EP1978937A1 - Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances - Google Patents

Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances

Info

Publication number
EP1978937A1
EP1978937A1 EP07704011A EP07704011A EP1978937A1 EP 1978937 A1 EP1978937 A1 EP 1978937A1 EP 07704011 A EP07704011 A EP 07704011A EP 07704011 A EP07704011 A EP 07704011A EP 1978937 A1 EP1978937 A1 EP 1978937A1
Authority
EP
European Patent Office
Prior art keywords
protein
proteins
microbeads
assembling
amphiphilic self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07704011A
Other languages
German (de)
French (fr)
Inventor
Burghard Liebmann
Marcus Fehr
Mario Brands
Thomas Scheibel
Arne Ptock
Daniel HÜMMERLICH
Ingrid Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Muenchen
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07704011A priority Critical patent/EP1978937A1/en
Publication of EP1978937A1 publication Critical patent/EP1978937A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/31Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/671Vitamin A; Derivatives thereof, e.g. ester of vitamin A acid, ester of retinol, retinol, retinal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms

Definitions

  • amphiphilic, self-assembling proteins for the formulation of poorly water-soluble effect substances
  • the present invention relates to the use of amphiphilic, self-assembling proteins for the formulation of sparingly water-soluble effect substances
  • DE 10059213A1 describes a process for preparing solid preparations of water-insoluble or sparingly water-soluble active substances by dispersing the active ingredients in a protein-containing protective colloid, flocculating and separating the active ingredient coated with the protective colloid and converting into a dry powder.
  • Preferred protective colloids include casein and beef, pork and fish gelatin.
  • DE 102004057587A1 describes aqueous dispersions of a mixture of sparingly water-soluble active ingredients and single-cell protein material and dry powders prepared therefrom.
  • the present invention relates in a first embodiment to the use of amphiphilic self-assembling proteins for the formulation of sparingly water-soluble effect substances.
  • Amphiphilic, self-assembling proteins are suitable as formulation auxiliaries for poorly water-soluble, hydrophobic active ingredients. Due to their amphiphilic molecular character, these proteins can stabilize hydrophobic drugs in aqueous solutions. Their self-assembling properties enable these proteins to adopt higher molecular structures and thus permanently encapsulate hydrophobic active ingredients.
  • Another object of the invention is a process for the preparation of merelystoffformultechniken, wherein (i) the sparingly water-soluble effect substance mixed together with the amphiphilic self-assembling protein in a common disperse phase, (ii) then a phase separation in a protein and effect-rich phase and a protein and low-phase phase performs.
  • the protein- and effect-rich phase can later be cured and separated as mechanically stable effect-containing protein microbeads and optionally dried.
  • Amphiphilic, self-assembling proteins consist of polypeptides composed of amino acids, in particular of the 20 naturally occurring amino acids.
  • the amino acids may also be modified, for example, acetylated, glycosylated, farnesylated.
  • Suitable amphiphilic, self-assembling proteins for the formulation of sparingly water-soluble effect substances are those proteins which can form protein microbeads.
  • Protein microbeads have a globular shape with an average particle diameter of 0.1 to 100, in particular from 0.5 to 20, preferably from 1 to 5 and particularly preferably from 2 to 4 microns.
  • Protein microbeads can preferably be prepared by the process described below:
  • aqueous salt solutions can be used.
  • aqueous salt solutions can be used.
  • high concentrated salt solutions having a concentration greater than 2, in particular greater than 4 and particularly preferably greater than 5 molar, whose ions have more pronounced chaotropic properties than sodium and chloride ions.
  • An example of such a saline solution is 6 M guanidinium thiocyanate or 9 M lithium bromide.
  • organic solvents can be used to dissolve the proteins.
  • fluorinated alcohols or cyclic hydrocarbons or organic acids are suitable. Examples are hexafluoroisopropanol, cyclohexane and formic acid.
  • the preparation of the protein microbeads can be carried out in the solvents described. Alternatively, this solvent can be replaced by another solvent, for example, low-concentration salt solutions (c ⁇ 0.5 M) by dialysis or dilution.
  • the final concentration of the dissolved protein should be between 0.1-100 mg / ml.
  • the temperature at which the process is carried out is usually 0-80, preferably 5-50, and more preferably 10 40 ° C.
  • aqueous solutions may also be mixed with a buffer, preferably in the range of pH 4-10, particularly preferably 5-9, very particularly preferably 6-8.5.
  • the average diameter of the protein microbeads can be set to values between 0.1 ⁇ m and 100 ⁇ m.
  • the microbead formation is carried out in organic solvents, organic substances which have a lower polarity than the solvent, for example toluene, are suitable for this purpose.
  • Salts can be used as an additive in aqueous solutions whose ions have more pronounced cosmotropic properties than sodium and chloride ions (eg ammonium sulfate, potassium phosphate).
  • the final concentration of the additive should be between 1% and 50% by weight, based on the protein solution, depending on the type of additive.
  • the protein-rich droplets are fixed by curing, whereby the round shape is retained.
  • the fixation is based on the formation of strong intermolecular interactions.
  • the nature of the interactions may be non-covalent, eg by the formation of intermolecular ⁇ -sheet crystals or covalent, eg by chemical cross-linking.
  • the curing can be carried out by the additive and / or by the addition of another suitable substance. The curing takes place at temperatures between 0 and 80 ° C, preferably between 5 and 60 ° C.
  • a chemical cross-linker is understood to mean a molecule in which at least two chemically reactive groups are linked to one another via a linker.
  • examples of these are sulfhydryl-reactive groups (for example maleimides, pydridyl disulfides, ⁇ -haloacetyls, vinyl sulfones, sulfatoalkyl sulfones (preferably sulfatoethyl sulfones)), amine-reactive groups (for example succinimidyl esters, carbodiimde, hydroxymethyl phosphine, imido esters, PFP esters, aldehydes, isothiocyanates, etc .), Carboxy-reactive groups (eg, amines, etc.), hydroxyl-reactive groups (eg, isocyanates, etc.), unselective groups (eg, arylazides, etc.), and photoactivatable groups (
  • the stabilized microbeads are washed with a suitable further solvent, e.g. Water and then dried by methods known to those skilled in the art, e.g. by lyophilization, contact drying or spray drying.
  • a suitable further solvent e.g. Water
  • the success of the sphere formation is checked by scanning electron microscopy.
  • Proteins that are predominantly intrinsically unfolded in aqueous solution are suitable for the production of protein microbeads.
  • this condition may be calculated using an algorithm that underlies the lUpred program (http://iupred.enzim.hu/index.html; The Pairwise Energy Content Estimated from Amino Acid Composition Discriminates between Folded and Intrinsically Unstructured Proteins; Zsuzsanna Dosztanyi Veronika Csizm ⁇ k, Peter Tompa and Istvan Simon, J. Mol. Biol. (2005) 347, 827-839).
  • a predominantly intrinsically unfolded state is assumed when a value> 0.5 is calculated for over 50% of the amino acid residues according to this algorithm (prediction type: long disorder).
  • silk proteins are those proteins which contain highly repetitive amino acid sequences and which are stored in the animal in a liquid form and whose secretion by shearing or spinning results in fibers (Craig, CL (1997) Evolution of arthropod silks. Annu. Rev. Entomol. 42: 231-67).
  • Particularly suitable proteins for the formulation of sparingly water-soluble effect substances are spider silk proteins, which could be isolated in their original form from spiders.
