EP1984446A2 - Structure obtenue a partir d'une composition thermoplastique a base de polyolefine fonctionnalisee greffee par des motifs polyethers et utilisation d'une telle composition - Google Patents

Structure obtenue a partir d'une composition thermoplastique a base de polyolefine fonctionnalisee greffee par des motifs polyethers et utilisation d'une telle composition

Info

Publication number
EP1984446A2
EP1984446A2 EP07731630A EP07731630A EP1984446A2 EP 1984446 A2 EP1984446 A2 EP 1984446A2 EP 07731630 A EP07731630 A EP 07731630A EP 07731630 A EP07731630 A EP 07731630A EP 1984446 A2 EP1984446 A2 EP 1984446A2
Authority
EP
European Patent Office
Prior art keywords
acrylate
anhydride
polyolefin
ethylene
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07731630A
Other languages
German (de)
English (en)
Inventor
Jean-Jacques Flat
Marius Hert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP1984446A2 publication Critical patent/EP1984446A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/025Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/006Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2139Coating or impregnation specified as porous or permeable to a specific substance [e.g., water vapor, air, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • Y10T442/678Olefin polymer or copolymer sheet or film [e.g., polypropylene, polyethylene, ethylene-butylene copolymer, etc.]

Definitions

  • the present invention relates to a structure, in particular to a structure of film under roof or film for cladding, comprising a substrate and at least a first layer applied to the substrate, said first layer being obtained from a thermoplastic composition comprising at least one functionalized polyolefin grafted with polyether units.
  • thermoplastic compositions comprising copolymers of the functionalized polyolefin type grafted with polyether units, such as polyoxyalkyleneglycol, in particular polyoxyethylene glycol (PEG), to produce waterproof breathable materials, that is to say ie, impermeable to liquid water but permeable to water in the form of steam.
  • polyether units such as polyoxyalkyleneglycol, in particular polyoxyethylene glycol (PEG)
  • melt processing techniques such as extrusion-casting, inflation extrusion, to make films or by coating or extrusion-coating on a support, such as a nonwoven material.
  • these materials or films have applications in the field of construction such as cladding constructions ("House Wrapping”), in the films under roof (“roofing”), in the medical field, hygiene and clothing .
  • Polyamide block copolymers in particular PAl 1,
  • PA 12 and PA -6) and polyether blocks (such as polyoxyethylene glycol (PEG)) sold in particular under the name Pebax ®. by ARKEMA, which have developed on the markets of waterproof-breathable films.
  • PEG polyoxyethylene glycol
  • thermoplastic elastomer having polyether blocks derived from polyoxyethylene glycol (PEG), (preferably the thermoplastic elastomer is a copolymer having polyamide blocks and polyether blocks) and b) at least one copolymer of polyether ethylene and alkyl (meth) acrylate, grafted or copolymerized with an unsaturated carboxylic acid, its anhydride or an unsaturated epoxide.
  • PEG polyoxyethylene glycol
  • these films can be used in combination with nonwovens or fabrics, and exhibit high water vapor permeabilities (reaching for mixtures with 60% by weight of compound a) values of 22,000 g / m 2 / 24h according to ASTM E96 method BW, for a film thickness of 25 microns), a low water uptake and good extrudability, but their cost is very high.
  • copolymer compositions of ethylene and alkyl (meth) acrylate to obtain by extrusion or coating on supports, films having a low permeability to water vapor.
  • Patent Application EP 0 848 019 A1 in the name of the applicant, describes a copolymer of ethylene and (meth) acrylic esters of polyoxyalkylene glycol (the content of which can be up to 50% by weight), having a number average molecular weight between 5,000 and 65,000 obtained by radical autoclave catalysis or high pressure tubular reactor. This copolymer is used to obtain waterproof breathable films having a water vapor permeability not exceeding 10,000 g / m 2 / 24h according to ASTM E96 method BW).
  • the patent application WO 98/51742 describes a composition comprising a mixture of a polyolefin such as polyethylene or polypropylene with the product of the graft reaction of a maleic polypropylene (obtained by free radical grafting of maleic anhydride) and polyetheramine.
  • This composition has for application the stainable fibers, but not the waterproof-breathable films.
  • This document further does not disclose the grafting of functionalized copolymers of ethylene and acrylic esters with polyetheramine.
  • US 6,093,496, US 6,146,574 and US 6,420,482 also disclose a composition comprising a blend of a polyolefin such as polyethylene or polypropylene with the product of the graft reaction of a maleic polypropylene or a maleic polyethylene and a polyetheramine.
  • This composition can be used to make automotive parts or colorable fibers.
  • thermoplastic composition comprising a functionalized polyolefin, grafted with polyether units, based on a copolymer consisting of a polyolefin trunk and at least one graft made of polyolefin.
  • polyether the trunk having been previously functionalized either by polymerization or by grafting with an unsaturated monomer X having a function capable of reacting with at least one amino end of the polyether units, characterized in that the functionalized polyolefin is a copolymer of ethylene, alkyl (meth) acrylate and at least one unsaturated monomer X, having an anhydride, acid or epoxide function.
  • thermoplastic matrices It finds its use as permanent antistatic additives in thermoplastic matrices.
  • the patent application WO 00/12801 A1 relates to nonwoven webs based on hydrophilic polymer fibers; these polymers being obtained by reaction between an olefinic polymer modified with maleic anhydride and a polyetheramine; it is not about films and the characteristics of permeability to water vapor are not mentioned.
  • Patent application EP 1 388 345 A1 relates to polymeric compositions obtained by reaction of a thermoplastic polymer and a hydrophilic plasticizer, linked together by covalent bonding, all the exemplary embodiments describe processes for producing the compositions emulsion or solvent medium (with as polymer an aqueous polyurethane dispersion, such as Ucecoat); the layer obtained with these compositions has a water vapor permeability of at least 600 g / m 2 / 24h with a film thickness of at least 20 ⁇ m.
  • the patent application WO 02/43958 describes a process for extruding onto a substrate a film based on a thermoplastic composition in the form of a mixture of a co-polyester (the chemical composition of which is not specified).
  • the invention relates to a structure, comprising a substrate and at least a first layer applied to the substrate.
  • said first layer is obtained from a thermoplastic composition comprising at least one functionalized polyolefin obtained either by copolymerization or by grafting, of a polyolefin trunk with an unsaturated monomer comprising an anhydride, acid or epoxide function.
  • said functionalized polyolefin being grafted by amino-end polyether units, by reactive extrusion, as a breathable material having water vapor permeability properties of at least 300 g / m 2 .24 h measured according to the standard ASTM E96, BW method (38 ° C / 50% Relative Humidity), based on a 25 ⁇ m film.
  • such a structure is impermeable to liquid water but permeable to water in the form of steam, in particular thanks to the presence of the first layer. Because of such properties, the structure according to the invention can in particular be used to form a film under roof ("roofing") or a film for the cladding ("house wrapping").
  • the support of the structure according to the invention is chosen from a nonwoven of fibrous material, a textile material and a discontinuous mat of natural or synthetic fibers.
  • Non-limiting examples include polypropylene nonwoven, hemp or kenaf.
  • the Applicant has also found an advantageous use as waterproof-breathable materials having high properties of water vapor permeability, while having relatively low production costs, as well as good processability, of thermoplastic compositions comprising a polyolefin functionalized with an unsaturated monomer, comprising an anhydride, acid or epoxide functional group, and grafted with polyether units, in a reactive extrusion process. It has been found that the hydrophilicity of these materials is provided by grafted PEG segments.
  • thermoplastic compositions obtained by reactive extrusion, as described in the patent application FR 2866891, the contents of which are incorporated in the present application.
  • the invention relates to the use of a thermoplastic composition
  • a thermoplastic composition comprising at least one functionalized polyolefin, obtained either by copolymerization or by grafting, of a polyolefin trunk with an unsaturated monomer, comprising an anhydride, acid or epoxide functional group, this polyolefin functionalized being grafted by polyether end-amine units, by reactive extrusion, as waterproof-breathable materials, especially in the form of films, having properties of water vapor permeability of at least 300 g / m 2 .24 h (measured according to ASTM E96, BW method (38 ° C / 50% Relative Humidity), based on a 25 ⁇ m film).
  • the polyolefin trunk of the functionalized polyolefin is a copolymer of ethylene and
  • the grafting of the polyolefin functionalized with polyether units is obtained by reacting its anhydride function, acid or epoxide, with an amino-end polyether such as a polyoxyalkylene glycol having at least one amine end chain.
  • the anhydride function of the unsaturated monomer is present in the form of an unsaturated dicarboxylic acid anhydride, which is chosen from maleic anhydride, itaconic anhydride, citraconic anhydride and anhydride. tetrahydrophthalic.
  • the preferred unsaturated dicarboxylic acid anhydride is maleic anhydride.
  • the functionalized polyolefin is a copolymer of ethylene, of ethyl acrylate or of n-butyl acrylate, the content of which is between 2 and 40% by weight of the copolymer, and of maleic anhydride whose content is between 0.2 and 6% by weight of the copolymer.
  • the epoxide function of the unsaturated monomer is present in the form of an unsaturated epoxide of the aliphatic glycidyl ester type, such as, in particular, glycidyl methacrylate (GMA).
  • GMA glycidyl methacrylate
  • the polyoxyalkylene glycol of the aminated polyether is chosen from polyoxyethylene glycol (PEG), polyoxypropylene glycol (PPG), polyoxytetramethylene glycol (PTMG), copolymers of ethylene oxide, propylene oxide and tetrahydrofuran, as well as mixtures of two or more of these compounds.
  • PEG polyoxyethylene glycol
  • PPG polyoxypropylene glycol
  • PTMG polyoxytetramethylene glycol
  • copolymers of ethylene oxide, propylene oxide and tetrahydrofuran as well as mixtures of two or more of these compounds.
  • thermoplastic compositions further comprise, in a mixture, another polyolefin, which may be of the same nature or of a different nature from that of the preceding polyolefin trunk, and which is in particular an ethylene / (meth) acrylate copolymer. alkyl.
  • polystyrene resin examples include polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyren
  • EVA ethylene-acrylic acid copolymers
  • the mixture can be made by in-line dilution on the processing unit, for example on a single-screw extruder equipped with a flat die.
  • the process for implementing the compositions used for obtaining breathable materials and structures according to the invention is characterized in that the compositions are applied on a cast extrusion line. in the molten state at a temperature of at least 120 ° C to form a film having a minimum thickness of 5 ⁇ m.
  • This type of process makes it possible to optimize the transformation conditions in order to prepare the finest films possible, advantageously between 10 and 50 ⁇ m thick, preferably between 20 and 50 ⁇ m thick, and more particularly around 25 ⁇ m thick. from online blends of the materials according to the invention diluted in various proportions and without having micro-perforations. By playing with the parameters temperature and speed of draw of the line, one can control the thickness of the films.
  • the process for implementing the compositions used to obtain breathable materials according to the invention, SB is characterized in that the compositions are applied in the molten state on a line of extrusion-coating on a substrate, such as a nonwoven of fibrous material or a textile material, to form a weight complex of at least 5 g / m2.
  • the first layer of the structure according to the invention is extruded and then melt coated on the solid substrate.
  • this thermoplastic film When the first layer is in the form of a thermoplastic film, applied to the substrate, this thermoplastic film has a thickness of between 5 and 50 microns, and preferably between about 5 and 10 microns.
  • thermoplastic film 10 to 50 g / m 2 of thermoplastic film is deposited on the substrate.
