé est régulé automatiquement. L'avance du fil est animée par un moteur électrique à la vitesse fixe d'un mètre par minute. Pour les deux fonds de cuve, la couche est appliquée manuellement. Dans la virole, les mouvements du pistolet de projection sont automatisés et régulés par des capteurs. La métallisation est réalisée à 20°C, afin de réduire l'oxydation. La couche d'aluminium ainsi déposée a une épaisseur de 120 µm avec un taux de porosité de 8 %.
  • La couche interne de la paroi est constituée d'un polypropylène modifié par l'anhydride maléique. Le taux d'insertion du motif anhydride est de 20 % en mole. Le point de fusion est de pF= 162 °C. Un tel polypropylène modifié par l'anhydride maléique est obtenu par les procédés connus de fabrication des matières premières polymères.
  • Elle a été réalisée de la manière suivante. La cuve est montée sur un système mécanique qui permet de la faire tourner autour de deux axes perpendiculaires. L'ensemble est introduit dans un four et est préchauffé à 220°C pendant 20 minutes. Puis 1,4 kg de poudre de polypropylène modifié est introduit dans la cavité de la cuve et la cuve est fermée par des raccords rapides. Elle est mise en mouvement et est maintenue à la température de 220°C pendant 14 mn. Puis le dispositif est retiré du four et de l'air frais est projeté sur la cuve jusqu'à ce que la température atteigne 50 °C. Puis le refroidissement est poursuivi jusqu'à la température ambiante, deux heures au moins. La couche polymérique ainsi obtenue a une épaisseur constante d'environ 120 µm sur toute la surface interne de la cuve.
  • La paroi composite a été soumises à différents tests pour évaluer ses performances. Il a été constaté d'une part que lors de variations de température, les couches restent unies bien que leur coefficient de dilatation soit différents. On attribue par hypothèse ce résultat au fait que la couche intermédiaire absorbe la dilatation différentielle entre les matériaux des couches externe et interne de la paroi.
  • Il a par ailleurs été constaté que la couche polymérique est très fortement ancrée à son substrat, comme le montrent les tests détaillés à l'exemple 2.
  • EXEMPLE 2 Tests d'arrachement
  • Les tests d'arrachement ont été réalisés à l'aide d'une machine de traction spécialement conçue à cet effet (représentée sur la Figure 1) sur des éprouvettes préparées avec les matériaux décrits à l'exemple 1 et dans des conditions analogues.
  • Préparation des éprouvettes
  • Chaque éprouvette 1 est constituée d'une plaque d'acier métallisée à l'aluminium 2, recouverte d'une couche 3 de polypropylène modifié par fusion dans un four à 220°C. Lorsque le polymère est fondu, on retire l'éprouvette 1 du four et on dépose à sa surface une seconde plaque d'acier métallisée à l'aluminium 4, identique à la précédente, et munie d'un crochet 5 placé perpendiculairement au plan de l'éprouvette 1. Puis le tout est replacé dans le four pendant 14 mn. Après refroidissement, on obtient une structure en sandwich avec une couche polymérique 3 fixée aux deux plaques métalliques 2, 4. La plaque inférieure 2 a une dimension de 200 mm x 100 mm, elle est en outre munie de moyens de suspension de masses, par exemple d'anneaux 6, alors que la plaque supérieure 4 n'a une surface que de 50 mm x 50 mm. Leur épaisseur est de 3 mm environ, ainsi que celle de la couche polymérique.
  • Mesure de la force d'arrachement
  • On tranche la couche 3 de polymère dans son épaisseur autour de la plaque supérieure 4, de manière à isoler latéralement un échantillon de revêtement polymérique 7 de 50 mm de côté centré sur l'axe du crochet 5. On suspend l'éprouvette 1 par le crochet 5 et on fixe des charges aux anneaux 6, de masse de plus en plus élevée (de 10 Kg en 10 kg). On mesure ainsi la masse nécessaire pour décoller l'échantillon 7 d'une au moins des plaques 2 ou 4, en moins d'une minute et on calcule la force correspondante, exprimée en daNcm-2.
  • Résultats du test
  • Cinq éprouvettes identiques ont été préparées et soumises au test d'arrachement. Les résultats sont présentés dans le tableau 1
  • Selon les conventions habituellement retenues, on considère qu'un matériau est solidaire d'un autre quand la force d'arrachement nécessaire pour les séparer est supérieure à 0,8 MPa, soit 8 daNcm-2, Avec une valeur moyenne d'environ 38 daNcm-2, on peut affirmer que la paroi composite des éprouvettes E1 à E5 présente une cohésion très forte.
  • On note également que les cinq répétitions donnent le même résultat (écart type très faible), ce qui indique que le procédé de fabrication est reproductible et fiable et qu'il permet d'obtenir une paroi de cuve de qualité constante. Le fait que l'arrachement se produit aussi bien sur la plaque inférieure que supérieure va dans le même sens. Ceci est est très important du point de vue de l'homogénéité de l'enduit déposé et de la longévité des cuves. TABLEAU 1
    Éprouvette force d'arrachement (daNcm-1)
    E1 37
    E2 38,2
    E3 38,6
    E4 38
    E5 39
    Moyenne 38,2
    Écart Type 0,67

