EP1979608B1 - Anordnung zum hochspannungsseitigen erfassen eines messsignals, insbesondere eines dem ionenstrom zwischen den elektroden einer zündkerze einer brennkraftmaschine entsprechenden signals - Google Patents

Anordnung zum hochspannungsseitigen erfassen eines messsignals, insbesondere eines dem ionenstrom zwischen den elektroden einer zündkerze einer brennkraftmaschine entsprechenden signals Download PDF

Info

Publication number
EP1979608B1
EP1979608B1 EP06793455.4A EP06793455A EP1979608B1 EP 1979608 B1 EP1979608 B1 EP 1979608B1 EP 06793455 A EP06793455 A EP 06793455A EP 1979608 B1 EP1979608 B1 EP 1979608B1
Authority
EP
European Patent Office
Prior art keywords
resistor
arrangement according
secondary winding
transformer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06793455.4A
Other languages
English (en)
French (fr)
Other versions
EP1979608B8 (de
EP1979608A1 (de
Inventor
Tycho Weissgerber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulse Electronics GmbH
Original Assignee
Pulse GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulse GmbH filed Critical Pulse GmbH
Publication of EP1979608A1 publication Critical patent/EP1979608A1/de
Publication of EP1979608B1 publication Critical patent/EP1979608B1/de
Application granted granted Critical
Publication of EP1979608B8 publication Critical patent/EP1979608B8/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/12Ignition, e.g. for IC engines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means

