EP1989775A2 - Stall controller and triggering condition control features for a wind turbine - Google Patents
Stall controller and triggering condition control features for a wind turbineInfo
- Publication number
- EP1989775A2 EP1989775A2 EP06787552A EP06787552A EP1989775A2 EP 1989775 A2 EP1989775 A2 EP 1989775A2 EP 06787552 A EP06787552 A EP 06787552A EP 06787552 A EP06787552 A EP 06787552A EP 1989775 A2 EP1989775 A2 EP 1989775A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- wind turbine
- windings
- power output
- electrical power
- current based
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004804 winding Methods 0.000 claims abstract description 167
- 238000000034 method Methods 0.000 claims description 14
- 230000001960 triggered effect Effects 0.000 claims description 9
- 239000003990 capacitor Substances 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims 6
- 238000010168 coupling process Methods 0.000 claims 6
- 238000005859 coupling reaction Methods 0.000 claims 6
- 230000005611 electricity Effects 0.000 claims 3
- 238000010586 diagram Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 7
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0256—Stall control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/04—Control effected upon non-electric prime mover and dependent upon electric output value of the generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0272—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/16—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
- H02P25/18—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P3/00—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
- H02P3/06—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
- H02P3/18—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
- H02P3/22—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P3/00—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
- H02P3/06—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
- H02P3/18—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
- H02P3/24—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by applying dc to the motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/08—Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/1016—Purpose of the control system in variable speed operation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/15—Special adaptation of control arrangements for generators for wind-driven turbines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/45—Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates generally to stall controlling features for a wind turbine that is capable of varying torque via an alternator to cause or induce aerodynamic stall in coupled wind turbine blades.
- the wind turbine controller of the present invention includes stall controlling features that enable generation of stall torque under both normal conditions and upon certain triggering conditions occurring, so that in the event of a failure in the windings of the alternator or connectors thereto, or to the controller, sufficient torque remains available in the alternator to control the wind turbine.
- control features for a wind turbine of the present invention permit control of the turbine in a full range of wind speeds, as well as to slow or stop turbine rotation in triggered conditions, including conditions in which multipole failures occur in the wind turbine's toque generation generator/alternator and electronic controls therefore, without the noise, cost, or reliability issues associated with furling, pitch regulation, or aeroelastic twist regulation, for example, of the prior art.
- control features of the present invention are accomplished via control electronics, which adjust the torque produced by the alternator or other electrical output generation device having a plurality of windings. During normal wind conditions, torque is adjusted for optimum aerodynamic performance and/or maximum output of the wind turbine.
- the control circuit regulates torque to lower aerodynamic performance, as necessary to maintain a desired power level.
- wind turbine control e.g., slowing or stopping of the wind turbine blades
- a shorting or other increase in current based torque e.g., pulse width modulation or PMW
- shorting e.g., pulse width modulation or SPW
- a secondary control shorts or otherwise increases current in the alternator/generator so as to cause the blades to stall, thereby slowing or bringing the wind turbine to a stop.
- the triggering event sensing and/or control features of some embodiments of the present invention comprise separate circuitry from the normal operation of the sensing and/or control circuit for the wind turbine, so as to reduce or eliminate safety concerns associated with failure of the normal operation control circuit.
- Other embodiments incorporate such triggering event control features within the normal operation control circuitry.
- the triggering event control features may include a relay that is normally open or normally closed, for example, so long as, upon a triggering event occurring, the control features automatically operate for shorting at least one of the electrical output generation device windings.
- a signal relay is activated so as to provide power (e.g., from a charged capacitor) to close the relay, thereby shorting the windings.
- a power supply to maintain an open condition of the relay is removed, thereby allowing the relay to return to its normally closed condition.
- the presence of the triggering event may be determined, for example, via devices and methods for monitoring the rotational speed of the turbine blades, output of the alternator, whether any of the windings of the electrical output generation device, or connectors thereto, are inoperable, and whether any of the normal wind turbine control electronics are malfunctioning.
- One or more operations of the control electronics or other features of the wind turbine of the present invention may be provided wirelessly.
- FIG. 1 contains a representative diagram of backup elements for a back up control circuit of an exemplary wind turbine, in accordance with an embodiment of the present invention
- FIG. 2 shows a circuit diagram for an exemplary latching circuit for back up control for use in accordance with embodiments of the present invention
- FIG. 3 shows a circuit diagram containing additional details relating to the exemplary latching circuit of FIG. 2;
- FIGs. 4A-4D show exemplary variations of six winding alternators usable with the present invention.
- FIG. 5 shows an exemplary wind turbine, in accordance with an embodiment of the present invention
- FIG. 6 is a block diagram of an exemplary inverter usable with embodiments of the present invention.
- FIG. 7 presents a schematic of various components of an exemplary wind turbine, in accordance with an embodiment of the present invention.
- FIG. 8 contains a representative diagram of various components of an exemplary wind turbine, in accordance with another embodiment of the present invention.
- the wind turbine controller of the present invention includes an electrical output generation device 10, such as an alternator or a generator, and associated circuitry that provides backup control and triggering event control features for the blades of the wind turbine.
- the device 10 may also include circuitry for normal operational control (not shown in FIG. 1; see e.g., FIG. 6).
- the exemplary circuit includes an alternating to direct current (AC to DC) converter, such as a rectifying bridge, a DC to DC converter, and a DC to AC converter.
