EP1987571A1 - Monofrequency intra-cavity frequency-tripled continuous laser - Google Patents

Monofrequency intra-cavity frequency-tripled continuous laser

Info

Publication number
EP1987571A1
EP1987571A1 EP07718011A EP07718011A EP1987571A1 EP 1987571 A1 EP1987571 A1 EP 1987571A1 EP 07718011 A EP07718011 A EP 07718011A EP 07718011 A EP07718011 A EP 07718011A EP 1987571 A1 EP1987571 A1 EP 1987571A1
Authority
EP
European Patent Office
Prior art keywords
medium
laser device
frequency
birefringent
doubling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07718011A
Other languages
German (de)
French (fr)
Inventor
Thierry Georges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OXXIUS
Original Assignee
OXXIUS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OXXIUS filed Critical OXXIUS
Publication of EP1987571A1 publication Critical patent/EP1987571A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08031Single-mode emission
    • H01S3/08036Single-mode emission using intracavity dispersive, polarising or birefringent elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]

Definitions

  • the present invention relates to a continuous laser device tripled in frequency in intra-cavity, pumped by diode; and comprising an amplifying medium, a non-linear birefringent medium for frequency doubling, and a non-linear birefringent medium for frequency tripling.
  • UV ultraviolet
  • CD mastering or the semiconductor inspection
  • the frequency tripling of a diode pumped continuous laser requires two non-linear conversion stages ( ⁇ + ⁇ and 2 ⁇ + ⁇ ) and can only be effective within one or at least two resonant cavities.
  • the resonant frequency doubling is possible intra-cavity or in an external cavity, slaved to the frequency of the emission of the laser. In both cases, a single frequency fundamental emission is necessary. In the first case (intra-cavity) it is necessary to eliminate the noise. In the second case it is necessary because the strongly resonant cavities (great fineness) are very narrow spectrally.
  • the second external cavity stage is very complex if one seeks a double resonance with the fundamental wave and the harmonic wave, because two optical paths (fundamental wave and harmonic wave) must be controlled.
  • the present invention more particularly relates to intra-cavity tripling which is easier to implement because the resonance of the fundamental wave is automatic.
  • the laser cavity is elongated by the insertion of nonlinear crystals and it is much more difficult to make the laser single frequency.
  • the object of the present invention is to design a continuous wave (CW) laser for frequency-tripled intra-cavity frequency and operating in single frequency.
  • Another object of the invention is the design of such a laser operating in a stable manner, ie by limiting, if necessary, the phenomenon of birefringence interference.
  • At least one of the aforementioned objectives is achieved with a continuous laser device tripled in frequency in intra-cavity, pumped by diode; said device comprising: an amplifying medium, a non-linear birefringent medium for frequency doubling, and a non-linear birefringent medium for frequency tripling; these media are usually crystals.
  • the laser device further comprises a polarizing medium arranged so as to constitute, with at least one of the birefringent crystals, a birefringent filter or Lyot filter in an intra-cavity, said Lyot filter being adapted to allow an emission single frequency output of said laser device.
  • the birefringence axes of the non-linear crystals are not parallel to the axes of the polarizing medium. If they are parallel, a birefringent crystal is inserted between the amplifying medium and the polarizing medium, this birefringent crystal having its birefringence axes preferentially oriented at 45 ° to the axes of the polarizing medium.
  • the output emission wavelength is in the ultraviolet (UV) range. It is the whole of the resonant cavity that can constitute a Lyot filter.
  • the polarizing medium is advantageously arranged between the amplifying medium and the frequency doubling medium. More specifically, these media are crystals such that: for the amplifying medium: Nd: YAG and Nd: YVO 4 or any other crystal or glass doped by any rare earth or globally any doped glass or crystal having a transition that may oscillate in a laser cavity, - for the frequency doubling medium: KTP, KNbO 3 , BBO,
  • BiBO, and LBO or any other nonlinear crystal adapted to frequency doubling for the frequency tripling medium BBO, BiBO, LBO or any other nonlinear crystal suitable for frequency tripling.
  • the other advantage of the Lyot filter is that the emitted wavelength is the one with the lowest losses and therefore it is the one whose polarization at the output of the polarizer is parallel to the axis of least loss.
  • the power distribution between the two axes of the doubling and tripling crystals is therefore perfectly controlled and stable.
  • the axes of the doubling and frequency tripling medium are oriented substantially between 30 and 60 ° with respect to the axes of the polarizing medium.
  • the orientation is 45 °.
  • the doubling and tripling crystals can be cut and arranged so as to achieve phase matching ("phase matching" in English ") type I and / or II, without the device becoming unstable.
  • the polarizing medium comprises one or two Brewster interfaces (interfaces at an angle between two refractive index medium ni and n 2 such that the tangent of the angle is equal to the ratio of indices).
  • all other media are preferably parallel-faced crystals.
  • the device according to the invention constitutes a monolithic linear resonant cavity.
  • Linear cavities are usually the shortest. This small size allows a separation of the axial mode as wide as possible, which is beneficial for the efficiency of a single frequency operation.
  • the design of the device may be such that each medium comprises an inlet face and an exit face parallel to each other and to the other faces of the others. environments; these faces being orthogonal to the output direction of the triplated laser beam.
  • the amplifying medium, the polarizing medium and the doubling and tripling frequency mediums are optically contacted with each other, which greatly facilitates obtaining a single frequency emission and also reduces the manufacturing costs. It is therefore not necessary to insert focusing elements to adjust the mode size in the non-linear elements as is done in the prior art.
  • the length of the nonlinear crystals is generally optimized according to the output power of the UV. If the ISL obtained is not of the order of magnitude of the emission width, it can be adjusted by an additional birefringent crystal. Indeed, it can further provide a second birefringent element disposed after the polarizing medium, the second birefringent medium being adapted to adjust the Free Spectral Interval (ISL) of the Lyot filter if necessary.
  • / _sz where ⁇
  • the laser device comprises means for controlling the temperatures of non-linear media.
  • the filter is tuned by an agreement of the temperature of the crystals.