Definitions

  • the invention relates to an arrangement for high-voltage side detection of a broadband measurement signal, in particular a signal corresponding to the ion current between the electrodes of a spark plug of an internal combustion engine.
  • the arrangement has at least one first current path, in which at least the secondary winding of the ignition transformer is arranged, and a second current path, in which at least the spark gap formed by at least two electrodes of a spark plug is arranged.
  • the combustion process of a gasoline-air mixture in internal combustion engines is initiated by a spark generated by a high voltage applied between two electrodes of a spark plug.
  • a spark generated by a high voltage applied between two electrodes of a spark plug.
  • a breakdown voltage is between the Electrodes generated as a result of an arc discharge an arc, which is also referred to as a spark.
  • arc discharge by the resulting during the discharge of UV radiation and by the combustion process of the gasoline-air mixture, a chemical and thermal ionization, and it will be generated in the combustion chamber charge carriers, which even after the arc in the area between the electrodes Spark plug are available.
  • the number and distribution of these charge carriers is particularly dependent on the internal pressure in the cylinder and the combustion process itself.
  • radicals are atoms and molecules with at least one unpaired electron, which usually have a high reactivity. Due to this reactivity, radicals usually only exist for a very short time.
  • the reaction sequence can be measured as a current flow. This reaction process is very fast.
  • the ion current generated between the electrodes contains high frequency components.
  • a broadband measurement signal must be determined.
  • the evaluation circuit is arranged in series with the secondary coil, whereby the secondary coil acts as a low-pass filter. As a result, not all frequency components of the ionic current can be determined and evaluated. Furthermore, in known systems, the measurement circuit affects the available spark energy.
  • the object of the invention is to provide an arrangement in which a broadband measurement signal determined in a simple manner high voltage side and at the energy available for generating the arc is not or only slightly reduced.
  • the arrangement with the features of claim 1 ensures that the electrodes of the spark plug, a relatively large amount of energy for generating the arc can be supplied while measuring ion currents and other high-frequency signal components precise high-voltage side.
  • An irregular fuel combustion in internal combustion engines which is also referred to as knocking, can be reliably detected by this arrangement in the entire speed-load range of an internal combustion engine, since the available measurement bandwidth is certainly greater than the acoustic resonance frequency of the combustion chamber.
  • knocking can be reliably detected by this arrangement in the entire speed-load range of an internal combustion engine, since the available measurement bandwidth is certainly greater than the acoustic resonance frequency of the combustion chamber.
  • the measuring voltage is provided, for example, by means of a capacitor which is charged by the high voltage generated by means of the ignition transformer, only relatively little energy is withdrawn for generating the measuring voltage.
  • the decoupling of the measuring circuit from the secondary coil preferably uses a diode which is present in known circuit arrangements and serves there to suppress the switch-on pulse. In the suppression of the switch-on pulse, a secondary-side high voltage is prevented as a result of the primary-side connection of the supply voltage.
  • a second aspect of the invention relates to a further arrangement for high-voltage side detection of a broadband measurement signal, in particular a signal corresponding to the ion current between the electrodes of a spark plug of an internal combustion engine.
  • the arrangement has three parallel current paths, wherein at least the secondary winding of an ignition transformer and in the second current path at least the spark gap formed by at least two electrodes of the spark plug are arranged in the first current path.
  • at least one measuring resistor is arranged in the third current path. At least in a range between the connection of the secondary winding and the measuring resistor is used at least a portion of a transformer core of the ignition transformer as an electrical conductor.
  • Fig. 1 a circuit diagram of a known circuit arrangement for generating a Züllingtbogens, the so-called spark, using a spark plug 10 is shown.
  • the high voltage required to generate the arc is generated by means of a transformer 20.
  • the transformer 20 has a primary winding 12 and a secondary winding 14, which are magnetically coupled together via an iron core 13.
  • One terminal of the primary winding 12 is permanently connected to the positive pole of the battery voltage Ubatt of a battery 16 of a motor vehicle.
  • the negative pole of the battery 16 is connected to the ground of the motor vehicle, which serves as a reference potential.
  • An electronic control unit 18 generates drive pulses for driving a power output stage formed by an IGBT power transistor and supplies these control pulses as a drive signal to a control terminal (gate) of the IGBT power transistor via a series resistor Rz.
  • the IGBT power transistor connects the second terminal of the primary winding 12 to the ground.
  • a first terminal of the secondary winding 14 is connected to the high voltage electrode of the spark plug 10.
  • Another electrode of the spark plug 10 is connected to the vehicle ground.
  • the two electrodes are arranged at a distance from each other and form a spark gap over which an arc is generated with the aid of the high voltage generated by the ignition transformer 20.
  • the second terminal of the secondary winding 14 is connected to a measuring circuit 22, which contains a power source 24 and a measuring resistor Rm.
  • the energy source 24 comprises a capacitor C1 and a varistor ZPD arranged parallel to the capacitor C1.
  • the power source 24, the measuring resistor Rm, the secondary winding 14 and the spark gap of the spark plug 10 are connected in series and form a closed circuit via the vehicle ground.
  • the control unit 18 generates a drive signal, by which the IGBT power transistor connects the second terminal of the primary winding 12 to ground, so that a closed circuit is formed, through which the battery voltage Ubatt is applied to the primary winding 12.
  • a primary current flows through the primary winding 12.
  • This primary current generates a magnetic field, by which a magnetic flux is generated.
  • the magnetic field builds up after the primary current flows, the magnetic flux caused by the magnetic field changes.
  • the change in the magnetic flux induces a voltage in the secondary winding 14.
  • This induced voltage is applied to the electrodes of the spark plug 10. If the induced voltage is small enough, ie, as long as the induced voltage has not reached the required breakdown voltage of the spark plug 10, no spark is generated.
  • the inserted diode D1 prevents the voltage induced in the secondary winding 14 at all applied to the electrodes of the spark plug 10, whereby a spark when switching on the primary winding 12 regardless of the height of the induced voltage is reliably prevented.