- AC to DC alternating to direct current
- the controller includes triggering event control features, such as a winding shorting device 11 , (e.g., a latching relay), that provides shorting of the alternator windings to retard wind turbine motion upon triggering events occurring, such as emergencies.
- a winding shorting device 11 e.g., a latching relay
- Such winding shorting device 11 may operate, for example, in the condition of extremely high winds after the primary circuit has failed.
- the alternator 10 is designed such that its windings include at least two separably operable winding sections and such that, in the event of failure of one or more (but less than all) of the sections (e.g., due to creation of an open circuit in such windings, such as may result from a lightening strike or mechanical damage, or due to failure of a connector to a winding), and the occurrence of a triggering event, such as failure of the primary control circuit (see e.g., FIG. 6), a minimum number of unfailing sections of windings are able to generate sufficient torque to slow or halt wind turbine blade rotation, such that the turbine is rendered safe from runaway rotation or damage to its components, via shorting.
- the triggering event control features constitute a separate printed circuit board (PCB) or other module from other electronics for maximum fail-safe isolation.
- the PCB contains a bridge rectifier 15 and a voltage- tripped relay 11.
- This circuit enacts shutdown of the turbine in the event of a fault in the primary control circuit.
- a voltage based triggering device 16 such as a 280V Zener diode, causes the relay 11 to activate at a predetermined voltage level.
- the Zener diode causes a 12V coil 11 a in the relay 11 to actuate at approximately 290V.
- This voltage corresponds to the output of a single winding of an alternator at approximately 380 revolutions per minute (RPM), in one exemplary turbine.
- RPM revolutions per minute
- the contacts 11 b of the relay 11 provide shorting of the output of the turbine, creating more than sufficient torque under predetermined conditions (e.g., some number of windings, or connectors thereto, in open circuit condition) to bring the turbine to a stop or to slow its speed to a satisfactory (e.g., safe) level.
- predetermined conditions e.g., some number of windings, or connectors thereto, in open circuit condition
- a willing microprocessor and an approving user can unlatch the relay, for example.
- Another feature shown in FIG. 1 is a 2.3 kHz filter, which prevents momentary voltage spikes from inadvertently activating the relay 11.
- the safety relay system shown in FIG. 1 also includes a signal relay 17 for driving the safety relay coils 11a.
- a charged capacitor 18 is switched onto the relay coils 11a, effectively isolating the relay's coils from the microprocessor of the turbine. This action may occur, for example, after the controller 19 determines the operational status of the primary circuit, such as that failure has occurred and/or other triggering event conditions for shutdown have been met.
- the use of a signal relay 17 and a capacitor 18 to supply activation power for the latching relay 11 added level safety in the event of primary circuit failure.
- the exemplary embodiment for triggering event control features shown in FIG. 1 includes a normally open latching relay. Occurrence of a predetermined triggering event or events causes operation of a signal relay, which in turn allows voltage supplied from a capacitor to activate closing of the latching relay.
- a normally closed latching relay may also be used, as well as other devices, systems, and methods, so as to cause the shorting of the windings under appropriate conditions.
- FIG. 2 shows a circuit diagram for an exemplary latching circuit for use in accordance with embodiments of the present invention.
- the circuit elements 200 shown in FIG. 2 include shutdown components constituting a circuit path that is independent of any power generation circuitry associated with the output of an alternator or other power electrical output generating device (e.g., six phase winding device 201 of FIG. 2) associated with the wind turbine of the present invention. Further, the circuit elements 200 shown in FIG. 2 do not include or rely upon any complex controls, such as a computer chip or other processing elements or logic for operation.
- the outputs of each of the ends of the six phase winding device 201 are connected to a three phase bridge rectifier 202.
- the positive output of the three phase bridge rectifier 202 is connected in series to a filter 203, such as a capacitor, dielectric, and/or inductor, or other device to filter current or voltage spikes or other momentary high output of the rectifier 202.
- the filter 203 is connected in series with a diode 204, such as a zener diode.
- the diode 204 in turn is connected in series to a latching relay 210, which is normally open and cannot be
- the diode 204 is connected, for example, to a coil or other inductor within the relay 210, and, as shown in FIG. 2, a single pole, double throw switch within the relay 210 is shown as not latched to either terminal.
- the latching relay 210 once triggered, cannot be unlatched.
- the latching relay is triggered in a shutdown condition (e.g., the single pole, double throw switch latches to one of the terminals, such as due to the occurrence of a high voltage or high current event)
- the relay 210 will not become unlatched following the end of the triggering event (e.g., the ending of the high voltage or high current event).
- return of the device to the manufacturer or other evaluating party must occur to address any damage to the wind turbine prior to continued operation of the wind turbine.
- the filter 203 and diode 204 operate to ensure that momentary current or voltage spikes or other momentary high output of the rectifier 202 that do not reflect failure conditions do not latch the relay 210 and thus inappropriately prevent operation of the wind turbine.
- a second relay 220 which, for example, is normally closed, is designed and connected within the circuit 200, such that normal input from the inverter 211 (e.g., +12 V shown in FIG. 2, reflecting a control or power signal from a computer or other processor or similar device for operating the wind turbine) will not allow the relay 220 to close under normal operating conditions, and the relay 220 will not open in the continued presence of input, or following restoration of input, from the inverter 211 following a shutdown condition occurring.