  • Especially suitable proteins are silk proteins which could be isolated from the "major ampullate" gland of spiders.
  • Preferred silk proteins are ADF3 and ADF4 from the "major ampullate" gland of Araneus diadematus (Guerette et al., Science 272, 5258: 12-5 (1996)).
  • Equally suitable proteins for the formulation of sparingly water-soluble effect substances are natural or synthetic proteins which are derived from natural silk proteins and which have been produced heterologously in prokaryotic or eukaryotic expression systems using genetic engineering working methods.
  • prokaryotic expression organisms are Escherichia coli, Bacillus subtilis, Bacillus megaterium, Corynebacterium glutamicum etc.
  • eukaryotic expression organisms are yeasts such as Saccharomyces cerevisiae, Pichia pastoris and others, filamentous fungi such as Aspergillus niger, Aspergillus oryzae and Aspergillus nidulans.
  • Trichoderma reesei, Acremonium chrysogenum and others mammalian cells, such as Heia cells, COS cells, CHO cells and others, insect cells, such as Sf9 cells, MEL cells and others.
  • synthetic proteins which are based on repeat units of natural silk proteins.
  • these may additionally contain one or more natural non-repetitive silk protein sequences (Winkler and Kaplan, J Biotechnol 74: 85-93 (2000)).
  • synthetic spider silk proteins which Repeat units of natural spider silk proteins based.
  • synthetic repetitive spider silk protein sequences these may additionally contain one or more natural non-repetitive spider silk protein sequences.
  • C16 protein Huemmerich et al., Biochemistry, 43 (42): 13604-13612 (2004).
  • This protein has the polypeptide sequence shown in SEQ ID NO: 1.
  • functional equivalents, functional derivatives and salts of this sequence are also preferred.
  • “functional equivalents” are understood in particular to also be mutants which, in at least one sequence position of the abovementioned amino acid sequences, have a different amino acid than the one specifically mentioned but nevertheless have the property of packaging sparingly water-soluble effect substances.
  • “Functional equivalents” thus include the mutants obtainable by one or more amino acid additions, substitutions, deletions, and / or inversions, which changes may occur in any sequence position as long as they result in a mutant having the property profile of the invention Equivalence is especially given when the reactivity patterns between mutant and unchanged polypeptide match qualitatively.
  • Precursors are natural or synthetic precursors of the polypeptides with or without the desired biological activity.
  • Salts are understood as meaning both salts of carboxyl groups and acid addition salts of amino groups of the protein molecules of the invention
  • Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts such as, for example, sodium, calcium, ammonium, iron and zinc salts, as well as salts with organic bases such as amines such as triethanolamine, arginine, lysine, piperidine and the like, acid addition salts such as salts with mineral acids such as hydrochloric acid or sulfuric acid and salts with organic acids such as acetic acid and oxalic acid also the subject of the invention.
  • inorganic salts such as, for example, sodium, calcium, ammonium, iron and zinc salts
  • organic bases such as amines such as triethanolamine, arginine, lysine, piperidine and the like
  • acid addition salts such as salts with mineral acids such as hydrochloric acid or sulfuric acid and salts with organic acids such as acetic acid and
  • “Functional derivatives” of polypeptides of the invention may also be produced at functional amino acid side groups or at their N- or C-terminal end by known techniques
  • Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups obtainable by reaction with ammonia or with a primary or secondary amine; N-acyl derivatives of free amino groups prepared by reaction with acyl groups; or O-acyl derivatives of free hydroxy groups prepared by reacting with acyl groups.
  • heavy water-soluble effect substances and hydrophobic effect substances and hydrophobic agents and effector molecules are used interchangeably.
  • sparingly water-soluble effect substances are referred to below those compounds whose water solubility at 20 ° C ⁇ 5 wt .-%, preferably ⁇ 1 wt .-%, more preferably ⁇ 0.5 wt .-%, most preferably ⁇ 0.1 Wt .-% is.
  • Suitable sparingly water-soluble effect substances are dyes, in particular those mentioned in the following table:
  • Particularly advantageous dyes are the oil-soluble or oil-dispersible compounds mentioned in the following list.
  • the Color Index Numbers are taken from the Rowe Color Index, 3rd Edition, Society of Dyers and Colourists, Bradford, England, 1971.
  • fatty acids in particular saturated fatty acids which carry an alkyl branching, particularly preferably branched eicosanoic acids, such as 18-methyl-eicosanoic acid.
  • Carotenoids according to the invention are the following compounds and their esterified or glycosylated derivatives ⁇ -carotene, lycopene, lutein, astaxanthin, zeaxanthin, cryptoxanthin, citranaxanthin, canthaxanthin, bixin, ⁇ -apo-4-carotenal, ⁇ -apo-8-carotenal, ⁇ -apo-8-carotenoic acid ester, neurospores, Echinone, adonirubin, violaxanthin, torules, torularyhodine, singly or as a mixture.
  • Preferably used carotenoids are ⁇ -carotene, lycopene, lutein, astaxanthin, zeaxanthin, citranaxanthin and canthaxanthin.
  • effector molecules are vitamins, especially retinoids and their esters.
  • retinoids in the context of the present invention is meant vitamin A alcohol (retinol) and its derivatives such as vitamin A aldehyde (retinal), vitamin A acid (retinoic acid) and vitamin A esters (e.g., retinyl acetate, retinyl propionate and retinyl palmitate).
  • retinoic acid encompasses both all-trans retinoic acid and 13-cis retinoic acid.
  • retinol and retinal preferably comprise the all-trans compounds.
  • the preferred retinoid used for the formulations according to the invention is all-trans-retinol, referred to below as retinol.
  • Further preferred effector molecules are vitamins, provitamins and vitamin precursors from groups A, C, E and F, in particular 3,4-didehydroretinol, .beta.-carotene (provitamin of vitamin A), palmitic acid ester of ascorbic acid, tocopherols, especially .alpha.-tocopherol and its esters, eg the acetate, nicotinate, phosphate and succinate; also vitamin F, which is understood as meaning essential fatty acids, especially linoleic acid, linolenic acid and arachidonic acid.
  • vitamins, provitamins and vitamin precursors from groups A, C, E and F in particular 3,4-didehydroretinol, .beta.-carotene (provitamin of vitamin A), palmitic acid ester of ascorbic acid, tocopherols, especially .alpha.-tocopherol and its esters, eg the acetate, nicotinate,
  • effector molecules are lipophilic, oil-soluble antioxidants from the group vitamin E, i. Tocopherol and its derivatives, gallic acid esters, flavonoids and carotenoids, and butylhydroxytoluene / anisole.
  • Another preferred effector molecule is lipoic acid and suitable derivatives (salts, esters, sugars, nucleotides, nucleosides, peptides and lipids).
  • UV light protection filters are understood to mean organic substances which are able to absorb ultraviolet rays and to release the absorbed energy in the form of longer-wave radiation, eg heat.
  • oil-soluble UV-B filters for example, the following substances can be used:
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester;
  • Esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, 4-propyl methoxy cinnamate, isoamyl 4-methoxycinnamate, 4-isoacetyl methoxycinnamate, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • Esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomenthyl salicylate;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine (octyl tyltriazone) and Dioctyl Butamido Triazone (Uvasorb® HEB):
  • Propane-1,3-diones e.g. 1- (4-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione.
  • esters of cinnamic acid preferably 4-
  • 2-ethylhexyl methoxycinnamate isopentyl 4-methoxycinnamate, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene).