  • the structures, films or breathable materials obtained according to the invention are particularly suitable for applications in the building such as roofing and roofing ("house wrapping"); however, other applications in particular in the medical field, hygiene products (such as diapers), or clothing are also conceivable.
  • the grafting of the polyether units on the functionalized polyolefin is obtained by reactive extrusion, in particular in an extruder, at temperatures in particular between 150 and 150.degree. and 300 ° C, with a screw rotation speed of 50 to 1200 rpm, and the degree of grafting of the polyether groups is around 50% (i.e., the conversion rate of the NH 2 functions introduced ).
  • the functionalized polyolefin is an ethylene / alkyl (meth) acrylate / maleic anhydride copolymer
  • the reaction for example with a polyether such as a monoamino mono-methyl PEG, goes through the formation of amic acid to give an imide junction.
  • a polyether such as a monoamino mono-methyl PEG
  • a polyolefin is defined as a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • alpha olefins or diolefins such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • ⁇ -pho-olefins having 3 to 30 carbon atoms as possible comonomers include propylene, 1-butene,
  • alpha-olefins can be used alone or in a mixture of two or more than two.
  • polyolefin By way of example of polyolefin, mention may be made of:
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • metallocene catalysis that is to say polymers obtained by copolymerization of ethylene and alphaolefin such as propylene, butene, hexene or octene in the presence of a Mono-site catalyst generally consisting of a zirconium or titanium atom and two alkyl cyclic molecules bonded to the metal. More specifically, metallocene catalysts are usually composed of two metal-bound cyclopentadiene rings. These catalysts are frequently used with aluminoxanes as cocatalysts or activators, preferably methylaluminoxane (MAO). Hafnium may also be used as the metal to which cyclopentadiene is attached. Other metallocenes may include transition metals of groups IV A, V A, and VI A. Metals of the lanthamide series may also be used.
  • ethylene / ⁇ - ⁇ -olefin copolymers such as ethylene / propylene, EPR (ethylene-propylene-rubber) and ethylene / propylene / diene (EPDM) copolymers.
  • SEBS Styrene / ethylene-butene / styrene block copolymers
  • SBS styrene / butadiene / styrene
  • SIS styrene / isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • alkyl acrylate or methacrylate examples include methyl methacrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate and 2-ethylhexyl acrylate.
  • vinyl esters of saturated carboxylic acids such as, for example, acetate or vinyl propionate.
  • Examples of unsaturated epoxides include:
  • aliphatic glycidyl esters and ethers such as glycidyl allyl glycidyl ether, vinyl glycidyl ether, maleate and itaconate, glycidyl acrylate and methacrylate, and
  • alicyclic glycidyl esters and ethers such as 2-cyclohexene-1-glycidyl ether, cyclohexene-4,5-diglycidylcarboxylate, cyclohexene-4-glycidyl carboxylate, 5-norbornene-2-methyl-2-glycidyl carboxylate and endocis-bicyclo (2,2,1) -5-heptene-2,3-diglycidyl dicarboxylate.
  • unsaturated carboxylic acids their salts, their anhydrides.
  • unsaturated dicarboxylic acid anhydrides include maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride. dienes such as, for example, 1,4-hexadiene. or the vinyl esters of saturated carboxylic acids such as vinyl acetate, the comonomer proportion being up to 40% by weight.
  • EPR ethylene - propylene rubber
  • EPDM ethylene - propylene - diene
  • the ethylene-alkyl (meth) acrylate copolymers which may contain up to 60% by weight of (meth) acrylate and preferably 2 to 40% -the ethylene (meth) acrylate-maleic anhydride copolymer copolymers obtained by copolymerization of the three monomers, the proportions of (meth) acrylate being like the above copolymers, the amount of maleic anhydride being up to 10% and preferably 0.2 to 6% by weight.
  • the ethylene-vinyl acetate-maleic anhydride copolymers obtained by copolymerization of the three monomers the proportions being the same as in the preceding copolymer.
  • copolymers of ethylene such as copolymers obtained by high-pressure radical formation of ethylene with vinyl acetate, (meth) acrylic acid esters of (meth) acrylic acid and an alcohol having 1 to 24 carbon atoms and preferably 1 to 9, the radical terpolymers also using a third monomer chosen by the unsaturated monomers copolymerizable with ethylene such as acrylic acid, anhydride maleic, glycidyl methacrylate.
  • These flexible copolymers can also be copolymers of ethylene with alpha-olefins of 3 to 8 carbon atoms such as EPR, ethylene very low density copolymers with butene of hexene or of octene with a density between 0. ⁇ O and 0.910 g / cm 3 obtained by metallocene or Ziegler-Natta catalysis.
  • polyolefins flexible we also mean mixtures of 2 or more flexible polyolefins.
  • the invention is particularly useful for copolymers of ethylene and alkyl (meth) acrylates.
  • the alkyl can have up to 24 carbon atoms.
  • the (meth) acrylates are chosen from those mentioned above.
  • These copolymers advantageously comprise up to 40% by weight of (meth) acrylate and preferably 3 to 35%.
  • Their MFI is advantageously between 0.1 and 50 (at 190 0 C - 2.16 kg).
  • the unsaturated monomer it may for example be an unsaturated carboxylic acid anhydride.
  • the unsaturated carboxylic acid anhydride may be chosen for example from maleic, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-T ⁇ , 2-dicarboxylic, 4-methylenecyclohex-4-ene-1,2-dicarboxylic anhydrides. , bicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic acid, and x-methylbicyclo (2,2,1) hept-5-ene-2,2-dicarboxylic acid.
  • Maleic anhydride is advantageously used.
  • the monomer may also be an unsaturated epoxide of the aliphatic glycidyl ester or ether type, such as glycidyl allyl glycidyl ether, vinyl glycidyl ether, maleate and itaconate, acrylate and glycidyl methacrylate.
  • the polyolefin trunks to which the X residues are attached are X-grafted polyethylenes or copolymers of ethylene and X which are obtained, for example, by radical polymerization.
  • the ethylene-maleic anhydride and ethylene-alkyl (meth) acrylate-maleic anhydride copolymers are used. These copolymers comprise from 0.2 to 10% by weight of maleic anhydride, from 0 to 40% and preferably from 5 to 40% by weight of alkyl (meth) acrylate. Their MFI is between 5 and 100 (190 ° C - 2, 16 kg). The alkyl (meth) acrylates have already been described above. The melting temperature is between 60 and 100 C.
  • amino-end polyether units or polyetheramines
  • it is preferably monoamines, but also polyamines, having a molecular mass of between about 100 and 12,000 g / mol;
  • the polyether blocks of these polyetheramines are adducts of cyclic ethers such as ethylene oxide (EO), propylene oxide (PO) or their mixtures with glycols chosen in particular from the group consisting of ethylene glycol, glycerol, 1,2-propane diol, and pentaerythritol.
  • EO ethylene oxide
  • PO propylene oxide
  • polyetheramines used according to the invention can be obtained according to well known amination processes, as described in particular in US Pat. Nos. 3,654,370, 4,152,353, 4,618,717 and 5,457,147.
  • Polyether units or blocks of the polyethylene glycol copolymer type and of polypropylene glycol monoamine are preferably used in the form of short segments (Mn between 100 and 10,000 g / mol and preferably between 250 and 5000 g / mol). ; such polyether monoamine compounds are described in particular in WO 98/51742 and US 6,465,606, the contents of which are incorporated in the present application. However, other polyethers such as polypropylene glycol (PPG) or polytetramethylene glycol (PTMG) or their copolymers or mixtures thereof can also be used.
  • PPG polypropylene glycol
  • PTMG polytetramethylene glycol
  • the addition of the mono-amine polyether units to the polyolefin trunk containing X is carried out by reacting an amine function of the polyether with X.
  • X bears an anhydride or acid function, imide or amide junctions are thus created.
  • the addition of the amino-terminated polyether to the polyolefin trunk containing X preferably in the molten state is carried out. It is thus possible, in an extruder, to mix the polyether and the trunk at a temperature generally between 150 and 300 ° C.
  • the weight ratios of the amounts of aminated end polyether and functionalized polyolefin introduced as a mixture are between 1/99 and 80/20, and preferably between 20/80 and 50/50.
  • polyolefin which can be mixed with the functionalized polyolefin grafted with polyether units of the invention
  • any type of polyolefin as described above for the polyolefin trunk in particular copolymers of ethylene and alkyl (meth) acrylate are particularly suitable.
  • compositions of the invention can be prepared by melt blending in extruders (single or double screw), BUSS co-kneaders, internal mixers and in general the usual mixing devices for thermoplastics and preferably extruders. co-rotating twin screw.
  • compositions of the invention may be prepared in one step in an extruder.
  • the functionalized polyolefin for example an ethylene-alkyl (meth) acrylate-maleic anhydride copolymer
  • the amino-terminated polyether for example an ethylene-alkyl (meth) acrylate-maleic anhydride copolymer
  • the average residence time of the melt in the extruder can be between 5 seconds and 10 minutes, and preferably between 10 and 60 seconds.
  • the yield of this addition is evaluated by selective extraction of the free polyethers that is to say those which have not reacted to form the final polyether block graft copolymer.
  • the proportion of graft polyether blocks is approximately 50% of the quantity introduced.
  • compositions of the invention may also comprise various additives, in particular slip agents such as silica, IHN'-ethylene-bisamide, calcium stearate or magnesium stearate. They may also include antioxidants, anti-U.V., mineral fillers, coloring pigments.
  • slip agents such as silica, IHN'-ethylene-bisamide, calcium stearate or magnesium stearate. They may also include antioxidants, anti-U.V., mineral fillers, coloring pigments.
  • the product obtained has an MFI of 3.8 g / 10 min (at 190 ° C. under 2.16 kg), and the grafted polyether content, measured by Fourier transform infrared spectroscopy, is substantially half that of the introduced polyether. .
  • a grafting reaction is reproduced under extrusion conditions similar to those of Example 1, except for the temperature profile which is 22O 0 C flat, with the same polyetheramine, and with Lotader® 3410 terpolymer of ARKEMA. which is a terpolymer of ethylene, with 18% by weight of butyl acrylate and 3% by weight of maleic anhydride, melt index or MFI equal to 5g / 10 min (measured at 190 ° C. under 2, 16 kg).
  • the product thus produced has an MFI of 4.7 g / 10 min (at 190 ° C. under 2.16 kg),
  • the product thus produced has an MFI of 33 g / 10 min (at 190 ° C. under 2.16 kg),
  • a grafting reaction under extrusion conditions similar to that of Example 2 is reproduced with ARKEMA Lotader® 7500 terpolymer, ethylene terpolymer, with 18% by weight ethyl ⁇ crylate and 3% by weight of maleic anhydride, melt index or MFI equal to 70 g / l 0 min (measured at 190 ° C. under 2.16 kg).
  • a grafting reaction is reproduced under extrusion conditions similar to those of Example 2, except for the terpolymer / polyether ratio which is 57/43 by weight and for the flow rate of 12.8 kg / h, with ARKEMA Lotader® 4210 terpolymer, ethylene terpolymer, with 6% by weight of butyl acrylate and 3.7% by weight of maleic anhydride, MFI index melt equal to 13.5g / 10 min (measured at 190 ° C under 2, 16 kg).
  • the product thus produced has an MFI of 20 g / 10 min (at 190 ° C. under 2.16 kg).
  • the results are summarized in Table 1 below.
  • Example A1 to A2 are then diluted in line with Lotryl®! 8MG02 from the company ARKEMA, which is an ethylene / methyl acrylate copolymer with 18% by weight of acrylate, melt index or MFI equal to 2g / 10 min (measured at 190 ° C. under 2.16 kg), to obtain Compositions Bl to B8, which are shaped into films by the extrusion-cast technique using the Collin line equipped with a single-screw extruder with a diameter of 30 mm and a length equal to 30 times the diameter (without mixing elements), a 250 mm wide die with a 300 ⁇ m lip opening and a Collin feed block.
  • the temperature in the extruder, the die and the feed block is constant at 210 ° C.
  • compositions Bl to B8 of films approximately 100 ⁇ m thick obtained from the polymers of Examples A1 and A2, diluted under the above conditions, with the value of the theoretical rates by weight. of polyetheramine (Jeffamine M2070) introduced.
  • Composition B9 corresponds to undiluted product A2.
  • the permeability to water vapor is controlled firstly by the level of PEG in the material and that this permeability is greater when the material is richer in PEG, and
  • permeability to water vapor is then controlled by the nature of the graft functionalized polyolefin and that this permeability is all the greater as the starting polyolefin is richer in acrylic monomer and therefore more amorphous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