- normal input from the inverter 211 e.g., +12 V shown in FIG. 2, reflecting a control or power signal from a computer or other processor or similar device for operating the wind turbine
- FIG. 3 shows a circuit diagram of additional features for the exemplary latching circuit of FIG.2, and the circuit 300 of FIG. 3 is similar in operation to the circuit 200 of FIG. 2.
- the circuit element 305 represents a latching relay similar to the latching relay 210 of FIG. 2.
- Three relays 310, 311 , and 312 are connected to the outputs of each of the ends of power electrical output generating device 305 (e.g., the ends of each of the six phase windings of an alternator).
- the use of one of the three relays 310, 311 , 312 for each of the pair of windings of the generating device 305 allows redundancy in shutdown control to be provided, regardless of type of failure (e.g., open or short) that may occur in any one (or more) of the windings of the generating device 301 or any one (or two) of the normally closed relays 310, 311 , 312.
- type of failure e.g., open or short
- FIGs. 4A-4D show variations of six winding alternators usable with the present invention.
- FIG. 4A presents an exemplary six winding alternator having six phases and seven connection points.
- each of the six phases are out of phase from all others.
- a number of connection points or windings could fail (e.g., the connection points or windings could become open circuit portions as a result of a catastrophic event, such as a lightning strike of the alternator), and yet the alternator could still be stopped using the winding shorting device to provide shorting for the remaining windings (e.g., two of the six windings remaining functional).
- the exemplary alternator of FIG. 4B also includes six windings, but in two pairs of three phase windings operating in parallel. Thus, in this exemplary alternator, only a three phase output is produced. Alternatively to separate center connection points C2 and C 3 for this alternator, the center connection points C2 and C 3 may also be connected, so as to effectively constitute only a single center connection point. As with the alternator of FIG. 4A, in the embodiment of FIG. 4B, a number of the windings, such as four, may fail, and yet the alternator may still be stopped using the winding shorting device to provide shorting for the remaining windings. [00032] Similarly to FIG. 4B, the exemplary alternator of FlG. 4C includes six windings in three phases.
- centerpoints of each winding leg separate the windings into six sections.
- a number of the windings such as four, may fail, and yet the alternator may still be stopped using the winding shorting device to provide shorting of the remaining windings.
- FIG. 4D shows an exemplary alternator similar to that of FIG.
- FIG. 5 contains a cross-sectional view of various components of an exemplary wind turbine usable in accordance with embodiments of the present invention.
- the wind turbine 520 generates power with an alternator 532.
- the alternator 532 of some embodiments includes a magnet rotor 534 and a slotless stator 536, as shown in FIG. 5.
- the stator 536 for example, is comprised of steel or other suitable core material with copper windings and/or another suitable conductor material for windings, and is attached to the housing 522.
- the rotor 534 rotates with rotation of the blades 524.
- the rotor 534 generates a varying magnetic field, such as through rotation of permanent magnets or other magnetic field sources incorporated in or attached to the rotor 534.
- the use of permanent magnets in these embodiments is especially useful in small-scale wind turbines, such as those used for battery charging and residential power. This approach also eliminates the need to add redundancy to a field excitation circuit, such as may be necessary with a wound electromagnet field.
- stator 5 is slotless and, when assembled, comprises a cylindrical shape made up of steel (or other suitable materials) laminations or segments, with a 534 are rotated relative to the windings of the stator 536, a current is induced in the windings from the resulting change in flux as the magnetic fields associated with the rotor pass the stator winding loops.
- stator has a slotless design
- the invention can be used with other stator designs.
- Some common stator designs contain a number of windings, typically making up three inductor portions, for three-phase output.
- some aspects of the invention can function equally well with other types of generators, such as induction generators, instead of those using permanent magnet sources for the rotor magnetic fields. If an electromagnet field is used, for example, a backup circuit to energize the field may be needed.
- AC to DC converter, DC to DC converter, and a DC to AC converter and/or other components 540 are located at one end of and within the housing 522 and attached to the removable hatchcover 530 to maximize the cooling effects of air or other fluid flowing against or otherwise contacting the housing 522, to minimize costs, and to shield the components from radiofrequency (RF) radiation, among other things.
- RF radiofrequency
- the hatchcover 530 is formed from a highly heat-conductive material, such as aluminum, and the hatchcover components 540 are placed in direct contact with the hatchcover 530 to facilitate heat transfer. While the hatchcover components 540 of the exemplary embodiment of FIG. 5 are placed at the end of the housing 522 for maximum cooling benefit, the hatchcover components 540 may be placed at other locations within the housing 522 and still receive sufficient cooling.
- the blades 524 Attached to the hub 538 are the blades 524.
- the blades 524 are of a tapered, twisted, and curved design to maximize efficiency and stall characteristics, and to minimize noise. Although one embodiment uses this design, the invention will work with other blade designs.
- FIG. 6 shows a representative diagram of exemplary output conversion features for use in a wind turbine according to the present invention.
- the wind turbine's alternator 642 generates AC output at a varying frequency and voltage.
- the AC output from the alternator 642 is passed through an AC to DC converter 643, such as a rectifier, that includes one or more diodes.
- an AC to DC converter 643, such as a rectifier that includes one or more diodes.
- the exemplary AC to DC converter shown is a passive rectifier based on diodes, but other rectifiers or other circuits, such as bridges and active rectification, can be used with the present invention to perform similar functions.
