EP1988047B1 - Elevator with a car, a pulley unit for an elevator and a method for installing a load measuring device in an elevator - Google Patents

Elevator with a car, a pulley unit for an elevator and a method for installing a load measuring device in an elevator Download PDF

Info

Publication number
EP1988047B1
EP1988047B1 EP08155442A EP08155442A EP1988047B1 EP 1988047 B1 EP1988047 B1 EP 1988047B1 EP 08155442 A EP08155442 A EP 08155442A EP 08155442 A EP08155442 A EP 08155442A EP 1988047 B1 EP1988047 B1 EP 1988047B1
Authority
EP
European Patent Office
Prior art keywords
load measurement
load
lift
common axle
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08155442A
Other languages
German (de)
French (fr)
Other versions
EP1988047A1 (en
Inventor
Daniel Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP08155442A priority Critical patent/EP1988047B1/en
Publication of EP1988047A1 publication Critical patent/EP1988047A1/en
Application granted granted Critical
Publication of EP1988047B1 publication Critical patent/EP1988047B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • B66B1/14Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/0206Car frames

Definitions

  • the invention relates to an elevator installation with a cabin, a suspension means for supporting the cabin and a load measuring transducer, a deflection roller unit to an elevator installation and a method for the arrangement of a load measurement sensor in an elevator installation according to the preamble of the independent claims.
  • the elevator system is installed in a shaft. It consists essentially of a cabin, which is connected via suspension means to a drive. By means of the drive, the cabin is moved along a car lane.
  • the support means are connected via pulleys, with a multiple suspension to the cabin. Due to the multiple suspension, the load capacity acting in the suspension element is reduced in accordance with a shoulder factor.
  • the cab is designed to carry a payload that can vary between empty (0% -) and full (100%) as needed.
  • DE20221212 Such an elevator installation with a cabin and a deflection roller arrangement which is mounted on the car is known, wherein the deflection roller arrangement comprises at least two deflection rollers which are rotatable about a common axis.
  • Out EP1446348 is another such elevator system with two parallel pulleys known, the pulleys are arranged symmetrically to a cabin guide.
  • such elevator systems include a load measuring system, which is intended to detect, for example, an overload in the cabin or which measures an effective load in order to provide the drive with a required Specify drive torque.
  • An overload exists if the payload is more than 100% of the payload for which the cab is designed.
  • load measuring systems are arranged in a cabin floor, for example by measuring deformations or deflections of the cabin floor, or voltage measuring elements are attached to supporting structures of the cabin.
  • a load measuring transducer is now arranged between the two deflection rollers on the common axis. It is advantageous in this case that with only one load measuring transducer, a force acting on the respective common axis can be detected simply and inexpensively. The force acting on the common axis represents changes in a cabin charge very well. Such an arrangement of the load measuring transducer can be easily integrated into an elevator installation.
  • a single load measuring transducer is arranged centrally between the two deflection rollers, and the load measuring transducer measures a bending deformation of the common axle.
  • the central arrangement allows a very accurate measurement, with a different load distribution on the two-sided pulleys practically does not affect the measurement result. This means that even with asymmetrical load distribution with only one Load transducer an accurate measurement is possible.
  • the bending deformation of the common axis can be easily measured, since it is an easily determinable load case - bending beam on two supports - is.
  • the common axis is cut out in the middle region, with a substantially symmetrical aligned to the longitudinal axis of the common axis, rectangular cross-section remains aligned and this cross-section such that caused by the wrapping of the pulleys by the suspension means resulting deflection roller force an appropriate Bending deformation causes.
  • An adequate bending deformation is a deformation which is well adapted to a measuring range of the load measuring transducer and takes into account the material properties - such as permissible stress, etc. - of the common axis.
  • the common axis consists of two outer axle sections, which are fixedly connected to one another by a connecting part, this connecting part in turn being shaped and aligned in such a way that a resulting deflection roller force caused by the looping of the deflection rollers by means of the suspension element causes an adequate bending deformation.
  • the common axle is attached at its two-sided ends, substantially flexurally elastic to the car, wherein at least one of the ends has a positioning aid, which enables alignment of the common axle to the resulting deflection roller force.
  • the two pulleys and the common axis possibly together with support structures for attachment to the cabin, already assembled in a manufacturing plant to a pulley unit.
  • the Umlenkrollenticianen can also be already installed or installed in the factory to a structure of the cabin.
  • the elevator installation comprises two deflection roller units, which are looped around, for example, in each case at 90 °, wherein in this case at least one of the deflection roller units includes a load measuring transducer. This is cost effective.
  • An integration in a control of the elevator system is advantageously carried out by the load sensor includes a load measuring computer or connected to a load measuring computer and this load measuring calculates an effective payload using a load characteristic of the load measuring.
  • the load measuring computer can be equipped with a precise characteristic of the respective load measuring transducer. This also allows multiple load sensors to be easily connected.
  • the load measuring computer can also easily carry out a check of the load measuring transducer, for example by using an empty weight of the elevator car as the test variable.
  • the load measuring computer determined during the period over which access to the elevator car possible, that is, when a car door is open, the effective payload in time intervals and an elevator control gives each last measurement signal for determining a starting torque to the elevator drive. This allows the determination of a precise starting torque whereby a starting pressure is largely avoided.
  • the elevator control can block a Wegfahrtkommando when an overload is detected.
  • the drive continuously has the information with which drive torque he would have to drive at the moment and on the other hand, an overload can be detected early. Specifically, for example, can be pressed before reaching an overload a buzzer or occasionally even the car door closed.
  • the load measuring transducer is a digital sensor, such as in EP1044356 is described.
  • the digital sensor changes its oscillation frequency due to its load-which results, for example, from an elongation of an outer traction fiber of the common axis.
  • This oscillation frequency is counted by a computer over a fixed measuring period of, for example, 250 ms.
  • the oscillation frequency of the digital sensor is thus a measure of the load or the payload in the elevator car.
  • the characteristic of the digital sensor is learned during an initialization of the elevator installation, for example by determining the oscillation frequency of the digital sensor when the car is empty and at a known test load. Thereafter, an associated payload can be calculated from each further oscillation frequency.
  • FIG. 1A and 1G A first possible overall arrangement of an elevator system is in the Figs. 1A and 1G shown.
  • the elevator installation 1 is installed in a shaft 2 in the example shown. It consists essentially of a car 3, which is connected via support means 7 to a drive 8 and further to a counterweight 6. By means of the drive 8, the car 3 is moved along a car lane 4. Cabin 3 and counterweight 6 each move in opposite directions.
  • the support means 7 are connected via pulleys 9, with a multiple suspension to the car 3 and the counterweight 6.
  • Two support means 7 are arranged symmetrically to the car lane 4 and carried out via two pulley units 10, each comprising two pulleys 9, below the car 3.
  • the pulleys 9 of the car 3 are each looped at 90 °.
  • the load acting in the support means 7 carrying capacity is reduced according to a Um yoga tone, in the example shown according to a Um yoga curriculum of two.
  • the illustrated cabin 3 is located in a loading zone, ie a car door 5 is open and access to the car 3 is correspondingly free.
  • One of the Umlenkrollenticianen 10 of the car 3 is provided with a digital load transducer 17, the signal now during the Loading process is performed continuously to a load measuring computer 19.
  • the load measuring computer 19 carries out the required evaluation and forwards the calculated signals or a calculated effective payload to an elevator control 20.
  • the elevator control 20 forwards the effectively measured payload to the drive 8, which can provide a corresponding starting torque, or the elevator control 20 initializes necessary measures when an overload is detected.
  • load measuring computer 19 A transmission of signals from the load measuring computer 19 to the elevator control 20 via known transmission paths such as suspension cable, bus system or wireless.
  • load measuring computer 19 and elevator control 20 are separate units. Of course, these modules can be combined arbitrarily, so the load measuring computer 19 may be integrated in the Umlenkrollentician 10 or it may be integrated in the elevator control 20 and the elevator control 20 in turn can be located in the cabin 3 or in a machine room or it can also drive in the eighth be integrated.
  • FIGS. 1A and 1G Another overall arrangement of the elevator installation, which is also designed with a transfer factor of two, is in the Figs. 2A and 2G shown.
  • the deflection roller unit 10 is arranged above the car 3.
  • the pulleys 9 of the car 3 are looped by the support means 7 to 180 °, ie the support means 7 runs from above to Umlenkrollentician 10, is deflected by 180 ° and in turn runs upwards away.
  • the load measuring transducer 17 is installed at the cabin-side deflection roller unit 10.
  • FIGS. 1 In contrast to the FIGS. 1 is in the Figures 2 the car door 5 shown closed.
  • the load measuring computer 19 is inactive, since no exchange of payload is possible.
  • the load measuring computer 19 could be permanently activated, if, for example, conclusions about acceleration processes or disturbances in the driving sequence should be collected.
  • FIG 3 is a possible deflection roller unit 10 shown as in the elevator installation 1 according to the FIGS. 1 is usable.
  • the deflection roller unit 10 comprises a common axis 11 with two deflecting rollers 9 rotatably mounted in the region of the outer ends 15 of the axle 11.
  • the common axle 11 is connected to the car 3 by means of supports 18 in the example.
  • the axle 11 is in this case fixed, at least not rotatable, attached to the carriers 18.
  • the carrier 18 is made in the example of molded steel sheet and he defined for the common axis 11 a support point, or support, which holds the axis 11 approximately free of bending or bending elastic. This attachment continues to be such that the free rotation of the pulleys 9 itself is guaranteed.
  • the two deflection rollers 9 have a distance from each other, which, for example, arranging cabin guides 4 in the areas between the two deflection rollers, as in Fig.1G apparent, allows.
  • In the middle between the two pulleys 9 of the load transducer 17 is arranged. In the middle means that the pulleys 9 and the attachment to the beams 18 are substantially symmetrical to this center.
  • the common axis 11 is in a middle region, as in FIG Fig. 3B represented, reduced in cross-section, or cut out. This remains a substantially symmetrical to the longitudinal axis of the common axis 11 aligned, rectangular cross-section 14.
  • This cross-section 14 is oriented such that a caused by the wrap of the guide rollers 9 by means of the support means 7, or by a support means force 22 resulting deflection roller force 23 a causes adequate bending deformation.
  • the support means 7 are performed below the cabin. It follows that the individual pulley unit 10 as in Fig. 3B is clearly wrapped around 90 °. The resulting deflection roller force 23 is accordingly rotated by 45 ° to the support means forces 22 and the rectangular cross-section 14 is aligned according to the direction of this resultant deflection roller force 23, so as to give an optimal bending deformation.
  • the rectangular cross section 14, or cutout is selected such that the load measuring transducer 17 undergoes a change in length of about 0.2 mm over the expected load or payload area.
  • the load range results from the difference between empty and fully loaded cab 3.
  • one end 15 of the common axle 11 can be provided with a positioning aid 16, which enables a trouble-free alignment of the common axle 11 with the supports 18 and further with the car 3.
  • to the end 15 of the common axis 11 is provided with a positive mold 16, which defines the position of the assembly.
  • Fig. 3C shows a perspective view of the inventive arrangement of the load measuring transducer 17 as in Figure 3 described.
  • the load measuring transducer 17 is connected, as a rule by means of cables, to the load measuring computer 19.
  • the load measuring computer 19 is arranged on the cab 3.
  • the load measuring computer 19 can be arranged or integrated directly at the load measuring transducer 17.
  • Fig. 4 shows an alternative embodiment of the guide roller unit 10.
  • the common axis 11 is divided into two outer axle sections 12, which form the receptacle for the guide rollers 9 and at the same time allows the connection to the carrier 18.
  • the two outer axle sections 12 are joined together via a connecting part 13 to the complete common axle 11.
  • the connecting part 13 includes the load measuring transducer 17 and, in turn, it is shaped so as to give the optimum load or bending conditions for the load measuring transducer 17.
  • the connection points of the axle sections 12 to the connecting part 13 and the carrier 18 are designed such that an alignment of the common axis 11 takes place according to a loading direction inevitably.
  • the symmetrical arrangement of the load measuring transducer 17 in the middle between the two deflection rollers 9 gives the advantage, as in Figure 5 shown that a unbalanced distribution of supportive forces on the two support means 7 has no significant effect on a measurement error in the load transducer 17 has.
  • a normal load distribution between two support means 7.1, 7.2 results in a bending moment curve M N in the common axis 11, which has a constant value substantially between the two pulleys 9.1, 9.2.
  • the load measuring transducer 17, which is arranged in the middle between the two deflection rollers 9.1, 9.2 detects a bending deformation value, which results according to a bending stress M NM .
  • Fig. 6 shows a measuring operation in the operation of the elevator system.
  • the elevator car 3 approaches at an operating speed V K of 100% of a stop and decelerates to a stop.
  • the elevator control system initializes an opening of the car door 5.
  • the car door 5 starts to open and releases access to the car 3 in accordance with an opening stroke S KT .
  • the load measurement or load measuring computer 19 is switched on and it delivers at time intervals t M a signal L K corresponding to the effective load to the elevator control 20.
  • the elevator control can now, as shown in the example recognize an 80% payload and can by means of a warning buzzer or an information display "cabin full" (not shown) stop further loading and initialize a closure of the car door 5.
  • the load measuring computer 19 stops the evaluation of the load measurement signal and the elevator control 20 uses the last measured value L KE for determining the starting torque of the elevator drive.
  • L KE the last measured value
  • the elevator control determined an overload L KÜ due to the load measurement signal L K , a request would be issued to reduce the payload and a closing operation of the car door would be prevented as long as an overload exists.
  • the controller can provide that other criteria are defined for special operations. For example, in emergency mode such as a fire alarm, a higher overload limit could be allowed.
  • the elevator expert can arbitrarily change the set shapes and arrangements.
  • the elevator controller shown can further evaluate the signal of the load measuring computer, for example by defining the time of the warning signal as a function of a loading speed.
  • a corresponding deflecting roller unit with load measuring transducer can also be arranged, for example, in the shaft or in the drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