La présente invention se rapporte à une structure comprenant un substrat et au moins une première couche appliquée sur le substrat et obtenue à partir d'une composition thermoplastique comprenant au moins une polyoléfine fonctionnalisée obtenue soit par copolymérisation, soit par greffage, d'un tronc en polyoléfine par un monomère insaturé comportant une fonction anhydride, acide ou époxyde, ladite polyoléfine fonctionnalisée étant greffée par des motifs polyéthers à extrémité aminé, par extrusion réactive, comme matériau imper- respirant ayant des propriétés de perméabilité à la vapeur d'eau d'au moins 300 g/m<SUP>2</SUP>.24 h mesurée selon la norme ASTM E96, méthode BW (38°C/50 % Humidité Relative), rapportée à un film de 25 µm. Elle concerne également l'utilisation d'une telle composition comme matériau imper-respirant ayant des propriétés de perméabilité à la vapeur d'eau d'au moins 300 g/m2.24 h (mesurée selon la norme ASTM E96, méthode BW 38°C / 50 % Humidité Relative), rapportée à un film de 25 µm.

Description

STRUCTURE OBTENUE A PARTIR D'UNE COMPOSITION TH ERMO PLASTIQU E A
BASE DE POLYOLEFINE FONCTIONNALISEE GREFFEE PAR DES MOTIFS
POLYETHERS ET UTILISATION D1UNE TELLE COMPOSITION
La présente invention se rapporte à une structure, notamment à une structure de film sous toiture ou de film pour le bardage, comprenant un substrat et au moins une première couche appliquée sur le substrat, ladite première couche étant obtenue à partir d'une composition thermoplastique comprenant au moins une polyoléfine fonctionnalisée greffée par des motifs polyéthers.
Elle se rapporte également à l'utilisation de compositions thermoplastiques comprenant des copolymères du type polyoléfines fonctionnalisées greffées par des motifs polyéthers, tels que les polyoxyalkyleneglycol, notamment le polyoxyéthylène glycol (PEG), pour réaliser des matériaux imper-respirants, c'est-à-dire imperméables à l'eau liquide mais perméables à l'eau sous forme de vapeur.
Ces matériaux sont obtenus par les différentes techniques de mise en œuvre à l'état fondu comme par exemple l'extrusion-cast, l'extrusion gonflage, pour faire des films ou par enduction ou extrusion-couchage sur un support, tel qu'un matériau non-tissé.
En particulier, ces matériaux ou films trouvent des applications dans le domaine de la construction comme le bardage des constructions (« House Wrapping »), dans les films sous toiture («roofing »), dans le domaine médical, l'hygiène et les vêtements. II existe des copolymères à blocs polyamides (en particulier PAl 1 ,
PA 12 et PA -6) et à blocs polyéthers (en particulier polyoxyéthylène glycol (PEG)) vendus en particulier sous le nom Pebax®. par ARKEMA, qui se sont développés sur les marchés des films imper-respirants.
Il est connu en particulier par le brevet EP 0 688 826 Bl de la demanderesse, d'obtenir des films imper-respirants à partir d'un mélange comprenant: a) au moins un élastomère thermoplastique ayant des blocs polyéther, dérivés du polyoxyéthylène glycol (PEG), (de préférence l'élastomère thermoplastique est un copolymère ayant des blocs polyamide et des blocs polyéther) et b) au moins un copoiymère d'éthylène et de (meth)acrylate d'alkyle, greffé ou copolymérisé avec un acide carboxylique insaturé, son anhydride ou un époxyde insaturé. ; ces films peuvent être utilisés en combinaison avec des non-tissés ou des tissus, et présentent de fortes perméabilités à la vapeur d'eau (atteignant pour des mélanges avec 60 % en poids du composé a) des valeurs de 22 000 g/m2/24h selon la norme ASTM E96 méthode BW, pour un film d'épaisseur de 25 μm), une faible reprise d'eau et une bonne extrudabilité, mais leur coût est très élevé.
Il est également connu d'utiliser des compositions de copolymères d'éthylène et de (meth)acrylate d'alkyle, pour obtenir par extrusion ou en enduction sur des supports, des films ayant une faible perméabilité à la vapeur d'eau.
La demande de brevet EP 0 848 019 Al , au nom de la demanderesse, décrit un copolymère d'éthylène et d'esters (méth)acrylique de polyoxyalkylèneglycol, (dont la teneur peut aller jusqu'à 50 % en poids), présentant un poids moléculaire moyen en nombre compris entre 5 000 et 65 000, obtenu par catalyse radicalaire en autoclave ou réacteur tubulaire à haute pression. Ce copolymère est utilisé pour l'obtention de films imper-respirants, ayant une perméabilité à la vapeur d'eau ne dépassant pas 10 000 g/m2/24h selon la norme ASTM E96 méthode BW).
La demande de brevet WO 98/51742 décrit une composition comprenant un mélange d'une polyoléfine telle que du polyéthylène ou polypropylène avec le produit de la réaction par greffage d'un polypropylène maléisé (obtenu par greffage radicalaire de l'anhydride maléique) et d'une polyétheramine. Cette composition a pour application les fibres colorables, mais pas les films imper-respirants. Ce document en outre ne divulgue pas le greffage de copolymères fonctionnalisés d'éthylène et d'esters acryliques avec la polyétheramine.
Les brevets US 6 093 496, US 6 146 574, et US 6 420 482 décrivent aussi une composition comprenant un mélange d'une polyoléfine telle que du polyéthylène ou polypropylène avec le produit de la réaction par greffage d'un polypropylène maléisé ou d'un polyéthylène maléisé et d'une polyétheramine. Cette composition peut servir à fabriquer des pièces pour automobile ou des fibres colorables. Il n'est pas divulgué d'application aux films imper-respirants, ni le greffage d'autres copolymères fonctionnalisés que le polypropylène (PP) ou le polyéthylène (PE) .
La demande de brevet FR 2866 891 , au nom de la demanderesse, décrit une composition thermoplastique comprenant une polyoléfine fonctionnalisée, greffée par des motifs polyéthers, à base d'un copolymère constitué d'un tronc en polyoléfine et d'au moins un greffon en polyéther, le tronc ayant été au préalable fonctionnalisé soit par polymérisation, soit par greffage par un monomère insaturé X ayant une fonction capable de réagir avec au moins une extrémité aminé des motifs polyéthers, se caractérisant en ce que la polyoléfine fonctionnalisée est un copolymère d'éthylène, de (méth)acrylate d'alkyle et d'au moins Ie monomère insaturé X, comportant une fonction anhydride, acide ou époxyde. Elle trouve son utilisation comme additifs antistatiques permanents dans des matrices thermoplastiques. La demande de brevet WO 00 /12801 Al , concerne des nappes non-tissées à base de fibres de polymères hydrophiles; ces polymères étant obtenus par réaction entre un polymère oléfinique modifié par l'anhydride maléique et une polyétheramine ; il ne s'agit pas de films et les caractéristiques de perméabilité à la vapeur d'eau ne sont pas évoquées. La demande de brevet EP 1 388 345 Al se rapporte à des compositions polymériques obtenues par réaction d'un polymère thermoplastique et d'un plastifiant hydrophile, liés entre eux par liaison covalente, tous les exemples de réalisation décrivent des procédés de fabrication des compositions en émulsion ou milieu solvant (avec comme polymère une dispersion aqueuse de polyuréthane, telle que Ucecoat) ; la couche obtenue avec ces compositions a une perméabilité à la vapeur d'eau d'au moins 600 g/m2/24h avec une épaisseur du film d'au moins 20 μm. La demande de brevet WO 02/43958 décrit un procédé d'extrusion sur un substrat d'un film à base d'une composition thermoplastique sous forme d'un mélange d'un co-polyester (dont la composition chimique n'est pas précisée) et d'un copolymére éthylène- acrylate d'alkyle, avec un compatibilisant, ayant de bonnes propriétés d'adhésion au substrat ainsi qu'un certain taux de transmission de vapeur humide (MVTR) selon une méthode non décrite. Ce film est utilisé comme matériau barrière aux liquides dans des articles d'hygiène. [Le problème technique]
Parmi les documents cités précédents, certains revendiquent des matériaux contenant des polyoléfines fonctionnalisées qui sont principalement des polypropylènes greffés par l'anhydride maléique, modifiées par des polyetheramines, mais ne divulguent pas l'emploi de copolymére d'éthylène et de (méth)acrylate d'alkyle, ni leur utilisation pour réaliser des films imper-respirants. D'autres s'attachent à améliorer l'hydrophilie de films obtenus à partir de compositions par des procédés en émulsion ou avec solvants, complexes et coûteux, [description de l'invention]