  • Typical UV-A filters are:
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert. Butyl 4'-methoxydibenzoylmethane or 1-phenyl-3- (4'-isopropylphenyl) -propane-1,3-dione;
  • UV-A and UV-B filters can also be used in mixtures.
  • Suitable UV filter substances are mentioned in the following table.
  • vitamin E tocopherols
  • vitamin C oil-soluble ascorbic acid derivatives
  • suitable derivatives salts, esters, sugars, nucleotides, nucleosides, peptides and lipids
  • suitable derivatives can be used as effector molecules.
  • peroxide decomposers ie compounds which are able to decompose peroxides, particularly preferably lipid peroxides.
  • organic substances such as 5-pyrimidinol and 3-pyridinol derivatives and probucol.
  • the abovementioned peroxide decomposers are preferably those described in the patent applications WO / 0207698 and WO / 03059312, the contents of which are hereby incorporated by reference, preferably the boron-containing or nitrogen-containing compounds described there, the peroxides or hydroperoxides can reduce to the corresponding alcohols without radical radical education. Furthermore, sterically hindered amines can be used for this purpose.
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • Such substances are, for example, bisabolol, phytol and phytantriol.
  • Another group of poorly water-soluble effector substances are active substances that can be used in crop protection, for example herbicides, insecticides and fungicides.
  • Also suitable as sparingly water-soluble effect substances are active substances for pharmaceutical use, in particular those for oral administration.
  • the inventive method is in principle applicable regardless of the medical indication on a variety of drugs.
  • Formulations of poorly water-soluble drugs can be prepared in a variety of ways using amphiphilic self-assembling proteins.
  • Sparingly water-soluble, hydrophobic drugs can be packaged in protein microbeads or colloidally dispersed by protein coating, e.g. can be achieved in Mikrontechniksan ceremoniesn be stabilized.
  • the formulation of hydrophobic drugs can be done by inclusion in microbeads. This process involves two steps. In the first step, the hydrophobic drug and the amphiphilic self-assembling protein are in a common
  • the active ingredient and the protein can be brought into solution directly by a solvent or a solvent mixture.
  • the active substance and the protein can first be dissolved in different solvents and the solutions subsequently mixed with one another, so that in turn a common phase is formed.
  • the common phase may be a molecular disperse phase or a colloidally disperse phase.
  • hydrophobic active ingredient and the protein in various solvents and the subsequent mixing of the two solutions is particularly advantageous if the hydrophobic active ingredient and the protein can not be dissolved in a common solvent or solvent mixture.
  • colloidal-disperse solutions of hydrophobic active ingredients can be prepared by this procedure by the active ingredient dissolved in a suitable solvent is diluted into another solvent in which this active ingredient is insoluble. Since proteins are generally readily water-soluble, preference is given to working with aqueous solutions and mixtures of water and water-miscible organic solvents.
  • suitable, water-miscible solvents are alcohols such as methanol, ethanol and isopropanol, fluorinated alcohols such as hexafluoroisopropanol and trifluoroethanol, alkanones such as acetone or sulfoxides such as dimethyl sulfoxide or formamides such as dimethylformamide or other organic solvents such as tetrahydrofuran and acetonitrile or N-methyl-2 pyrrolidone.
  • suitable solvents are fluorinated alcohols.
  • Ie such as hexafluoroisopropanol or trifluoroethanol, ionic liquids such as EMIM acetate, aqueous solutions of chaotropic salts such as urea, guanidinium hydrochloride and guanidinium thiocyanate or organic acids such as formic acid and mixtures of these solvents with other organic solvents.
  • ionic liquids such as EMIM acetate
  • aqueous solutions of chaotropic salts such as urea, guanidinium hydrochloride and guanidinium thiocyanate
  • organic acids such as formic acid and mixtures of these solvents with other organic solvents.
  • solvents which can be mixed with the solvents for the protein include alcohols such as methanol, ethanol and isopropanol, alkanones such as acetone, sulfoxides such as dimethyl sulfoxide, formamides such as dimethylformamide, haloalkanes such as methylene chloride or other organic solvents such as tetrahydrofuran ,
  • the second step in the formulation of hydrophobic drugs in microbeads is a phase separation into a low-protein and low-drug phase and into a protein- and drug-rich phase, which subsequently hardens.
  • the hydrophobic agent is included in the assembly form of the protein. Due to surface effects during the phase separation, preferably round protein structures, so-called microbeads, are formed.
  • the phase separation is preferably induced by addition of aqueous solutions of lyotropic salts to the mixtures of proteins and hydrophobic active ingredients.
  • Suitable lyotropic salts are described by the Hofmeister 'sche row. Particularly suitable are ammonium sulfate and potassium phosphate.
  • the addition of these solutions can be done by simple mixing, dropwise or by dialysis.
  • the interactions between the hydrophobic drug and the protein are based essentially on their hydrophobic properties, although hydrogen bonds, ionic interactions and van der Waals interactions may also be involved.
  • the hydrophobic drug may be bound to the surface, be included in the microbeads, or be associated with the microbeads in both ways.
  • the binding of the hydrophobic drug to the microbeads can be determined by the depletion of the drug-active assembly set-up.
  • concentration of the active ingredient can be measured by a quantitative analysis of its properties.
  • the binding of light-absorbing active substances can be analyzed by photometric methods.
  • the color of the microbeads or the decolorization of the protein- and drug-poor phase of the formulation batch are determined by measuring the absorption of a colored active substance. These methods can also be used to determine the level of active ingredient in the microbeads.
  • the release of the active compounds from the microbeads can be effected by desorption into suitable solvents, by the degradation of the microbeads by proteases or by dissolution of the microbeads by suitable solvents.
  • suitable solvents for the desorption are all solvents or solvent mixtures in which the active ingredient can be dissolved.
  • Suitable proteases can be added as technical proteases to a suspension of protein microbeads or occur naturally at the desired site of action of the effector molecules, such as skin proteases, proteases of the digestive tract, for example gastric or intestinal proteases or proteases released by microorganisms.
  • Solvents that can dissolve the microbeads are, for example, fluorinated alcohols such as hexafluoroisopropanol or trifluoroethanol, ionic liquids such as EMIM acetate, aqueous solutions of chaotropic salts such as urea, guanidinium hydrochloride and guanidinium thiocyanate or organic acids such as formic acid and mixtures of these solvents with others organic solvents.
  • the speed and kinetics of the release of the effector molecules can be controlled, for example, by the loading density with active substances and the size of the microbeads or their ratio of volume to the surface.
  • the formulation of poorly water-soluble hydrophobic drug may also be stabilized by stabilizing its colloidally disperse solution, e.g. by micronization.
  • Another object of the invention is the use of the protein microbeads prepared using the described amphiphilic self-assembling proteins or the e.g. micronization-produced colloidal-disperse protein formulations for the storage, transport or release of active ingredients in pharmaceutical products, cosmetic products, crop protection products, food and feed.
  • the protein microbeads continue to protect the packaged active ingredients from environmental influences, e.g. oxidative processes or UV radiation, or destruction by reaction with other constituents of the products or degradation by certain proteases.
  • the active substance can be released from the protein microbeads or colloidally disperse protein formulations by desorption, proteolytic degradation, targeted release or slow release or combination of these mechanisms.
  • the stability of the active ingredients in gastric passage can be increased because under the prevailing conditions there is no proteolytic degradation of the protein microbeads.
  • the release of the active Substances from the orally absorbed drug-containing microbeads then takes place in the intestine.