The elevator installation has a cabin (10) or a platform for carrying persons and goods, and has counter weights arranged to move or slide along a movement track. The counter weights are movably coupled with one another with the help of traction unit or with a drive. The counter weights move or slide along a movement track and is assigned a driving unit or a force transmission arrangement, which is guided or driven by driving disk or driving shaft or a deflection pulley. Independent claims are also included for the following: (1) a force transmission arrangement or a belt like traction unit (2) a manufacturing method for traction unit (3) a manufacturing device for belt like traction unit (4) an elevator system with two cabins.

Description

Die Erfindung betrifft eine Aufzugsanlage mit einer Kabine, einem Tragmittel zum Tragen der Kabine und mit einem Lastmessaufnehmer, eine Umlenkrolleneinheit zu einer Aufzugsanlage und ein Verfahren zur Anordnung eines Lastmessaufnehmers in einer Aufzugsanlage gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to an elevator installation with a cabin, a suspension means for supporting the cabin and a load measuring transducer, a deflection roller unit to an elevator installation and a method for the arrangement of a load measurement sensor in an elevator installation according to the preamble of the independent claims.

Die Aufzugsanlage ist in einem Schacht eingebaut. Sie besteht im Wesentlichen aus einer Kabine, welche über Tragmittel zu einem Antrieb verbunden ist. Mittels des Antriebs wird die Kabine entlang einer Kabinenfahrbahn verfahren. Die Tragmittel sind über Umlenkrollen, mit einer Mehrfachaufhängung, zur Kabine verbunden. Durch die Mehrfachumhängung wird die, im Tragmittel wirkende Tragkraft entsprechend einem Umhängefaktor reduziert. Die Kabine ist ausgelegt um eine Zuladung zu transportieren, welche je nach Bedarf zwischen leer (0%-) und voll (100%) variieren kann.The elevator system is installed in a shaft. It consists essentially of a cabin, which is connected via suspension means to a drive. By means of the drive, the cabin is moved along a car lane. The support means are connected via pulleys, with a multiple suspension to the cabin. Due to the multiple suspension, the load capacity acting in the suspension element is reduced in accordance with a shoulder factor. The cab is designed to carry a payload that can vary between empty (0% -) and full (100%) as needed.

Aus DE20221212 ist eine derartige Aufzugsanlage mit einer Kabine und einer Umlenkrollenanordnung, welche an dem Fahrkorb angebracht ist, bekannt, wobei die Umlenkrollenanordnung mindestens zwei Umlenkrollen umfasst, welche um eine gemeinsame Achse drehbar sind.Out DE20221212 Such an elevator installation with a cabin and a deflection roller arrangement which is mounted on the car is known, wherein the deflection roller arrangement comprises at least two deflection rollers which are rotatable about a common axis.

Aus EP1446348 ist eine weitere derartige Aufzugsanlage mit zwei parallel angeordneten Umlenkrollen bekannt, wobei die Umlenkrollen symmetrisch zu einer Kabinenführung angeordnet sind.Out EP1446348 is another such elevator system with two parallel pulleys known, the pulleys are arranged symmetrically to a cabin guide.

Üblicherweise beinhalten derartige Aufzugsanlagen ein Lastmesssystem, welches beispielsweise eine Überlast in der Kabine detektieren soll oder welches eine effektive Zuladung misst um damit dem Antrieb ein erforderliches Antriebsmoment vorgeben zu können. Eine Überlast besteht, wenn die Zuladung mehr als 100% der Zuladung beträgt für die die Kabine ausgelegt ist.
Vielfach sind derartige Lastmesssysteme in einem Kabinenboden angeordnet, indem beispielsweise Deformationen oder Einfederungen des Kabinenbodens gemessen werden, oder es werden Spannungsmesselemente an tragenden Strukturen der Kabine angebracht.
Typically, such elevator systems include a load measuring system, which is intended to detect, for example, an overload in the cabin or which measures an effective load in order to provide the drive with a required Specify drive torque. An overload exists if the payload is more than 100% of the payload for which the cab is designed.
In many cases, such load measuring systems are arranged in a cabin floor, for example by measuring deformations or deflections of the cabin floor, or voltage measuring elements are attached to supporting structures of the cabin.