Claims (25)

  1. Cuve destinée à contenir un fluide corrosif caractérisée en ce qu'elle possède une paroi composite comprenant une coque externe en acier, une couche intermédiaire métallique ou céramique, et une couche interne à base d'un composé polymérique thermoplastique en contact direct avec la couche intermédiaire.
  2. Cuve selon la revendication 1 caractérisée en ce que la couche interne comprend essentiellement un composé polymérique comportant des groupements polaires à caractère électronégatif.
  3. Cuve selon la revendication 1 ou 2 caractérisée en ce que le composé polymérique est choisi parmi les polymères d'éthylène, les polymères de propylène, les résines fluorocarbonées, les polyoxyméthylènes.
  4. Cuve selon la revendication 2 caractérisée en ce que le composé polymérique est un polymère modifié par un diacide.
  5. Cuve selon la revendication 4 caractérisée en ce que le composé polymérique est un polypropylène modifié par l'anhydride maléique.
  6. Cuve selon la revendication précédente caractérisée en ce que le composé polymérique est un polypropylène modifié par 5 % à 50 % d'anhydride maléique, en mole.
  7. Cuve selon la revendication précédente caractérisée en ce que le composé polymérique est un polypropylène modifiée par 20 % d'anhydride maléique, en mole.
  8. Cuve selon l'une des revendications 1 à 7 caractérisée en ce que la couche intermédiaire est constituée essentiellement d'un métal choisi parmi l'aluminium, le zinc, le cuivre, l'étain, le nickel, le molibdène, le manganèse, ou d'un alliage à base de métaux choisis parmi le zinc, le cuivre, le nickel, l'étain.
  9. Cuve selon l'une des revendications 1 à 7 caractérisée en ce que la couche intermédiaire est constituée essentiellement d'une céramique choisie parmi NiAl, NiCrBSi, Al2O3 , Al2O3-TiO2 , Cr2O3 , ZrO2-CaO.
  10. Cuve selon l'une des revendications 8 ou 9 caractérisée en ce que la couche intermédiaire présente un taux de porosité de 0,1 % à 25 %, de préférence de 5 % à 10 %.
  11. Cuve selon l'une quelconque des revendications précédentes caractérisée en ce que la face intérieure de la coque en acier présente une rugosité comprise entre 10 et 35 µm, de préférence 15 µm.
  12. Cuve selon l'une des revendications précédentes caractérisé en ce qu'elle comprend une sous-couche d'accrochage entre la coque en acier et la couche intermédiaire.
  13. Cuve destinée à contenir un fluide aqueux selon la revendication 1 caractérisée en ce qu'elle possède une paroi composite comprenant une coque externe en acier, une couche intermédiaire en aluminium et une couche interne en polypropylène modifié par l'anhydride maléique.
  14. Procédé de fabrication d'une cuve destinée à contenir un fluide corrosif, possédant une paroi composite comprenant une coque externe en acier, une couche intermédiaire métallique ou céramique et une couche interne à base d'un composé polymérique thermoplastique caractérisé en ce qu'il comprend essentiellement les étapes suivantes en succession :
    - une étape de métallisation consistant à déposer un composé métallique ou céramique sur la face interne de ladite coque en acier, pour former ladite couche intermédiaire, et
    - une étape d'enduction consistant à :
    - introduire un composé polymérique en poudre dans la coque métallisée fixée à un système de rotation biaxial,
    - mettre la coque métallisée contenant le composé polymérique en poudre en rotation biaxiale et chauffer à une température égale ou supérieure à la température de fusion du composé polymérique, jusqu'à formation d'une couche polymérique continue,
    - refroidir en poursuivant la rotation jusqu'à solidification de la couche polymérique.
  15. Procédé selon la revendication 14 caractérisé en ce que la couche intermédiaire est formée par projection thermique i) d'un métal choisi parmi l'aluminium, le zinc, le cuivre, l'étain, le nickel, le molibdène, le manganèse; ou ii) d'un alliage à base de métaux choisis parmi le zinc, le cuivre, le nickel, l'étain; ou iii) d'une céramique choisie parmi NiAl, NiCrBSi, Al2O3-TiO2, Al2O3, Cr2O3 , ZrO2-CaO.
  16. Procédé selon la revendication 15 caractérisé en ce que la couche intermédiaire est formée par projection d'aluminium selon la technique flamme-fil.
  17. Procédé selon l'une quelconque des revendications 14 à 16 caractérisé en ce que, avant l'étape de métallisation, la coque en acier est soumise à un traitement par impact pour accroître sa rugosité.
  18. Procédé selon l'une des revendications 14 à 17 caractérisé en ce que, avant l'étape de métallisation, une sous-couche d'accrochage est appliquée sur la coque.
  19. Procédé selon l'une des revendications 14 à 18 caractérisé en ce que la fusion du composé polymérique en poudre est obtenue par chauffage de la coque métallisée le contenant, par un moyen de chauffage externe.
  20. Procédé selon l'une des revendications 14 à 19 caractérisé en ce que ledit composé polymérique en poudre comporte des groupements polaires à caractère électronégatif.
  21. Procédé selon l'une des revendications 14 à 20 caractérisé en ce que ledit composé polymérique en poudre est choisi parmi les polymères d'éthylène, les polymères de propylène, les résines fluorocarbonées, les polyoxyméthylènes.
  22. Procédé selon la revendication 14 à 20 caractérisé en ce que ledit composé polymérique en poudre est un polymère modifié par un diacide.
  23. Procédé selon la revendication précédente caractérisé en ce que ledit composé polymérique en poudre est un polypropylène modifié par l'anhydride maléique.
  24. Dispositif destiné à emmagasiner, transporter, stocker ou produire un fluide corrosif caractérisé en ce qu' il comprend une cuve selon l'une des revendications 1 à 13.
  25. Dispositif de production d'eau chaude comprenant une cuve selon l'une des revendications 1 à 13.
EP07718014A 2006-01-20 2007-01-19 Cuve en materiau composite resistant a la corrosion Not-in-force EP1993923B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0600506A FR2896489B1 (fr) 2006-01-20 2006-01-20 Cuve en materiau composite resistant a la corrosion
PCT/FR2007/000098 WO2007083029A2 (fr) 2006-01-20 2007-01-19 Cuve en matériau composite résistant à la corrosion