- FIG. 6 Some of the features shown in FIG. 6 are similar to those described in U.S. Patent Number 6,703,718 to Galley, et al., titled "WIND TURBINE CONTROLLER,” the entirety of which is incorporated herein by reference. Also hereby incorporated by reference in their entirety are Applicant's copending U.S. Provisional Patent Application No. 60/699,940 filed July 15, 2005, of David Galley titled “WIND TURBINE,” and corresponding U.S. Patent Application No. titled
- the output from the wind turbine of FIG. 6 is passed through a DC to AC converter 670, such as an inverter, to convert the output to AC at a selected voltage and frequency.
- the inverter can be of any appropriate design, one example of which is shown in FIG. 6 as including four switch devices, such as junction transistors (e.g., NPN transistors).
- Other switch devices such as field effect transistors (FETs), insulated gate bipolar transistors (IGBTs), metal oxide semiconductor field effect transistors (MOSFETs) 1 gate turn-off silicon controlled rectifiers (GTOs), other transistor circuits or other devices, or some combination thereof, may similarly be used.
- the switch devices are controlled appropriately to create an approximation of a sine wave output, at the appropriate voltage and frequency.
- the DC to AC converter can be a single-phase inverter for use with a single-phase electrical system, or a multiple-phase DC to AC converter for other electrical systems, such as 3-phase systems.
- the DC to AC converter may also include inductors or other devices to smooth the output from the converter. If the switch devices operate at sufficiently high speed, then the harmonic content of the resulting output may be low enough to allow omission of a filtering or other output smoothing device.
- the switch devices in the DC to AC converter 670 are controlled by a controller 654.
- the controller 654 coordinates operation of the switches in the DC to AC converter 670 to produce AC output that is at the appropriate voltage and frequency for the AC line 658 or other output power receiving device or system to which the wind turbine is connected.
- a voltage and frequency monitor 656 measures the voltage and frequency of the AC line 658 or other output power receiving device or system to which the wind turbine is connected, if applicable.
- the controller 654 When the wind turbine according to the present invention is first connected to the AC power line 658 or other output power receiving device or system, for example, the controller 654 first measures the voltage, frequency, and phase angle of the receiving device or system. The controller 654 uses the measurement to control the operation of the switch devices in the DC to AC converter 670, such that the output of the wind turbine will be compatible with the AC power on the line 658 or other output power receiving device or system. A delay of up to several minutes may occur when the wind turbine of FIG. 6 is initially operated (e.g., as required for conformity to applicable safety standards), as the controller 654 performs a reliable measurement of the voltage, frequency, and phase angle of the AC line 658 or other output power receiving device or system to which power is to be conducted.
- FIG. 7 presents a schematic diagram of various components of an exemplary wind turbine, in accordance with another embodiment of the present invention, exemplary operation of which will now be described.
- a radio frequency communication link 700 with the turbine control system is provided.
- This link 700 allows the user, such as at a RF display unit 701 , to access information regarding turbine operation and output and to input information to control turbine operation. For example, the user may determine how much power is being output by the turbine and review prior output information (e.g., output over previous year or month).
- the RF link is used to transmit battery charge state information to a controller (e.g., located on or coupled to the up-tower RF board) so as to control alternator output to prevent battery charging upon full battery charging being completed.
- the RF link also may be used for other purposes, such as to uplink new programming (e.g., when updated software code for operation of a processor in the turbine is to be installed).
- the user may be limited in control functions so as to prevent operation outside requirements of law or standards.
- the output of the turbine is to an AC grid having input requirements and limitations (e.g., minimum deviation from a required voltage and frequency of input to the grid)
- the system will not allow output to be delivered outside of those requirements.
- the default for the turbine in one embodiment assumes connection to a grid.
- Such limitations are inapplicable if no standards apply (e.g., if output is to a closed system having user defined limitations).
- Typical operations that a user may select include operational modes (e.g., slight power output reduction so as to reduce noise during nighttime operation)
- FIG. 8 shows an exemplary diagram of various components of the present invention, in schematic form.
- the armature of the alternator 800 is shown as having six windings 800a, although other numbers of windings could also be used, and other circuit patterns, including, but not limited to the alternator windings circuitry shown in FIG. 4D. Each of the windings has an inherent resistance and inductance associated with it.
- the output of the armature of FIG. 8 is six phases of alternating current power.
- a rotational speed determiner 801 such as an RPM sensor, measures the rotational speed of the alternator 800 and optionally provides that information to a control module 802. This RPM information may be used, for example, to control power and/or RPM of the turbine.
- the RPM sensor may also simply observe the voltage or current produced by the winding(s) to provide the RPM signal (e.g., for display to the user).
- An AC/DC converter in the AC/DC, DC/DC, and DC/AC converter electronics module 804 receives the alternating current from the armature and provides output, such as to an AC grid or to power applications.
- the control module 802 in turn provides information to the AC/DC, DC/DC, and DC/AC converter electronics module 804 to control operation of and output from the turbine.
- the device for shorting 806 implements a shorting across the windings 800a of the alternator 800.
- the shorting of the alternator windings 800a creates torque via the alternator 800 sufficient to slow or stop wind turbine blade rotation.
- the torque produced by the shorting of the windings 800a is sufficiently high so that a significant portion of the windings 800a may fail (e.g., due to an open circuit in the windings or to one or more connectors for the windings), yet wind turbine blade rotation will still be slowed or stopped.