Ausgehend vom bekannten Stand der Technik ergibt sich nun die Aufgabe ein Lastmesssystem für eine Aufzugsanlage mit parallel angeordneten Umlenkrollen aufzuzeigen, welches einfach und kostengünstig in eine Aufzugsanlage integriert werden kann und welches die Zuladung der Kabine genügend genau messen kann. Im Weiteren sollen vorteilhafterweise günstige Messelemente verwendet werden können.Based on the known prior art, the task now a load measuring system for an elevator system with parallel pulleys show which can be easily and inexpensively integrated into an elevator system and which can measure the payload of the cabin with sufficient accuracy. In addition, advantageously cheap measuring elements can be used.

Die in den unabhängigen Patentansprüchen definierte Erfindung löst die Aufgabe ein Lastmesssystem einfach und kostengünstig in eine Aufzugsanlage zu integrieren und in den abhängigen Ansprüchen ist aufgezeigt wie genaue und trotzdem günstige Messelemente verwendet werden können.The invention defined in the independent claims solves the problem of easily and inexpensively integrate a load measuring system in an elevator system and in the dependent claims is shown how accurate yet inexpensive measuring elements can be used.

Erfindungsgemäss ist nun ein Lastmessaufnehmer zwischen den zwei Umlenkrollen auf der gemeinsamen Achse angeordnet.
Vorteilhaft ist hierbei, dass mit nur einem Lastmessaufnehmer eine auf die jeweilige gemeinsame Achse wirkende Kraft einfach und kostengünstig erfasst werden kann. Die auf die gemeinsame Achse wirkende Kraft repräsentiert Veränderungen einer Kabinenzuladung sehr gut. Eine derartige Anordnung des Lastmessaufnehmers kann einfach in eine Aufzugsanlage integriert werden.
According to the invention, a load measuring transducer is now arranged between the two deflection rollers on the common axis.
It is advantageous in this case that with only one load measuring transducer, a force acting on the respective common axis can be detected simply and inexpensively. The force acting on the common axis represents changes in a cabin charge very well. Such an arrangement of the load measuring transducer can be easily integrated into an elevator installation.

Vorteilhafterweise ist hierbei ein einzelner Lastmessaufnehmer mittig zwischen den zwei Umlenkrollen angeordnet, und der Lastmessaufnehmer misst eine Biegedeformation der gemeinsamen Achse. Die mittige Anordnung erlaubt eine sehr genaue Messung, wobei sich eine unterschiedliche Lastverteilung auf den beidseitigen Umlenkrollen praktisch nicht auf das Messergebnis auswirkt. Das heisst, dass auch bei unsymmetrischer Lastverteilung mit lediglich einem Lastmessaufnehmer eine genaue Messung möglich ist. Die Biegedeformation der gemeinsamen Achse lässt sich einfach messen, da es sich um einen einfach bestimmbaren Lastfall - Biegebalken auf zwei Stützen - handelt.
In einer vorteilhaften Ausführung ist die gemeinsame Achse im mittleren Bereich ausgeschnitten, wobei ein im Wesentlichen symmetrisch zur Längsachse der gemeinsamen Achse ausgerichteter, rechteckiger Querschnitt verbleibt und dieser Querschnitt derart ausgerichtet ist, dass eine durch die Umschlingung der Umlenkrollen mittels des Tragmittels bewirkte resultierende Umlenkrollenkraft eine angemessene Biegedeformation bewirkt. Eine angemessene Biegedeformation ist hierbei eine Deformation welche gut auf einen Messbereich des Lastmessaufnehmers abgestimmt ist und sie berücksichtigt selbstverständliche die Materialeigenschaften - wie zulässige Spannung, usw. - der gemeinsamen Achse.
Alternativ besteht die gemeinsame Achse aus zwei äusseren Achsabschnitten, welche durch ein Verbindungsteil fest miteinander verbunden sind, wobei dieser Verbindungsteil wiederum derart geformt und ausgerichtet ist, dass eine durch die Umschlingung der Umlenkrollen mittels des Tragmittels bewirkte resultierende Umlenkrollenkraft eine angemessene Biegedeformation bewirkt. Mittels dieser Lösung lassen sich beispielsweise verschiedene Dispositionen, bzw. verschiedene Umlenkrollenabstände einfach realisieren, da lediglich der Verbindungsteil verändert werden muss.
Bei beiden Ausführungen ist vorteilhaft, dass sich eine ideale Messvoraussetzung für den Lastmessaufnehmer realisieren lässt.
Advantageously, in this case a single load measuring transducer is arranged centrally between the two deflection rollers, and the load measuring transducer measures a bending deformation of the common axle. The central arrangement allows a very accurate measurement, with a different load distribution on the two-sided pulleys practically does not affect the measurement result. This means that even with asymmetrical load distribution with only one Load transducer an accurate measurement is possible. The bending deformation of the common axis can be easily measured, since it is an easily determinable load case - bending beam on two supports - is.
In an advantageous embodiment, the common axis is cut out in the middle region, with a substantially symmetrical aligned to the longitudinal axis of the common axis, rectangular cross-section remains aligned and this cross-section such that caused by the wrapping of the pulleys by the suspension means resulting deflection roller force an appropriate Bending deformation causes. An adequate bending deformation is a deformation which is well adapted to a measuring range of the load measuring transducer and takes into account the material properties - such as permissible stress, etc. - of the common axis.
Alternatively, the common axis consists of two outer axle sections, which are fixedly connected to one another by a connecting part, this connecting part in turn being shaped and aligned in such a way that a resulting deflection roller force caused by the looping of the deflection rollers by means of the suspension element causes an adequate bending deformation. By means of this solution, for example, different dispositions or different deflection roller distances can be easily realized, since only the connection part has to be changed.
In both embodiments, it is advantageous that an ideal measurement requirement for the load measuring transducer can be realized.

In einer weiteren vorteilhaften Weiterbildung ist die gemeinsame Achse an ihren beidseitigen Enden, im wesentlichen Biegeelastisch an der Kabine befestigt, wobei mindestens eines der Enden eine Positionierhilfe aufweist, welche ein Ausrichten der gemeinsamen Achse zur resultierenden Umlenkrollenkraft ermöglicht. Mit dieser Ausführung wird eine genaue Messung ermöglicht und einer Falschmontage wird vorgebeugt.In a further advantageous development, the common axle is attached at its two-sided ends, substantially flexurally elastic to the car, wherein at least one of the ends has a positioning aid, which enables alignment of the common axle to the resulting deflection roller force. With this design an accurate measurement is possible and a wrong assembly is prevented.

Vorteilhafterweise sind die zwei Umlenkrollen und die gemeinsame Achse, allenfalls zusammen mit Trägerstrukturen zur Befestigung an der Kabine, bereits in einem Herstellwerk zu einer Umlenkrolleneinheit zusammengebaut. Damit wird teure Montagezeit an der Aufzugsanlage reduziert und Falschzusammensetzungen wird vorgebeugt, da die komplette Umlenkrolleneinheit im Werk einer Prüfung unterzogen werden kann. Selbstverständlich können die Umlenkrolleneinheiten auch bereits im Herstellwerk an eine Struktur der Kabine an- oder eingebaut werden.Advantageously, the two pulleys and the common axis, possibly together with support structures for attachment to the cabin, already assembled in a manufacturing plant to a pulley unit. This reduces expensive assembly time at the elevator installation and prevents incorrect compositions since the complete guide roller unit can be subjected to a test at the factory. Of course, the Umlenkrolleneinheiten can also be already installed or installed in the factory to a structure of the cabin.

Fallweise umfasst die Aufzugsanlage zwei Umlenkrolleneinheiten, welche beispielsweise jeweils zu 90° umschlungen sind, wobei hierbei mindestens eine der Umlenkrolleneinheiten einen Lastmessaufnehmer beinhaltet. Dies ist Kostengünstig.In some cases, the elevator installation comprises two deflection roller units, which are looped around, for example, in each case at 90 °, wherein in this case at least one of the deflection roller units includes a load measuring transducer. This is cost effective.