  • topical applications of protein microbeads and embedded therein pharmaceutical agents are possible.
  • the degradation of the protein microbeads and the resulting release of the active ingredients is then controlled by proteases contained on the skin or in the upper layers of the skin.
  • formulation of active ingredients with the described amphiphilic self-assembling proteins can furthermore lead to increased bioavailability of the active ingredients.
  • the packaging of active pharmaceutical ingredients in protein microbeads or the colloidally disperse formulation of active ingredients using the described amphiphilic self-assembling proteins can further lead to improved blood-brain barrier overcome the drug or improved uptake via the intestinal mucosa.
  • Crop protection products can be protected from being washed out by encapsulation or embedding in protein microbeads.
  • Certain drug particle sizes which are better incorporated or resorbed or more bioavailable may be prepared by packaging in protein microbeads or by colloidally dispersed formulation, e.g. by micronization approaches using amphiphilic self-assembling proteins.
  • amphiphilic self-assembling proteins By varying the amino acid sequence of the described amphiphilic self-assembling proteins or fusing with additional protein or peptide sequences, it is possible to generate structures which have certain surfaces, e.g. Skin, hair, leaves, roots or intestinal or blood vessel surfaces, specifically recognize or be recognized and bound by these surfaces or the receptors contained.
  • surfaces e.g. Skin, hair, leaves, roots or intestinal or blood vessel surfaces
  • the bioavailability of active pharmaceutical ingredients in food and feed can be increased if they are packaged in protein microbeads, which are additionally fused or associated with proteins that bind to certain surface markers (eg receptors) of cells of the intestinal tract (eg mucosal cells).
  • proteins are, for example, the MapA protein or the collagen-binding protein CnBP from Lactobacillus.
  • resulting protein-containing protein microbeads By coupling or fusing the binding proteins to the described amphiphilic self-assembling proteins, resulting protein-containing protein microbeads would be more selectively directed to appropriate sites or dwelling at these sites for longer, resulting in prolonged and improved drug release and uptake , Furthermore, by varying the amino acid sequence of the amphiphilic self-assembling proteins described for the active ingredient formulation or fusion with additional protein or peptide sequences, it is possible to target active ingredients to desired sites of action in order, for example, to achieve higher specificity, lower drug consumption or drug dose, faster or to achieve greater impact.
  • a stock solution was prepared by dissolving 80 mg of ⁇ -carotene and 16 mg of tocopherol in 10 g of THF. Following this, solutions 1-4 were prepared from this stock solution by dilution according to Table 1.1. All solutions were prepared shortly before use and processed immediately after dilution.
  • Tab. 1 .2 Packaging of ⁇ -carotene from THF and THF / isopropanol in C16 protein microbeads by adding 1 M potassium phosphate solution
  • the phase separation can also be carried out by dialysis against 1 M potassium phosphate. Since the dialysis was carried out in dialysis tubing, the 10-fold batch volume was in each case pipetted in comparison to the direct addition of the potassium phosphate solution (Table 1.3).
  • Tab. 1 .3 Packaging of ⁇ -carotene from THF and THF / isopropanol in C16 protein microbeads by dialysis against 1 M potassium phosphate solution
  • the C16 solution (10 mg / ml in 5 mM potassium phosphate, pH 8.0) was mixed with the respective ⁇ -carotene solution and the mixture was immediately added to the dialysis tubing and dialyzed against 1 M potassium phosphate solution. After overnight dialysis, the microbead dispersion was removed from the slides and separated by centrifugation into a colorless supernatant and into a colored pellet. As in the case of the direct addition of potassium phosphate to the common phase of C16 protein and ⁇ -carotene, the ⁇ -carotene was bound quantitatively by the C16 protein in the form of the protein microbeads. The colorless supernatant was removed. men. The pellets were then washed twice with distilled water and then redispersed.
  • FIG. 1 Dispersions of the C16 protein microbeads with ⁇ -carotene from THF and THF / isopropanol in water. From left to right: batches D1-D4 (THF / isopropanol) and batches D5-D8 (THF). The proportion of ⁇ -carotene in the C16 protein microbeads is given as a percentage by weight based on the weight of the C16 protein microbeads.
  • Tab. 1 .4 Packaging of ⁇ -carotene from THF and THF / isopropanol in C16 protein microbeads by dialysis against 1 M potassium phosphate solution
  • FIG. 1 Dispersions of the C16 protein microbeads with ⁇ -carotene from THF and THF / isopropanol in water. From left to right: batches D1-D4 (THF / isopropanol) and batches D5-D8 (THF). The proportion of ⁇ -carotene in the C16 protein microbeads is given as a percentage by weight based on the weight of the C16 protein microbeads.
  • Tab. 1 .4 Packaging of ⁇ -carotene from THF and THF / isopropanol in C16 protein microbeads by dialysis against 1 M potassium phosphate solution
  • FIG. 2 Dispersions of the C16 protein microbeads with ⁇ -carotene from THF / isopropanol (0.9 percent by weight ⁇ -carotene, mixture G1, left) and THF (0.3 percent by weight ⁇ -carotene, mixture G2, right).
  • the C16 protein microbeads were digested and the beta-carotene was released. After centrifugation, no pellet was visible. The supernatant was clearly colored. Without protease, the intact C16 protein microbeads could be centrifuged off. A distinctly colored pellet was observed. The supernatant was colorless.
  • Fig. 3 Digestion of the C16 protein microbead dispersions by proteinase K.
  • ⁇ -carotene-containing C16 protein microbeads 80 mg of ⁇ -carotene and 16 mg of vitamin E were dissolved in 10 ml of THF and then diluted with 90 ml of isopropanol. A portion of this solution was then mixed with 10 volumes of C16 protein solution (10 mg / ml in 5 mM potassium phosphate buffer pH 8). Subsequently, the batch was mixed with 2 volumes of 1 M potassium phosphate buffer pH 8. The resulting ⁇ -carotene-containing C16 protein microbeads were centrifuged off and excess free, free ⁇ -carotene was removed by washing the sediment with water.
  • 20 mg of ⁇ -carotene-containing C16 protein microbeads were mixed with 2 ml of artificial gastric juice (6.4 mg pepsin, 80 mM HCl, 4 mg NaCl) or 2 ml of artificial intestinal juice I (20 mg pancreatin, 0.45 M sodium phosphate pH 7.5, 0.9 mM sodium taurocholate) or 2 ml of artificial intestinal juice II (20 mg pancreatin, 0.45 M sodium phosphate pH 7.5, 6 mM sodium taurocholate) and resuspended for 0, 1, 2, 6, 24 and 48 h with shaking (140 rpm) at 37 ° C incubated.
  • artificial gastric juice 6.4 mg pepsin, 80 mM HCl, 4 mg NaCl
  • artificial intestinal juice I 20 mg pancreatin, 0.45 M sodium phosphate pH 7.5, 0.9 mM sodium taurocholate
  • 2 ml of artificial intestinal juice II 20 mg pancreatin, 0.45 M sodium phosphate pH 7.5
  • Non-proteolytically degraded C16 protein microbeads were determined by scattering the suspension at 600 nm ( Figure 4). Intact C16 protein microbeads were then centrifuged off and the supernatant analyzed for the ⁇ -carotene content by determining the absorbance at 445 nm (FIG. 5).
  • C16 protein microbeads could hardly be degraded even after 48 hours ( Figure 4) and thus ⁇ -carotene was released ( Figure 5).