- the shutdown circuit (comprising the device for shorting 806 and shutdown control module 807) constitutes a separate printed circuit board or other module from the other electronics of the wind turbine for maximum isolation (see, e.g., FIG. 1 and description relating thereto).
- a change in the current or voltage of a winding 800a is determined, this may signal a complete failure, partial failure or irregularity in the alternator 800, for example.
- problems in any one of the windings 800a or primary circuit e.g., AC/DC, DC/DC, and DC/AC converter electronics module 804 can be detected, and, for example, following a triggering event occurring, a signal can be transmitted to the device for shorting 806 to retard blade rotation.
- the seven connection points 800b for the alternator windings 800a are monitored.
- the shutdown control module 807 which is microprocessor-based, for example, disables the wind turbine by shorting the windings 800a of the alternator 800.
- the shutdown control module 807 causes a device for shorting 806, such as a switch, a transistor, or the like to close a portion of the primary circuit (see, e.g., FIG. 1).
- the device for shorting 806 can be disposed after the AC to DC converter (e.g., in the circuit near the bridge rectifier 15, as shown in FIG. 1).
- the device for shorting 806 can also be disposed between the AC to DC converter and the alternator, for example.
- 60% or more of the torque in the alternator 800 can be lost (e.g., four of six windings 800a failing), with sufficient torque remaining that is generatable from shorting the remaining windings 800a to decrease or stop wind turbine blade rotation or otherwise effectively control RPM during a wind event of up to about 140 mph or more.
- the triggering event control features of the present invention unlike furling and aerolastic twisting of the prior art, produces no additional noise.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76040706P | 2006-01-20 | 2006-01-20 | |
PCT/US2006/027660 WO2007086930A2 (en) | 2006-01-20 | 2006-07-17 | Stall controller and triggering condition control features for a wind turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1989775A2 true EP1989775A2 (en) | 2008-11-12 |
Family
ID=38309665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06787552A Withdrawn EP1989775A2 (en) | 2006-01-20 | 2006-07-17 | Stall controller and triggering condition control features for a wind turbine |
Country Status (11)
Country | Link |
---|---|
US (5) | US7420288B2 (en) |
EP (1) | EP1989775A2 (en) |
JP (1) | JP2009523955A (en) |
KR (1) | KR20080089641A (en) |
CN (1) | CN101600882A (en) |
AU (1) | AU2006336347B2 (en) |
CA (1) | CA2633616A1 (en) |
IL (1) | IL192798A0 (en) |
NZ (1) | NZ568837A (en) |
RU (1) | RU2430463C2 (en) |
WO (1) | WO2007086930A2 (en) |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009502104A (en) * | 2005-07-15 | 2009-01-22 | サウスウェスト ウィンドパワー インコーポレーテッド | Wind turbine and manufacturing method |
JP2009523955A (en) * | 2006-01-20 | 2009-06-25 | サウスウェスト ウィンドパワー インコーポレーテッド | Stall controller and trigger state control configuration for wind turbines |
JP4738206B2 (en) * | 2006-02-28 | 2011-08-03 | 三菱重工業株式会社 | Wind power generation system and control method thereof |
US7352075B2 (en) * | 2006-03-06 | 2008-04-01 | General Electric Company | Methods and apparatus for controlling rotational speed of a rotor |
US7816801B2 (en) * | 2006-03-16 | 2010-10-19 | International Components Corporation, Inc. | Speed sensing circuit for a wind turbine generator |
DE102006040970B4 (en) * | 2006-08-19 | 2009-01-22 | Nordex Energy Gmbh | Method for operating a wind energy plant |
US7847424B2 (en) * | 2007-06-12 | 2010-12-07 | General Electric Company | Circuit and method for reducing a voltage being developed across a field winding of a synchronous machine |
US7894211B2 (en) * | 2008-01-24 | 2011-02-22 | Honeywell International Inc. | Micro wind turbine topology for small scale power generation |
DK2096732T3 (en) * | 2008-02-27 | 2011-01-03 | Abb Schweiz Ag | Energy system which includes a wind or hydropower turbine |
US8253357B2 (en) * | 2008-09-15 | 2012-08-28 | Caterpillar Inc. | Load demand and power generation balancing in direct series electric drive system |
AT507393B1 (en) * | 2008-10-09 | 2012-11-15 | Gerald Dipl Ing Hehenberger | WIND TURBINE |
BRPI0822536A2 (en) * | 2008-10-16 | 2015-06-23 | Mitsubishi Heavy Ind Ltd | Wind turbine generator system, and method for controlling the same |
US9065329B2 (en) * | 2009-01-12 | 2015-06-23 | Vestas Wind Systems A/S | Reconfigurable power converter module |
BE1019240A5 (en) * | 2010-01-29 | 2012-05-08 | 3E | PASSIVE INVERTER. |
EP2362527A1 (en) * | 2010-02-25 | 2011-08-31 | Goliath Wind Ltd. | Wind turbine electrical brake |