  • the change in the temperature of the birefringent crystals induces a slight displacement of the modes of the cavity and a variation in general more fast of the central wavelength of the peak ⁇ m .
  • a finer positioning of the wavelength of the mode in the center of the filter can be obtained by modifying the temperature of the amplifying medium for example. Thus, it is possible to tune the laser to a wavelength and to center the transmission mode on the filter.
  • the laser device comprises: a highly reflective mirror (HR) at the fundamental wavelength, this mirror being disposed on the input face of the amplifying medium; and a highly reflective output mirror (HR) at the fundamental wavelength, which mirror is optionally disposed on the output face of the frequency-tripling non-linear birefringent medium.
  • HR highly reflective mirror
  • HR highly reflective output mirror
  • the laser device may also comprise: a highly reflective mirror (HR) at the frequency-tripled wave, this mirror being arranged between the two nonlinear birefringent doubling and tripling frequency mediums, this makes it possible to preserve the crystals arranged in upstream of the tripler crystal against UV waves and increase the UV power at the output of the laser; and a highly reflective mirror (HR) at the frequency doubled wave, this mirror being disposed between the polarizing medium and the non-linear frequency doubling birefringent medium.
  • HR highly reflective mirror
  • FIG. 1 is a simplified diagram of a first UV laser according to the invention
  • FIG. 2 is a simplified diagram of a second UV laser according to the invention.
  • FIG. 1 shows a laser according to the invention for an emission of 7mW of single-frequency power at 355nm with a 2.4W pump.
  • This laser device comprises a pump diode D associated with a focusing element F for guiding the beam emitted by the diode to
  • the crystal doubler 808nm to an input side of a crystal amplifier A.
  • the X2 is disposed between the polarizing element P and the tripler crystal X3.
  • the amplifier crystal, the polarizing element, and the doubling and tripling crystals are optically contacted in this order and in a linear fashion. We took care to insert on each side four mirrors.
  • the first Peltier element Pl is in contact with the pump diode assembly D and focusing element F. This first Peltier element makes it possible in particular to control the emission wavelength of the diode and to cool the diode.
  • the second Peltier element P2 is in contact with the amplifying crystal and the polarizing element P. Its function is to cool the amplifier and can be used to finely adjust the wavelength of the cavity mode.
  • the third Peltier element P3 is in contact with the doubling crystal X2.
  • the fourth Peltier element P4 is in contact with the X3 tripler crystal.
  • the set is fixed on the same support S.
  • the fundamental beam is at its "waist" (focal point) on the mirror.
  • the beam is thus well focused in the crystal tripler, but it may have strongly diverged in the doubling crystal. It is generally preferable to use a length of crystal tripler a little shorter than the length optimal so as not to degrade the conversion of the fundamental to the second harmonic.
  • the frequency tripled wave generation is in both directions as soon as part of the harmonic wave is reflected by the mirror M2. It is desirable to prevent this wave (usually located in the UV) from propagating in the other crystals of the laser, as many crystals age in the presence of UV. On the other hand, by adjusting the propagation phase in the tripler crystal (by a temperature adjustment), it is possible to increase the output power of the tripled wave by the insertion of the mirror M3.
  • the power of the second harmonic in the cavity is increased by inserting the mirror M4, reflector to the harmonic wave and ensuring that the mirror M2 is also reflective at the harmonic wavelength.
  • the cavity between the mirrors M2 and M4 becomes resonant when the propagation phase in a round trip is close to 0 modulo 2% radians. This phase can be regulated by the temperature of the doubling crystal, but especially by the choice of the wavelength emitted.
  • FIG. 2 It is possible to have a single temperature control for the two nonlinear crystals according to FIG. 2.
  • a laser is shown in a very schematic manner for which the non-linear doubler 3 and the tripler 5 crystals are not not directly contiguous " to the amplifier 1.
  • the Brewster 2 blade serves as a polarizing element
  • the 1064nm amplifying crystal is a Nd: YV0 4 doped at 1.1% and 1mm long
  • the input side of this crystal amplifier 1 is HR treated (highly reflective) at 1064nm (> 99.8%)
  • Brewster 2 is a flat, highly melted silica plate of 1mm, the nonlinear group has 4 elements 3 to 6 which are optically bonded.
  • the second crystal 5 is a frequency-tripling crystal
  • the LBO crystals are sandwiched between two fused silica plates 4 and 6.
  • the output blade 6 is HR treated at 1064 nm (99.65%) and the transmission at 532 nm and 355 nm are respectively 2 to 7% (depending on the mirror ) and 95%.
  • Input blade 4 is HR treated at 355 nm (98%) to prevent UV emission from entering the KTP crystal.
  • the total cavity length is about 20mm.
  • the polarizing medium which may be the combination of Nd: YVO 4 and Brewster's slide, in combination with the birefringent crystals rotated at 45 ° allows to obtain a Lyot filter or birefringent filter.
  • the set is temperature controlled by a three Peltier effect of 2W. This allows tuning the peak of the filter wavelength that can be achieved in a temperature range of 1 to 2K. These two crystals tolerate large temperature variations in phase agreement, which makes it possible to maintain the nonlinear frequency conversion.
  • the laser is pumped by a diode 3W 1 * 100 ⁇ m 808 nm.
  • the focusing element F is a GRIN lens.
  • the diode is also temperature controlled by a Peltier effect.
  • the Nd: YVO 4 amplifier crystal is controlled by a Peltier effect.
  • Type II frequency doubling is generally discouraged because it causes a problem of birefringence interference.
  • the laser device of FIG. 2 overcomes this problem by proposing a solution for operation in single frequency.
  • the axes of the frequency-doubling crystal 3 of type II in FIG. 2 and the axes of the tripler crystal 5 are aligned at 45 ° with respect to the Brewster angle.
  • the polarization of the Nd: YVO 4 is aligned with the Brewster polarization so that the whole of the cavity constitutes a birefringent filter or Lyot filter.
  • the wavelength with 100% transmission is linearly polarized in the Brewster blade and also separated on the two polarization axes of the frequency doubling crystal (maximum frequency doubling efficiency).
  • the table below shows a set of possible crystal configurations.
  • the doubling or tripling efficiency can be 100% when the polarization is optimal.
  • Preferred configurations are not necessarily optimized for maximum frequency conversion, but for better stability and simplicity.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lasers (AREA)