Eine Integration in eine Steuerung der Aufzugsanlage erfolgt vorteilhafterweise, indem der Lastmessaufnehmer einen Lastmessrechner beinhaltet oder zu einem Lastmessrechner verbunden ist und dieser Lastmessrechner eine effektive Zuladung unter Verwendung einer Lastcharakteristik des Lastmessaufnehmers ermittelt. Dies ist vorteilhaft, da der Lastmessrechner mit einer genauen Charakteristik des jeweiligen Lastmessaufnehmers ausgerüstet werden kann. Damit können auch mehrere Lastmessaufnehmer einfach miteinander verbunden werden. Der Lastmessrechner kann auch einfach eine Überprüfung des Lastmessaufnehmers durchführen, indem beispielsweise ein Leergewicht der Aufzugskabine als Prüfgrösse verwendet wird.An integration in a control of the elevator system is advantageously carried out by the load sensor includes a load measuring computer or connected to a load measuring computer and this load measuring calculates an effective payload using a load characteristic of the load measuring. This is advantageous since the load measuring computer can be equipped with a precise characteristic of the respective load measuring transducer. This also allows multiple load sensors to be easily connected. The load measuring computer can also easily carry out a check of the load measuring transducer, for example by using an empty weight of the elevator car as the test variable.

In einer praktischen Ausführungen ermittelt der Lastmessrechner während dem Zeitraum über den ein Zugang zur Aufzugskabine möglich, das heisst, wenn eine Kabinentüre geöffnet ist, die effektive Zuladung in Zeitintervallen und eine Aufzugssteuerung gibt ein jeweils letztes Messsignal zur Ermittlung eines Anfahrmomentes an den Aufzugsantrieb weiter. Dies erlaubt die Bestimmung eines genauen Anfahrmomentes wodurch ein Anfahrruck weitgehend vermieden wird.
Ergänzend kann die Aufzugssteuerung ein Wegfahrtkommando sperren, wenn eine Überlast festgestellt wird.
In a practical embodiment, the load measuring computer determined during the period over which access to the elevator car possible, that is, when a car door is open, the effective payload in time intervals and an elevator control gives each last measurement signal for determining a starting torque to the elevator drive. This allows the determination of a precise starting torque whereby a starting pressure is largely avoided.
In addition, the elevator control can block a Wegfahrtkommando when an overload is detected.

Bei dieser Lösung ist besonders vorteilhaft, dass die effektive Zuladung ab einem Zeitpunkt, wenn die Aufzugskabine verlassen und betreten werden kann - beispielsweise wenn die Kabinentür einen Durchgang von 0.4m freigegeben hat - bis zum Zeitpunkt da die Aufzugskabine nicht mehr betreten / verlassen werden kann - Kabinentüre ist praktisch zu - dauernd, beispielsweise alle 500ms, gemessen wird. Dadurch verfügt der Antrieb dauernd über die Information mit welchem Antriebsmoment er im Augenblick loszufahren hätte und andererseits kann eine Überlast frühzeitig erkannt werden. Speziell damit kann beispielsweise schon vor Erreichen einer Überlast ein Warnsummer betätigt oder fallweise sogar die Kabinentüre geschlossen werden.In this solution is particularly advantageous that the effective payload from a time when the elevator car can be left and entered - for example, if the car door has opened a passage of 0.4m - until the time when the elevator car can not enter / leave - Cab door is practically too - constantly, for example, every 500ms, is measured. As a result, the drive continuously has the information with which drive torque he would have to drive at the moment and on the other hand, an overload can be detected early. Specifically, for example, can be pressed before reaching an overload a buzzer or occasionally even the car door closed.

In einer vorteilhaften Ausführung ist der Lastmessaufnehmer ein digitaler Sensor, wie er beispielsweise in EP1044356 beschrieben ist. Dies ist vorteilhaft, da ein derartiger Sensor einfach ausgewertet werden kann. In einem entsprechend realisierten Beispiel verändert der digitale Sensor aufgrund seiner Belastung - die sich beispielsweise aus einer Dehnung einer äusseren Zugfaser der gemeinsamen Achse ergibt - eine Schwingfrequenz. Diese Schwingfrequenz wird von einem Rechner jeweils über einen fest definierten Messzeitraum von beispielsweise 250ms gezählt. Die Schwingfrequenz des digitalen Sensors ist somit ein Mass für die Last, bzw. die in der Aufzugskabine befindliche Zuladung. Die Charakteristik des digitalen Sensors wird bei einer Initialisierung der Aufzugsanlage erlernt, indem beispielsweise die Schwingfrequenz des digitalen Sensors bei leerer Kabine und bei einer bekannten Testzuladung ermittelt wird. Danach kann aus jeder weiteren Schwingfrequenz eine zugehörige Zuladung berechnet werden.In an advantageous embodiment of the load measuring transducer is a digital sensor, such as in EP1044356 is described. This is advantageous because such a sensor can be easily evaluated. In a correspondingly implemented example, the digital sensor changes its oscillation frequency due to its load-which results, for example, from an elongation of an outer traction fiber of the common axis. This oscillation frequency is counted by a computer over a fixed measuring period of, for example, 250 ms. The oscillation frequency of the digital sensor is thus a measure of the load or the payload in the elevator car. The characteristic of the digital sensor is learned during an initialization of the elevator installation, for example by determining the oscillation frequency of the digital sensor when the car is empty and at a known test load. Thereafter, an associated payload can be calculated from each further oscillation frequency.

Im Folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele im Zusammenhang mit den Figuren näher erläutert. Es zeigen:

Fig. 1A
eine schematische Ansicht einer Aufzugsanlage mit unterhalb der Kabine angeordneten Umlenkrollen;
Fig. 1G
eine schematische Draufsicht auf eine Aufzugsanlage entsprechend Fig. 1A;
Fig. 2A
eine schematische Ansicht einer Aufzugsanlage mit oberhalb der Kabine angeordneten Umlenkrollen;
Fig. 2G
eine schematische Draufsicht auf eine Aufzugsanlage entsprechend Fig. 2A;
Fig. 3
eine Prinzipdarstellung einer ersten Umlenkrolleneinheit;
Fig. 3A
eine Schnittdarstellung der Umlenkrolleneinheit mit Lastmessaufnehmer gemäss Fig. 3;
Fig. 3B
eine Schnittdarstellung der Umlenkrolleneinheit mit Positionierhilfe gemäss Fig. 3;
Fig. 3C
eine perspektivische Ansicht der Umlenkrolleneinheit gemäss Fig. 3;
Fig. 4
eine Prinzipdarstellung einer weiteren Umlenkrolleneinheit;
Fig. 5
ein Momentenschaubild einer Umlenkrolleneinheit
Fig. 6
ein zeitliches Ablaufdiagramm eines Lastmessvorganges während einem Beladungsvorgang.
In the following the invention will be explained in more detail with reference to several embodiments in conjunction with the figures. Show it:
Fig. 1A
a schematic view of an elevator system with arranged below the cabin pulleys;
Fig. 1G
a schematic plan view of an elevator system accordingly Fig. 1A ;
Fig. 2A
a schematic view of an elevator system with arranged above the cab pulleys;
Fig. 2G
a schematic plan view of an elevator system accordingly Fig. 2A ;
Fig. 3
a schematic diagram of a first deflection roller unit;
Fig. 3A
a sectional view of the pulley unit with load measuring according to Fig. 3 ;
Fig. 3B
a sectional view of the pulley unit with positioning according to Fig. 3 ;
Fig. 3C
a perspective view of the pulley according to Fig. 3 ;
Fig. 4
a schematic diagram of another deflection roller unit;
Fig. 5
a moment diagram of a pulley unit
Fig. 6
a timing diagram of a load measurement during a loading process.