US8664787B2 (en) | 2010-04-05 | 2014-03-04 | Northern Power Systems, Inc. | Speed setting system and method for a stall-controlled wind turbine |
DE102010024566A1 (en) * | 2010-06-10 | 2011-12-15 | Repower Systems Ag | Wind turbine and method for testing a speed relay of a wind turbine |
US9062653B2 (en) * | 2010-08-23 | 2015-06-23 | Vestas Wind Systems A/S | Changing a mode of operation of a wind turbine |
WO2012033891A2 (en) * | 2010-09-08 | 2012-03-15 | Martin Malek | Electronic display wearable item |
US9774198B2 (en) * | 2010-11-08 | 2017-09-26 | Brandon Culver | Wind and solar powered heat trace with homeostatic control |
WO2012118549A1 (en) * | 2010-12-09 | 2012-09-07 | Northern Power Systems, Inc. | Systems for load reduction in a tower of an idled wind-power unit and methods thereof |
WO2012140455A2 (en) | 2011-04-11 | 2012-10-18 | University Of Zagreb | Generator-fault-tolerant control for a variable-speed variable-pitch wind turbine |
US20140265330A1 (en) * | 2011-10-31 | 2014-09-18 | Panacis Inc. | Method and system for automatically stopping a wind turbine |
TWI494505B (en) | 2011-12-26 | 2015-08-01 | Delta Electronics Inc | Wind power generating system and control method thereof |
US8890349B1 (en) | 2012-01-19 | 2014-11-18 | Northern Power Systems, Inc. | Load reduction system and method for a wind power unit |
DE102012215575A1 (en) | 2012-09-03 | 2014-03-06 | Wobben Properties Gmbh | Method and control device for a wind energy plant and computer program product, digital storage medium and wind energy plant |
US8933571B2 (en) * | 2012-10-17 | 2015-01-13 | Zinovy D Grinblat | Method and system for fully utilizing wind energy in a wind energy generating system |
MX357366B (en) * | 2012-10-30 | 2018-07-06 | Jain Irrigation Systems Ltd | Motion control system and method with energy harvesting. |
US9638101B1 (en) * | 2013-03-14 | 2017-05-02 | Tucson Embedded Systems, Inc. | System and method for automatically controlling one or multiple turbogenerators |
EP2778602B1 (en) * | 2013-03-14 | 2015-10-14 | Siemens Aktiengesellschaft | Arrangement to measure the deflection of a blade of a wind turbine |
CN104113245B (en) * | 2013-04-17 | 2017-09-15 | 台达电子工业股份有限公司 | Wind-driven power generation control system and method |
CN103225586B (en) * | 2013-04-26 | 2015-02-25 | 北京天诚同创电气有限公司 | Anti-runaway safety control method for wind generating set |
US10662924B2 (en) | 2013-11-21 | 2020-05-26 | Vestas Wind Systems A/S | Rotor blade control for high winds |
US9534583B2 (en) | 2014-06-17 | 2017-01-03 | General Electric Company | Methods and systems to operate a wind turbine |
RU2563877C1 (en) * | 2014-06-24 | 2015-09-27 | Сергей Михайлович Есаков | Windwheel braking method for wind-driven power plant and device for its implementation |
US9587629B2 (en) | 2014-06-30 | 2017-03-07 | General Electric Company | Methods and systems to operate a wind turbine system using a non-linear damping model |
US10100812B2 (en) | 2014-06-30 | 2018-10-16 | General Electric Company | Methods and systems to operate a wind turbine system |
CA2971407C (en) * | 2014-12-16 | 2021-06-01 | Ian STEFENACK | Platform mounting system and method |
CN105134482B (en) * | 2015-07-22 | 2018-03-06 | 扬州大学 | Large-scale intelligent fan blade System Grey color compositional modeling and the method for optimization vibration control |
CN106523277A (en) * | 2015-09-14 | 2017-03-22 | 天津捷金金属制品有限公司 | Wind driven generator PID control system based on temperature information |
EA034889B1 (en) * | 2015-12-23 | 2020-04-02 | Общество С Ограниченной Ответственностью "Вдм-Техника" | Method of adjusting wind turbine power take-off |
US9941827B2 (en) * | 2016-06-08 | 2018-04-10 | Hamilton Sundstrand Corporation | High voltage DC power generating system including selectively removable neutral node |
BR112018012666A2 (en) * | 2016-12-13 | 2018-12-04 | Obshchestvo S Ogranichennoj Otvetstvennostyu ''vdm-Tekhnika'' | method to adjust wind turbine power take-off |
RU186110U1 (en) * | 2018-04-13 | 2019-01-09 | Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта) | Wind generator |
CN109210718B (en) * | 2018-08-23 | 2021-07-23 | 重庆海尔空调器有限公司 | Method and device for controlling air conditioner compressor based on distance |
CN109210721A (en) * | 2018-08-23 | 2019-01-15 | 青岛海尔空调器有限总公司 | Air conditioner progress control method and control device |
CN109210714A (en) * | 2018-08-23 | 2019-01-15 | 青岛海尔空调器有限总公司 | Cooler compressor control method, control device and air conditioner |
CN109210723B (en) * | 2018-08-23 | 2021-07-23 | 重庆海尔空调器有限公司 | Method for controlling air conditioner compressor based on distance |
CN109210724A (en) * | 2018-08-23 | 2019-01-15 | 青岛海尔空调器有限总公司 | Method based on interior machine blast velocity control compressor of air conditioner |