Abstract

The invention relates to a diode-pumped intra-cavity frequency-tripled continuous laser device (D), this device comprising: an amplifying medium (A), a birefringent non-linear medium for frequency doubling (X2) and a birefringent non-linear medium for frequency tripling (X3). This laser furthermore includes a polarizing medium (P) so as to form an intra-cavity birefringent filter or Lyot filter, said Lyot filter being adapted so as to allow monofrequency output emission from said laser device.

Description

" Laser continu, triplé en fréquence en intra-cavité et monofréquence." "Continuous laser, tripled in frequency in intra-cavity and single frequency."
La présente invention se rapporte à un dispositif laser continu, triplé en fréquence en intra-cavité, pompé par diode; et comprenant un milieu amplificateur, un milieu non linéaire biréfringent pour le doublage de fréquence, et un milieu non linéaire biréfringent pour le triplement de fréquence.The present invention relates to a continuous laser device tripled in frequency in intra-cavity, pumped by diode; and comprising an amplifying medium, a non-linear birefringent medium for frequency doubling, and a non-linear birefringent medium for frequency tripling.
Elle s'applique notamment à la conception de laser ultra-violet (UV) ou proche UV (300-380nm) utilisés dans la microscopie confocale, la cytométrie en flux ("flow cytometry"), le tri cellulaire, l'écriture de CD master ("CD mastering"), ou encore l'inspection de semiconducteurIt is particularly applicable to the design of ultraviolet (UV) or near-UV (300-380nm) lasers used in confocal microscopy, flow cytometry, cell sorting and CD writing. master ("CD mastering"), or the semiconductor inspection
Le triplement de fréquence d'un laser continu pompé par diode nécessite deux étages de conversion non linéaire (ω+ω et 2ω+ω) et ne peut être efficace qu'à l'intérieur d'une au moins ou deux cavités résonantes. Le doublage de fréquence résonant est possible en intra-cavité ou dans une cavité externe, asservie sur la fréquence de l'émission du laser. Dans les deux cas, une émission fondamentale monofréquence est nécessaire. Dans Ie premier cas (intra-cavité) elle est nécessaire pour éliminer le bruit. Dans le second cas elle est nécessaire car les cavités fortement résonantes (grande finesse) sont très étroites spectralement.The frequency tripling of a diode pumped continuous laser requires two non-linear conversion stages (ω + ω and 2ω + ω) and can only be effective within one or at least two resonant cavities. The resonant frequency doubling is possible intra-cavity or in an external cavity, slaved to the frequency of the emission of the laser. In both cases, a single frequency fundamental emission is necessary. In the first case (intra-cavity) it is necessary to eliminate the noise. In the second case it is necessary because the strongly resonant cavities (great fineness) are very narrow spectrally.
Le deuxième étage en cavité externe est très complexe si l'on recherche une double résonance avec l'onde fondamentale et l'onde harmonique, car deux chemins optiques (onde fondamentale et onde harmonique) doivent être contrôlés.The second external cavity stage is very complex if one seeks a double resonance with the fundamental wave and the harmonic wave, because two optical paths (fundamental wave and harmonic wave) must be controlled.
La présente invention concerne plus particulièrement le triplement en intra-cavité qui est plus facile à mettre en œuvre, car la résonance de l'onde fondamentale est automatique. En revanche la cavité laser est allongée par l'insertion de cristaux non linéaires et il est beaucoup plus difficile de rendre le laser monofréquence.The present invention more particularly relates to intra-cavity tripling which is easier to implement because the resonance of the fundamental wave is automatic. On the other hand, the laser cavity is elongated by the insertion of nonlinear crystals and it is much more difficult to make the laser single frequency.
On connaît le document G. Mizell, Λλ355-nm CW émission using a contact-bonded crystal assembly pumped with a 1 watt 808nm diode", Proc.Document G. Mizell, Λλ 355-nm CW emission using a contact-bonded crystal assembly pumped with a 1 watt 808 nm diode, Proc.
SPIE Laser Material Crystal Growth and Nonlinear Materials and Devices, vol. 3610 (1999), relatif à une expérimentation d'un laser continu triplé en fréquence, mais de puissance très faible (200 μW max) et ne permettant pas un fonctionnement monofréquence.SPIE Laser Material Crystal Growth and Nonlinear Materials and Devices, Vol. 3610 (1999), relating to an experimentation of a triplet continuous laser in frequency, but of very low power (200 μW max) and not allowing a single frequency operation.
Il existe de nombreuses publications de laser triplé en fréquence en intra-cavité mais en fonctionnement impulsionnel seulement, ce qui au moins l'avantage d'augmenter fortement l'efficacité du triplement.There are many laser publications tripled in frequency in intracavity but pulse operation only, which at least the advantage of greatly increasing the efficiency of tripling.
Enfin, l'utilisation d'un doublage de type II est source d'instabilité, car toute rotation du cristal modifie fortement l'état de polarisation de l'onde fondamentale dans la cavité et donc l'efficacité de doublage et de triplement. Ce phénomène est appelé interférence de biréfringence. La présente invention a pour but la conception d'un laser continu (CW pour "continuous wave" en anglais) triplé en fréquence en intra-cavité et fonctionnant en monofréquence. Un autre but de l'invention est la conception d'un tel laser fonctionnant de manière stable, c'est à dire en limitant si nécessaire le phénomène d'interférence de biréfringence. On atteint au moins l'un des objectifs précités avec un dispositif laser continu, triplé en fréquence en intra-cavité, pompé par diode; ce dispositif comprenant : un milieu amplificateur, un milieu non linéaire biréfringent pour le doublage de fréquence, et un milieu non linéaire biréfringent pour le triplement de fréquence; ces milieux sont généralement des cristaux.Finally, the use of a type II doubling is a source of instability, since any rotation of the crystal greatly modifies the state of polarization of the fundamental wave in the cavity and thus the doubling and tripling efficiency. This phenomenon is called birefringence interference. The object of the present invention is to design a continuous wave (CW) laser for frequency-tripled intra-cavity frequency and operating in single frequency. Another object of the invention is the design of such a laser operating in a stable manner, ie by limiting, if necessary, the phenomenon of birefringence interference. At least one of the aforementioned objectives is achieved with a continuous laser device tripled in frequency in intra-cavity, pumped by diode; said device comprising: an amplifying medium, a non-linear birefringent medium for frequency doubling, and a non-linear birefringent medium for frequency tripling; these media are usually crystals.
Selon l'invention, le dispositif laser comprend en outre un milieu polarisant disposé de façon à constituer avec au moins l'un des cristaux biréfringents un filtre biréfringent ou filtre de Lyot en intra-cavité, ledit filtre de Lyot étant adapté pour permettre une émission monofréquence en sortie dudit dispositif laser. De préférence, pour un bon fonctionnement du filtre de Lyot, les axes de biréfringence des cristaux non linéaires ne sont pas parallèles aux axes du milieu polarisant. S'ils sont parallèles, on insère un cristal biréfringent entre le milieu amplificateur et le milieu polarisant, ce cristal biréfringent ayant ses axes de biréfringence préférentiellement orientés à 45° des axes du milieu polarisant.According to the invention, the laser device further comprises a polarizing medium arranged so as to constitute, with at least one of the birefringent crystals, a birefringent filter or Lyot filter in an intra-cavity, said Lyot filter being adapted to allow an emission single frequency output of said laser device. Preferably, for proper operation of the Lyot filter, the birefringence axes of the non-linear crystals are not parallel to the axes of the polarizing medium. If they are parallel, a birefringent crystal is inserted between the amplifying medium and the polarizing medium, this birefringent crystal having its birefringence axes preferentially oriented at 45 ° to the axes of the polarizing medium.