  • the controller 18 drives the IGBT power transistor to disconnect the ground and primary winding 12. Due to the separation, the primary current flowing through the primary winding 12 is interrupted abruptly, whereby the magnetic field caused by the primary current collapses. The magnetic flux in the magnetic circuit of the ignition transformer 20 is thereby rapidly changed relatively strong. This change in the magnetic flux causes the induction of a high voltage in the secondary winding 14, whereby the voltage applied between the electrodes of the spark plug 10 exceeds the breakdown voltage of the spark plug 10 and causes a high voltage discharge.
  • the voltage drop across the varistor ZPD determines the charging voltage of the capacitor C1. Furthermore, the measuring resistor Rm and the varistor ZPD affect the current flow in the secondary circuit during the application of the high voltage, whereby the energy available for generating the arc in the secondary circuit is considerably reduced.
  • the power source 24 feeds the secondary circuit, whereby a current flows through the secondary winding 14 via the electrodes of the spark plug 10, the ground connection of the motor vehicle and the measuring resistor Rm.
  • the voltage drop generated thereby via the measuring resistor Rm an ion current present between the electrodes of the spark plug 10 can be detected.
  • the secondary circuit serves as a measuring circuit.
  • the secondary winding 14 of the transformer 20 is arranged in series with the measuring resistor Rm and the spark gap of the spark plug 10. Due to the inductance of the secondary winding 14, short-term, ie relatively high-frequency, fluctuations of the charge carriers present between the electrodes of the spark plug 10, in particular of the ion current, do not become effective at the measuring resistor Rm.
  • the secondary winding 14 thus serves as a low-pass filter, whereby only a relatively narrowband signal of the ion current between the electrodes of the spark plug 10 is available. The signal thus only reflects low-frequency changes in the ion current.
  • Fig. 2 a circuit diagram of a circuit arrangement according to a first embodiment of the invention is shown. Like elements have the same reference numerals.
  • the primary-side wiring of the transformer 20 agrees with the in Fig. 1 shown wiring.
  • the secondary circuit ie the high-voltage circuit, has three parallel current paths, the secondary winding 14 of the transformer 20 being arranged in the first current path, and the energy source 24 and the spark gap formed by the electrodes of the spark plug 10 being arranged in the second current path.
  • a voltage divider formed from three resistors R1, R2 and Rm is arranged.
  • the iron core 13 of the ignition transformer 20 is used as an electrical conductor for connecting the resistors R1 and R2.
  • the iron core 13 thus forms a portion of the third current path.
  • a diode D1 is arranged in series with the secondary winding 14, which conducts current through the already associated with Fig. 1 described switch-on prevents.
  • the diode D1 prevents current flow through the first path when, with the aid of the power source 24, a measuring voltage is applied in a measuring circuit formed by the spark plug 10 electrodes and the voltage divider formed by the resistors R1, R2 and Rm.
  • the measuring circuit is thus decoupled by means of the diode D1 from the secondary winding 14, so that the secondary winding 14, in contrast to the in Fig. 1 shown circuit arrangement does not act as a low-pass filter.
  • the voltage divider formed by the resistor R1 and the total resistance of the resistors R2 and Rm sets the potential of the iron core 13 of the transformer 20 during the application of the high voltage in the secondary circuit.
  • the sum of the resistors R1, R2 and Rm should be ⁇ 1 megohm to reduce the current flow across this third current path, thus providing the spark plug 10 with sufficient energy to generate the arc.
  • the resistance of the sum of the resistors R1, R2 and Rm is in the range of 10 to 100 megohms, and the resistance of the resistor R1 may be 0 ohms, as hereinafter FIG. 3 explained.
  • the potential of the iron core 13 can be easily adjusted.
  • the resistors R1 and the total resistance of the resistors R2 and Rm can be made the same size, so that the iron core 13 has approximately a high voltage potential, which corresponds to a floating core in the prior art.
  • the measurement signal can be simply passed from one end of the iron core 13 to the other end of the iron core 13 via the iron core 13 serving as an electrical conductor, thereby providing a simple structural design of the bar transformer is possible without requiring additional signal lines for conducting the measurement signal from one end of the bar transformer to the other end.
  • a circuit arrangement according to a second embodiment of the invention is shown, which is similar to the circuit arrangement according to Fig. 2 is.
  • circuit arrangement omitted in the circuit arrangement Fig. 3 the resistance R1, so that the iron core 13 has substantially the high voltage potential generated by the secondary winding 14.
  • the iron core 13 has a potential during an ignition process, which is compared to the high voltage potential of the secondary winding 14 by the voltage drop of the diode D1, that is reduced by 0.7 volts.
  • the iron core 13 then has the potential of the measurement voltage generated by the energy source 24.
  • diode D1 serves as decoupling means for decoupling the measuring circuit consisting of spark plug 10, voltage source 24, and resistors R2 and Rm or R1, R2 and Rm from secondary winding 14 during a current flow in the measuring circuit caused by voltage source 24.
  • the measuring signal is preferably conducted via a path parallel to the secondary winding 14.
  • the resistance values of the tension divider formed from the resistors R1 and the total resistance from the resistors R2 and Rm should be chosen so large that the capacitive coupling of the iron core 13 is maintained.
  • a resistive bobbin or coating of the iron core 13 or a portion of the iron core 13 may also be provided with a resistive material, i. with a resistive coating, whereby further constructive advantages are achieved.
  • the secondary-side high voltage is measured in the third branch directly via the ohmic voltage divider R1, R2, Rm or R2, Rm.
  • the inductance of the secondary coil 14 is not in the measuring branch and thereby does not act as a low-pass filter.
  • the measurable frequency components of the spark plug voltage which can be detected by means of the voltage drop across the measuring resistor Rm, are limited only by the capacitive coupling of the iron core 13 of the ignition transformer 20 and by the resistors of the voltage divider R1, R2, Rm and R2, Rm.
  • the bandwidth of the measured signal is essentially limited only by the capacitive coupling of the iron core 13 of the ignition transformer 20 and by the resistors of the voltage divider R1, R2, Rm and R2, Rm,
  • the in the Fig. 2 and 3 Circuit arrangements shown serve as measuring circuits by which the curves of the voltage applied between the electrodes of the spark plug 10 candle voltage can be precisely detected.
  • both the burning time, the burning voltage, the breakdown voltage and the rise in the spark plug voltage before the flashover, ie before the arc, between the electrodes of the spark plug 10 can be detected exactly.
  • Fig. 4 is a circuit diagram of another embodiment of a control of an evaluation circuit shown. Unlike the arrangements after Fig. 2 and 3 is in the first current path, a varistor VAR1 arranged, the additional one Voltage drop in the first current path causes. This voltage drop then causes a reduction of the spark plug 10 available ignition energy. Furthermore, the measuring signal via the measuring resistor Rm or the high voltage potential applied to the varistor VDR1, in particular in the case of bar transformers, has to be guided relatively costly to a connection region of the bar transformer.