L'invention se rapporte à une structure, comprenant un substrat et au moins une première couche appliquée sur le substrat. Selon l'invention, ladite première couche est obtenue à partir d'une composition thermoplastique comprenant au moins une polyoléfine fonctionnalisée obtenue soit par copolymérisation, soit par greffage, d'un tronc en polyoléfine par un monomère insaturé comportant une fonction anhydride, acide ou époxyde, ladite polyoléfine fonctionnalisée étant greffée par des motifs polyéthers à extrémité aminé, par extrusion réactive, comme matériau imper- respirant ayant des propriétés de perméabilité à la vapeur d'eau d'au moins 300 g/m2.24 h mesurée selon la norme ASTM E96, méthode BW (38°C/50 % Humidité Relative), rapportée à un film de 25 μm.
En plus d'être mécaniquement résistante, une telle structure est imperméable à l'eau liquide mais perméable à l'eau sous forme de vapeur, notamment grâce à la présence de la première couche. Du fait- de telles propriétés, la structure selon l'invention peut notamment être utilisée pour former un film sous toiture ("roofing") ou un film pour le bardage ("house wrapping").
Dans une version avantageuse, le support de la structure selon l'invention est choisi parmi un non-tissé en matériau fibreux, un matériau textile et un mat discontinu de fibres naturelles ou synthétiques. A titre non limitatif, on peut citer un non-tissé en polypropylène, du chanvre ou encore du kenaf.
La demanderesse a également trouvé une utilisation avantageuse comme matériaux imper-respirants ayant des propriétés élevées de perméabilité à la vapeur d'eau, tout en présentant des coûts d'obtention relativement faibles, ainsi qu'une bonne processabilité, de compositions thermoplastiques comprenant une polyoléfine fonctionnalisée par un monomère insaturé, comportant une fonction anhydride, acide ou époxyde, et greffée par des motifs polyéthers, dans un procédé d'extrusion réactive. On α constaté que l'hydrophilie de ces matériaux était apportée par les segments PEG greffés.
La synthèse de ces compositions thermoplastiques est obtenue par extrusion réactive, telle que décrite dans la demande de brevet FR 2866891 , dont le contenu est incorporé à la présente demande.
L'invention concerne l'utilisation d'une composition thermoplastique comprenant au moins une polyoléfine fonctionnalisée, obtenue soit par copolymérisation, soit par greffage, d'un tronc en polyoléfine par un monomère insaturé, comportant une fonction anhydride, acide ou époxyde, cette polyoléfine fonctionnalisée étant greffée par des motifs polyéthers à extrémité aminé, par extrusion réactive, comme matériaux imper-respirants, notamment sous forme de films, ayant des propriétés de perméabilité à la vapeur d'eau d'au moins 300 g/m2.24 h (mesurée selon la norme ASTM E96, méthode BW (38°C / 50 % Humidité Relative), rapportée à un film de 25 μm).
De préférence, selon l'invention, le tronc en polyoléfine de la polyoléfine fonctionnalisée est un copolymère d'éthylène et de
(méth)acrylate d'alkyle, celui-ci étant de préférence choisi parmi le
(méth)acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate d'octyle et l'acrylate de 2-éthylhexyle.
En outre, le greffage de la polyoléfine fonctionnalisée par des motifs polyéthers est obtenu par réaction de sa fonction anhydride, acide ou époxyde, avec un polyéther à extrémité aminé tel qu'un polyoxyalkylèneglycol ayant au moins une extrémité de chaîne de type aminé.
De préférence, selon l'invention, la fonction anhydride du monomère insaturé est présente sous forme d'un anhydride d'acide dicarboxylique insaturé, qui est choisi parmi l'anhydride maléique, l'anhydride itaconique, l'anhydride citraconique et l'anhydride tétrahydrophtalique. En particulier, l'anhydride d'acide dicarboxylique insaturé préféré est l'anhydride maléique.
Selon un mode de réalisation préféré, la polyoléfine fonctionnalisée est un copolymère d'éthylène, d'acrylate d'éthyle ou d'acrylate de n-butyle, dont la teneur est comprise entre 2 et 40 % en poids du copolymère, et d'anhydride maléique dont la teneur est comprise entre 0.2 et 6 % en poids du copolymère.
Par ailleurs, la fonction époxyde du monomère insaturé est présente sous forme d'un époxyde insaturé du type ester de glycidyle aliphatique, tel qu'en particulier le méthacrylate de glycidyle (GMA).
De préférence, le polyoxyalkylèneglycol du polyéther à extrémité aminé est choisi parmi le polyoxyéthylène glycol (PEG), le polyoxypropylène glycol (PPG), le polyoxytétraméthylène glycol (PTMG)', des copolymères d'oxyde d'éthylène, d'oxyde de propylène et de tétrahydrofurane, ainsi que des mélanges de deux ou plusieurs de ces composés.
Selon une variante de réalisation, les compositions thermoplastiques comprennent en outre en mélange une autre polyoléfine, qui peut être de même nature ou de nature différente de celle du tronc en polyoléfine précédent, et qui est notamment un copolymère éthylène/ ( méth)acrylate d'alkyle.
Toutefois, d'autres types de polyoléfine conviennent aussi, tels qu'un homo polymère ou copolymère d'alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1 , octène-1 , butadiène, de même que les copolymères éthylène-acétate de vinyle
(EVA), ou les copolymères éthylène-acide acrylique (EAA).
Le mélange peut être réalisé par dilution en ligne sur l'unité de transformation, par exemple sur une extrudeuse monovis équipée d'une filière plate. Selon un mode de réalisation préféré, le procédé de mise en œuvre des compositions utilisées pour l'obtention de matériaux imper- respirants et des structures selon l'invention, se caractérise en ce que les compositions sont appliquées sur une ligne d'extrusion-cast, à l'état fondu, à une température d'au moins 120°C pour former un film ayant une épaisseur minimale de 5 μm.
Ce type de procédé permet d'optimiser les conditions de transformation pour préparer des films les plus fins possible, avantageusement entre 10 et 50 μm d'épaisseur, de préférence entre 20 et 50 μm d'épaisseur, et plus particulièrement d'environ 25 μm, issus de mélanges en ligne des matériaux selon l'invention dilués en proportions variées et sans avoir de micro-perforations. En jouant avec les paramètres température et vitesse de tirage de la ligne, on peut contrôler l'épaisseur des films. Selon un autre mode de réalisation préféré, le procédé de mise en œuvre des compositions utilisées pour l'obtention de matériaux imper- respirants selon l'invention, SB caractérise en ce que les compositions sont appliquées à l'état fondu sur une ligne d'extrusion-couchage sur un substrat, tel qu'un non-tissé en matériau fibreux ou un matériau textile, pour former un complexe de grammage d'au moins 5 g/m2.
Selon un procédé connu, la première couche de la structure selon l'invention est extrudée puis couchée à l'état fondu sur le substrat solide.
Lorsque la première couche se présente sous la forme d'un film thermoplastique, appliqué sur le substrat, ce film thermoplastique présente une épaisseur comprise entre 5 et 50 μm, et de préférence entre environ 5 et 10 μm.
Avantageusement, dans le cadre d'une application par extrusion- couchage, on dépose de 10 à 50 g/m2 de film thermoplastique sur le substrat. Les structures, films ou matériaux imper-respirants obtenus selon l'invention, sont particulièrement appropriés pour les applications dans le bâtiment comme films sous toiture (« roofing ») et pour le bardage (« house wrapping ») ; toutefois, d'autres applications notamment dans le domaine médical, les produits d'hygiène (tels que les couches- culottes), ou les vêtements sont aussi envisageables.
Selon un mode de réalisation préféré de l'invention, dans le procédé d'obtention de cette composition thermoplastique, le greffage des motifs polyéthers sur la polyoléfine fonctionnalisée, est obtenu par extrusion réactive notamment dans une extrudeuse, à des températures comprises en particulier entre 150 et 300°C, avec une vitesse de rotation de vis de 50 à 1200 rpm, et le taux de greffage des groupes polyéthers se situe aux environs de 50 % (c'est-à-dire le taux de conversion des' fonctions NH2 introduites). Dans le cas où la polyoléfine fonctionnalisée est un copolymère éthylène/ (méth)acrylate d'alkyle /anhydride maléique, la réaction par exemple avec un polyéther tel qu'un PEG mono méthyléther mono aminé, passe par la formation d'acide amique pour donner une jonction imide. On a maintenant découvert que d'un point de vue morphologique, ces copolymères greffés à motifs polyéthers du type copolymères oxyde d'éthylène (OE)/oxyde de propylène (OP), s'organisent à plusieurs échelles avec une macroséparation de phase (polyéther non greffé) accompagnée d'une nanostructuration mise en évidence par l'analyse TEM (Microscopie à Transmission électronique) . [Description détaillée de l'invention]