Publications (2)

Publication Number Publication Date
EP1993923A2 EP1993923A2 (fr) 2008-11-26
EP1993923B1 true EP1993923B1 (fr) 2009-06-24

Family

ID=37027870

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07718014A Not-in-force EP1993923B1 (fr) 2006-01-20 2007-01-19 Cuve en materiau composite resistant a la corrosion

Country Status (8)

Country Link
EP (1) EP1993923B1 (fr)
CN (1) CN101389539A (fr)
AT (1) ATE434572T1 (fr)
DE (1) DE602007001390D1 (fr)
FR (1) FR2896489B1 (fr)
MA (1) MA30215B1 (fr)
TN (1) TNSN08307A1 (fr)
WO (1) WO2007083029A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140215970A1 (en) * 2013-02-04 2014-08-07 Honeywell International Inc. METHODS OF HANDLING CHLORINATED COMPOUNDS USED FOR MANUFACTURING HFO-1234yf
CN110465462A (zh) * 2019-07-09 2019-11-19 马鞍山市天鑫辊业有限责任公司 涂层辊的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1406942A (en) * 1973-02-26 1975-09-17 Eastman Kodak Co Graft copolymers
US4358493A (en) * 1981-01-29 1982-11-09 Toyo Ink Manufacturing Co., Ltd. Cans
FR2551424B1 (fr) * 1983-09-01 1985-10-18 Schneider Ind S I Reservoir ferme, notamment d'un chauffe-eau a protection interne, et procede pour la realisation de cette protection
JPH05261858A (ja) * 1992-03-23 1993-10-12 Nippon Steel Corp ポリオレフィン被覆鋼材