Description

  • Die Erfindung betrifft eineAnordnung zum hochspannungsseitigen Erfassen eines breitbandigen Messsignals, insbesondere eines dem Ionenstrom zwischen den Elektroden einer Zündkerze einer Brennkraftmaschine entsprechenden Signals. Die Anordnung weist mindestens einen ersten Strompfad auf, in dem zumindest die Sekundärwicklung des Zündtransformators angeordnet ist, und einen zweiten Strompfad, in dem zumindest die durch mindestens zwei Elektroden gebildete Funkenstrecke einer Zündkerze angeordnet ist.
  • Der Verbrennungsvorgang eines Benzin-Luft-Gemisches in Brennkraftmaschinen, insbesondere in Ottomotormotoren, wird durch einen Zündfunken initiiert, der durch eine zwischen zwei Elektroden einer Zündkerze angelegte Hochspannung erzeugt wird. Beim Erreichen einer Durchbruchsspannung wird zwischen den Elektroden in Folge einer Lichtbogenentladung ein Lichtbogen erzeugt, der auch als Zündfunke bezeichnet wird. Durch die Lichtbogenentladung, durch die bei der Entladung entstehende UV-Strahlung und durch den Verbrennungsvorgang des Benzin-Luft-Gemisches erfolgt eine chemische und thermische Ionisation, und es werden im Brennraum Ladungsträger erzeugt, die auch nach Abriss des Lichtbogens im Bereich zwischen den Elektroden der Zündkerze vorhanden sind. Die Anzahl und Verteilung dieser Ladungsträger ist insbesondere vom Innendruck im Zylinder und vom Verbrennungsvorgang selbst abhängig.
  • Beim Verbrennungsvorgang wird eine thermisch-chemische Kettenreaktion eingeleitet, bei der neben den Ionen auch sogenannte Radikale gebildet werden. Als Radikale werden in der Chemie Atome und Moleküle mit mindestens einem ungepaarten Elektron bezeichnet, die meist eine hohe Reaktivität haben. Bedingt durch diese Reaktivität existieren Radikale meistens nur sehr kurze Zeit. Durch eine an die Elektroden der Zündkerze angelegte Spannung kann der Reaktionsablauf als Stromfluss gemessen werden. Dieser Reaktionsvorgang läuft sehr schnell ab. Dadurch beinhaltet der zwischen den Elektroden erzeugte Ionenstrom hohe Frequenzanteile. Um möglichst aufschlussreiche Informationen über den Verbrennungsvorgang zu erhalten, muss ein breitbandiges Messsignal ermittelt werden. Bei bekannten Messanordnungen ist die Auswerteschaltung in Reihe zur Sekundärspule angeordnet, wodurch die Sekundärspule als Tiefpassfilter wirkt. Dadurch können nicht alle Frequenzanteile des Ionenstroms ermittelt und ausgewertet werden. Ferner beeinträchtigt die Messschaltung bei bekannten Systemen die verfügbare Funkenenergie.
  • Aus dem Dokument WO 97/22803 A2 ist eine Anordnung zum hochspannungsseitigen Erfassen des breitbandigen Messsignals mit drei parallelen Strompfaden bekannt. Im ersten Strompfad ist die Sekundärwicklung eines Zündtransformators und im zweiten Strompfad die durch mindestens zwei Elektroden gebildete Funkenstricke der Zündkerze angeordnet. Im dritten Strompfad ist ein Messwiderstand angeordnet.
  • Aufgabe der Erfindung ist es, eine Anordnung anzugeben, bei der ein breitbandiges Messsignal auf einfache Weise hochspannungsseitig ermittelt und bei der die zum Erzeugen des Lichtbogens zur Verfügung stehende Energie nicht oder nur gering reduziert ist.
  • Diese Aufgabe wird durch eine Anordnung zum hochspannungsseitigen Erfassen eines breitbandigen Messsignals mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.
  • Durch die Anordnung mit den Merkmalen des Patentanspruchs 1 wird erreicht, dass den Elektroden der Zündkerze eine relativ große Energiemenge zum Erzeugen des Lichtbogens zugeführt werden kann und gleichzeitig Ionenströme und andere hochfrequente Signalanteile präzise hochspannungsseitig zu messen. Eine unregelmäßige Kraftstoffverbrennung bei Verbrennungsmotoren, die auch als Klopfen bezeichnet wird, kann durch diese Anordnung im gesamten Drehzahl-Last-Bereich eines Verbrennungsmotors sicher erfasst werden, da die verfügbare Messbandbreite sicher größer als die akustische Resonanzfrequenz des Brennraums ist. Dadurch steht auch beim Einsatz der hochspannungsseitigen Messschaltung im gesamten Drehzahl-Last-Bereich ausreichend Energie zum Einleiten einer sicheren Verbrennung zur Verfügung.
  • Wird die Messspannung beispielsweise mit Hilfe eines Kondensators bereitgestellt, der durch die mit Hilfe des Zündtransformators erzeugten Hochspannung geladen wird, wird nur relativ wenig Energie zum Erzeugen der Messspannung entzogen. Vorzugsweise wird zum Entkoppeh des Messstromkreises von der Sekundärspule eine in bekannten Schaltungsanordnungen vorhandene Diode, die dort zur Unterdrückung des Einschaltimpulses dient, genutzt. Bei der Unterdrückung des Einschaltimpulses wird eine sekundärseitige Hochspannung infolge des primärseitigen Zuschaltens der Versorgungsspannung verhindert.
  • Ein zweiter Aspekt der Erfindung betrifft eine weitere Anordnung zum hochspannungsseitigen Erfassen eines breitbandigen Messsignals, insbesondere eines dem Ionenstrom zwischen den Elektroden einer Zündkerze einer Brennkraftmaschine entsprechenden Signals. Die Anordnung hat drei parallele Strompfade, wobei im ersten Strompfad zumindest die Sekundärwicklung eines Zündtransformators und im zweiten Strompfad zumindest die durch mindestens zwei Elektroden gebildete Funkenstrecke der Zündkerze angeordnet sind. Im dritten Strompfad ist zumindest ein Messwiderstand angeordnet. Zumindest in einem Bereich zwischen dem Anschluss der Sekundärwicklung und dem Messwiderstand dient zumindest ein Abschnitt eines Transformatorkerns des Zündtransformators als elektrischer Leiter.
  • Durch diese Anordnung wird erreicht, dass ein breitbandiges Messsignal ermittelt werden kann, ohne dass die von der Sekundärspule des Zündtransförmators zum Erzeugen eines Lichtbogens mit Hilfe der Zündkerze bereitgestellte Energie nicht oder nur gering durch die Messschaltung reduziert ist, wobei eine platzsparende Anordnung der Elemente insbesondere dadurch möglich ist, dass der Transformatorkern als elektrischer Leiter genutzt wird.
  • Zum besseren Verständnis der vorliegenden Erfindung wird im Folgenden auf die in den Zeichnungen dargestellten bevorzugten Ausführungsbeispiele Bezug genommen, die an Hand spezifischer Terminologie beschrieben sind. Es wird jedoch darauf hingewiesen, dass der Schutzumfangder Erfindung dadurch nicht eingeschränkt werden soll, da derartige Veränderungen und weitere Modifizierungen an den gezeigten Vorrichtungen sowie derartige weitere Anwendungen der Erfindung, wie sie darin aufgezeigt sind, als übliches derzeitiges oder künftiges Fachwissen eines zuständigen Fachmanns angesehen werden. Die Figuren zeigen Ausführungsbeispiele der Erfindung, nämlich:
  • Fig. 1
    einen Stromlaufplan einer bekannten Schaltungsanordnung zum Erfassen eines Ionenstroms zwischen den Elektroden einer Zündkerze einer Brennkraftmaschine;
    Fig. 2
    den Stromlaufplan einer Schaltungsanordnung zum Erfassen eines breitbandigen Messsignals gemäß einer ersten Ausführungsform der Erfindung;
    Fig. 3
    einen Stromlaufplan einer Schaltungsanordnung zum Erfassen eines breitbandigen Messsignals gemäß einer zweiten Ausführungsform der Erfindung; und
    Fig. 4