La longueur d'onde d'émission en sortie est dans la gamme des ultraviolets (UV). C'est l'ensemble de la cavité résonante qui peut constituer un filtre de Lyot. Le milieu polarisant est avantageusement disposé entre le milieu amplificateur et le milieu de doublage de fréquence. Plus précisément, ces milieux sont des cristaux tels que : pour le milieu amplificateur : Nd: YAG et Nd: YVO4 ou tout autre cristal ou verre dopé par toute terre rare ou globalement tout verre ou cristal dopé présentant une transition susceptible d'osciller dans une cavité laser, - pour le milieu de doublage de fréquence : KTP, KNbO3, BBO,The output emission wavelength is in the ultraviolet (UV) range. It is the whole of the resonant cavity that can constitute a Lyot filter. The polarizing medium is advantageously arranged between the amplifying medium and the frequency doubling medium. More specifically, these media are crystals such that: for the amplifying medium: Nd: YAG and Nd: YVO 4 or any other crystal or glass doped by any rare earth or globally any doped glass or crystal having a transition that may oscillate in a laser cavity, - for the frequency doubling medium: KTP, KNbO 3 , BBO,
BiBO, et LBO ou tout autre cristal non linéaire adapté au doublage de fréquence pour le milieu de triplement de fréquence : BBO, BiBO, LBO ou tout autre cristal non linéaire adapté au triplage de fréquence. Avec le dispositif laser selon l'invention, en utilisant une diode de pompe avec 2.4W à 808nm, on a expérimentalement obtenu un fonctionnement monofréquentiel à 355nm avec une puissance excédant les 5mW.BiBO, and LBO or any other nonlinear crystal adapted to frequency doubling for the frequency tripling medium: BBO, BiBO, LBO or any other nonlinear crystal suitable for frequency tripling. With the laser device according to the invention, using a pump diode with 2.4W at 808nm, it has experimentally obtained a single-frequency operation at 355nm with a power exceeding 5mW.
L'autre avantage du filtre de Lyot est que la longueur d'onde émise est celle dont les pertes sont les plus faibles et donc c'est celle dont la polarisation en sortie du polariseur est parallèle à l'axe de moindre perte. La répartition des puissances entre les deux axes des cristaux doubleurs et tripleurs est donc parfaitement contrôlée et stable.The other advantage of the Lyot filter is that the emitted wavelength is the one with the lowest losses and therefore it is the one whose polarization at the output of the polarizer is parallel to the axis of least loss. The power distribution between the two axes of the doubling and tripling crystals is therefore perfectly controlled and stable.
Avantageusement, les axes des milieux de doublage et de triplement de fréquence sont orientés sensiblement entre 30 et 60° par rapport aux axes du milieu polarisant. De préférence, l'orientation est de 45°. Avec un tel dispositif, les cristaux doubleur et tripleur peuvent être coupés et disposés de façon à réaliser des accords de phase ("phase matching" en anglais") de type I et/ou II, sans que le dispositif ne devienne instable. Selon un mode préférentiel de mise en œuvre de l'invention, le milieu polarisant comprend une ou deux interfaces de Brewster (interfaces en angle entre deux milieux d'indices de réfraction ni et n2 tels que la tangente de l'angle est égale au rapport des indices).Advantageously, the axes of the doubling and frequency tripling medium are oriented substantially between 30 and 60 ° with respect to the axes of the polarizing medium. Preferably, the orientation is 45 °. With such a device, the doubling and tripling crystals can be cut and arranged so as to achieve phase matching ("phase matching" in English ") type I and / or II, without the device becoming unstable. preferred mode of implementation of the invention, the polarizing medium comprises one or two Brewster interfaces (interfaces at an angle between two refractive index medium ni and n 2 such that the tangent of the angle is equal to the ratio of indices).
En particulier, hormis le milieu polarisant, tous les autres milieux sont de préférence des cristaux à faces parallèles.In particular, apart from the polarizing medium, all other media are preferably parallel-faced crystals.
Le dispositif selon l'invention constitue une cavité résonante linéaire monolithique. Les cavités linéaires sont habituellement les plus courtes. Cette faible taille permet une séparation de mode axial le plus large possible, ce qui est bénéfique pour l'efficacité d'un fonctionnement monofréquence. Le design du dispositif peut être tel que chaque milieu comprend une face d'entrée et une face de sortie parallèles entre elles et avec les autres faces des autres milieux; ces faces étant orthogonales à la direction de sortie du faisceau laser triplé.The device according to the invention constitutes a monolithic linear resonant cavity. Linear cavities are usually the shortest. This small size allows a separation of the axial mode as wide as possible, which is beneficial for the efficiency of a single frequency operation. The design of the device may be such that each medium comprises an inlet face and an exit face parallel to each other and to the other faces of the others. environments; these faces being orthogonal to the output direction of the triplated laser beam.
Avantageusement, le milieu amplificateur, le milieu polarisant et les milieux de doublage et de triplement de fréquence sont optiquement contactés entre eux, ce qui facilite grandement l'obtention d'une émission monofréquence et réduit également les coûts de fabrication. Il n'est donc pas nécessaire d'insérer des éléments focalisants permettant d'ajuster la taille de mode dans les éléments non linéaires comme cela se fait dans l'art antérieur.Advantageously, the amplifying medium, the polarizing medium and the doubling and tripling frequency mediums are optically contacted with each other, which greatly facilitates obtaining a single frequency emission and also reduces the manufacturing costs. It is therefore not necessary to insert focusing elements to adjust the mode size in the non-linear elements as is done in the prior art.
Le bon ordre de grandeur de l'intervalle spectral libre (ISL) du filtre de Lyot est la largeur d'émission Δλern du milieu amplificateur (ISL=kΔλern avec 0.5<k<1.5). Cela assure le fait qu'il y ait presque toujours un unique pic de transmission du filtre dans la largeur d'émission. Dans le cas où l'on retrouve un pic de part et d'autre de la bande d'émission, une modification de la température des éléments biréfringents est suffisante pour favoriser l'un des pics. La longueur des cristaux non linéaires est en général optimisée en fonction de la puissance de sortie de l'UV. Si l'ISL obtenu n'est pas de l'ordre de grandeur de la largeur d'émission, il peut être ajusté par un cristal biréfringent supplémentaire. En effet, on peut prévoir en outre un second élément biréfringent disposé après le milieu polarisant, ce second milieu biréfringent étant adapté pour ajuster l'Intervalle Spectral Libre (ISL) du filtre de Lyot si nécessaire.The good order of magnitude of the Free Spectral Interval (ISL) of the Lyot filter is the emission width Δλ ern of the amplifying medium (ISL = kΔλ ern with 0.5 <k <1.5). This ensures that there is almost always a single peak of transmission of the filter in the emission width. In the case where there is a peak on either side of the emission band, a change in the temperature of the birefringent elements is sufficient to favor one of the peaks. The length of the nonlinear crystals is generally optimized according to the output power of the UV. If the ISL obtained is not of the order of magnitude of the emission width, it can be adjusted by an additional birefringent crystal. Indeed, it can further provide a second birefringent element disposed after the polarizing medium, the second birefringent medium being adapted to adjust the Free Spectral Interval (ISL) of the Lyot filter if necessary.
On rappelle que /_sz où β| et δn, sont les épaisseur et les différence d'indice des différents cristaux biréfringents formant le filtre. Les longueurs d'onde au sommet du filtre sont Λ, = "'% - A ces longueurs d'onde, la polarisation de l'onde fondamentale en entrée des cristaux non linéaire est linéaire et parallèle à l'axe de faible perte du polariseur. C'est donc le filtre de Lyot qui contrôle l'état de polarisation dans les cristaux non linéaires et qui évite donc l'interférence de biréfringence.We recall that / _sz where β | and δn, are the thicknesses and index difference of the different birefringent crystals forming the filter. The wavelengths at the top of the filter are Λ, = "'% - At these wavelengths, the polarization of the fundamental wave at the input of the nonlinear crystals is linear and parallel to the axis of low loss of the polarizer It is therefore the Lyot filter that controls the state of polarization in the nonlinear crystals and thus avoids the interference of birefringence.
Selon une caractéristique avantageuse de l'invention, le dispositif laser comprend des moyens de contrôle des températures des milieux non linéaires. Avantageusement, l'accord du filtre se fait donc par un accord de la température des cristaux.According to an advantageous characteristic of the invention, the laser device comprises means for controlling the temperatures of non-linear media. Advantageously, the filter is tuned by an agreement of the temperature of the crystals.