Also Published As

Publication number Publication date
DE602007001390D1 (de) 2009-08-06
WO2007083029A2 (fr) 2007-07-26
WO2007083029A3 (fr) 2007-09-27
ATE434572T1 (de) 2009-07-15
FR2896489B1 (fr) 2008-04-25
FR2896489A1 (fr) 2007-07-27
CN101389539A (zh) 2009-03-18
TNSN08307A1 (fr) 2009-12-29
EP1993923A2 (fr) 2008-11-26
MA30215B1 (fr) 2009-02-02

Similar Documents

Publication Publication Date Title
BE1001249A5 (fr) Structure protectrice pour un pyrometre a immersion.
EP3017084B1 (fr) Procede de preparation a la depose d'un revetement metallique par projection thermique sur un substrat
EP1972699A1 (fr) Procede de revetement d'un substrat et installation de depot sous vide d'alliage metallique
FR2525207A1 (fr) Production d'articles en carbone plein, resistants a la corrosion et a l'erosion
FR2616697A1 (fr) Article, notamment electrode, a caracteristiques de soudage par resistance ameliorees, et procede de soudage par resistance en comportant application
FR2595684A1 (fr) Procede de lubrification d'un moule pour la fabrication d'un recipient en verre
EP1993923B1 (fr) Cuve en materiau composite resistant a la corrosion
FR2463752A1 (fr) Poudre pour la formation d'un enduit a proprietes thermiques
EP3283812B1 (fr) Procede de preparation de la coque interne d'un reservoir composite de type iv pour le stockage de fluide sous pression
EP2730678A1 (fr) Article en fonte d'acier comprenant un revêtement vitreux et procédé de fabrication d'un tel article
Nozawa et al. Tribology of polymer injection-molded stainless steel hybrid gear
FR2775913A1 (fr) Procede de depose d'une couche protectrice sur des surfaces d'une piece a traiter
EP2188061A2 (fr) Cuve a paroi composite comprenant une couche organique
FR2633632A1 (fr) Compositions nouvelles de primaire d'adherence pour revetement fluore a base de resines epoxydes et mathacryliques, leur application pour le revetement de substrats metalliques et procede de fabrication desdits revetements
FR2669397A1 (fr) Reservoir metallique notamment bouteille ou citerne a gaz.
EP1313602B1 (fr) Procede de fabrication d'une piece de revolution par rotomoulage et piece obtenue
EP0670190B1 (fr) Moule de fonderie et son procédé de réalisation
EP2440405B1 (fr) Pièce composite à base de métal et de polymère, application notamment au domaine de l'automobile
EP0638652B1 (fr) Procédé de durcissement de pieces metalliques
FR2663872A1 (fr) Fabrication de tubes a l'aide d'un mandrin reutilisable.
WO2015036975A1 (fr) Substrat pour la solidification de lingot de silicium
FR2979845A1 (fr) Meule de faconnage pour verre plat
WO2017174892A1 (fr) Fer a cheval comportant un revetement resistant a l'abrasion et au choc
WO2002100797A1 (fr) Procede de densification et de traitement anticorrosion d'un materiau composite thermostructural
FR2658830A1 (fr) Procede de revetement d'une piece par une resine thermodurcissable chargee.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080812

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LACAZE ENERGIES

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602007001390

Country of ref document: DE

Date of ref document: 20090806

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090924

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091024

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090924

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20101228

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110124

Year of fee payment: 5

Ref country code: FR

Payment date: 20110216

Year of fee payment: 5

Ref country code: DE

Payment date: 20110121

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110104

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110120

Year of fee payment: 5

BERE Be: lapsed

Owner name: LACAZE ENERGIES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091225

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007001390

Country of ref document: DE

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624