    einen weiteren Stromlaufplan einer Schaltungsanordnung zum Erfassen eines Messsignals.
  • In Fig. 1 ist ein Stromlaufplan einer bekannten Schaltungsanordnung zum Erzeugen eines Zündlichtbogens, dem so genannten Zündfunken, mit Hilfe einer Zündkerze 10 gezeigt. Die zum Erzeugen des Lichtbogens erforderliche Hochspannung wird mit Hilfe eines Transformators 20 erzeugt wird. Der Transformator 20 hat eine Primärwicklung 12 und eine Sekundärwicklung 14, die über einen Eisenkern 13 magnetisch miteinander gekoppelt sind. Ein Anschluss der Primärwicklung 12 ist permanent mit dem Pluspol der Batteriespannung Ubatt einer Batterie 16 eines Kraftfahrzeugs verbunden. Der Minuspol der Batterie 16 ist mit der Masse des Kraftfahrzeugs verbunden, die als Bezugspotential dient. Eine elektronische Steuereinheit 18 erzeugt Ansteuerimpulse zum Ansteuern einer durch einen IGBT-Leistungstransistor gebildeten Leistungsendstufe und führt einem Steueranschluss (Gate) des IGBT-Leistungstransistors über einen Vorwiderstand Rz diese Steuerimpulse als Ansteuersignal zu.
  • Abhängig vom Ansteuersignal verbindet der IGBT-Leistungstransistor den zweiten Anschluss der Primärwicklung 12 mit der Masse. Ein erster Anschluss der Sekundärwicklung 14 ist mit der Hochspannungselektrode der Zündkerze 10 verbunden. Eine weitere Elektrode der Zündkerze 10 ist mit der Fahrzeugmasse verbunden. Die beiden Elektroden sind in einem Abstand zueinander angeordnet und bilden eine Funkenstrecke, über die mit Hilfe der durch den Zündtransformator 20 erzeugten Hochspannung ein Lichtbogen erzeugt wird. Der zweite Anschluss der Sekundärwicklung 14 ist mit einer Messschaltung 22 verbunden, die eine Energiequelle 24 und einen Messwiderstand Rm enthält. Die Energiequelle 24 umfasst einen Kondensator C1 und einen parallel zum Kondensator C1 angeordneten Varistor ZPD. Die Energiequelle 24, der Messwiderstand Rm, die Sekundärwicklung 14 und die Funkenstrecke der Zündkerze 10 sind in Reihe geschaltet und bilden über die Fahrzeugmasse einen geschlossenen Stromkreis.
  • Die Steuereinheit 18 erzeugt ein Ansteuersignal, durch das der IGBT-Leistungstransistor den zweiten Anschluss der Primärwicklung 12 mit Masse verbindet, so dass ein geschlossener Stromkreis gebildet wird, durch den die Batteriespannung Ubatt an der Primärwicklung 12 anliegt. Dadurch fließt ein Primärstrom durch die Primärwicklung 12. Dieser Primärstrom erzeugt ein Magnetfeld, durch das ein magnetischer Fluss erzeugt wird. Beim Aufbau des Magnetfeldes nach dem Fließen des Primärstromes ändert sich der durch das Magnetfeld bewirkte magnetische Fluss. Die Änderung des magnetischen Flusses induziert eine Spannung in der Sekundärwicklung 14. Diese induzierte Spannung liegt an den Elektroden der Zündkerze 10 an. Sofern die induzierte Spannung klein genug ist, d.h. solange die induzierte Spannung nicht die erforderliche Durchbruchsspannung der Zündkerze 10 erreicht hat, wird kein Zündfunke erzeugt. Durch die eingesetzte Diode D1 wird jedoch verhindert, dass die in der Sekundärwicklung 14 induzierte Spannung überhaupt an den Elektroden der Zündkerze 10 anliegt, wodurch ein Zündfunke beim Zuschalten der Primärwicklung 12 unabhängig von der Höhe der induzierten Spannung sicher verhindert wird.
  • Zum Erzeugen des Zündfunkens steuert die Steuereinheit 18 den IGBT-Leistungstransistor derart an, dass dieser die Verbindung zwischen der Masse und der Primärwicklung 12 trennt. Aufgrund der Trennung wird der durch die Primärwicklung 12 fließende Primärstrom abrupt unterbrochen, wodurch das durch den Primärstrom bewirkte Magnetfeld zusammenbricht. Der magnetische Fluss im magnetischen Kreis des Zündtransformators 20 wird dadurch schnell relativ stark geändert. Diese Änderung des magnetischen Flusses bewirkt die Induktion einer Hochspannung in der Sekundärwicklung 14, wodurch die zwischen den Elektroden der Zündkerze 10 anliegende Spannung die Durchbruchsspannung der Zündkerze 10 übersteigt und eine Hochspannungsentladung bewirkt.
  • Durch die sekundärseitig induzierte Hochspannung wird auch der Kondensator C1 der Energiequelle 24 aufgeladen, wobei der Spannungsabfall über den Varistor ZPD die Ladespannung des Kondensators C1 bestimmt. Ferner beeinträchtigt der Messwiderstand Rm und der Varistor ZPD den Stromfluss im Sekundärstromkreis während des Anliegens der Hochspannung, wodurch die zum Erzeugen des Lichtbogens zur Verfügung stehende Energie im Sekundärstromkreis erheblich verringert ist. Nach dem Abriss des Lichtbogens zwischen den Elektroden der Zündkerze 10 speist die Energiequelle 24 den Sekundärstromkreis, wodurch ein Strom durch die Sekundärwicklung 14 über die Elektroden der Zündkerze 10, die Masseverbindung des Kraftfahrzeugs und den Messwiderstand Rm fließt. Mit Hilfe des dabei über den Messwiderstand Rm erzeugten Spannungsabfalls kann ein zwischen den Elektroden der Zündkerze 10 vorhandener Ionenstrom erfasst werden. Der Sekundärstromkreis dient dabei als Messstromkreis. In diesem Messstromkreis ist die Sekundärwicklung 14 des Transformators 20 in Reihe zum Messwiderstand Rm und zur Funkenstrecke der Zündkerze 10 angeordnet. Durch die Induktivität der Sekundärwicklung 14 werden kurzzeitige, d.h. relativ hochfrequente, Schwankungen der zwischen den Elektroden der Zündkerze 10 vorhandenen Ladungsträger, insbesondere des Ionenstroms, nicht am Messwiderstand Rm wirksam. Die Sekundärwicklung 14 dient somit als Tiefpassfilter, wodurch nur ein relativ schmalbandiges Signal des Ionenstroms zwischen den Elektroden der Zündkerze 10 zur Verfügung steht. Das Signal bildet somit nur niederfrequente Änderungen des Ionenstroms ab.
  • In Fig. 2 ist ein Stromlaufplan einer Schaltungsanordnung gemäß einer ersten Ausführungsform der Erfindung dargestellt. Gleiche Elemente haben gleiche Bezugszeichen. Die primärseitige Beschaltung des Transformators 20 stimmt mit der in Fig. 1 gezeigten Beschaltung überein. Der Sekundärstromkreis, d.h. der Hochspannungsstromkreis, hat drei parallele Strompfade, wobei im ersten Strompfad die Sekundärwicklung 14 des Transformators 20 und im zweiten Strompfad die Energiequelle 24 sowie die durch die Elektroden der Zündkerze 10 gebildete Funkenstrecke angeordnet sind. Im dritten Strompfad ist ein aus drei Widerständen R1, R2 und Rm gebildeter Spannungsteiler angeordnet. Der Eisenkern 13 des Zündtransformators 20 wird als elektrischer Leiter zum Verbinden der Widerstände R1 und R2 genutzt. Der Eisenkern 13 bildet somit einen Abschnitt des dritten Strompfades. Ferner ist im ersten Strompfad eine Diode D1 in Reihe zur Sekundärwicklung 14 angeordnet, die einen Stromfluss durch den bereits in Zusammenhang mit Fig. 1 beschriebenen Einschaltimpuls verhindert.
  • Ferner verhindert die Diode D1 einen Stromfluss durch den ersten Pfad, wenn mit Hilfe der Energiequelle 24 eine Messspannung in einem aus der durch die Elektroden der Zündkerze 10 gebildeten Funkenstrecke und den aus den Widerständen R1, R2 und Rm gebildeten Spannungsteiler erzeugten Messstromkreis angelegt wird. Der Messstromkreis wird somit mit Hilfe der Diode D1 von der Sekundärwicklung 14 entkoppelt, so dass die Sekundärwicklung 14 im Unterschied zu der in Fig. 1 dargestellten Schaltungsanordnung nicht als Tiefpassfilter wirkt.