S'agissant du tronc en polyoléfine, on définit une polyoléfine comme un homo polymère ou copolymère d'alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1 , octène-1 , butadiène. Des exemples d'αlphα-oléfines ayant 3 à 30 atomes de carbone comme comonomères éventuels comprennent le propylène, 1-butène,
1-pentène, 3-méthyl-l -butène, 1-hexène, 4méthyl-1-pentène, 3-méthyl-
1 -pentène, 1-octène, 1 -décène, 1 -dodécène, 1-tétradécène, 1 - hexadécène, 1-octadécène, 1 — eicocène, 1-dococène, 1 -tétracocène,
1-hexacocène, 1 — octacocène, et 1 -triacontène. Ces alpha-oléfines peuvent être utilisées seules ou en mélange de deux ou de plus de deux.
A titre d'exemple de polyoléfine, on peut citer :
- les homo polymères et copolymères de l'éthylène, en particulier à titre d'exemple de polyéthylènes on peut citer :
- le polyéthylène basse densité (LDPE)
- le polyéthylène haute densité (HDPE)
- le polyéthylène linéaire basse densité (LLDPE)
- le polyéthylène très basse densité (VLDPE) - le polyéthylène obtenu par catalyse métallocène, c'est-à-dire les polymères obtenus par copolymérisation d'éthylène et d'alphaoléfine telle que propylène, butène, héxène ou octène en présence d'un catalyseur mono-site constitué généralement d'un atome de zirconium ou de titane et de deux molécules cycliques alkyles liées au métal. Plus spécifiquement, les catalyseurs métallocènes sont habituellement composés de deux cycles cyclopentadiéniques liés au métal. Ces catalyseurs sont fréquemment utilisés avec des aluminoxanes comme cocatalyseurs ou activateurs, de préférence le méthylaluminoxane (MAO). Le hafnium peut aussi être utilisé comme métal auquel le cyclopentadiène est fixé. D'autres métallocènes peuvent inclure des métaux de transition des groupes IV A, V A, et Vl A. Des métaux de la série des lanthamides peuvent aussi être utilisés.
- les homopolymères ou copolymères du propylène. - les copolymères éthylèπe/αlphα-oléfine tels qu'éthylène/propylène, les EPR (abréviat ion d'éthylèπe-propylene- rubber) et éthylèπe/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butèπe/styrène (SEBS), styrène/butadiène/styrène (SBS), styrèπe/isoprèπe/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS) .
- les copolymères de l'éthylène avec au moins un produit choisi parmi les sels ou les esters d'acides carboxyliques insaturés tels que par exemple les (méth)acrylates d'alkyle, les alkyles pouvant avoir jusqu'à 24 atomes de carbone.
Des exemples d'acrylate ou méthacrylate d'alkyle sont notamment le méthacrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate de 2-éthylhexyle.
- les esters vinyliques d'acides carboxyliques saturés tels que par exemple l'acétate ou le propionatede vinyle.
- les époxydes insaturés.
Des exemples d' époxydes insaturés sont notamment :
- les esters et éthers de glycidyle aliphatiques tels que l'allylglycidyléther, le vinylglycidyléther, le maléate et l'itaconate de glycidyle, l'acrylate et le méthacrylate de glycidyle, et
- les esters et éthers de glycidyle alicycliques tels que le 2- cyclohexène-1 -glycidyléther, le cyclohexène-4,5-diglycidylcarboxylate, le cyclohexène-4-glycidyl carboxylate, le 5-norbomène-2-méthyl-2- glycidyl carboxylate et l'endocis-bicyclo(2,2,l )-5-heptène-2,3-diglycidyl dicarboxylate.
- les acides carboxyliques insaturés, leurs sels, leurs anhydrides. Des exemples d'anhydrides d'acide dicarboxylique insaturé sont notamment l'anhydride maléique, l'anhydride itaconique, l'anhydride citraconique, l'anhydride tétrahydrophtalique. - les diènes tels que par exemple le 1 ,4-hexadiène. ou les esters viπyliques d'acides carboxyliques saturés tel que l'acétate de vinyle, la proportion de comonomère pouvant atteindre 40 % en poids.
- les élastomères EPR (éthylène - propylène - rubber) - les élastomères EPDM (éthylène - propylène - diène)
- les mélanges de polyéthylène avec un EPR ou un EPDM
- les copolymères éthylène-(méth)acrylate d'alkyle pouvant contenir jusqu'à 60 % en poids de (méth)acrylate et de préférence 2 à 40 % -les copolymères éthylène (méth)acrylate d'alkyle-anhydride maléique obtenus par copolymérisation des trois monomères, les proportions de (méth)acrylate étant comme les copolymères ci-dessus, la quantité d'anhydride maléique étant jusqu'à 10 % et de préférence 0,2 à 6 % en poids. - les copolymères éthylène-acétate de vinyle-anhydride maléique obtenus par copolymérisation des trois monomères, les proportions étant les mêmes que dans le copolymère précédent.
A titre d'exemple on peut citer les copolymères de l'éthylène tels que les copolymères obtenus par voie radicalaire sous haute pression de l'éthylène avec de l'acétate de vinyle, des esters (meth) acryliques de l'acide (meth)acrylique et d'un alcool ayant de 1 à 24 atomes de carbone et avantageusement de 1 à 9, les terpolymères radicalaires utilisant en plus un troisième monomère choisi par les monomères insaturés copolymérisables avec l'éthylène tels que l'acide acrylique, l'anhydride maléique, le méthacrylate de glycidyle. Ces copolymères souples peuvent aussi être des copolymères de l'éthylène avec des alpha-oléfines de 3 à 8 atomes de carbone tels que les EPR, les copolymères de très basse densité de l'éthylène avec du butène de l'hexène ou de l'octène de densité comprise entre O.δόO et 0.910 g/cm3 obtenues par catalyse metallocène ou Ziegler - Natta. Par polyoléfines souples, nous entendons également les mélanges de 2 ou plusieurs polyoléfines souples.
L'invention est particulièrement utile pour les copolymères de l'éthylène et des (méth)acrylates d'alkyle. L'alkyle peut avoir jusqu'à 24 atomes de carbone. De préférence les (méth)acrylates sont choisis parmi ceux cités plus haut. Ces copolymères comprennent avantageusement jusqu'à 40 % en poids de (méth)acrylate et de préférence 3 à 35 %. Leur MFI est avantageusement compris entre 0,1 et 50 (à 1900C - 2,16 kg). S'agissant du monomère insaturé il peut être par exemple un anhydride d'acide carboxylique insaturé. L'anhydride d'acide carboxylique insaturé peut être choisi par exemple parmi les anhydrides maléique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-T<,2- dicarboxylique, 4 — méthylènecyclohex-4-ène-l ,2-dicarboxylique, bicyclo(2,2,l )hept-5-ène-2,3-dicarboxylique, et x — méthylbicyclo(2,2,l )hept-5-ène-2,2-dicarboxylique. On utilise avantageusement l'anhydride maléique.
On ne sortirait pas du cadre de l'invention en remplaçant tout ou partie de l'anhydride par un acide carboxylique insaturé tel que par exemple l'acide (méth)acrylique.
Le monomère peut être aussi un époxyde insaturé du type ester ou éther de glycidyie aliphatique, tel que l'allylglycidyléther, le vinylglycidyléther, le maléate et l'itaconate de glycidyie, l'acrylate et le méthacrylate de glycidyie. Avantageusement les troncs en polyoléfine sur lesquels sont attachés les restes de X sont des polyéthylènes greffés par X ou des copolymères de l'éthylène et de X qu'on obtient par exemple par polymérisation radicalaire.
On utilise avantageusement les copolymères éthylène-anhydride maléique et éthylène - (méth)acrylate d'alkyle - anhydride maléique. Ces copolymères comprennent de 0,2 à 10 % en poids d'anhydride maléique, de 0 à 40 % et de préférence 5 à 40 % en poids de (méth)acrylate d'alkyle. Leur MFI est compris entre 5 et 100 (190°C - 2, 16 kg). Les (méth)acrylates d'alkyle ont déjà été décrits plus haut. La température de fusion est comprise entre 60 et 100 C.
S'agissant des motifs polyéthers à extrémité aminé, ou polyétheramines, il s'agit de préférence de monoamines, mais aussi de polyamines, ayant une masse moléculaire comprise entre environ 100 et 12 000 g/mol ; les blocs polyéthers de ces polyétheramines, sont des produits d'addition d'éthers cycliques tels que l'oxyde d'éthylène (EO), l'oxyde de propylène (PO) ou leurs mélanges à des glycols choisis notamment parmi le groupe constitué de l'éthylène glycol, le glycérol, le 1,2-propane diol, et le pentaérythritol.
On utilise de préférence les blocs polyéthers de type polyéthylène glycol (PEG), polypropylène glycol (PPG), copoiymères de polyéthylène glycol et de polypropylène glycol, poly(1 ,2- butylène glycol) et poly(tétraméthylène glycol) (PTMG).