La modification de la température des cristaux biréfringents induit un déplacement léger des modes de la cavité et une variation en général plus rapide de la longueur d'onde centrale du pic λm. Un positionnement plus fin de la longueur d'onde du mode au centre du filtre peut être obtenu en modifiant la température du milieu amplificateur par exemple. Ainsi, il est possible d'accorder le laser en longueur d'onde et de centrer le mode d'émission sur le filtre.The change in the temperature of the birefringent crystals induces a slight displacement of the modes of the cavity and a variation in general more fast of the central wavelength of the peak λ m . A finer positioning of the wavelength of the mode in the center of the filter can be obtained by modifying the temperature of the amplifying medium for example. Thus, it is possible to tune the laser to a wavelength and to center the transmission mode on the filter.
En exemple, si on utilise 5 mm de KTP pour le doublage de fréquence de 1064 nm et 5 mm de LBO (coupé pour l'accord de phase de type I pour la somme de fréquence 1064nm + 532 nm donnant 355 nm), le filtre de Lyot a un ISL=I.87 nm et un dISL/dT=95 pm/°C. Cette dernière valeur est grande devant la variation de longueur d'onde des modes de cavité (typiquement quelques pm/°C).As an example, if 5 mm of KTP is used for frequency doubling of 1064 nm and 5 mm of LBO (cut for type I phase tuning for the sum of frequency 1064 nm + 532 nm giving 355 nm), the filter Lyot has an ISL = I.87 nm and a dISL / dT = 95 pm / ° C. This latter value is large in comparison with the wavelength variation of the cavity modes (typically a few pm / ° C).
On a testé un laser composé d'un amplificateur Nd :YVO4 de 1 mm d'épaisseur et 1% de dopage, d'un polariseur formé de 2 prismes de silice séparés par une lame d'air et des cristaux non linéaires précités. On a bien observé un fonctionnement monofréquence autour de 1064 nm et mesuré une accordabilité de l'ordre de 100 pm/°C.We tested a laser amplifier composed of a Nd: YVO 4, 1 mm thick and 1% doping, a polarizer formed of two prisms silica separated by an air gap and non-linear above crystals. Monofrequency operation was well observed around 1064 nm and a tunability of the order of 100 pm / ° C was measured.
Par ailleurs, le dispositif laser comprend : un miroir hautement réfléchissant (HR) à Ia longueur d'onde fondamentale, ce miroir étant disposé sur la face d'entrée du milieu amplificateur; et un miroir de sortie hautement réfléchissant (HR) à la longueur d'onde fondamentale, ce miroir étant éventuellement disposé sur la face de sortie du milieu non linéaire biréfringent de triplement de fréquence.Furthermore, the laser device comprises: a highly reflective mirror (HR) at the fundamental wavelength, this mirror being disposed on the input face of the amplifying medium; and a highly reflective output mirror (HR) at the fundamental wavelength, which mirror is optionally disposed on the output face of the frequency-tripling non-linear birefringent medium.
Le dispositif laser peut également comprendre : - un miroir hautement réfléchissant (HR) à l'onde triplée en fréquence, ce miroir étant disposé entre les deux milieux non linéaires biréfringent de doublage et de triplement de fréquence, cela permet de préserver les cristaux disposés en amont du cristal tripleur contre les ondes UV et augmenter la puissance d'UV en sortie du laser; et - un miroir hautement réfléchissant (HR) à l'onde doublée en fréquence, ce miroir étant disposé entre le milieu polarisant et le milieu non linéaire biréfringent de doublage de fréquence.The laser device may also comprise: a highly reflective mirror (HR) at the frequency-tripled wave, this mirror being arranged between the two nonlinear birefringent doubling and tripling frequency mediums, this makes it possible to preserve the crystals arranged in upstream of the tripler crystal against UV waves and increase the UV power at the output of the laser; and a highly reflective mirror (HR) at the frequency doubled wave, this mirror being disposed between the polarizing medium and the non-linear frequency doubling birefringent medium.
D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en œuvre nullement limitatif, et des dessins annexés, sur lesquels : La figure 1 est un schéma simplifié d'un premier laser UV selon l'invention;Other advantages and characteristics of the invention will appear on examining the detailed description of a non-limiting embodiment, and the appended drawings, in which: FIG. 1 is a simplified diagram of a first UV laser according to the invention;
La figure 2 est un schéma simplifié d'un second laser UV selon l'invention.FIG. 2 is a simplified diagram of a second UV laser according to the invention.
Sur la figure 1 est représenté un laser selon l'invention pour une émission de 7mW de puissance monofréquence à 355nm avec une pompe de 2.4W.FIG. 1 shows a laser according to the invention for an emission of 7mW of single-frequency power at 355nm with a 2.4W pump.
Ce dispositif laser comprend une diode de pompe D associé à un élément focalisant F permettant de guider le faisceau émis par la diode àThis laser device comprises a pump diode D associated with a focusing element F for guiding the beam emitted by the diode to
808nm vers une face d'entrée d'un cristal amplificateur A. Le cristal doubleur808nm to an input side of a crystal amplifier A. The crystal doubler
X2 est disposé entre l'élément polarisant P et le cristal tripleur X3. Le cristal amplificateur, l'élément polarisant et les cristaux doubleur et tripleur sont optiquement contactés dans cet ordre et de façon linéaire. On a pris soin d'insérer sur chaque face quatre miroirs. Le miroir Ml à l'entrée du cristal amplificateur A; le miroir M2 à la sortie du cristal tripleur X3; le miroir M3 entre l'élément polarisant et le cristal doubleur; le miroir M4 entre les deux cristaux doubleur et tripleur.X2 is disposed between the polarizing element P and the tripler crystal X3. The amplifier crystal, the polarizing element, and the doubling and tripling crystals are optically contacted in this order and in a linear fashion. We took care to insert on each side four mirrors. The mirror M1 at the input of the amplifier crystal A; the mirror M2 at the output of the tripler crystal X3; the mirror M3 between the polarizing element and the doubling crystal; the mirror M4 between the two doubling and tripling crystals.
Quatre effets Peltier sont insérés pour contrôler Ia température de la diode TD, la température du milieu amplificateur TA et les températures des cristaux non linéaires Ti et T2.Four Peltier effects are inserted to control the temperature of the diode T D , the temperature of the amplifying medium T A and the temperatures of the nonlinear crystals Ti and T 2 .
Le premier élément Peltier Pl est en contact avec l'ensemble diode de pompe D et élément focalisant F. Ce premier élément Peltier permet en particulier de contrôler la longueur d'onde d'émission de la diode et de refroidir cette diode.The first Peltier element Pl is in contact with the pump diode assembly D and focusing element F. This first Peltier element makes it possible in particular to control the emission wavelength of the diode and to cool the diode.
Le second élément Peltier P2 est en contact avec le cristal amplificateur et l'élément polarisant P. Il a pour fonction de refroidir l'amplificateur et peut permettre d'ajuster finement la longueur d'onde du mode de cavité.The second Peltier element P2 is in contact with the amplifying crystal and the polarizing element P. Its function is to cool the amplifier and can be used to finely adjust the wavelength of the cavity mode.
Le troisième élément Peltier P3 est en contact avec le cristal doubleur X2. Le quatrième élément Peltier P4 est en contact avec le cristal tripleur X3. L'ensemble est fixé sur un même support S.The third Peltier element P3 is in contact with the doubling crystal X2. The fourth Peltier element P4 is in contact with the X3 tripler crystal. The set is fixed on the same support S.
Dans le design de la figure 1, la face de sortie étant plane, le faisceau fondamental se trouve à son "waist" (point focal) sur ce miroir. Le faisceau est donc assez bien focalisé dans le cristal tripleur, mais il peut avoir fortement divergé dans le cristal doubleur. Il est en général préférable d'utiliser une longueur de cristal tripleur un peu plus courte que la longueur optimale afin de ne pas trop dégrader la conversion du fondamental vers le second harmonique.In the design of Figure 1, the output face being flat, the fundamental beam is at its "waist" (focal point) on the mirror. The beam is thus well focused in the crystal tripler, but it may have strongly diverged in the doubling crystal. It is generally preferable to use a length of crystal tripler a little shorter than the length optimal so as not to degrade the conversion of the fundamental to the second harmonic.