CN109210712B (en) * | 2018-08-23 | 2021-07-23 | 重庆海尔空调器有限公司 | Method for controlling compressor of air conditioner based on distance |
CN109210725A (en) * | 2018-08-23 | 2019-01-15 | 青岛海尔空调器有限总公司 | Method and apparatus based on interior machine blast velocity control cooler compressor |
CN109210720A (en) * | 2018-08-23 | 2019-01-15 | 青岛海尔空调器有限总公司 | Air conditioner progress control method and control device |
CN109210722A (en) * | 2018-08-23 | 2019-01-15 | 青岛海尔空调器有限总公司 | The progress control method and control device of air conditioner |
CN109210715A (en) * | 2018-08-23 | 2019-01-15 | 青岛海尔空调器有限总公司 | Air conditioner and its compressor control method and control device |
CN109210719A (en) * | 2018-08-23 | 2019-01-15 | 青岛海尔空调器有限总公司 | Method based on interior machine blast velocity control cooler compressor |
CN109737007B (en) * | 2018-12-21 | 2020-03-10 | 明阳智慧能源集团股份公司 | Yaw over-limit IPC variable rate shutdown method for wind generating set |
CN113785478A (en) * | 2019-01-16 | 2021-12-10 | 利尼尔实验室公司 | System and method for controlling a multi-channel motor |
CN111720265B (en) * | 2019-03-21 | 2023-09-05 | 北京金风科创风电设备有限公司 | Wind power generator set comprising multiple windings, control method thereof and control device thereof |
FR3095191B1 (en) * | 2019-04-16 | 2021-04-23 | Safran Helicopter Engines | HYBRID PROPULSION SYSTEM AND PROCESS FOR CONTROL OF SUCH A SYSTEM |
RU2750080C1 (en) * | 2020-10-30 | 2021-06-22 | Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта) | Wind generator control system |
WO2023014335A1 (en) * | 2021-08-04 | 2023-02-09 | Георгий Иосифович ВЫГОДСКИЙ | Wind-driven power plant |
CN114183300B (en) * | 2022-01-21 | 2023-04-18 | 中国华能集团清洁能源技术研究院有限公司 | Wind turbine generator and optimization method for pitch bearing blocking through recoil response |
CN114412702B (en) * | 2022-01-21 | 2023-04-18 | 中国华能集团清洁能源技术研究院有限公司 | Wind turbine generator and optimization method for dealing with pitch bearing clamping |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS634378U (en) * | 1986-06-26 | 1988-01-12 | ||
US4792281A (en) * | 1986-11-03 | 1988-12-20 | Northern Power Systems, Inc. | Wind turbine pitch control hub |
US4767939A (en) * | 1987-06-09 | 1988-08-30 | Calley David G | Wind driven electric current producer |
US5083039B1 (en) * | 1991-02-01 | 1999-11-16 | Zond Energy Systems Inc | Variable speed wind turbine |
US5527151A (en) * | 1992-03-04 | 1996-06-18 | Northern Power Systems, Inc. | Advanced wind turbine with lift-destroying aileron for shutdown |
US5354175A (en) * | 1992-03-16 | 1994-10-11 | Northern Power Systems, Inc. | Wind turbine rotor hub and teeter joint |
US5320491A (en) * | 1992-07-09 | 1994-06-14 | Northern Power Systems, Inc. | Wind turbine rotor aileron |
US5527152A (en) * | 1994-03-04 | 1996-06-18 | Northern Power Systems, Inc. | Advanced wind turbine with lift cancelling aileron for shutdown |
US6600240B2 (en) * | 1997-08-08 | 2003-07-29 | General Electric Company | Variable speed wind turbine generator |
AU4900699A (en) * | 1998-06-26 | 2000-01-17 | Novartis Pharma Ag | Herbicidal composition |
JP3523587B2 (en) * | 2000-10-25 | 2004-04-26 | サンケン電気株式会社 | Wind power generator |
US6856036B2 (en) * | 2001-06-26 | 2005-02-15 | Sidney Irving Belinsky | Installation for harvesting ocean currents (IHOC) |
EP1410490B1 (en) * | 2001-07-23 | 2013-09-04 | Northern Power Systems Utility Scale, Inc. | Control system for a power converter and method of controlling operation of a power converter |
US6703718B2 (en) * | 2001-10-12 | 2004-03-09 | David Gregory Calley | Wind turbine controller |
US6664704B2 (en) * | 2001-11-23 | 2003-12-16 | David Gregory Calley | Electrical machine |
GB0213638D0 (en) * | 2002-06-13 | 2002-07-24 | Syngenta Ltd | Composition |
US6595578B1 (en) * | 2002-09-05 | 2003-07-22 | Kyril Calsoyds | Truck after-body drag reduction device |
US6921985B2 (en) * | 2003-01-24 | 2005-07-26 | General Electric Company | Low voltage ride through for wind turbine generators |
US6952058B2 (en) * | 2003-02-20 | 2005-10-04 | Wecs, Inc. | Wind energy conversion system |
ES2402150T3 (en) * | 2003-04-08 | 2013-04-29 | Converteam Gmbh | Wind turbine for electric power production and operating procedure |
GB2404782B (en) * | 2003-08-01 | 2005-12-07 | Leica Microsys Lithography Ltd | Pattern-writing equipment |
JP4639616B2 (en) * | 2004-03-16 | 2011-02-23 | シンフォニアテクノロジー株式会社 | Power generator |
US7075192B2 (en) * | 2004-04-19 | 2006-07-11 | Northern Power Systems, Inc. | Direct drive wind turbine |
US7333352B2 (en) * | 2004-07-01 | 2008-02-19 | Northern Power Systems, Inc. | Frequency control and power balancing in disturbed power inverter system and method thereof |