  • Durch den aus dem Widerstand R1 und dem Gesamtwiderstand aus den Widerständen R2 und Rm gebildeten Spannungsteiler wird das Potential des Eisenkerns 13 des Transformators 20 während des Anliegens der Hochspannung im Sekundärstromkreis eingestellt. Die Summe der Widerstände R1, R2 und Rm sollte ≥ 1 Megaohm betragen, um den Stromfluss über diesen dritten Strompfad zu reduzieren und so der Zündkerze 10 ausreichend Energie zum Erzeugen des Lichtbogens zur Verfügung zu stellen. Vorzugsweise liegt der Widerstandswert der Summe der Widerstände R1, R2 und Rm im Bereich zwischen 10 und 100 Megaohm, wobei der Widerstandwert des Widerstands R1 auch 0 Ohm betragen kann, wie nachfolgend im Zusammenhang mit Figur 3 erläutert. Mit Hilfe des aus den Widerständen R1 und dem Gesamtwiderstand der Widerstände R2 und Rm gebildeten Spannungsteilers kann das Potential des Eisenkerns 13 einfach eingestellt werden. Beispielsweise können die Widerstände R1 und der Gesamtwiderstand aus den Widerständen R2 und Rm gleich groß gewählt werden, so dass der Eisenkern 13 etwa ein Hochspannungspotential hat, was einem schwebenden Kern beim Stand der Technik entspricht.
  • Insbesondere kann bei Stabtransformatoren, die direkt auf die in einen Zylinderkopf eines Kraftfahrzeugs eingeschraubte Zündkerze gesteckt werden, das Messsignal über den als elektrischer Leiter dienenden Eisenkern 13 einfach von einem Ende des Eisenkerns 13 zum anderen Ende des Eisenkerns 13 geleitet werden, wodurch ein einfacher konstruktiver Aufbau des Stabtransformators möglich ist, ohne dass zusätzliche Signalleitungen zum Leiten des Messsignals von einem Ende des Stabtransformators zum anderen Ende erforderlich sind.
  • In Fig. 3 ist eine Schaltungsanordnung gemäß einer zweiten Ausführungsform der Erfindung dargestellt, die ähnlich der Schaltungsanordnung nach Fig. 2 ist. Im Unterschied zu der in Fig. 2 dargestellten Schaltungsanordnung entfällt bei der Schaltungsanordnung nach Fig. 3 der Widerstand R1, so dass der Eisenkern 13 im Wesentlichen das von der Sekundärwicklung 14 erzeugte Hochspannungspotential hat. Konkret hat der Eisenkern 13 während eines Zündvorgangs ein Potential, das gegenüber dem Hochspannungspotential der Sekundärwicklung 14 um den Spannungsabfall der Diode D1, d.h. um 0,7 Volt, verringert ist. Während des Messvorgangs, d.h. im Anschluss an den Zündvorgang, hat der Eisenkern 13 dann das Potential der durch die Energiequelle 24 erzeugten Messspannung. Wie bereits erwähnt, wird der Einschaltimpuls durch die Diode D1 im Sekundärstromkreis gesperrt, so dass die durch den Einschaltimpuls in der Sekundärspule 14 erzeugte Spannung nicht am Eisenkern 13 des Transformators 20 anliegt. Ferner dient die Diode D1 als Entkopplungsmittels zum Entkoppeln des aus Zündkerze 10, Spannungsquelle 24, und den Widerständen R2 und Rm bzw. R1, R2 und Rm bestehenden Messkreis von der Sekundärwicklung 14 während eines durch die Spannungsquelle 24 bewirkten Stromflusses im Messkreis. Durch die Diode D1 wird somit verhindert, dass beim Speisen des Messkreises mit der Messspannung ein Strom durch die Sekundärwicklung 14 fließt.
  • Das Messsignal wird vorzugsweise über einen Pfad parallel zur Sekundärwicklung 14 geleitet. Die Widerstandswerte des aus den Widerständen R1 und dem Gesamtwiderstand aus den Widerständen R2 und Rm gebildeten Spannurigsteilers sollten so groß gewählt werden, dass die kapazitive Kopplung des Eisenkerns 13 erhalten bleibt. Alternativ zu den Widerständen R1 oder R2 kann auch ein als Widerstand dienender Spulenkörper oder eine Beschichtung des Eisenkerns 13 oder eines Bereichs des Eisenkerns 13 mit einem Widerstandmaterial, d.h. mit einer resistiven Beschichtung, verwendet werden, wodurch weitere konstruktive Vorteile erreicht werden.
  • Mit Hilfe der in den Figuren 2 und 3 dargestellten Schaltungsanordnungen ist es möglich, Zündtransformatoren 20 mit Funkenenergien von > 35 mJ einzusetzen und dennoch lonenströme und andere hochfrequente Signalanteile hochspannungsseitig zu messen. Eine Klopferkennung beim Auftreten von explosionsartigen Verbrennungen, die für die mechanische Bewegung des Kolbens zu schnell ist, kann mit Hilfe der erfindungsgemäßen Schaltungsanordnungen auch mit herkömmlichen Zündtransformatoren, insbesondere mit Stabzündtransformatoren, automatisch ermittelt werden. Auch mit diesen herkömmlichen Zündtransformatoren wird trotzt der Messschaltung über den gesamten Drehzahl-Last-Bereich des Verbrennungsmotors eine ausreichende Funkenenergie bereitgestellt. Zum Erzeugen der Messspannung mit Hilfe der Energiequelle 24 wird zum Laden des Kondensators C1 der Energiequelle 24 dem Sekundärkreis nur relativ wenig Energie entzogen.
  • Die sekundärseitige Hochspannung wird im dritten Zweig direkt über den ohmschen Spannungsteiler R1, R2, Rm bzw. R2, Rm gemessen. Somit ist die Induktivität der Sekundärspule 14 nicht im Messzweig und wirkt dadurch nicht als Tiefpassfilter. Die messbaren Frequenzanteile der Zündkerzenspannung, die mit Hilfe des Spannungsabfalls über den Messwiderstand Rm erfasst werden können, sind lediglich durch die kapazitive Ankopplung des Eisenkerns 13 des Zündtransformators 20 und durch die Widerstände des Spannungsteilers R1, R2, Rm bzw. R2, Rm beschränkt. Dadurch ist die Bandbreite des gemessenen Signals im Wesentlichen auch nur durch die kapazitive Ankopplung des Eisenkerns 13 des Zündtransformators 20 und durch die Widerstände des Spannungsteilers R1, R2, Rm bzw. R2, Rm beschränkt,
  • Die in den Fig. 2 und 3 gezeigten Schaltungsanordnungen dienen als Messschaltungen, durch die die Verläufe der zwischen den Elektroden der Zündkerze 10 anliegenden Kerzenspannung präzise erfasst werden. Dadurch kann sowohl die Brenndauer, die Brennspannung, die Durchbruchsspannung und der Anstieg der Kerzenspannung vor dem Funkenüberschlag, d.h. vor dem Lichtbogen, zwischen den Elektroden der Zündkerze 10 exakt erfasst werden.
  • In Fig. 4 ist ein Stromlaufplan einer weiteren Ausführungsform einer Ansteuerung einer Auswerteschaltung dargestellt. Im Unterschied zu den Anordnungen nach Fig. 2 und 3 ist im ersten Strompfad ein Varistor VAR1 angeordnet, der einen zusätzlicfien Spannungsabfall im ersten Strompfad bewirkt. Dieser Spannungsabfall bewirkt dann eine Verringerung der der Zündkerze 10 zur Verfügung stehenden Zündenergie. Ferner muss das Messsignal über den Messwiderstand Rm oder das nach dem Varistor VDR1 anliegende Hochspannungspotential insbesondere bei Stabtransformatoren relativ aufwendig zu einem Anschlussbereich des Stabtransformators geführt werden.
  • Bezugszeichenliste
  • 10
    Zündkerze
    12
    Primärwicklung
    13
    Eisenkern
    14
    Sekundärwicklung
    16
    Batterie
    18
    Steuereinheit
    20
    Transformator
    22
    Messschaltung
    24
    Energiequelle / Spannungsquelle
    IGBT
    Leistungstransistor
    Rz
    Vorwiderstand
    Ubatt
    Batteriespannung
    C1
    Kondensator
    ZPD, ZPD1, ZPD3
    Varistor
    R1, R2
    Widerstand
    Rm
    Messwiderstand
    D1 ,
    Diode