Les polyétheramines utilisées, selon l'invention, peuvent être obtenues selon des procédés d'amination bien connus, tels que décrits notamment dans les brevets US 3.654.370, US 4.152.353, US 4.618.717 et US 5.457.147.
On utilise de préférence des motifs ou blocs polyéther du type copolymères de polyéthylène glycol et de polypropylène glycol mono- amine, sous forme de segments courts (Mn comprise entre 100 et 10 000 g/mole et de préférence entre 250 et 5000 g/mole) ; de tels composés polyéther mono-amines sont décrits en particulier dans les brevets WO 98/51742 et US 6.465.606, dont le contenu est incorporé dans la présente demande. Toutefois, d'autres polyéthers tels que le polypropylène glycol (PPG) ou le polytétraméthylène glycol (PTMG) ou leurs copolymères ou leurs mélanges, peuvent aussi être utilisés.
L'addition des motifs de polyéther monoaminé sur le tronc de polyoléfine contenant X s'effectue par réaction d'une fonction aminé du polyéther avec X. Avantageusement lorsque X porte une fonction anhydride ou acide, on crée ainsi des jonctions imides ou amides.
Avantageusement il y a en moyenne entre 0.1 et 25 % en poids de X par chaîne attachés sur le tronc en polyoléfine. L'homme de métier peut déterminer facilement par analyse IRTF ces quantités.
On réalise l'addition du polyéther à extrémité aminé sur le tronc de polyoléfine contenant X de préférence à l'état fondu. On peut ainsi, dans une extrudeuse, malaxer le polyéther et le tronc à une température généralement comprise entre 150 et 300°C. Les rapports en poids des quantités de polyéther à extrémité aminé et de polyoléfine fonctionnalisée introduites en mélange, sont compris entre 1 /99 et 80/20, et de préférence entre 20/80 et 50/50.
S'agissant de la polyoléfine qui peut être mélangée à la polyoléfine fonctionnalisée greffée par des motifs polyéthers de l'invention, on peut utiliser tout type de polyoléfine tel que décrit ci- dessus pour le tronc en polyoléfine ; en particulier des copolymères d'éthylène et de (méth)acrylate d'alkyle sont particulièrement appropriés.
Les compositions de l'invention peuvent être préparées par mélange à l'état fondu dans des extrudeuses (mono ou bi vis), des co- malaxeurs BUSS, des mélangeurs internes et en général les dispositifs habituels de mélange des thermoplastiques et de préférence les extrudeuses bivis co-rotatives.
Les compositions de l'invention peuvent être préparées en une étape dans une extrudeuse. Dans les premières zones on introduit la polyoléfiπe fonctionnalisée (par exemple un copolymère éthylène- (meth)acrylate d'alkyle-anhydride maleique), puis le polyéther à extrémité aminé.
Le temps de séjour moyen de la matière fondue dans l'extrudeuse peut être compris entre 5 secondes et 10 minutes, et de préférence entre 10 et 60 secondes. Le rendement de cette addition est évalué par extraction sélective des polyéthers libres c'est-à-dire ceux qui n'ont pas réagi pour former le copolymère greffé à blocs polyéthers final.
Avantageusement la proportion de blocs polyéthers greffés est d'environ 50 % de la quantité introduite.
Les compositions de l'invention peuvent comprendre aussi divers additifs, en particulier des agents glissants tels que de la silice, de IHN'- éthylène-bis amide, du stéarate de calcium ou du stéarate de magnésium. Ils peuvent aussi comprendre des antioxydants, des anti- U.V., des charges minérales, des pigments de coloration.
Exemples :
A : synthèse des polyoléfines fonctionnalisées greffées par des polyéthers par extrusîon réactive Exemple Al
Le Lotader® 3210 d'ARKEMA, terpolymère d'éthylène, avec 6 % en poids d'acrylate de butyle et 3 % en poids d'anhydride maleique, de melt index ou MFI égal à 5 g/10 min (mesuré à 190°C sous 2,16 kg) est mélangé dans une extrudeuse bivis co-rotative Werner et Pfleiderer de 30 mm de diamètre, équipée de plusieurs zones de malaxage, avec une vitesse de vis de 300 rpm, un profil de température plat à 240°C, avec vide, avec un polyéther à terminaison aminé Jeffamine M2070 de Huntsmann, de masse moléculaire Mn de 2000 g/mole, rapport molaire d'unités oxyde d'éthylène/ oxyde de propylène de 31 /10 et de Tf 17°C. Le débit total est de 15,4 kg/h. Les proportions introduites dans l'extrudeuse sont telles que le rapport pondéral terpolymère/ polyéther est de 65/35 ; cette quantité correspondant à la stoéchiométrie Anhydride /aminé.
Le produit obtenu a un MFI de 3,8g/10 min (à 1900C sous 2,16 kg), et le taux de polyéther greffé, mesuré par spectroscopie infra rouge à transformée de Fourrier est sensiblement la moitié de celui du polyéther introduit.
Exemple A2
On reproduit une réaction de greffage dans des conditions d'extrusion similaires à celles de l'exemple 1 , sauf pour le profil de température qui est de 22O0C plat, avec la même polyétheramine, et avec le terpolymère Lotader® 3410 d'ARKEMA, qui est un terpolymère d'éthylène, avec 18 % en poids d'acrylate de butyle et 3 % en poids d'anhydride maléique, de melt index ou MFI égal à 5g/10 min (mesuré à 1900C sous 2, 16 kg).
Le produit ainsi réalisé a un MFI de 4,7 g/10 min (à 1900C sous 2,16 kg),
Exemple A3
On reproduit une réaction de greffage dans des conditions d'extrusion similaires à celles de l'exemple 2, avec le terpolymère
Lotader® 6200 de d'ARKEMA, terpolymère d'éthylène, avec 6 % en poids d'acrylate d'éthyle et 3 % en poids d'anhydride maléique, de melt index ou MFI égal à 40g/10 min (mesuré à 19O0C sous 2, 16 kg)
Le produit ainsi réalisé a un MFI de 33 g/10 min (à 1900C sous 2,16 kg),
Exemple A4
On reproduit une réaction de greffage dans des conditions d'extrusion similaire à celles de l'exemple 2 avec le terpolymère Lotader® 7500 d'ARKEMA, terpolymère d'éthylène, avec 18 % en poids d'αcrylαte d'éthyle et 3 % en poids d'anhydride maléique, de melt index ou MFI égal à 70g/l 0 min (mesuré à 190°C sous 2, 16 kg) .
Le produit ainsi réalisé est très fluide et a un MFI >150g/10 min (à 190°C sous 2,16 kg). Exemple A5
On reproduit une réaction de greffage dans des conditions d'extrusion similaires à celles de l'exemple 2, sauf pour le rapport terpolymère/ polyéther qui est en poids de 57/43 et pour le débit qui est de 12.8 kg/h, avec le terpolymère Lotader® 4210 d'ARKEMA, terpolymère d'éthylène, avec 6 % en poids d'acrylate de butyle et 3,7 % en poids d'anhydride maléique, de melt index au MFI égal à 13.5g/10 min (mesuré à 190°C sous 2, 16 kg) .
Le produit ainsi réalisé a un MFI de 20 g/10 min (à 190°C sous 2,16 kg), Les résultats sont rassemblés dans le tableau 1 ci-dessous.
Tableau 1
B. Dilution des polymères obtenus en A en ligne et réalisation de films par extrusion cast
Les matériaux préparés dans les exemples Al à A2 sont ensuite dilués en ligne avec le Lotryl®! 8MG02 de la société ARKEMA, qui est un copolymère éthylène/acrylate de méthyle avec 18 % en poids d'acrylate, de melt index ou MFI égal à 2g/10 min (mesuré à 19O0C sous 2,16 kg), pour obtenir les compositions Bl à B8, qui sont mises en forme de films par la technique d'extrusion-cast à l'aide de la ligne Collin équipée d'une extrudeuse mono vis de diamètre 30 mm et de longueur égale à 30 fois le diamètre (sans éléments de malaxage), d'une filière de 250 mm de large avec une ouverture de lèvre de 300 μm et d'un feed block Collin. La température dans l'extrudeuse, la filière et le feed block est constante à 210°C.
Le tableau 2 ci-dessous regroupe les compositions Bl à B8 des films d'environ 100 μm d'épaisseur, obtenus à partir des polymères des exemples Al et A2, dilués dans les conditions ci-dessus, avec la valeur des taux théoriques en poids de polyétheramine (Jeffamine M2070) introduits. La composition B9 correspond au produit A2 non dilué.
Tableau 2
C. Perméabilité à la vapeur d'eau des films obtenus
Les valeurs de perméabilité à la vapeur d'eau mesurées sur les films obtenus, selon la norme ASTM 96E, méthode BW (38°C / 50 % Humidité Relative), rapportée à un film de 25 μm d'épaisseur) sont rassemblées dans le tableau 3 ci-dessous.
Tableau 3
On peut constater que les résultats dans le tableau ci-dessus montrent :
- que la perméabilité à la vapeur d'eau est contrôlée d'abord par le taux de PEG dans le matériau et que cette perméabilité est d'autant plus grande que le matériau est plus riche en PEG, et
- que la perméabilité à la vapeur d'eau est contrôlée ensuite par la nature de la polyoléfine fonctionnalisée greffée et que cette perméabilité est d'autant plus grande que la polyoléfine de départ est plus riche en monomère acrylique donc plus amorphe.