La génération d'onde triplée en fréquence se fait dans les deux directions dès lors qu'une partie de l'onde harmonique est réfléchie par le miroir M2. Il est souhaitable d'empêcher cette onde (en général située dans l'UV) de se propager dans les autres cristaux du laser, car de nombreux cristaux vieillissent en présence d'UV. D'autre part, en ajustant la phase de propagation dans le cristal tripleur (par un réglage de température), il est possible d'augmenter la puissance de sortie de l'onde triplée par l'insertion du miroir M3.The frequency tripled wave generation is in both directions as soon as part of the harmonic wave is reflected by the mirror M2. It is desirable to prevent this wave (usually located in the UV) from propagating in the other crystals of the laser, as many crystals age in the presence of UV. On the other hand, by adjusting the propagation phase in the tripler crystal (by a temperature adjustment), it is possible to increase the output power of the tripled wave by the insertion of the mirror M3.
On augmente la puissance du second harmonique dans la cavité en insérant le miroir M4, réflecteur à l'onde harmonique et en s'assurant que le miroir M2 est également réflecteur à la longueur d'onde harmonique. La cavité entre les miroirs M2 et M4 devient résonante dès lors que la phase de propagation dans un aller retour est proche de 0 modulo 2% radians. Cette phase peut se régler par la température du cristal doubleur, mais surtout par le choix de la longueur d'onde émise.The power of the second harmonic in the cavity is increased by inserting the mirror M4, reflector to the harmonic wave and ensuring that the mirror M2 is also reflective at the harmonic wavelength. The cavity between the mirrors M2 and M4 becomes resonant when the propagation phase in a round trip is close to 0 modulo 2% radians. This phase can be regulated by the temperature of the doubling crystal, but especially by the choice of the wavelength emitted.
Il est possible d'avoir un unique contrôle de température pour les deux cristaux non linéaires conformément à la figure 2. Sur cette figure 2, on voit un laser illustré de façon très schématique pour lequel les cristaux non linéaire doubleur 3 et tripleur 5 ne sont pas directement accolés "à l'amplificateur 1. La lame de Brewster 2 sert d'élément polarisant. Le cristal amplificateur à 1064nm est un Nd:YV04 dopé à 1.1% et de longueur 1mm. La face d'entrée de ce cristal amplificateur 1 est traitée HR (hautement réfléchissant) à 1064nm (>99.8%). La lame de Brewster 2 est une lame plate de silice largement fondue de lmm. Le groupe nonlinéaire comporte quatre élément 3 à 6 qui optiquement collés. Le premier cristal 3 est un KTP de 5mm coupé pour un accord de phase de type II à 35°C. Le second cristal 5 est un cristal tripleur de fréquence. Plusieurs cristaux ont été testés : des cristaux LBO coupés pour accord de phase de type I de 3 mm, 4 mm and 5 mm, et des cristaux LBO coupés pour accord de phase de type II de 4mm et 8mm. Les cristaux LBO sont disposés en sandwich entre deux lames de silice fondue 4 et 6. La lame de sortie 6 est traité HR à 1064nm (99.65%) et la transmission à 532nm et 355nm sont respectivement de 2 à 7% (en fonction du miroir) et de 95%. La lame d'entrée 4 est traité HR à 355nm (98%) afin d'éviter que l'émission UV pénètre dans le cristal KTP. La longueur de la cavité totale est d'environ 20mm. Le milieu polarisant, qui peut être l'association du Nd: YVO4 et de la lame de Brewster, en combinaison avec les cristaux biréfringent tournés à 45° permette d'obtenir un filtre de Lyot ou filtre biréfringent. L'ensemble est contrôlé en température par un trois effets Peltier de 2W. Cela permet d'accorder le pic de la longueur d'onde du filtre qui peut être atteint dans une gamme de température de 1 à 2K. Ces deux cristaux tolèrent des grandes variations de température en accord de phase, ce qui permet de conserver la conversion en fréquence nonlinéaire. Le laser est pompé par une diode 3W 1*100 μm 808 nm. L'élément focalisant F est une lentille de GRIN. La diode est également contrôlée en température par un effet Peltier . Le cristal amplificateur Nd: YVO4 est contrôlée par un effet Peltier.It is possible to have a single temperature control for the two nonlinear crystals according to FIG. 2. In this FIG. 2, a laser is shown in a very schematic manner for which the non-linear doubler 3 and the tripler 5 crystals are not not directly contiguous " to the amplifier 1. The Brewster 2 blade serves as a polarizing element The 1064nm amplifying crystal is a Nd: YV0 4 doped at 1.1% and 1mm long The input side of this crystal amplifier 1 is HR treated (highly reflective) at 1064nm (> 99.8%) Brewster 2 is a flat, highly melted silica plate of 1mm, the nonlinear group has 4 elements 3 to 6 which are optically bonded. a 5 mm KTP cut for a type II phase-tuning at 35 ° C. The second crystal 5 is a frequency-tripling crystal Several crystals were tested: LBO crystals cut for a 3 mm type I phase-tuning, 4 mm and 5 mm, e t LBO crystals cut for type II phase tuning of 4mm and 8mm. The LBO crystals are sandwiched between two fused silica plates 4 and 6. The output blade 6 is HR treated at 1064 nm (99.65%) and the transmission at 532 nm and 355 nm are respectively 2 to 7% (depending on the mirror ) and 95%. Input blade 4 is HR treated at 355 nm (98%) to prevent UV emission from entering the KTP crystal. The total cavity length is about 20mm. The polarizing medium, which may be the combination of Nd: YVO 4 and Brewster's slide, in combination with the birefringent crystals rotated at 45 ° allows to obtain a Lyot filter or birefringent filter. The set is temperature controlled by a three Peltier effect of 2W. This allows tuning the peak of the filter wavelength that can be achieved in a temperature range of 1 to 2K. These two crystals tolerate large temperature variations in phase agreement, which makes it possible to maintain the nonlinear frequency conversion. The laser is pumped by a diode 3W 1 * 100 μm 808 nm. The focusing element F is a GRIN lens. The diode is also temperature controlled by a Peltier effect. The Nd: YVO 4 amplifier crystal is controlled by a Peltier effect.
L'utilisation d'un doublage de fréquence de type II est généralement déconseillé parce qu'il entraine un problème d'interférence de biréfringence. Le dispositif laser de la figure 2 remédie à ce problème en proposant une solution pour un fonctionnement en monofréquence. Les axes du cristal de doublage de fréquence 3 de type II sur la figure 2 et les axes du cristal tripleur 5 sont alignés à 45° par rapport à l'angle de Brewster. On aligne la polarisation du Nd: YVO4 avec la polarisation de Brewster de sorte que l'ensemble de la cavité constitue un filtre biréfringent ou filtre de Lyot. La longueur d'onde avec 100% de transmission est linéairement polarisée dans la lame de Brewster et séparé également sur les deux axes de polarisation du cristal de doublage de fréquence (efficacité de doublage en fréquence maximum).The use of Type II frequency doubling is generally discouraged because it causes a problem of birefringence interference. The laser device of FIG. 2 overcomes this problem by proposing a solution for operation in single frequency. The axes of the frequency-doubling crystal 3 of type II in FIG. 2 and the axes of the tripler crystal 5 are aligned at 45 ° with respect to the Brewster angle. The polarization of the Nd: YVO 4 is aligned with the Brewster polarization so that the whole of the cavity constitutes a birefringent filter or Lyot filter. The wavelength with 100% transmission is linearly polarized in the Brewster blade and also separated on the two polarization axes of the frequency doubling crystal (maximum frequency doubling efficiency).
Avec un crystal LBO tripleur de 5mm taillé pour un accord de phase de type I, la puissance de sortie a atteint 7mW.With a 5mm LBO crystal cut for a phase I chord, the output power reached 7mW.
On a ainsi réalisé un laser faible bruit, continu (CW) intracavité, triplé en fréquence, qui peut raisonnablement remplacer les actuels lasers UV gas- ion.This has resulted in a frequency-tripled, frequency-invariant, continuous low-frequency (CW) laser that can reasonably replace the current UV gas-ion lasers.
Le tableau ci-dessous reprend un ensemble de configurations possibles des cristaux. L'efficacité de doublage ou de triplage peut être de 100% lorsque la polarisation est optimale. Les configurations préférentielles ne sont pas forcément optimisées pour la conversion maximale de fréquence, mais pour Ia meilleure stabilité et la simplicité. The table below shows a set of possible crystal configurations. The doubling or tripling efficiency can be 100% when the polarization is optimal. Preferred configurations are not necessarily optimized for maximum frequency conversion, but for better stability and simplicity.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. Of course, the invention is not limited to the examples that have just been described and many adjustments can be made to these examples without departing from the scope of the invention.