  • C16 protein microbeads were almost completely degraded within 6 h (Fig. 4) and the contained ß-carotene was released (Fig. 5). Accordingly, C16 protein microbeads would survive the human gastric passage without substantial degradation and only release the bound effector substances by proteolytic degradation in the intestinal tract.
  • Fig. 4 Determination of intact C16 protein microbeads by photometric measurement of the absorption at 600 nm.
  • Fig. 5 Determination of ⁇ -carotene released from C16 protein microbeads by photometric absorption measurement at 445 nm.
  • Fig. 6 Formulation of lycopene with C16 spider silk protein. Absorption of untreated lycopene sample (A) and C16 protein-treated lycopene sample (B) immediately after mixing (black graph) and 2 hours after mixing (red graph).
  • Fig. 7 Formulation of lycopene with C16 spider silk protein. Comparison of untreated lycopene dispersion (left) with a C16 protein-stabilized lycopene dispersion (right) about 30 days after mixing.
  • Poorly water-soluble plant compounds can be packaged in protein microbeads, which are made from amphiphilic self-assembling proteins and then release from it.
  • the herbicide active substance metazachlor was selected as a non-limiting example.
  • the determination of the metazachlor concentration in the supernatant after C16 protein precipitation or C16 microbead formation showed that about 90% of the active ingredient was packed in or associated with the protein microbeads.
  • the wash supernatants each contained about 20% of the active ingredient.
  • the lyophilized metazachlor-containing C16 protein microbeads were resuspended in 1 ml of 10 mM Tris buffer; 0.1% SDS; 100 ⁇ g proteinase K proteolytically digested at 37 ° C for 1 h. After ten minutes of centrifugation (20,000 x g) remaining from this approach drug crystals were dissolved in 500 ul of isopropanol. In the supernatant of the protease digestion about 1 1% of the amount of metazachlor used was detected. The redissolved in isopropanol drug crystals accounted for about 35% of the amount of metazachlor used.
  • Substances which are difficult or not water-soluble and which are labile to influences such as oxygen radicals, UV, etc. can be packaged in protein microbeads which are produced from amphiphilic self-assembling proteins. Then they can be released from it again.
  • the active ingredients are protected by formulation or packaging in protein microbeads from the damaging effects and the resulting degradation.
  • the active substance retinol was selected as a non-limiting example, which was packed in C16 protein microbeads and stirred under air aeration and homogeneous mixing for several hours. Samples were taken at various times and the remaining retinol quantitated after THF extraction. The approaches presented in Table 5.1 were examined.
  • the retinol-THF solution was diluted in isopropanol, then treated with the aqueous C16 protein solution and then in the case of approach 1, the C16 protein microbead formation induced by the addition of 1 M potassium phosphate solution. Since the presence of cations, eg., by potassium phosphate in the C16 protein packaging approach, in principle contributes to increase the oxidation of freely dissolved or particulate occurring retinol was in control batches with and without C16 spider silk protein, but in which no C16 protein microbead formation should be induced 154 mM sodium chloride solution (see Fisher et al., 1972, Biochem J. 132: 259-270).
  • the batches were incubated in plastic containers with closed glass vessels with stirring on a magnetic stirrer and continuous gassing via a cannula for up to 7 hours.
  • 4 x 300 .mu.l taken in which mathematically a maximum of 9.38 ug Retinol should be included.
  • the C16 microbeads of the packaging batch were centrifuged off and the retinol contained was extracted with 1.5 ml of THF and quantitated by absorption photometry at 325 nm.
  • 1.5 ml of THF were added to the 300 ⁇ l sample, and the sample was mixed and centrifuged to produce a phase separation.
  • the retinol then contained in the upper THF phase was also quantified by absorption photometry at 325 nm.
  • Fig. 8 Determination of retinol stability in C16 formulations depending on the incubation period.
  • C16 protein microbead formation was induced by the addition of 1 M potassium phosphate buffer (pH 8.0). The mixture was incubated for 1 h at 10 ° C and then centrifuged for 10 min at 20,000 x g. The pellet was washed twice with distilled water. Thereafter, the active ingredient was removed by washing the C16 protein microbeads with 2 ml of THF and quantified by absorption photometry at 325 nm (see Table 5.3).
  • the maximum loading density for retinol in this experiment is about 1.9 mg per 5 mg C16 protein used (Table 5.3). In quantitative precipitation to C16 microbeads, the retinol active substance concentration or loading density is therefore about 38%.
  • Hardly or not water-soluble pharmacologically active substances can be packaged in protein microbeads, which are produced from amphiphilic self-assembling proteins. Then they can be released from it again. In addition, these agents can be protected from the deleterious effects, e.g. by packaging in protein microbeads, e.g. certain proteases or strongly acidic pHs and resulting degradation. Certain drug particle sizes or drug structures that are better absorbed or better bioavailable can be adjusted by packaging in protein microbeads or by micronization approaches using amphiphilic self-assembling proteins. To demonstrate this, the active substance ibuprofen [(RS) -2- (4-isobutylphenyl) propionic acid] was selected as a non-limiting example.
  • C16 microbeads can provide protection against gastric protease as well as the very acidic pH values prevailing in the stomach. A release under intestinal conditions is possible.
  • C16 microbeads are therefore suitable, among other things, for the packaging and formulation of orally administered active substances which are absorbed or act in the intestine and which are to be protected in the case of gastric passage.

Abstract

The invention relates to the use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances.

Description

Verwendung von amphiphilen, selbstassemblierenden Proteinen zur Formulierung von schwer wasserlöslichen EffektstoffenUse of amphiphilic, self-assembling proteins for the formulation of poorly water-soluble effect substances
Die vorliegende Erfindung betrifft die Verwendung von amphiphilen, selbstassemblie- renden Proteinen zur Formulierung von schwer wasserlöslichen EffektstoffenThe present invention relates to the use of amphiphilic, self-assembling proteins for the formulation of sparingly water-soluble effect substances
Stand der TechnikState of the art
DE 10059213A1 beschreibt ein Verfahren zur Herstellung fester Zubereitungen was- serunlöslicher oder schwer wasserlöslicher Wirkstoffe durch Dispergieren der Wirkstoffe in einem proteinhaltigen Schutzkolloid, Ausflockung und Abtrennung des mit dem Schutzkolloid überzogenenen Wirkstoffes und Überführung in ein Trockenpulver. Als bevorzugte Schutzkolloide werden Casein und Rinder-, Schweine- und Fischgelatine genannt.DE 10059213A1 describes a process for preparing solid preparations of water-insoluble or sparingly water-soluble active substances by dispersing the active ingredients in a protein-containing protective colloid, flocculating and separating the active ingredient coated with the protective colloid and converting into a dry powder. Preferred protective colloids include casein and beef, pork and fish gelatin.
DE 102004057587A1 beschreibt wässrige Dispersionen eines Gemisches aus schwer wasserlöslichen Wirkstoffen und Einzellerproteinmaterial und daraus hergestellte Trockenpulver.DE 102004057587A1 describes aqueous dispersions of a mixture of sparingly water-soluble active ingredients and single-cell protein material and dry powders prepared therefrom.