Eine erste mögliche Gesamtanordnung einer Aufzugsanlage ist in den Fig. 1A und 1G dargestellt. Die Aufzugsanlage 1 ist im gezeigten Beispiel in einen Schacht 2 eingebaut. Sie besteht im Wesentlichen aus einer Kabine 3, welche über Tragmittel 7 zu einem Antrieb 8 und weiter zu einem Gegengewicht 6 verbunden ist. Mittels des Antriebs 8 wird die Kabine 3 entlang einer Kabinenfahrbahn 4 verfahren. Kabine 3 und Gegengewicht 6 bewegen sich dabei jeweils in Gegenrichtungen. Die Tragmittel 7 sind über Umlenkrollen 9, mit einer Mehrfachaufhängung, zur Kabine 3 und zum Gegengewicht 6 verbunden. Zwei Tragmittel 7 sind symmetrisch zur Kabinenfahrbahn 4 angeordnet und über zwei Umlenkrolleneinheiten 10, beinhaltend jeweils zwei Umlenkrollen 9, unterhalb der Kabine 3 durchgeführt. Die Umlenkrollen 9 der Kabine 3 sind dabei jeweils zu 90° umschlungen. Durch die Mehrfachumhängung wird die im Tragmittel 7 wirkende Tragkraft entsprechend einem Umhängefaktor, in dem gezeigten Beispiel entsprechend einem Umhängefaktor von zwei, reduziert. Die dargestellte Kabine 3 befindet sich in einer Beladungszone, d.h. eine Kabinetüre 5 ist geöffnet und ein Zugang zur Kabine 3 ist entsprechend frei.
Eine der Umlenkrolleneinheiten 10 der Kabine 3 ist mit einem digitalen Lastmessaufnehmer 17 versehen, dessen Signal nun während dem Beladungsvorgang dauernd zu einem Lastmessrechner 19 geführt ist. Der Lastmessrechner 19 führt die erforderliche Auswertung durch und gibt die berechneten Signale, bzw. eine berechnete effektive Zuladung an eine Aufzugssteuerung 20 weiter. Die Aufzugssteuerung 20 gibt die effektiv gemessene Zuladung an den Antrieb 8 weiter, welcher ein entsprechendes Anfahrmoment bereitstellen kann, oder die Aufzugsteuerung 20 initialisiert erforderliche Massnahmen wenn eine Überlast detektiert wird. Eine Übermittlung von Signalen vom Lastmessrechner 19 zur Aufzugssteuerung 20 erfolgt über bekannte Übermittlungswege wie Hängekabel, Bussystem oder Wireless. Im dargestellten Beispiel sind Lastmessrechner 19 und Aufzugssteuerung 20 separate Einheiten. Selbstverständlich können diese Baugruppen beliebig zusammengeführt sein, so kann der Lastmessrechner 19 in der Umlenkrolleneinheit 10 integriert sein oder er kann in der Aufzugssteuerung 20 integriert sein und die Aufzugssteuerung 20 ihrerseits kann bei der Kabine 3 oder in einem Maschinenraum angeordnet oder sie kann auch im Antrieb 8 integriert sein.
A first possible overall arrangement of an elevator system is in the Figs. 1A and 1G shown. The elevator installation 1 is installed in a shaft 2 in the example shown. It consists essentially of a car 3, which is connected via support means 7 to a drive 8 and further to a counterweight 6. By means of the drive 8, the car 3 is moved along a car lane 4. Cabin 3 and counterweight 6 each move in opposite directions. The support means 7 are connected via pulleys 9, with a multiple suspension to the car 3 and the counterweight 6. Two support means 7 are arranged symmetrically to the car lane 4 and carried out via two pulley units 10, each comprising two pulleys 9, below the car 3. The pulleys 9 of the car 3 are each looped at 90 °. Due to the multiple suspension, the load acting in the support means 7 carrying capacity is reduced according to a Umhängefaktor, in the example shown according to a Umhängefaktor of two. The illustrated cabin 3 is located in a loading zone, ie a car door 5 is open and access to the car 3 is correspondingly free.
One of the Umlenkrolleneinheiten 10 of the car 3 is provided with a digital load transducer 17, the signal now during the Loading process is performed continuously to a load measuring computer 19. The load measuring computer 19 carries out the required evaluation and forwards the calculated signals or a calculated effective payload to an elevator control 20. The elevator control 20 forwards the effectively measured payload to the drive 8, which can provide a corresponding starting torque, or the elevator control 20 initializes necessary measures when an overload is detected. A transmission of signals from the load measuring computer 19 to the elevator control 20 via known transmission paths such as suspension cable, bus system or wireless. In the example shown, load measuring computer 19 and elevator control 20 are separate units. Of course, these modules can be combined arbitrarily, so the load measuring computer 19 may be integrated in the Umlenkrolleneinheit 10 or it may be integrated in the elevator control 20 and the elevator control 20 in turn can be located in the cabin 3 or in a machine room or it can also drive in the eighth be integrated.

Eine weitere Gesamtanordnung der Aufzugsanlage, welche auch mit einem Umhängefaktor von zwei ausgeführt ist, ist in den Fig. 2A und 2G dargestellt. Im Unterschied zur vorangehenden Ausführung ist die Umlenkrolleneinheit 10 oberhalb der Kabine 3 angeordnet. Die Umlenkrollen 9 der Kabine 3 sind vom Tragmittel 7 zu 180° umschlungen, d.h. das Tragmittel 7 läuft von oben zur Umlenkrolleneinheit 10, wird um 180° umgelenkt und läuft wiederum nach oben weg. Der Lastmessaufnehmer 17 ist bei der kabinenseitigen Umlenkrolleneinheit 10 eingebaut. Im Weiteren wird auf die Ausführungen von Fig. 1A und 1G verwiesen. Im Gegensatz zu den Figuren 1 ist in den Figuren 2 die Kabinentüre 5 geschlossen dargestellt. In diesem Zustand ist der Lastmessrechner 19 inaktiv, da kein Austausch von Zuladung möglich ist. Selbstverständlich könnte fallweise der Lastmessrechner 19 dauernd aktiv geschalten werden, wenn beispielsweise Rückschlüsse über Beschleunigungsvorgänge oder Störungen im Fahrablauf gesammelt werden sollen.Another overall arrangement of the elevator installation, which is also designed with a transfer factor of two, is in the Figs. 2A and 2G shown. In contrast to the preceding embodiment, the deflection roller unit 10 is arranged above the car 3. The pulleys 9 of the car 3 are looped by the support means 7 to 180 °, ie the support means 7 runs from above to Umlenkrolleneinheit 10, is deflected by 180 ° and in turn runs upwards away. The load measuring transducer 17 is installed at the cabin-side deflection roller unit 10. Below is on the remarks of Figs. 1A and 1G directed. In contrast to the FIGS. 1 is in the Figures 2 the car door 5 shown closed. In this state, the load measuring computer 19 is inactive, since no exchange of payload is possible. Of course, on a case by case basis, the load measuring computer 19 could be permanently activated, if, for example, conclusions about acceleration processes or disturbances in the driving sequence should be collected.

In Fig.3 ist eine mögliche Umlenkrolleneinheit 10 dargestellt wie sie in der Aufzugsanlage 1 gemäss den Figuren 1 verwendbar ist. Die Umlenkrolleneinheit 10 umfasst eine gemeinsame Achse 11 mit zwei im Bereiche der äusseren Enden 15 der Achse 11 drehbar gelagerten Umlenkrollen 9. Die gemeinsame Achse 11 ist im Beispiel mittels Trägern 18 zur Kabine 3 verbunden. Die Achse 11 ist hierbei fest, zumindest nicht drehbar, an den Trägern 18 befestigt. Der Träger 18 ist im Beispiel aus geformtem Stahlblech hergestellt und er definiert für die gemeinsame Achse 11 einen Auflagepunkt, bzw. Stütze, welche die Achse 11 annähernd biegefrei, bzw. biegeelastisch hält. Diese Befestigung erfolgt weiter derart, dass die freie Drehbarkeit der Umlenkrollen 9 selbst gewährleistet ist. Die beiden Umlenkrollen 9 weisen eine Distanz zueinander auf, welche beispielsweise ein Anordnen von Kabinenführungen 4 im Bereiche zwischen den zwei Umlenkrollen, wie in Fig.1G ersichtlich, ermöglicht. In der Mitte, zwischen den zwei Umlenkrollen 9 ist der Lastmessaufnehmer 17 angeordnet. In der Mitte bedeutet, dass die Umlenkrollen 9 und die Befestigung zu den Trägern 18 im Wesentlichen symmetrisch zu dieser Mitte sind. Die gemeinsame Achse 11 ist in einen mittleren Bereich, wie in Fig. 3B dargestellt, im Querschnitt reduziert, bzw. ausgeschnitten. Es verbleibt ein, im Wesentlichen symmetrisch zur Längsachse der gemeinsamen Achse 11 ausgerichteter, rechteckiger Querschnitt 14. Dieser Querschnitt 14 ist derart ausgerichtet, dass eine durch die Umschlingung der Umlenkrollen 9 mittels des Tragmittels 7, bzw. von einer Tragmittelkraft 22 bewirkte resultierende Umlenkrollenkraft 23 eine angemessene Biegedeformation bewirkt. In der gemäss Figuren 1 gewählten Anordnung sind die Tragmittel 7 unterhalb der Kabine durchgeführt. Daraus ergibt sich, dass die einzelne Umlenkrolleneinheit 10 wie in Fig. 3B ersichtlich um 90° umschlungen ist. Die resultierende Umlenkrollenkraft 23 ist dementsprechend um 45° zu den Tragmittelkräften 22 verdreht und der rechteckige Querschnitt 14 ist entsprechend der Richtung dieser resultierende Umlenkrollenkraft 23 ausgerichtet, damit sich eine optimale Biegedeformation ergibt. Im ausgeführten Beispiel ist der rechteckige Querschnitt 14, bzw. Ausschnitt derart gewählt, dass der Lastmessaufnehmer 17 eine Längenänderung von etwa 0.2 mm über den erwarteten Last-, bzw. Zuladungsbereich erfährt. Der Lastbereich ergibt sich hierbei aus der Differenz von leerer zur voll beladenen Kabine 3. Wie weiter in Fig. 3B ersichtlich kann ein Ende 15 der gemeinsamen Achse 11 mit einer Positionierhilfe 16 versehen sein, welches ein zweifelfreies Ausrichten der gemeinsamen Achse 11 zu den Trägern 18 und weiter zur Kabine 3 ermöglicht. Im Beispiel ist dazu das Ende 15 der gemeinsamen Achse 11 mit einer formschlüssigen Form 16 versehen, welche die Position des Zusammenbaues definiert. Fig. 3C zeigt in einer perspektivischen Ansicht die erfindungsgemässe Anordnung des Lastmessaufnehmers 17 wie in Fig.3 beschrieben. Der Lastmessaufnehmer 17 ist, in der Regel mittels Kabel, zum Lastmessrechner 19 verbunden. Im Beispiel ist der Lastmessrechner 19 an der Kabine 3 angeordnet. In vielen Fällen kann der Lastmessrechner 19 direkt beim Lastmessaufnehmer 17 angeordnet bzw. integriert werden.In Figure 3 is a possible deflection roller unit 10 shown as in the elevator installation 1 according to the FIGS. 1 is usable. The deflection roller unit 10 comprises a common axis 11 with two deflecting rollers 9 rotatably mounted in the region of the outer ends 15 of the axle 11. The common axle 11 is connected to the car 3 by means of supports 18 in the example. The axle 11 is in this case fixed, at least not rotatable, attached to the carriers 18. The carrier 18 is made in the example of molded steel sheet and he defined for the common axis 11 a support point, or support, which holds the axis 11 approximately free of bending or bending elastic. This attachment continues to be such that the free rotation of the pulleys 9 itself is guaranteed. The two deflection rollers 9 have a distance from each other, which, for example, arranging cabin guides 4 in the areas between the two deflection rollers, as in Fig.1G apparent, allows. In the middle, between the two pulleys 9 of the load transducer 17 is arranged. In the middle means that the pulleys 9 and the attachment to the beams 18 are substantially symmetrical to this center. The common axis 11 is in a middle region, as in FIG Fig. 3B represented, reduced in cross-section, or cut out. This remains a substantially symmetrical to the longitudinal axis of the common axis 11 aligned, rectangular cross-section 14. This cross-section 14 is oriented such that a caused by the wrap of the guide rollers 9 by means of the support means 7, or by a support means force 22 resulting deflection roller force 23 a causes adequate bending deformation. In the according FIGS. 1 Selected arrangement, the support means 7 are performed below the cabin. It follows that the individual pulley unit 10 as in Fig. 3B is clearly wrapped around 90 °. The resulting deflection roller force 23 is accordingly rotated by 45 ° to the support means forces 22 and the rectangular cross-section 14 is aligned according to the direction of this resultant deflection roller force 23, so as to give an optimal bending deformation. In the example shown, the rectangular cross section 14, or cutout is selected such that the load measuring transducer 17 undergoes a change in length of about 0.2 mm over the expected load or payload area. The load range results from the difference between empty and fully loaded cab 3. As further in Fig. 3B As can be seen, one end 15 of the common axle 11 can be provided with a positioning aid 16, which enables a trouble-free alignment of the common axle 11 with the supports 18 and further with the car 3. In the example, to the end 15 of the common axis 11 is provided with a positive mold 16, which defines the position of the assembly. Fig. 3C shows a perspective view of the inventive arrangement of the load measuring transducer 17 as in Figure 3 described. The load measuring transducer 17 is connected, as a rule by means of cables, to the load measuring computer 19. In the example, the load measuring computer 19 is arranged on the cab 3. In many cases, the load measuring computer 19 can be arranged or integrated directly at the load measuring transducer 17.