Claims

REVENDICATIONS
1. Dispositif laser continu, triplé en fréquence en intra-cavité, pompé par diode; ce dispositif comprenant : - un milieu amplificateur, un milieu non linéaire biréfringent pour le doublage de fréquence, un milieu non linéaire biréfringent pour le triplement de fréquence, caractérisé en ce qu'il comprend en outre un milieu polarisant disposé de façon à constituer un filtre biréfringent ou filtre de Lyot en intra-cavité, ledit filtre de Lyot étant adapté pour permettre une émission monofréquence en sortie dudit dispositif laser.1. Frequency tripled laser device in intra-cavity, pumped by diode; this device comprising: an amplifying medium, a non-linear birefringent medium for frequency doubling, a non-linear birefringent medium for frequency tripling, characterized in that it further comprises a polarizing medium arranged so as to form a filter birefringent or intra-cavity Lyot filter, said Lyot filter being adapted to allow a single-frequency emission at the output of said laser device.
2. Dispositif laser selon la revendication 1, caractérisé en ce que le milieu polarisant comprend une ou deux interfaces de Brewster.2. Laser device according to claim 1, characterized in that the polarizing medium comprises one or two Brewster interfaces.
3. Dispositif laser selon la revendication 1 ou 2, caractérisé en ce que les axes des milieux de doublage et de triplement de fréquence sont orientés sensiblement entre 30 et 60° par rapport aux axes du milieu polarisant.3. Laser device according to claim 1 or 2, characterized in that the axes of the doubling medium and tripling frequency are oriented substantially between 30 and 60 ° relative to the axes of the polarizing medium.
4. Dispositif laser selon la revendication 3, caractérisé en ce que l'orientation est de 45°.4. Laser device according to claim 3, characterized in that the orientation is 45 °.
5. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre un premier élément biréfringent disposé après le milieu polarisant, dont les axes de polarisation sont parallèles à ceux des cristaux non linéaires, ce premier milieu biréfringent étant adapté pour ajuster l'Intervalle Spectral Libre (ISL) du filtre de Lyot.5. Laser device according to any one of the preceding claims, characterized in that it further comprises a first birefringent element disposed after the polarizing medium, whose polarization axes are parallel to those of non-linear crystals, the first medium birefringent being adapted to adjust the Free Spectral Interval (ISL) of the Lyot filter.
6. Dispositif laser selon la revendication 1 ou I1 caractérisé en ce que les axes des milieux de doublage et de triplement de fréquence sont parallèles aux axes du milieu polarisant. 6. Laser device according to claim 1 or 1 1 characterized in that the axes of the doubling medium and tripling frequency are parallel to the axes of the polarizing medium.
7. Dispositif laser selon la revendication 6, caractérisé en ce que le cristal doubleur est coupé pour un accord de phase de type I.7. Laser device according to claim 6, characterized in that the doubling crystal is cut for a type I phase agreement.
8. Dispositif laser selon la revendication 6 ou 7, caractérisé en ce qu'il comprend un élément biréfringent disposé entre le milieu amplificateur et le milieu polarisant.8. Laser device according to claim 6 or 7, characterized in that it comprises a birefringent element disposed between the amplifying medium and the polarizing medium.
9. Dispositif laser selon la revendication 8, caractérisé en ce que ce second élément biréfringent est un cristal biréfringent dont les axes sont tournés à 45° des axes du milieu polarisant.9. Laser device according to claim 8, characterized in that said second birefringent element is a birefringent crystal whose axes are rotated at 45 ° of the axes of the polarizing medium.
10. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce que hormis le milieu polarisant, tous les autres milieux sont des cristaux à faces parallèles.10. Laser device according to any one of the preceding claims, characterized in that apart from the polarizing medium, all other media are crystals with parallel faces.
11. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce que la longueur d'onde d'émission en sortie est dans la gamme des ultra-violets (UV).11. Laser device according to any one of the preceding claims, characterized in that the output emission wavelength is in the range of ultraviolet (UV).
12. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il constitue une cavité résonante linéaire monolithique.12. Laser device according to any one of the preceding claims, characterized in that it constitutes a monolithic linear resonant cavity.
13. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce que le milieu amplificateur, le milieu polarisant et les milieux de doublage et de triplement de fréquence sont optiquement contactés entre eux.13. Laser device according to any one of the preceding claims, characterized in that the amplifying medium, the polarizing medium and the doubling medium and tripling frequency are optically contacted with each other.
14. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens de contrôle de la température du milieu amplificateur.14. Laser device according to any one of the preceding claims, characterized in that it comprises means for controlling the temperature of the amplifying medium.
15. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens de contrôle des températures des milieux non linéaires. 15. Laser device according to any one of the preceding claims, characterized in that it comprises means for controlling the temperatures of non-linear media.
16. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce que la largeur du filtre de Lyot est sensiblement égale à la largeur d'émission de la transition du milieu amplificateur.16. Laser device according to any one of the preceding claims, characterized in that the width of the Lyot filter is substantially equal to the transmitting width of the transition of the amplifying medium.
17. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un miroir hautement réfléchissant (HR) à la longueur d'onde fondamentale, ce miroir étant disposé sur la face d'entrée du milieu amplificateur.17. Laser device according to any one of the preceding claims, characterized in that it comprises a highly reflective mirror (HR) at the fundamental wavelength, this mirror being disposed on the input side of the amplifying medium.
18. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre un miroir de sortie hautement réfléchissant (HR) à la longueur d'onde fondamentale, ce miroir étant disposé sur la face de sortie du milieu non linéaire biréfringent de triplement de fréquence.18. Laser device according to any one of the preceding claims, characterized in that it further comprises a highly reflective output mirror (HR) at the fundamental wavelength, this mirror being disposed on the output face of the medium. non linear frequency doubling birefringent.
19. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre un miroir hautement réfléchissant (HR) à l'onde triplé, ce miroir étant disposé entre les deux milieux non linéaires biréfringent de doublage et de triplement de fréquence.19. Laser device according to any one of the preceding claims, characterized in that it further comprises a highly reflective mirror (HR) to the triplet wave, this mirror being disposed between the two non-linear birefringent doubling and radiating mediums. tripling of frequency.
20. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre un miroir hautement réfléchissant (HR) à l'onde triplée en fréquence, ce miroir étant disposé entre le milieu non linéaire biréfringent de doublage de fréquence et le milieu non linéaire biréfringent de triplage de fréquence.20. Laser device according to any one of the preceding claims, characterized in that it further comprises a highly reflective mirror (HR) frequency tripled wave, this mirror being disposed between the non-linear birefringent doubling medium of frequency and non-linear birefringent frequency tripling medium.
21. Dispositif laser selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre un miroir hautement réfléchissant (HR) à l'onde doublée en fréquence, ce miroir étant disposé entre le milieu polarisant et le milieu non linéaire biréfringent de doublage de fréquence. 21. Laser device according to any one of the preceding claims, characterized in that it further comprises a highly reflective mirror (HR) to the doubled frequency wave, this mirror being disposed between the polarizing medium and the non-linear medium. frequency doubling birefringent.
EP07718011A 2006-01-20 2007-01-17 Monofrequency intra-cavity frequency-tripled continuous laser Withdrawn EP1987571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0600542A FR2896629B1 (en) 2006-01-20 2006-01-20 "CONTINUOUS LASER, TRIPLE IN FREQUENCY IN INTRA-CAVITY AND MONOFREQUENCY"
PCT/FR2007/000077 WO2007083015A1 (en) 2006-01-20 2007-01-17 Monofrequency intra-cavity frequency-tripled continuous laser