Claims

REVENDICATIONS
1. Structure, notamment film sous toiture ou film pour le bardage, comprenant un substrat et au moins une première couche appliquée sur le substrat, ladite première couche étant obtenue à partir d'une composition thermoplastique comprenant au moins une polyoléfine fonctionnalisée obtenue soit par copolymérisation, soit par greffage, d'un tronc en polyoléfine par un monomère insaturé comportant une fonction anhydride, acide ou époxyde, ladite polyoléfine fonctbnnalisée étant greffée par des motifs polyéthers à extrémité aminé, par extrusion réactive, comme matériau imper- respirant ayant des propriétés de perméabilité à la vapeur d'eau d'au moins 300 g/m2.24 h mesurée selon la norme ASTM E96, méthode BW (38°C/50 % Humidité Relative), rapportée à un film de 25 μm.
2. Structure selon la revendication 1 , caractérisée en ce que le support est choisi parmi un non-tissé en matériau fibreux, notamment un non-tissé en polypropylène, un matériau textile et un mat discontinu de fibres naturelles ou synthétiques.
3. Structure selon la revendication 1 ou 2, caractérisée en ce que le tronc en polyoléfine de la polyoléfine fonctionnalisée est un copolymère d'éthylène et de (méth)acrylate d'alkyle, celui-ci étant de préférence choisi parmi le (méth)acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate d'octyle et l'acrylate de 2-éthylhexyle.
4. Structure selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le greffage de la polyoléfine fonctionnalisée par des motifs polyéthers est obtenu par réaction de sa fonction anhydride, acide ou époxyde, avec un polyéther à extrémité aminé tel qu'un polyoxyalkylèneglycol, notamment le polyoxyéthylène glycol, ayant au moins une extrémité de chaîne de type aminé.
5. Structure selon l'une quelconque des revendications 1 à A1 caractérisée en ce que la fonction anhydride du monomère insaturé est présente sous forme d'un anhydride d'acide dicarboxylique insaturé, de préférence choisi parmi l'anhydride maléique, l'anhydride itaconique, l'anhydride citraconique et l'anhydride tétrahydrophtalique.
6. Structure selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la fonction époxyde du monomère insaturé est présente sous forme d'un époxyde insaturé du type ester de glycidyle aliphatique, tel qu'en particulier le méthacrylate de glycidyle (GMA).
7. Utilisation d'une composition thermoplastique comprenant au moins une polyoléfine fonctionnalisée obtenue soit par copolymérisation, soit par greffage, d'un tronc en polyoléfine par un monomère insaturé comportant une fonction anhydride, acide ou époxyde, ladite polyoléfine fonctionnalisée étant greffée par des motifs polyéthers à extrémité aminé, par extrusion réactive, comme matériau imper-respirant ayant des propriétés de perméabilité à la vapeur d'eau d'au moins 300 g/m2.24 h mesurée selon la norme ASTM E96, méthode BW (38°C/50 % Humidité Relative), rapportée à un film de 25 μm.
8. Utilisation selon la revendication 7, caractérisée en ce que le tronc en polyoléfine de la polyoléfine fonctionnalisée est un copolymère d'éthylène et de (méth)acrylate d'alkyle, celui-ci étant de préférence choisi parmi le (méth)acrylate de méthyle, l'acrylate
5 d'éthyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate d'octyle et l'acrylate de 2-éthylhexyle.
9. Utilisation selon la revendication 7 ou 8, caractérisée en ce que le greffage de la polyoléfine fonctionnalisée par des motifs polyéthers
10 est obtenu par réaction de sa fonction anhydride, acide ou époxyde, avec un polyéther à extrémité aminé tel qu'un polyoxyalkylèneglycol ayant au moins une extrémité de chaîne de type aminé.
15 10. Utilisation selon la revendication 9, caractérisée en ce que le polyoxyalkylèneglycol est choisi parmi le polyoxyéthylène glycol (PEG), le polyoxypropylène glycol (PPG), le polyoxytétraméthylène glycol (PTMG), des copolymères d'oxyde d'éthylène, d'oxyde de propylène et de tétrahydrofurane, et des mélanges de ceux-ci. 0
11. Utilisation selon l'une quelconque des revendications 7 à 10, caractérisée en ce que la fonction anhydride du monomère insaturé est présente sous forme d'un anhydride d'acide dicarboxylique insaturé, qui est de préférence choisi parmi 5 l'anhydride maléique, l'anhydride itaconique, l'anhydride citraconique et l'anhydride tétrahydrophtalique.
12. Utilisation selon l'une quelconque des revendications 7 à 1 1 , caractérisée en ce que la polyoléfine fonctionnalisée est un 0 copolymère d'éthylène, d'acrylate d'éthyle ou d'acrylate de n- butyle, dont la teneur est comprise entre 2 é 40 % en poids du copolymère, et d'anhydride maléique dont la teneur est comprise entre 0.2 et 6 % en poids du copolymère.
13. Utilisation selon l'une quelconque des revendications 7 à 10, caractérisée en ce que la fonction époxyde du monomère insaturé est présente sous forme d'un époxyde insaturé du type ester de glycidyle aliphatique, tel qu'en particulier le méthacrylate de glycidyle (GMA).
14. Utilisation selon l'une quelconque des revendications 7 à 13, caractérisée en ce que la composition thermoplastique comprend en outre en mélange une autre polyoléfine, notamment un copolymère éthylène/(méth)acrylate d'alkyle.
15. Utilisation selon l'une quelconque des revendications 7 à 14, caractérisée en ce que la composition thermoplastique est appliquée à l'état fondu, sur une ligne d'extrusion-cast, à une température d'au moins 120°C pour former un film ayant une épaisseur minimale de 5 μm.
16. Utilisation selon l'une quelconque des revendications 7 à 14, caractérisée en ce que la composition thermoplastique est appliquée à l'état fondu, sur une ligne d'extrusion-couchage, sur un substrat, tel qu'un non-tissé pour former un complexe de grammage d'au moins 5g/m2.
EP07731630A 2006-02-16 2007-02-15 Structure obtenue a partir d'une composition thermoplastique a base de polyolefine fonctionnalisee greffee par des motifs polyethers et utilisation d'une telle composition Withdrawn EP1984446A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0601353A FR2897356B1 (fr) 2006-02-16 2006-02-16 Utilisation de compositions thermoplastiques a base de polyolefines fonctionnalisees greffees par des motifs polyethers pour realiser des materiaux imper-respirants et leurs applications
PCT/FR2007/050805 WO2007093745A2 (fr) 2006-02-16 2007-02-15 Structure obtenue a partir d'une composition thermoplastique a base de polyolefine fonctionnalisee greffee par des motifs polyethers et utilisation d'une telle composition