Fig. 4 zeigt eine alternative Ausführung der Umlenkrolleneinheit 10. In diesem Beispiel ist die gemeinsame Achse 11 auf zwei äussere Achsabschnitte 12 aufgeteilt, welche die Aufnahme für die Umlenkrollen 9 bilden und zugleich den Anschluss an den Träger 18 ermöglicht. Die beiden äusseren Achsabschnitte 12 sind über ein Verbindungsteil 13 zur kompletten gemeinsamen Achse 11 zusammengefügt. Das Verbindungsteil 13 beinhaltet den Lastmessaufnehmer 17 und es ist wiederum so geformt, dass sich die für den Lastmessaufnehmer 17 optimale Belastungs- oder Biegebedingungen ergeben. Selbstverständlich sind auch in dieser Ausführungsform die Verbindungsstellen der Achsabschnitte 12 zum Verbindungsteil 13 und zum Träger 18 derart ausgeführt, dass eine Ausrichtung der gemeinsamen Achse 11 entsprechend einer Belastungsrichtung zwangsläufig erfolgt. Fig. 4 shows an alternative embodiment of the guide roller unit 10. In this example, the common axis 11 is divided into two outer axle sections 12, which form the receptacle for the guide rollers 9 and at the same time allows the connection to the carrier 18. The two outer axle sections 12 are joined together via a connecting part 13 to the complete common axle 11. The connecting part 13 includes the load measuring transducer 17 and, in turn, it is shaped so as to give the optimum load or bending conditions for the load measuring transducer 17. Of course, also in this embodiment, the connection points of the axle sections 12 to the connecting part 13 and the carrier 18 are designed such that an alignment of the common axis 11 takes place according to a loading direction inevitably.

Die gezeigten Ausführungen sind Beispielhaft und sie können unter Kenntnis der Erfindung verändert werden. So können anstelle von zwei distanzierten Umlenkrollen 9 selbstverständlich auch mehrere Umlenkrollen verwendet werden, wobei beispielsweise vier Umlenkrollen paarweise distanziert zueinander angeordnet wären.The embodiments shown are examples and they can be changed with knowledge of the invention. Thus, of course, a plurality of pulleys can be used instead of two distant pulleys 9, for example, four pulleys would be arranged in pairs distanced to each other.

Die symmetrische Anordnung des Lastmessaufnehmers 17 in der Mitte zwischen den zwei Umlenkrollen 9 ergibt den Vorteil, wie in Fig.5 dargestellt, dass eine unsymmetrische Verteilung von Tragmittelkräften auf die beiden Tragmittel 7 keine wesentliche Auswirkung auf eine Messabweichung beim Lastmessaufnehmer 17 hat. Bei einer normalen Lastverteilung zwischen zwei Tragmitteln 7.1, 7.2 ergibt sich ein Biegemomentenverlauf MN in der gemeinsamen Achse 11, welcher im Wesentlichen einen konstanten Wert zwischen den zwei Umlenkrollen 9.1, 9.2 aufweist. Der Lastmessaufnehmer 17, welcher in der Mitte zwischen den zwei Umlenkrollen 9.1, 9.2 angeordnet ist detektiert einen Biegedeformationswert, welcher sich entsprechend einer Biegespannung MNM ergibt.
Bei einer abweichenden Lastverteilung zwischen den zwei Tragmitteln 7.1, 7.2, welche in Fig. 5 derart dargestellt ist, dass von einem totalen Versagen jeweils eines der Tragmittel 7.1, 7.2 ausgegangen wird, ergibt sich ein Biegemomentenverlauf M1, wenn das Tragmittel 7.2 ausfällt, bzw. ein Biegemomentenverlauf M2, wenn das Tragmittel 7.1 ausfallen würde. Wie im Vergleich der Biegemomentenverläufe MN, M1, M2 ersichtlich bleibt der vom Lastmessaufnehmer 17, welcher in der Mitte zwischen den zwei Umlenkrollen 9 angeordnet ist, detektierte Biegedeformationswert M1M, M2M im Vergleich zum Biegedeformationswert MNM, im Wesentlichen unverändert. Es ergibt sich eine maximale Messabweichung dM im Biegedeformationswert.
The symmetrical arrangement of the load measuring transducer 17 in the middle between the two deflection rollers 9 gives the advantage, as in Figure 5 shown that a unbalanced distribution of supportive forces on the two support means 7 has no significant effect on a measurement error in the load transducer 17 has. In a normal load distribution between two support means 7.1, 7.2 results in a bending moment curve M N in the common axis 11, which has a constant value substantially between the two pulleys 9.1, 9.2. The load measuring transducer 17, which is arranged in the middle between the two deflection rollers 9.1, 9.2 detects a bending deformation value, which results according to a bending stress M NM .
At a different load distribution between the two support means 7.1, 7.2, which in Fig. 5 is shown that from a total failure in each case one of the support means 7.1, 7.2 is assumed results in a bending moment curve M 1 , when the support means fails 7.2, or a bending moment curve M 2 , if the support means would fail 7.1. As can be seen in the comparison of the bending moment curves M N , M 1 , M 2, the bending deformation value M 1M , M 2M detected by the load measuring transducer 17, which is arranged in the middle between the two deflection rollers 9, remains substantially unchanged compared to the bending deformation value M NM . This results in a maximum measurement deviation dM in the bending deformation value.