Claims (18)

  1. Anordnung zum hochspannungsseitigen Erfassen eines breitbandigen Messsignals,
    mit drei parallelen Strompfaden,
    wobei im ersten Strompfad zumindest die Sekundärwicklung (14) eines Zündtransformators (20) angeordnet ist,
    wobei im zweiten Strompfad zumindest die durch mindestens zwei Elektroden gebildete Funkenstrecke der Zündkerze (10) angeordnet ist, und
    wobei im dritten Strompfad zumindest ein Messwiderstand (Rm) angeordnet ist,
    dadurch gekennzeichnet, dass zumindest in einem Bereich zwischen einem Anschluss der Sekundärwicklung (14) und dem Messwiderstand (Rm) zumindest ein Abschnitt eines Transformatorkerns (13) des Zündtransformators (20) als elektrischer Leiter dient.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Transformatorkern (13) ein Eisenkern ist.
  3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen den Anschlüssen der Sekundärwicklung (14) und den Enden des dritten Strompfades kein veränderlicher Widerstand angeordnet ist.
  4. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Spannungsabfall über den Messwiderstand (Rm) als Signal zum Erfassen des Ionenstroms zwischen den Elektroden der Zündkerze (10) dient, und dass vorzugsweise eine Auswerteschaltung zum Erfassen des Spannungsabfalls über den Messwiderstand (Rm) vorgesehen ist.
  5. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Energiequelle (24) zum Erzeugen der zur Erfassen des breitbandigen Messsignals erforderlichen Energie vorgesehen ist.
  6. Anordnung nach Anspruch 5, dadurch gekennzeichnet, dass die Energiequelle (24) im zweien oder im dritten Strompfad angeordnet ist, vorzugsweise im zweiten Strompfad in Reihe zu der durch die Elektroden der Zündkerze (10) gebildeten Funkenstrecke angeordnet ist.
  7. Anordnung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Energiequelle (24) einen Kondensator (C1) aufweist, der vorzugsweise während des Zeitraums des Anliegens der Hochspannung an den Elektroden der Zündkerze (10) mit aufgeladen wird.
  8. Anordnung nach Anspruch 7, dadurch gekennzeichnet, dass parallel zum Kondensator (C1) ein Bauelement (ZPD) zur Beschränkung der Ladespannung des Kondensators (C1) vorgesehen ist, wobei dieses Bauelement (ZPD) vorzugsweise ein Varistor ist.
  9. Anordnung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Kondensator (C1) in Reihe mit der Funkenstrecke der Zündkerze (10) angeordnet ist.
  10. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im ersten Strompfad eine Diode (D1) in Reihe zur Sekundärwicklung (14) zum Verhindern eines Stromflusses durch die Sekundärwicklung (14) während des Erfassens des breitbandigen Messsignals und/oder des dem Ionenstrom zwischen den Elektroden der Zündkerze (10) entsprechenden Signals angeordnet ist.
  11. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im dritten Strompfad mindestens ein zweiter Widerstand (R1, R2) in Reihe zum Messwiderstand (Rm) angeordnet ist, der zusammen mit dem Messwiderstand einen Spannungsteiler bildet.
  12. Anordnung nach Anspruch 11, dadurch gekennzeichnet, dass der Messwiderstand (Rm) und der zweiten Widerstand über den Transformatorkern (13) des Zündtransformators (20) elektrisch leitend miteinander verbunden sind.
  13. Anordnung nach Anspruch 11, dadurch gekennzeichnet, dass der zweite Widerstand (R1) und ein Hochspannungsanschluss der Sekundärwicklung (14) über den Transformatorkern (13) des Zündtransformators (20) elektrisch miteinander verbunden sind.
  14. Anordnung nach Anspruch 11, dadurch gekennzeichnet, dass im dritten Strompfad mindestens ein dritter Widerstand (R1) in Reihe zum zweiten Widerstand (R2) und zum Messwiderstand (Rm) angeordnet ist, wobei der zweite Widerstand (R2) und der dritte Widerstand (R1) über den Transformatorkern (13) des Zündtransformators (20) elektrisch miteinander verbunden sind.
  15. Anordnung nach Anspruch 14, dadurch gekennzeichnet, dass der dritte Widerstand (R1) zwischen einem ersten Anschluss der Sekundärwicklung (14) und dem Transformatorkern (13) des Zündtransformators (20) angeordnet ist und dass der Messwiderstand (Rm) und er zweite Widerstand (R2) zwischen dem Transformatorkern (13) des Zündtransformators (20) und dem zweiten Anschluss der Sekundärwicklung (14) angeordnet sind, wobei vorzugsweise der zweite Anschluss der Sekundärwicklung (14) mit einem Bezugspotential verbunden ist.
  16. Anordnung nach Anspruch 15, dadurch gekennzeichnet, dass der dritte Widerstand und der Gesamtwiderstand des zweiten Widerstandes (R2) und des Messwiderstandes (Rm) einen Spannungsteiler bildet, durch den das Potential des Transformatorkerns (13) des Zündtransformators (20) festgelegt ist.
  17. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Widerstand (R2) und/oder der dritte Widerstand (R1) und/oder der Messwiderstand (Rm) mit Hilfe einer resistiven Beschichtung auf der Mantelfläche des Eisenkerns (13) gebildet ist.
  18. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Enden des dritten Strompfades direkt oder über eine Diode (D1) mit jeweils einem Anschluss der Sekundärwicklung (14) des Zündtransformators (20) verbunden sind.
EP06793455.4A 2005-09-12 2006-09-12 Anordnung zum hochspannungsseitigen erfassen eines messsignals, insbesondere eines dem ionenstrom zwischen den elektroden einer zündkerze einer brennkraftmaschine entsprechenden signals Not-in-force EP1979608B8 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510043318 DE102005043318A1 (de) 2005-09-12 2005-09-12 Anordnung zum hochspannungsseitigen Erfassen eines Messsignals, insbesondere eines dem Ionenstrom zwischen den Elektroden einer Zündkerze einer Brennkraftmaschine entsprechenden Signals
PCT/EP2006/066284 WO2007031521A1 (de) 2005-09-12 2006-09-12 Anordnung zum hochspannungsseitigen erfassen eines messsignals, insbesondere eines dem ionenstrom zwischen den elektroden einer zündkerze einer brennkraftmaschine entsprechenden signals