Aufgabenstellungtask
Die bisher bekannten Verfahren zur Formulierung von wasserunlöslichen bzw. schwer wasserlöslichen Wirk- und Effektstoffen erfüllen nicht alle Anforderungen, die an einen insbesondere für kosmetischen und pharmazeutischen Einsatz formulierten Wirkstoff gestellt werden, wie Temperatur- , Oxidations- und Lichtstabilität, mechanische Stabilität, toxische Unbedenklichkeit.The hitherto known processes for the formulation of water-insoluble or poorly water-soluble active substances and effect substances do not meet all the requirements which are imposed on an active ingredient formulated in particular for cosmetic and pharmaceutical use, such as temperature, oxidation and light stability, mechanical stability, toxic safety.
Es bestand daher die Aufgabe, ein Verfahren bereitzustellen, dass die Formulierung von schwer wasserlöslichen Wirkstoffen erlaubt und dabei die o.g. Kriterien besser erfüllt als die aus dem Stand der Technik bekannten Verfahren.It was therefore an object to provide a method that allows the formulation of poorly water-soluble drugs while the o.g. Meets criteria better than the known from the prior art method.
Beschreibung der ErfindungDescription of the invention
Die vorliegende Erfindung betrifft in einer ersten Ausführungsform die Verwendung von amphiphilen, selbstassemblierenden Proteinen zur Formulierung von schwer wasserlöslichen Effektstoffen. Amphiphile, selbstassemblierende Proteine eignen sich als Formulierungshilfsstoffe für schwer wasserlösliche, hydrophobe Wirkstoffe. Durch ihren amphiphilen Molekülcharakter können diese Proteine hydrophobe Wirkstoffe in wässrigen Lösungen stabilisieren. Ihre selbstassemblierenden Eigenschaften ermöglichen diesen Proteinen höher- molekulare Strukturen einzunehmen und damit hydrophobe Wirkstoffe dauerhaft zu verkapseln.The present invention relates in a first embodiment to the use of amphiphilic self-assembling proteins for the formulation of sparingly water-soluble effect substances. Amphiphilic, self-assembling proteins are suitable as formulation auxiliaries for poorly water-soluble, hydrophobic active ingredients. Due to their amphiphilic molecular character, these proteins can stabilize hydrophobic drugs in aqueous solutions. Their self-assembling properties enable these proteins to adopt higher molecular structures and thus permanently encapsulate hydrophobic active ingredients.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Effektstoffformulierungen, wobei man (i) den schwer wasserlöslichen Effektstoff zusammen mit dem amphiphilen selbstassemblierenden Protein in einer gemeinsamen dispersen Phase mischt, (ii) anschliessend eine Phasentrennung in eine protein- und effektstoffreiche Phase sowie eine protein- und effektstoffarme Phase durchführt .Another object of the invention is a process for the preparation of Effektstoffformulierungen, wherein (i) the sparingly water-soluble effect substance mixed together with the amphiphilic self-assembling protein in a common disperse phase, (ii) then a phase separation in a protein and effect-rich phase and a protein and low-phase phase performs.
Die protein- und effektstoffreiche Phase kann später ausgehärtet und als mechanisch stabile effektstoff-enthaltende Protein-Microbeads abgetrennt und ggf. getrocknet werden.The protein- and effect-rich phase can later be cured and separated as mechanically stable effect-containing protein microbeads and optionally dried.
(i) Amphiphile, selbstassemblierende Proteine(i) Amphiphilic, self-assembling proteins
Amphiphile, selbstassemblierende Proteine bestehen aus Polypeptiden, die aus Aminosäuren, insbesondere aus den 20 natürlich vorkommenden Aminosäuren, aufgebaut sind. Die Aminosäuren können auch modifiziert, beispielsweise acetyliert, glycosyliert, farnesyliert, sein.Amphiphilic, self-assembling proteins consist of polypeptides composed of amino acids, in particular of the 20 naturally occurring amino acids. The amino acids may also be modified, for example, acetylated, glycosylated, farnesylated.
Geeignete amphiphile, selbstassemblierende Proteine für die Formulierung schwer wasserlöslicher Effektstoffe sind solche Proteine, welche Protein-Microbeads ausbilden können. Protein-Microbeads besitzen eine globuläre Gestalt mit einem mittleren Teilchendurchmesser von 0,1 bis 100, insbesondere von 0,5 bis 20, bevorzugt von 1 bis 5 und besonders bevorzugt von 2 bis 4 μm.Suitable amphiphilic, self-assembling proteins for the formulation of sparingly water-soluble effect substances are those proteins which can form protein microbeads. Protein microbeads have a globular shape with an average particle diameter of 0.1 to 100, in particular from 0.5 to 20, preferably from 1 to 5 and particularly preferably from 2 to 4 microns.
Protein-Microbeads lassen sich bevorzugt durch das im Folgenden beschriebene Verfahren herstellen:Protein microbeads can preferably be prepared by the process described below:
Das Protein wird in einem ersten Lösungsmittel gelöst. Als Lösungsmittel können beispielsweise wässrige Salzlösungen verwendet werden. Insbesondere eignen sich hoch konzentrierte Salzlösungen mit einer Konzentration größer 2, insbesondere größer 4 und besonders bevorzugt größer 5 molar, deren Ionen stärker ausgeprägte chaotrope Eigenschaften aufweisen als Natrium- und Chloridionen. Ein Beispiel für eine solche Salzlösung ist 6 M Guanidiniumthiocyanat oder 9 M Lithiumbromid. Des Weiteren kön- nen organische Lösungsmittel zum Lösen der Proteine verwendet werden. Insbesondere eignen sich fluorierte Alkohole oder zyklische Kohlenwasserstoffe oder organische Säuren. Beispiele dafür sind Hexafluorisopropanol, Cyclohexan und Ameisensäure. Die Herstellung der Protein-Microbeads kann in den beschriebenen Lösungsmitteln erfolgen. Alternativ kann dieses Lösungsmittel durch ein weiteres Lösungsmittel z.B. niedrig konzentrierte Salzlösungen (c < 0,5 M) durch Dialyse oder Verdünnung ersetzt werden. Die Endkonzentration des gelösten Proteins sollte zwischen 0,1-100 mg/ml betragen. Die Temperatur, bei der das Verfahren durchgeführt wird, beträgt üblicherweise 0-80, bevorzugt 5-50 und besonders bevorzugt 10 40 °C.The protein is dissolved in a first solvent. As the solvent, for example, aqueous salt solutions can be used. In particular, are high concentrated salt solutions having a concentration greater than 2, in particular greater than 4 and particularly preferably greater than 5 molar, whose ions have more pronounced chaotropic properties than sodium and chloride ions. An example of such a saline solution is 6 M guanidinium thiocyanate or 9 M lithium bromide. Furthermore, organic solvents can be used to dissolve the proteins. In particular, fluorinated alcohols or cyclic hydrocarbons or organic acids are suitable. Examples are hexafluoroisopropanol, cyclohexane and formic acid. The preparation of the protein microbeads can be carried out in the solvents described. Alternatively, this solvent can be replaced by another solvent, for example, low-concentration salt solutions (c <0.5 M) by dialysis or dilution. The final concentration of the dissolved protein should be between 0.1-100 mg / ml. The temperature at which the process is carried out is usually 0-80, preferably 5-50, and more preferably 10 40 ° C.
Bei Verwendung von wässrigen Lösungen können diese auch noch mit einem Puffer, bevorzugt im Bereich von pH 4-10, besonders bevorzugt 5 -9, ganz besonders bevorzugt 6 - 8,5 versetzt sein.If aqueous solutions are used, they may also be mixed with a buffer, preferably in the range of pH 4-10, particularly preferably 5-9, very particularly preferably 6-8.5.