Fig. 6 zeigt einen Messvorgang im Betriebsablauf der Aufzugsanlage. Die Aufzugskabine 3 nähert sich mit einer Betriebsgeschwindigkeit VK von 100% einer Anhaltestelle und verzögert zum Stillstand. Kurz vor Erreichen des Stillstandes initialisiert die Aufzugssteuerung eine Öffnung der Kabinentüre 5. Die Kabinentüre 5 beginnt zu öffnen und gibt entsprechend einem Öffnungsweg SKT den Zutritt zur Kabine 3 frei. Sobald ein minimaler Durchgang von beispielsweise 30%, oder ein minimaler Durchgang von beispielsweise 0.4m, besteht wird die Lastmessung, bzw. der Lastmessrechner 19 eingeschalten und er liefert in Zeitintervallen tM ein, der effektiven Zuladung entsprechendes Signal LK an die Aufzugssteuerung 20. Die Aufzugsteuerung kann nun, wie im Beispiel dargestellt eine 80% Zuladung erkennen und kann mittels eines Warnsummers oder einer Informationsanzeige "Kabine voll" (nicht dargestellt) eine Weiterbeladung stoppen und eine Schliessung der Kabinentüre 5 initialisieren. Sobald nun die Kabinentüre 5 soweit geschlossen ist, dass ein Zutritt nicht mehr erfolgen kann, im dargestellten Beispiel bei 60%, stoppt der Lastmessrechner 19 die Auswertung des Lastmesssignals und die Aufzugssteuerung 20 verwendet den letzten Messwert LKE zur Bestimmung des Anfahrmomentes des Aufzugantriebs. Sobald der Öffnungsweg der Kabinentüre 5 bei 0% (geschlossen) ist wird entsprechend eine Wegfahrt der Kabine 3 initialisiert.
Würde nun die Aufzugssteuerung aufgrund des Lastmesssignals LK eine Überlast L feststellen, würde eine Aufforderung zur Reduktion der Zuladung ausgegeben und ein Schliessvorgang der Kabinentüre würde verhindert, solange eine Überlast besteht.
Selbstverständlich kann die Steuerung vorsehen, dass bei Sonderbetrieben andere Kriterien definiert werden. So könnte beispielsweise bei Notbetrieb wie einem Feueralarm eine höhere Überlastgrenze zugestanden werden.
Fig. 6 shows a measuring operation in the operation of the elevator system. The elevator car 3 approaches at an operating speed V K of 100% of a stop and decelerates to a stop. Shortly before reaching standstill, the elevator control system initializes an opening of the car door 5. The car door 5 starts to open and releases access to the car 3 in accordance with an opening stroke S KT . As soon as there is a minimum passage of, for example, 30%, or a minimum passage of, for example, 0.4 m, the load measurement or load measuring computer 19 is switched on and it delivers at time intervals t M a signal L K corresponding to the effective load to the elevator control 20. The elevator control can now, as shown in the example recognize an 80% payload and can by means of a warning buzzer or an information display "cabin full" (not shown) stop further loading and initialize a closure of the car door 5. As soon as the car door 5 as far as it is concluded that access can no longer take place, in the example shown at 60%, the load measuring computer 19 stops the evaluation of the load measurement signal and the elevator control 20 uses the last measured value L KE for determining the starting torque of the elevator drive. As soon as the opening path of the car door 5 is at 0% (closed), a drive of the car 3 is initialized accordingly.
If now the elevator control determined an overload L due to the load measurement signal L K , a request would be issued to reduce the payload and a closing operation of the car door would be prevented as long as an overload exists.
Of course, the controller can provide that other criteria are defined for special operations. For example, in emergency mode such as a fire alarm, a higher overload limit could be allowed.

Bei Kenntnis der vorliegenden Erfindung kann der Aufzugsfachmann die gesetzten Formen und Anordnungen beliebig verändern. Beispielsweise kann die gezeigte die Aufzugssteuerung das Signal des Lastmessrechners weiter auswerten, indem beispielsweise abhängig von einer Beladungsgeschwindigkeit der Zeitpunkt des Warnsignals definiert wird. Weiter kann eine entsprechende Umlenkrolleneinheit mit Lastmessaufnehmer beispielsweise auch im Schacht oder beim Antrieb angeordnet sein.With knowledge of the present invention, the elevator expert can arbitrarily change the set shapes and arrangements. For example, the elevator controller shown can further evaluate the signal of the load measuring computer, for example by defining the time of the warning signal as a function of a loading speed. Furthermore, a corresponding deflecting roller unit with load measuring transducer can also be arranged, for example, in the shaft or in the drive.

Claims (12)

  1. Lift installation comprising a cage (3), a support means (7) for supporting the cage (3) and a load measurement pick-up (17), which support means (7) is connected with the cage (3) by means of at least two deflecting rollers (9), wherein the support means (7) partly loops around the deflecting rollers (9) and the two deflecting rollers (9) are rotatably mounted on a common axle (11), characterised in that the load measurement pick-up (17) is arranged on the common axle (11) between the two deflecting rollers (9).
  2. Lift installation according to claim 1 , characterised in that a single load measurement pick-up (17) is centrally arranged between the two deflecting rollers (9) and that the load measurement pick-up (17) measures a bending deformation of the common axle (11).
  3. Lift installation according to claim 1 or 2, characterised in that the common axle (11) is cut away in the centre region, wherein a rectangular cross-section (14) oriented substantially symmetrically with respect to the longitudinal axis of the common axle (11) is left and this cross-section (14) is so oriented that a resultant deflecting roller force (23) produced by the looping-around of the deflecting rollers (9) by way of the support means (7) causes an appropriate bending deformation or that the common axle (11) consists of two outer axle sections (12) fixedly connected together by a connecting part (13) and this connecting part (13) is so shaped and oriented that a resultant deflecting roller force (23) produced by the looping-around of the deflecting rollers (9) by way of the support means (7) causes an appropriate bending deformation.
  4. Lift installation according to any one of the preceding claims, characterised in that the common axle (11) is fastened at its two ends (15) to the cage (3) to be substantially resilient in bending, wherein at least one of the ends (15) has a positioning aid (16) enabling alignment of the common axle (11) with respect to the resultant deflecting roller force (23).
  5. Lift installation according to any one of the preceding claims, characterised in that the two deflecting rollers (9) and the common axle (11) are assembled to form a deflecting roller unit (10).
  6. Lift installation according to claim 5, characterised in that the lift installation comprises two deflecting roller units (10), wherein at least one of the deflecting roller units (10) includes a load measurement pick-up (17).
  7. Lift installation according to any one of the preceding claims, characterised in that the load measurement pick-up (17) includes a load measurement computer (9) or is connected with a load measurement computer (19) and this load measurement computer (9) determines an effective useful load with use of a load characteristic of the load measurement pick-up (17).
  8. Lift installation according to claim 7, characterised in that the load measurement computer (19) determines the effective useful load (LK) at intervals during the period over which access to the lift cage is possible and a lift control (20) passes on a respective last measurement signal ((LKE) of the load measurement computer (19) to a lift drive (8) for determination of a start torque or the lift control (20) blocks a move-off command if an overload is detected.
  9. Lift installation according to any one of the preceding claims, characterised in that the load measurement pick-up (17) is a digital sensor.
  10. Deflecting roller unit for connecting a support means (7) with a lift cage, which deflecting roller unit (10) includes two deflecting rollers (9) and a common axle (11), wherein the two deflecting rollers (9) are rotatably mounted on the common axle (11), characterised in that a load measurement pick-up (17) is arranged on the common axle (11) between the two deflecting rollers (9).
  11. Method of arranging a load measurement pick-up (17) in a lift installation, which lift installation (1) includes a cage (3) and a support means (7) for supporting the cage (3), wherein the support means (7) is connected with the cage by means of at least two deflecting rollers (9) and the two deflecting rollers (9) are rotatably mounted on a common axle (11), characterised in that the load measurement pick-up (17) is arranged on the common axle (11) between the two deflecting rollers (9).
  12. Method according to claim 11, characterised in that the effective useful load is determined by means of a load measurement computer at intervals during the period over which access to the lift cage (3) and that the respective last effective useful load is, for determination of a start torque, passed on to the lift drive (8) by means of a lift control (20) or a move-off command is blocked by means of the lift control (20) if an overload is detected.
EP08155442A 2007-05-03 2008-04-30 Elevator with a car, a pulley unit for an elevator and a method for installing a load measuring device in an elevator Active EP1988047B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08155442A EP1988047B1 (en) 2007-05-03 2008-04-30 Elevator with a car, a pulley unit for an elevator and a method for installing a load measuring device in an elevator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07107468 2007-05-03
EP08155442A EP1988047B1 (en) 2007-05-03 2008-04-30 Elevator with a car, a pulley unit for an elevator and a method for installing a load measuring device in an elevator

Publications (2)

Publication Number Publication Date
EP1988047A1 EP1988047A1 (en) 2008-11-05
EP1988047B1 true EP1988047B1 (en) 2011-03-09

Family

ID=38509363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08155442A Active EP1988047B1 (en) 2007-05-03 2008-04-30 Elevator with a car, a pulley unit for an elevator and a method for installing a load measuring device in an elevator

Country Status (11)