Publications (3)

Publication Number Publication Date
EP1979608A1 EP1979608A1 (de) 2008-10-15
EP1979608B1 true EP1979608B1 (de) 2013-12-25
EP1979608B8 EP1979608B8 (de) 2014-02-26

Family

ID=37622028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06793455.4A Not-in-force EP1979608B8 (de) 2005-09-12 2006-09-12 Anordnung zum hochspannungsseitigen erfassen eines messsignals, insbesondere eines dem ionenstrom zwischen den elektroden einer zündkerze einer brennkraftmaschine entsprechenden signals

Country Status (5)

Country Link
EP (1) EP1979608B8 (de)
JP (1) JP4672773B2 (de)
CN (1) CN101263299B (de)
DE (1) DE102005043318A1 (de)
WO (1) WO2007031521A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010807B4 (de) * 2006-03-07 2015-06-25 Volkswagen Aktiengesellschaft Schaltung zum Erfassen verbrennungsrelevanter Größen
CN106920661B (zh) * 2017-02-14 2019-02-01 许继集团有限公司 一种电力电子变压器
IT201900002517A1 (it) * 2019-02-21 2020-08-21 Eldor Corp Spa Dispositivo elettronico per il controllo di una bobina di accensione di un motore a combustione interna e relativo sistema di accensione elettronica per rilevare una pre-accensione nel motore a combustione interna
CN111064355B (zh) * 2019-11-22 2023-11-17 西安许继电力电子技术有限公司 一种悬浮电位消除电路
CN115360587B (zh) * 2022-09-16 2024-02-06 湖南泫坤量化科技有限公司 一种电火花能量测量方法、装置及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2347682A1 (fr) * 1977-04-19 1977-11-04 Bicosa Recherches Dispositif detecteur a eclateur
US5272914A (en) * 1990-10-04 1993-12-28 Mitsubishi Denki K.K. Ignition system for internal combustion engines
JP2951780B2 (ja) * 1991-12-09 1999-09-20 三菱電機株式会社 内燃機関の燃焼検出装置
JP3192541B2 (ja) * 1994-01-28 2001-07-30 三菱電機株式会社 内燃機関用失火検出回路
JPH09137769A (ja) * 1995-11-14 1997-05-27 Denso Corp 内燃機関の燃焼状態検出装置
FR2742486B1 (fr) * 1995-12-15 1998-01-23 Renault Dispositif de surveillance du systeme d'allumage d'un moteur a combustion interne
JP3472661B2 (ja) * 1996-03-28 2003-12-02 三菱電機株式会社 内燃機関用イオン電流検出装置
FR2753234B1 (fr) * 1996-09-11 1998-12-04 Electricfil Procede pour detecter la phase d'allumage d'un cylindre d'un moteur a combustion interne a allumage commande, afin de permettre notamment l'initialisation de la sequence d'injection
JP3554447B2 (ja) * 1996-09-19 2004-08-18 トヨタ自動車株式会社 内燃機関のノッキング検出装置
JP2000003777A (ja) * 1998-06-12 2000-01-07 Ngk Spark Plug Co Ltd 点火プラグおよび点火プラグ組立体
JP2000073927A (ja) * 1998-08-27 2000-03-07 Toyota Motor Corp 内燃機関の燃焼状態検出装置

Also Published As

Publication number Publication date
CN101263299A (zh) 2008-09-10
WO2007031521A1 (de) 2007-03-22
CN101263299B (zh) 2010-06-23
DE102005043318A1 (de) 2007-03-22
JP4672773B2 (ja) 2011-04-20
EP1979608B8 (de) 2014-02-26
EP1979608A1 (de) 2008-10-15
JP2009508131A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
DE3137240C2 (de) Zündanlage für eine Brennkraftmaschine
EP2067149B1 (de) Vorrichtung zur energiespeicherung und energietransformierung
DE19647138C2 (de) Verbrennungszustand-Detektorgerät für einen Verbrennungsmotor
DE3137239A1 (de) Plasmazuendvorrichtung und -verfahren fuer eine brennkraftmaschine
EP1254313B1 (de) Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung
DE4241471C2 (de) Verbrennungsermittlungsvorrichtung für eine Brennkraftmaschine
EP0118789A1 (de) Zündkerze für Brennkraftmaschinen
EP1979608B1 (de) Anordnung zum hochspannungsseitigen erfassen eines messsignals, insbesondere eines dem ionenstrom zwischen den elektroden einer zündkerze einer brennkraftmaschine entsprechenden signals
DE3015609A1 (de) Plasmastrahl-zuendsystem
DE102008014047A1 (de) Zündspulenapparat für einen Verbrennungsmotor
DE112011103436B4 (de) Zündanlage mit Zündung durch mehrmalige Erzeugung einer oder mehrerer Teilentladungen
WO1998023859A1 (de) Zündvorrichtung mit ionenstrom-messeinrichtung
DE102012209454A1 (de) Zündspulenvorrichtung
DE3342723C2 (de) Zündeinrichtung für Brennkraftmaschinen
DE19723784C1 (de) Schaltungsanordnung für die Zündung einer Brennkraftmaschine
WO2009106100A1 (de) Ein-energiespeicher-hochstrom-zündung
DE102013201815A1 (de) Zündsystem
DE2047152C3 (de) Kondensatorzundeinnchtung
DE102008041085A1 (de) Plasmazündsystem für eine Brennkraftmaschine
EP0181961B1 (de) Impulsoszillatorzündung für Verbrennungskraftmaschinen
DE102009003245A1 (de) Zündvorrichtung mit erhöhter Zündfähigkeit und verminderter elektromagnetischer Störung
DE102017214177B3 (de) Vorrichtung zum Zünden von Brennstoff mittels Korona-Entladungen
DE202013000831U1 (de) Transformator
DE202005014367U1 (de) Anordnung zum Erfassen des Zustandes einer mit einem Zündtransformator elektrisch verbundenen Zündkerze sowie eines Verbrennungsverlaufs eines Verbrennungsvorgangs in einem Zylinder einer Brennkraftmaschine
DE102015110068A1 (de) Zündsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130709

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 646797

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PULSE ELECTRONICS GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013461

Country of ref document: DE

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013461

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013461

Country of ref document: DE

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140912

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006013461

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006013461

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006013461

Country of ref document: DE

Representative=s name: SCHAUMBURG UND PARTNER PATENTANWAELTE MBB, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140912

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 646797

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060912

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161026

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013461

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170912