Durch Zugabe eines Additivs wird eine Phasentrennung induziert. Dabei entsteht eine in der Mischung von Lösungsmittel und Additiv emulgierte proteinreiche Phase. Aufgrund von Oberflächeneffekten nehmen emulgierte proteinreiche Tröpfchen eine runde Form an. Durch die Wahl des Lösungsmittels, des Additivs und der Proteinkonzentration kann der mittlere Durchmesser der Protein-Microbeads auf Werte zwischen 0,1 μm bis 100 μm eingestellt werden.Addition of an additive induces phase separation. This results in a protein-rich phase emulsified in the mixture of solvent and additive. Due to surface effects, emulsified protein-rich droplets take on a round shape. By choosing the solvent, the additive and the protein concentration, the average diameter of the protein microbeads can be set to values between 0.1 μm and 100 μm.
Als Additiv können alle Substanzen verwendet werden, die einerseits mit dem ersten Lösungsmittel mischbar sind und andererseits die Bildung einer proteinreichen Phase induzieren. Wird die Microbeadbildung in organischen Lösungsmitteln durchgeführt, so eignen sich dafür organische Substanzen, die eine geringere Polarität als das Lö- sungsmittel aufweisen, z.B. Toluol. In wässrigen Lösungen können Salze als Additiv verwendet werden, deren Ionen stärker ausgeprägte kosmotrope Eigenschaften aufweisen als Natrium- und Chloridionen (z.B. Ammoniumsulfat; Kaliumphosphat). Die Endkonzentration des Additivs sollte abhängig von der Art des Additivs zwischen 1 % und 50 Gew.-% bezogen auf die Proteinlösung betragen. Die proteinreichen Tröpfchen werden durch Aushärtung fixiert, wobei die runde Form erhalten bleibt. Die Fixierung beruht dabei auf der Ausbildung starker intermolekularer Wechselwirkungen. Die Art der Wechselwirkungen kann nicht-kovalent, z.B. durch die Bildung intermolekularer ß-Faltblattkristalle oder kovalent, z.B. durch chemische Quer- Vernetzung sein. Die Aushärtung kann durch das Additiv und / oder durch die Zugabe einer weiteren geeigneten Substanz erfolgen. Die Aushärtung erfolgt bei Temperaturen zwischen 0 und 80°C, bevorzugt zwischen 5 und 60°C.As an additive, it is possible to use all substances which, on the one hand, are miscible with the first solvent and, on the other hand, induce the formation of a protein-rich phase. If the microbead formation is carried out in organic solvents, organic substances which have a lower polarity than the solvent, for example toluene, are suitable for this purpose. Salts can be used as an additive in aqueous solutions whose ions have more pronounced cosmotropic properties than sodium and chloride ions (eg ammonium sulfate, potassium phosphate). The final concentration of the additive should be between 1% and 50% by weight, based on the protein solution, depending on the type of additive. The protein-rich droplets are fixed by curing, whereby the round shape is retained. The fixation is based on the formation of strong intermolecular interactions. The nature of the interactions may be non-covalent, eg by the formation of intermolecular β-sheet crystals or covalent, eg by chemical cross-linking. The curing can be carried out by the additive and / or by the addition of another suitable substance. The curing takes place at temperatures between 0 and 80 ° C, preferably between 5 and 60 ° C.
Diese weitere Substanz kann ein chemischer Quervernetzer sein. Unter einem chemi- sehen Quervernetzer wird dabei ein Molekül verstanden, bei dem mindestens zwei chemisch reaktive Gruppen über einen Linker miteinander verbunden sind. Beispiele dafür sind Sulfhydryl-reaktive Gruppen (z.B. Maleimide, Pydridyldisulfide, α - Haloacetyle, Vinylsulfone, Sulfatoalkylsulfone (bevorzugt Sulfatoethylsulfone)), Amin- reaktive Gruppen (z.B. Succinimidylester, Carbodiimde, Hydroxymethyl- Phosphin, Imidoester, PFP-Ester, Aldehyde, Isothiocyanate etc.), Carboxy-reaktive Gruppen (z.B. Amine etc.), Hydroxyl-reaktive Gruppen (z.B. Isocyanate etc.), unselektive Gruppen (z.B. Arylazide etc.) und photoaktivierbare Gruppen (z.B. Perfluorphenylazid etc.). Diese reaktiven Gruppen können mit in Proteinen vorhandenen Amin-, Thiol-, Carboxyl- oder Hydroxylgruppen kovalente Verknüpfungen bilden.This further substance can be a chemical cross-linker. A chemical cross-linker is understood to mean a molecule in which at least two chemically reactive groups are linked to one another via a linker. Examples of these are sulfhydryl-reactive groups (for example maleimides, pydridyl disulfides, α-haloacetyls, vinyl sulfones, sulfatoalkyl sulfones (preferably sulfatoethyl sulfones)), amine-reactive groups (for example succinimidyl esters, carbodiimde, hydroxymethyl phosphine, imido esters, PFP esters, aldehydes, isothiocyanates, etc .), Carboxy-reactive groups (eg, amines, etc.), hydroxyl-reactive groups (eg, isocyanates, etc.), unselective groups (eg, arylazides, etc.), and photoactivatable groups (eg, perfluorophenyl azide, etc.). These reactive groups can form covalent linkages with amine, thiol, carboxyl or hydroxyl groups present in proteins.
Die stabilisierten Microbeads werden mit einem geeigneten weiteren Lösungsmittel, z.B. Wasser gewaschen und anschließend durch dem Fachmann geläufige Verfahren getrocknet, z.B. durch Lyophilisierung, Kontakttrocknung oder Sprühtrocknung. Der Erfolg der Kugelbildung wird mit Hilfe der Rasterelektronenmikroskopie überprüft.The stabilized microbeads are washed with a suitable further solvent, e.g. Water and then dried by methods known to those skilled in the art, e.g. by lyophilization, contact drying or spray drying. The success of the sphere formation is checked by scanning electron microscopy.
Für die Herstellung von Protein-Microbeads sind Proteine geeignet, die in wässriger Lösung überwiegend intrinsisch entfaltet vorliegen. Dieser Zustand kann beispielsweise nach einem Algorithmus berechnet werden, der dem Programm lUpred zugrunde liegt (http://iupred.enzim.hu/index.html; The Pairwise Energy Content Estimated from Amino Acid Composition Discriminates between Folded and Intrinsically Unstructured Proteins; Zsuzsanna Dosztänyi, Veronika Csizmόk, Peter Tompa and Istvän Simon; J. Mol. Biol. (2005) 347, 827-839). Ein überwiegend intrinsisch entfalteter Zustand wird dann angenommen, wenn für über 50% der Aminosäurereste nach diesem Algorithmus ein Wert > 0,5 berechnet wird (prediction type: long disorder). Weitere geeignete Proteine für die Formulierung von schwer wasserlöslichen Effektstoffen sind Seidenproteine. Darunter verstehen wir im Folgenden solche Proteine, die hoch repetitive Aminosäuresequenzen enthalten und im Tier in einer flüssigen Form gespeichert werden und bei deren Sekretion durch Scherung oder Verspinnen Fasern entstehen (Craig, C. L. (1997) Evolution of arthropod silks. Annu. Rev. Entomol. 42: 231-67).Proteins that are predominantly intrinsically unfolded in aqueous solution are suitable for the production of protein microbeads. For example, this condition may be calculated using an algorithm that underlies the lUpred program (http://iupred.enzim.hu/index.html; The Pairwise Energy Content Estimated from Amino Acid Composition Discriminates between Folded and Intrinsically Unstructured Proteins; Zsuzsanna Dosztanyi Veronika Csizmόk, Peter Tompa and Istvan Simon, J. Mol. Biol. (2005) 347, 827-839). A predominantly intrinsically unfolded state is assumed when a value> 0.5 is calculated for over 50% of the amino acid residues according to this algorithm (prediction type: long disorder). Other suitable proteins for the formulation of poorly water-soluble effect substances are silk proteins. By this we mean hereinafter those proteins which contain highly repetitive amino acid sequences and which are stored in the animal in a liquid form and whose secretion by shearing or spinning results in fibers (Craig, CL (1997) Evolution of arthropod silks. Annu. Rev. Entomol. 42: 231-67).