Country Link
US (1) US8011480B2 (en)
EP (1) EP1988047B1 (en)
KR (1) KR101463249B1 (en)
CN (1) CN101298307B (en)
AT (1) ATE501082T1 (en)
CA (1) CA2630338C (en)
DE (1) DE502008002783D1 (en)
ES (1) ES2362689T3 (en)
MX (1) MX2008005723A (en)
RU (1) RU2459759C2 (en)
TW (1) TWI405705B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120763B (en) * 2006-06-05 2010-02-26 Kone Corp A method of measuring the load in an elevator and an elevator
US9051154B2 (en) * 2009-02-09 2015-06-09 Inventio Ag Apparatus for performing a loading test in an elevator system and method for performing such a loading test
WO2010121944A1 (en) * 2009-04-20 2010-10-28 Inventio Ag Operating state monitoring of support means of an elevator system
US8579545B2 (en) * 2010-03-02 2013-11-12 Fairfield Industries Incorporated Apparatus and methods for an ocean bottom seismic sensor deployment vehicle
CH703134A2 (en) * 2010-05-14 2011-11-15 Kone Corp System for the detection of the load in the cab of an elevator.
WO2012031961A1 (en) 2010-09-09 2012-03-15 Inventio Ag Load measuring device for an elevator installation
CN104364540B (en) 2012-06-12 2017-07-28 因温特奥股份公司 Lift facility and the steering unit for lift facility
FI124903B (en) * 2013-11-01 2015-03-13 Kone Corp Elevator as well as a method for using the elevator control system to monitor the load on the car and / or to determine the load situation
CN103876681B (en) * 2014-04-04 2016-09-21 上海普英特高层设备有限公司 A kind of pipe tiltedly climbs running gear
RU2563926C1 (en) * 2014-07-18 2015-09-27 Борис Аркадьевич Соловьев Service lifter
EP3227220B1 (en) 2014-12-05 2020-10-21 Kone Corporation Elevator arrangement with multiple cars in the same shaft
US9676592B2 (en) * 2015-06-24 2017-06-13 Thyssenkrupp Elevator Corporation Traction elevator rope movement sensor system
DE102015116515B4 (en) 2015-09-29 2021-07-29 Olko-Maschinentechnik Gmbh Drum conveyor system with rope monitoring device
DE102016217016A1 (en) * 2016-09-07 2018-03-08 Thyssenkrupp Ag Car for a lift installation with linear motor drive, elevator installation with such a car and method for operating an elevator installation
WO2019042753A1 (en) 2017-08-31 2019-03-07 Inventio Ag Person detection in elevator cabin
CN110626907B (en) * 2019-07-25 2023-07-25 山东奔速电梯股份有限公司 Overload detection device of indoor elevator and method for controlling elevator by using overload detection device
CN114751275B (en) * 2022-05-20 2023-07-21 广东日创电梯有限公司 Active rescue device for elevator

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU602461A1 (en) * 1976-04-27 1978-04-15 Центральное проектно-конструкторское бюро по лифтам Elevator cage floor
US4516116A (en) * 1981-12-16 1985-05-07 Safety Devices (Engineering) Limited Apparatus for visually displaying the load-moment, axle-load, or payload of a vehicle
US4899852A (en) * 1988-11-03 1990-02-13 Otis Elevator Company Elevator car mounting assembly
US5180185A (en) * 1989-06-21 1993-01-19 Wabco Westinghouse Fahrzeugbremsen Gmbh Device for obtaining an axle-load signal of a mechanically spring-supported drive axle of a lifting axle structure
US4986391A (en) * 1989-11-30 1991-01-22 Otis Elevator Company Elevator load weighing
US5343003A (en) * 1992-05-29 1994-08-30 Otis Elevator Company Recalibration of hitch load weighing using dynamic tare
RU2124468C1 (en) * 1996-04-09 1999-01-10 Николай Гаврилович Огнев Method of and device for weighing useful load in lifting vehicle
JPH11314868A (en) * 1998-04-28 1999-11-16 Toshiba Elevator Co Ltd Car load detecting device of elevator
JP4131764B2 (en) * 1998-09-01 2008-08-13 東芝エレベータ株式会社 Elevator equipment
WO2000003218A1 (en) 1998-10-30 2000-01-20 Digi Sens Ag Force measuring cell
EP1278694B1 (en) * 2000-05-01 2012-12-26 Inventio AG Load-carrying means for cable-operated elevators with an integrated load measurement device
WO2002002450A1 (en) * 2000-06-29 2002-01-10 Otis Elevator Company Elevator machine integrated load weighing system
US6488128B1 (en) * 2000-12-12 2002-12-03 Otis Elevator Company Integrated shaft sensor for load measurement and torque control in elevators and escalators
FR2823734B1 (en) * 2001-04-19 2007-04-20 Serge Arnoult ELEVATOR INSTALLATION PROVIDED WITH INDEPENDENT TRAINING MEANS AND MEANS OF SUSPENSION
ES2364969T3 (en) 2001-11-23 2011-09-19 Inventio Ag ELEVATOR WITH TRANSMISSION MEANS IN THE FORM OF A BELT, IN PARTICULAR WITH A TRAPEZOID BELT OF INTERNAL DENTING AS A CARRIER AND / OR MOTOR AGENT.
EP1567440B3 (en) * 2002-11-25 2010-07-14 Otis Elevator Company Sheave assembly for an elevator system
WO2004050523A1 (en) * 2002-11-29 2004-06-17 Mitsubishi Denki Kabushiki Kaisha Elevator control system
US7007561B1 (en) * 2002-12-31 2006-03-07 Holland L.P. Gauge restraint measurement system
CN2813553Y (en) * 2005-04-15 2006-09-06 秦皇岛开发区前景光电技术有限公司 Elevator car top wheel weighing device
US7784589B2 (en) * 2006-07-10 2010-08-31 Inventio Ag Elevator lift cage load measuring assembly

Also Published As

Publication number Publication date
MX2008005723A (en) 2009-03-02
EP1988047A1 (en) 2008-11-05
TW200902424A (en) 2009-01-16
TWI405705B (en) 2013-08-21
RU2008117485A (en) 2009-11-10
CN101298307B (en) 2010-06-23
ES2362689T3 (en) 2011-07-11
RU2459759C2 (en) 2012-08-27
DE502008002783D1 (en) 2011-04-21
CA2630338A1 (en) 2008-11-03
ATE501082T1 (en) 2011-03-15
KR101463249B1 (en) 2014-11-18
US8011480B2 (en) 2011-09-06
KR20080097953A (en) 2008-11-06
US20080271954A1 (en) 2008-11-06
CN101298307A (en) 2008-11-05
CA2630338C (en) 2015-10-20

Similar Documents

Publication Publication Date Title
EP1988047B1 (en) Elevator with a car, a pulley unit for an elevator and a method for installing a load measuring device in an elevator
DE3911391C2 (en) Method and device for checking the driving ability
EP2807103B1 (en) Safety device and control method for a lift system
EP2288563B1 (en) Elevator system with bottom tensioning means
EP0391174B2 (en) Arrangement and method to detect physical parameters of an elevator
EP2234912B1 (en) Elevator system with distance control
EP2421785B1 (en) Operational state monitoring of load-bearing devices in a lift assembly
EP0755894A1 (en) Method and apparatus for measuring the load in an elevator car
EP1067084A1 (en) Device and method for avoiding vertical slippage and oscillations in load pick up means of conveyor facilities
DE102008015035A1 (en) Wear monitoring system, cable-operated transport system and method for monitoring wear parts thereof
DE10304019A1 (en) Method for monitoring a machine and such a machine, in particular a robot
EP1700811A1 (en) Elevator
WO2021084012A1 (en) Brake device for an elevator cab, comprising an integrated load measuring device, use thereof in an elevator system, and method
EP1879825B1 (en) Device for stretching compensation in lift cables
CH714596A1 (en) Measuring device for acquiring measured values for measuring a tensile stress in a conveyor system, as well as conveyor unit and conveyor system.
DE10144913B4 (en) Elevator brake load weighing system
WO2012004268A1 (en) Monitoring of supporting means in an elevator system
EP2316776B1 (en) Method for placing into operation an elevator system
WO2021144056A1 (en) Spring with a monitoring device, system with a door and the spring with the monitoring device, and method for same
EP3931141A1 (en) Lift system
EP4299402B1 (en) Ropeway with limiting device
DE10009708C1 (en) Rotation damping characteristics measuring method for rail vehicle uses measurement of transverse forces as rail vehicle is fed along curved track section
WO2005123478A1 (en) Device for fine-positioning of cable-powered transport means
DE19827388C2 (en) Method for monitoring the function of sensors on a cable car
WO2019081076A1 (en) Method and device for determining the tensile force in a carrying, conveying or traction means

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090427

17Q First examination report despatched

Effective date: 20090608

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008002783

Country of ref document: DE

Date of ref document: 20110421

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008002783

Country of ref document: DE

Effective date: 20110421

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2362689

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110610

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110609

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110609

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: INVENTIO A.G.

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110709

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

26N No opposition filed

Effective date: 20111212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008002783

Country of ref document: DE

Effective date: 20111212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 501082

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220513

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20220419

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502008002783

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240423

Year of fee payment: 17

Ref country code: FR

Payment date: 20240430

Year of fee payment: 17