JP4774843B2 (en) * | 2005-07-13 | 2011-09-14 | シンフォニアテクノロジー株式会社 | Wind power generation equipment |
JP2009502104A (en) * | 2005-07-15 | 2009-01-22 | サウスウェスト ウィンドパワー インコーポレーテッド | Wind turbine and manufacturing method |
JP2009523955A (en) * | 2006-01-20 | 2009-06-25 | サウスウェスト ウィンドパワー インコーポレーテッド | Stall controller and trigger state control configuration for wind turbines |
US7489046B2 (en) * | 2006-06-08 | 2009-02-10 | Northern Power Systems, Inc. | Water turbine system and method of operation |
US7894211B2 (en) * | 2008-01-24 | 2011-02-22 | Honeywell International Inc. | Micro wind turbine topology for small scale power generation |
-
2006
- 2006-07-17 JP JP2008551242A patent/JP2009523955A/en active Pending
- 2006-07-17 AU AU2006336347A patent/AU2006336347B2/en not_active Ceased
- 2006-07-17 CA CA002633616A patent/CA2633616A1/en not_active Abandoned
- 2006-07-17 NZ NZ568837A patent/NZ568837A/en unknown
- 2006-07-17 WO PCT/US2006/027660 patent/WO2007086930A2/en active Application Filing
- 2006-07-17 EP EP06787552A patent/EP1989775A2/en not_active Withdrawn
- 2006-07-17 KR KR1020087020115A patent/KR20080089641A/en not_active Application Discontinuation
- 2006-07-17 CN CNA2006800513839A patent/CN101600882A/en active Pending
- 2006-07-17 US US11/487,343 patent/US7420288B2/en not_active Expired - Fee Related
- 2006-07-17 RU RU2008134123/07A patent/RU2430463C2/en not_active IP Right Cessation
-
2008
- 2008-07-14 IL IL192798A patent/IL192798A0/en unknown
- 2008-07-28 US US12/181,108 patent/US7573146B2/en not_active Expired - Fee Related
-
2009
- 2009-07-02 US US12/497,096 patent/US8247914B2/en not_active Expired - Fee Related
-
2012
- 2012-07-16 US US13/550,265 patent/US20120326452A1/en not_active Abandoned
-
2014
- 2014-01-30 US US14/168,623 patent/US9261078B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2007086930A2 * |
Also Published As
Publication number | Publication date |
---|---|
NZ568837A (en) | 2011-07-29 |
US20100007145A1 (en) | 2010-01-14 |
IL192798A0 (en) | 2009-02-11 |
US7420288B2 (en) | 2008-09-02 |
KR20080089641A (en) | 2008-10-07 |
AU2006336347B2 (en) | 2011-09-22 |
US8247914B2 (en) | 2012-08-21 |
JP2009523955A (en) | 2009-06-25 |
US20140145441A1 (en) | 2014-05-29 |
RU2430463C2 (en) | 2011-09-27 |
US7573146B2 (en) | 2009-08-11 |
US20090021022A1 (en) | 2009-01-22 |
US20120326452A1 (en) | 2012-12-27 |
WO2007086930A2 (en) | 2007-08-02 |
CN101600882A (en) | 2009-12-09 |
RU2008134123A (en) | 2010-02-27 |
US9261078B2 (en) | 2016-02-16 |
AU2006336347A1 (en) | 2007-08-02 |
WO2007086930A3 (en) | 2009-04-02 |
US20070170724A1 (en) | 2007-07-26 |
CA2633616A1 (en) | 2007-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006336347B2 (en) | Stall controller and triggering condition control features for a wind turbine | |
CN104604068B (en) | System and method for protecting motor | |
JP5014437B2 (en) | Low voltage ride-through system for a variable speed wind turbine having an exciter and a power converter not connected to the transmission system | |
CA2826437C (en) | Voltage control in a doubly-fed induction generator wind turbine system | |
US9941687B2 (en) | Methods for operating wind turbine system having dynamic brake | |
US9018783B2 (en) | Doubly-fed induction generator wind turbine system having solid-state stator switch | |
CN102939695B (en) | The protective circuit of motor and method | |
US9088150B2 (en) | Overvoltage clipping device for a wind turbine and method | |
US10186996B1 (en) | Methods for operating electrical power systems | |
US10790770B2 (en) | Methods for operating electrical power systems | |
CN105874198A (en) | Turbulence protection system and method for turbine generators | |
JP6257895B2 (en) | Offshore power generation facility and operation method thereof | |
US8847560B2 (en) | Aircraft power supply circuit including an asynchronous machine | |
CN219827030U (en) | Auxiliary band-type brake equipment of variable-pitch motor and wind generating set | |
EP3840212A1 (en) | Selective crowbar response for a power converter to mitigate device failure | |
Swamy et al. | Typical problems encountered with variable frequency drives in the industry | |
JP4143269B2 (en) | Variable speed system and overvoltage protection device protection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080819 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
R17D | Deferred search report published (corrected) |
Effective date: 20090402 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F03D 9/00 20060101AFI20090602BHEP |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1125503 Country of ref document: HK |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130201 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1125503 Country of ref document: HK |