Publications (1)

Publication Number Publication Date
EP1984446A2 true EP1984446A2 (fr) 2008-10-29

Family

ID=36582073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07731630A Withdrawn EP1984446A2 (fr) 2006-02-16 2007-02-15 Structure obtenue a partir d'une composition thermoplastique a base de polyolefine fonctionnalisee greffee par des motifs polyethers et utilisation d'une telle composition

Country Status (9)

Country Link
US (1) US7820562B2 (fr)
EP (1) EP1984446A2 (fr)
JP (1) JP2009526934A (fr)
KR (1) KR20080100442A (fr)
CN (1) CN101421349B (fr)
CA (1) CA2641435C (fr)
FR (1) FR2897356B1 (fr)
MY (1) MY151095A (fr)
WO (1) WO2007093745A2 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354871B1 (ko) * 2006-03-10 2014-01-22 미쓰비시 가가꾸 가부시키가이샤 수지 분산체, 도료, 적층체 및 그 제조 방법
JP2007270122A (ja) * 2006-03-10 2007-10-18 Mitsubishi Chemicals Corp 樹脂分散体、塗料、積層体及びその製造方法
JP2008138090A (ja) * 2006-12-01 2008-06-19 Mitsubishi Chemicals Corp 水性樹脂分散体、これを含有してなる塗料、接着剤、積層体及びその製造方法
JP2008260887A (ja) * 2007-04-13 2008-10-30 Yokohama Rubber Co Ltd:The 熱可塑性エラストマーおよび熱可塑性エラストマー組成物
WO2009050203A1 (fr) * 2007-10-15 2009-04-23 Revolymer Limited Synthèse sans solvant de matériau polymère amphiphile
FR2938262B1 (fr) * 2008-11-13 2010-11-19 Arkema France Fabrication de copolymeres ethylene/acide carboxylique a partir de matieres renouvelables, copolymeres obtenus et utilisations
US20130029550A1 (en) * 2010-03-25 2013-01-31 Ibco Srl Breathable coated fabric
FR2958939B1 (fr) * 2010-04-14 2013-08-09 Arkema France Film imper-respirant a base de copolymere d'ethylene
ES2592530T3 (es) 2011-06-17 2016-11-30 Fiberweb, Llc Artículo de múltiples capas permeable al vapor, sustancialmente impermeable al agua
DK2723568T3 (en) 2011-06-23 2017-10-23 Fiberweb Llc Vapor permeable, essentially all water impermeable, multilayer
US10369769B2 (en) 2011-06-23 2019-08-06 Fiberweb, Inc. Vapor-permeable, substantially water-impermeable multilayer article
WO2012178011A2 (fr) 2011-06-24 2012-12-27 Fiberweb, Inc. Article multicouches perméable à la vapeur d'eau, mais essentiellement imperméable à l'eau
US10208168B2 (en) * 2011-10-25 2019-02-19 Kraton Polymers U.S. Llc Polyoxyalkyleneamine modified sulfonated block copolymers, their preparation and their use
FR2992651B1 (fr) * 2012-06-27 2015-07-17 Arkema France Utilisation d'un alliage d'amidon thermoplastique et de pof pour la fabrication d'un film ultra-fin imper-respirant adhesif.
FR2992652B1 (fr) 2012-06-27 2014-06-20 Arkema France Utilisation d'un alliage d'amidon thermoplastique et de tpe pour la fabrication d'un film ultra-fin imper-respirant adhesif.
AU2013286544B2 (en) * 2012-07-06 2016-07-28 Firestone Building Products Co., LLC Thermoplastic membranes including polymer with isocyanate-reactive functionality
US9293617B2 (en) * 2012-12-10 2016-03-22 Honeywell International Inc. Copolymer of phase change material for thermal management of PV modules
FR3065738B1 (fr) 2017-04-26 2020-03-13 Decathlon Filament ou fibre absorbant les gaz acides et/ou basiques, procede de fabrication d'un tel filament ou d'une telle fibre, article textile comprenant un tel filament ou une telle fibre
US10654979B2 (en) * 2017-08-18 2020-05-19 Becton, Dickinson And Company Amphiphilic graft copolymers
FR3108911B1 (fr) * 2020-04-07 2023-06-30 Arkema France Composition de polymères pour films imper-respirants

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2639644A1 (fr) * 1988-11-25 1990-06-01 Atochem Film elastomere thermoplastique permeable a la vapeur d'eau a base de polyetheresteramide, son procede de fabrication et articles comprenant un tel film
AU671617B2 (en) * 1992-03-13 1996-09-05 Mcneil-Ppc, Inc. Bicomponent polymeric films containing block poly(ether-co-amides)
FR2716886B1 (fr) * 1994-03-04 1996-04-26 Atochem Elf Sa Composition de résines thermoplastiques.
FR2721320B1 (fr) * 1994-06-20 1996-08-14 Atochem Elf Sa Film imper-respirant.
JP3747111B2 (ja) * 1997-03-26 2006-02-22 三井化学株式会社 複合シート
EP0981582A1 (fr) * 1997-05-12 2000-03-01 Huntsman Petrochemical Corporation Polyolefine contenant une polyolefine fonctionnalisee modifiee par polyetheramine
US6093496A (en) * 1998-05-12 2000-07-25 Huntsman Petrochemical Corporation Polyolefin containing polyetheramine modified functionalized polyolefin
FR2866891B1 (fr) * 2004-02-27 2006-05-26 Arkema Compositions thermoplastiques de copolymeres d'ethylene greffes par des motifs polyethers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007093745A2 *

Also Published As

Publication number Publication date
FR2897356A1 (fr) 2007-08-17
CA2641435A1 (fr) 2007-08-23
JP2009526934A (ja) 2009-07-23
CN101421349A (zh) 2009-04-29
WO2007093745A3 (fr) 2008-03-20
KR20080100442A (ko) 2008-11-18
CA2641435C (fr) 2012-07-10
MY151095A (en) 2014-04-15
CN101421349B (zh) 2011-11-09
US20090092816A1 (en) 2009-04-09
US7820562B2 (en) 2010-10-26
FR2897356B1 (fr) 2012-07-13
WO2007093745A2 (fr) 2007-08-23

Similar Documents

Publication Publication Date Title
CA2641435C (fr) Structure obtenue a partir d&#39;une composition thermoplastique a base de polyolefine fonctionnalisee greffee par des motifs polyethers et utilisation d&#39;une telle composition
CA2393742C (fr) Melanges de copolymeres greffes a blocs polyamides et de polyolefines souples
EP2115040B1 (fr) Composition thermoplastique souple a tenue aux huiles amelioree et utilisation d&#39;une telle composition
EP1283227B1 (fr) Polypropylène greffé sur base de polypropylène isotactique obtenu par catalyse métallocène
EP2167581B1 (fr) Melanges et compositions elastomeres thermoplastiques a proprietes ameliorees, procede de fabrication des compositions et applications
EP1311592B1 (fr) Film imper-respirant
EP0842969A1 (fr) Matériau comprenant un polyamide, un polymère bloc polyamide-polyéther et une polyoléfine fonctionnalisée, films et objets obtenus à partir de celui-ci
EP1459885B1 (fr) Structure multicouche à base de polyamides et de copolymères greffés à blocs polyamides
EP2079801B1 (fr) Composition resistant au choc a base de resine polyamide et d&#39;un melange d&#39;au moins un copolymere greffe a blocs polyamides et de polymere ethylenique basse densite
FR2788528A1 (fr) Composition a base d&#39;un copolymere de l&#39;ethylene et de l&#39;alcool vinylique et son utilisation
EP1299437A1 (fr) Polypropylene syndiotactique greffe et liants de coextrusion a base de polypropylene syndiotactique
EP2167556B1 (fr) Melange de copolymeres greffes a blocs polyamide et d&#39;elastomeres formules avec un systeme de reticulation ou vulcanisation
EP1022309A1 (fr) Composition à base d&#39;un copolymère de l&#39;éthylène et de l&#39;alcool vinylique et son utilisation
EP1198515A1 (fr) Compositions a base d&#39;un copolymere de l&#39;ethylene et de l&#39;alcool vinylique et de polypropylene
FR2866891A1 (fr) Compositions thermoplastiques de copolymeres d&#39;ethylene greffes par des motifs polyethers
EP1311568A1 (fr) Compatibilisant a base de polyolefine a greffons polyamide et melanges comprenant ce compatibilisant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080804

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081218

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150130