Publications (1)

Publication Number Publication Date
EP1987571A1 true EP1987571A1 (en) 2008-11-05

Family

ID=37075728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07718011A Withdrawn EP1987571A1 (en) 2006-01-20 2007-01-17 Monofrequency intra-cavity frequency-tripled continuous laser

Country Status (4)

Country Link
US (1) US20100220753A1 (en)
EP (1) EP1987571A1 (en)
FR (1) FR2896629B1 (en)
WO (1) WO2007083015A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600551A (en) * 2013-10-30 2015-05-06 上海熙隆光电科技有限公司 Semiconductor laser pumped solid laser resonant cavity module with high-power green light output
US9553419B2 (en) 2014-08-22 2017-01-24 Bae Systems Information And Electronic Systems Integration Inc. Shared multi-wavelength laser resonator with gain selected output coupling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209135A (en) * 1992-11-06 1994-07-26 Mitsui Petrochem Ind Ltd Solid-state laser equipment
US6373868B1 (en) * 1993-05-28 2002-04-16 Tong Zhang Single-mode operation and frequency conversions for diode-pumped solid-state lasers
JP3977529B2 (en) * 1998-11-18 2007-09-19 三菱電機株式会社 Wavelength conversion laser device and laser processing device
US7463657B2 (en) * 2003-10-09 2008-12-09 Coherent, Inc. Intracavity frequency-tripled CW laser
FR2860928B1 (en) * 2003-10-09 2006-02-03 Oxxius Sa MONOLITHIC LASER PUMP DEVICE WITH LASER DIODE, AND METHOD USED IN SUCH A DEVICE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007083015A1 *

Also Published As

Publication number Publication date
US20100220753A1 (en) 2010-09-02
WO2007083015A1 (en) 2007-07-26
FR2896629A1 (en) 2007-07-27
FR2896629B1 (en) 2009-12-04

Similar Documents

Publication Publication Date Title
EP0457846A1 (en) Microchip laser
US20110064096A1 (en) Mid-IR laser employing Tm fiber laser and optical parametric oscillator
Jacobsson et al. Widely tunable Yb: KYW laser with a volume Bragg grating
WO1998025327A9 (en) Frequency conversion laser
EP0943167A1 (en) Frequency conversion laser
US20090274177A1 (en) Turnable laser device
EP3189374A1 (en) A resonant-microchip-cavity-based system for generating a laser beam via a non-linear effect
EP0806065B1 (en) Active q-switching microchip laser
FR2758893A1 (en) IMPULSE OPTICAL PARAMETRIC OSCILLATOR MONOMODE
EP1987571A1 (en) Monofrequency intra-cavity frequency-tripled continuous laser
WO2006108950A2 (en) Single-frequency monolithic linear laser device and system comprising same
US5357532A (en) Wavelength variable laser device
JP2010027971A (en) Compact and highly efficient microchip laser
EP2018688B1 (en) Diode pumped continuous laser device including two filters
EP1673839B1 (en) Laser diode-pumped monolithic solid state laser device and method for application of said device
EP3140888B1 (en) Low-noise solid-state laser
KR101156637B1 (en) Compact solid-state laser with nonlinear frequency conversion using periodically poled materials
CN219917893U (en) Solid laser with bias selection function
JPH09331097A (en) Solid laser system
WO2011123822A2 (en) Apparatus and method for generating continuous wave ultraviolet light
CN116581631A (en) Solid laser and intracavity optical polarizing element for same
Merriam et al. Spectral narrowing and tunability of a high-power diffraction-limited ns-pulsed OPO/OPA system using transversely-chirped and temperature-tuned volume Bragg gratings
FR2785099A1 (en) Medical long pulse luminous pulsed solid laser design having amplifier surrounded resonant cavity/lossy modulator and pulse lengthening photorefractive section
Mildren et al. Wavelength-versatile, green-yellow-red laser
Ciosek Thin layer coatings for coherent pumped lasers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090428

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120801