Besonders geeignete Proteine für die Formulierung von schwer wasserlöslichen Effektstoffen sind Spinnenseidenproteine, die in ihrer ursprünglichen Form aus Spinnen isoliert werden konnten.Particularly suitable proteins for the formulation of sparingly water-soluble effect substances are spider silk proteins, which could be isolated in their original form from spiders.
Ganz besonders geeignete Proteine sind Seidenproteine, die aus der „Major Ampulla- te"-Drüse von Spinnen isoliert werden konnten.Especially suitable proteins are silk proteins which could be isolated from the "major ampullate" gland of spiders.
Bevorzugte Seidenproteine sind ADF3 und ADF4 aus der der „Major Ampullate"-Drüse von Araneus diadematus (Guerette et al., Science 272, 5258:1 12-5 (1996)).Preferred silk proteins are ADF3 and ADF4 from the "major ampullate" gland of Araneus diadematus (Guerette et al., Science 272, 5258: 12-5 (1996)).
Ebenso geeignete Proteine für die Formulierung von schwer wasserlöslichen Effektstoffen sind natürliche oder synthetische Proteine, die sich von natürlichen Seidenproteinen ableiten und welche unter Verwendung gentechnologischer Arbeitsmethoden heterolog in prokaryontischen oder eukaryontischen Expressionssystemen hergestellt wurden. Nichtlimitierende Beispiele für prokaryontische Expressionsorganismen sind Escherichia coli, Bacillus subtilis, Bacillus megaterium, Corynebacterium glutamicum u.a.. Nichtlimitierende Beispiele für eukaryontische Expressionsorganismen sind Hefen, wie Saccharomyces cerevisiae, Pichia pastoris u.a., filamentöse Pilze, wie Asper- gillus niger, Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, Acremonium chrysogenum u.a., Säugetierzellen, wie Heia-Zellen, COS-Zellen, CHO-Zellen u.a., Insektenzellen, wie Sf9-Zellen, MEL-Zellen u.a..Equally suitable proteins for the formulation of sparingly water-soluble effect substances are natural or synthetic proteins which are derived from natural silk proteins and which have been produced heterologously in prokaryotic or eukaryotic expression systems using genetic engineering working methods. Non-limiting examples of prokaryotic expression organisms are Escherichia coli, Bacillus subtilis, Bacillus megaterium, Corynebacterium glutamicum etc. Nonlimiting examples of eukaryotic expression organisms are yeasts such as Saccharomyces cerevisiae, Pichia pastoris and others, filamentous fungi such as Aspergillus niger, Aspergillus oryzae and Aspergillus nidulans. Trichoderma reesei, Acremonium chrysogenum and others, mammalian cells, such as Heia cells, COS cells, CHO cells and others, insect cells, such as Sf9 cells, MEL cells and others.
Besonders bevorzugt für die Formulierung von schwer wasserlöslichen Effektstoffen sind synthetische Proteine, welche auf Wiederholungseinheiten von natürlichen Seidenproteinen basieren. Neben den synthetischen repetitiven Seidenprotein-Sequenzen können diese zusätzlich eine oder mehrere natürliche nicht-repetitve Seidenprotein- Sequenzen enthalten (Winkler und Kaplan, J Biotechnol 74:85-93 (2000)).Particularly preferred for the formulation of sparingly water-soluble effect substances are synthetic proteins which are based on repeat units of natural silk proteins. In addition to the synthetic repetitive silk protein sequences, these may additionally contain one or more natural non-repetitive silk protein sequences (Winkler and Kaplan, J Biotechnol 74: 85-93 (2000)).
Unter den synthetischen Seidenproteinen bevorzugt für die Formulierung von schwer wasserlöslichen Effektstoffen sind synthetische Spinnenseidenproteine, welche auf Wiederholungseinheiten von natürlichen Spinnenseidenproteinen basieren. Neben den synthetischen repetitiven Spinnenseidenprotein-Sequenzen können diese zusätzlich eine oder mehrere natürliche nicht-repetitve Spinnenseidenprotein-Sequenzen enthalten.Among the synthetic silk proteins preferred for the formulation of poorly water-soluble effect substances are synthetic spider silk proteins, which Repeat units of natural spider silk proteins based. In addition to the synthetic repetitive spider silk protein sequences, these may additionally contain one or more natural non-repetitive spider silk protein sequences.
Unter den synthetischen Spinnenseidenproteinen ist bevorzugt das sog. C16-Protein zu nennen (Huemmerich et al. Biochemistry, 43(42):13604-13612 (2004)). Dieses Protein hat die in SEQ ID NO: 1 dargestellte Polypeptidsequenz. Neben der in SEQ ID NO:1 dargestellten Polypeptidsequenz sind auch besonders funktionale Äquivalente, funktionale Derivate und Salze dieser Sequenz bevorzugt.Among the synthetic spider silk proteins, preference is given to the so-called C16 protein (Huemmerich et al., Biochemistry, 43 (42): 13604-13612 (2004)). This protein has the polypeptide sequence shown in SEQ ID NO: 1. In addition to the polypeptide sequence shown in SEQ ID NO: 1, particularly functional equivalents, functional derivatives and salts of this sequence are also preferred.
Unter „funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere auch Mutanten, welche in wenigstens einer Sequenzposition der oben genannten Aminosäuresequenzen eine andere als die konkret genannte Aminosäure aufweisen aber trotz- dem die Eigenschaft zur Verpackung schwer wasserlöslicher Effektstoffe besitzt.According to the invention, "functional equivalents" are understood in particular to also be mutants which, in at least one sequence position of the abovementioned amino acid sequences, have a different amino acid than the one specifically mentioned but nevertheless have the property of packaging sparingly water-soluble effect substances.
„Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure- Additionen, -Substitutionen, -Deletionen und/oder -Inversionen erhältlichen Mutanten, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil führen. Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn die Reaktivitätsmuster zwischen Mutante und unverändertem Polypeptid qualitativ übereinstimmen."Functional equivalents" thus include the mutants obtainable by one or more amino acid additions, substitutions, deletions, and / or inversions, which changes may occur in any sequence position as long as they result in a mutant having the property profile of the invention Equivalence is especially given when the reactivity patterns between mutant and unchanged polypeptide match qualitatively.
„Funktionale Äquivalente" im obigen Sinne sind auch „Präkursoren" der beschriebenen Polypeptide sowie „funktionale Derivate" und „Salze" der Polypeptide."Functional equivalents" in the above sense are also "precursors" of the described polypeptides as well as "functional derivatives" and "salts" of the polypeptides.
„Präkursoren" sind dabei natürliche oder synthetische Vorstufen der Polypeptide mit oder ohne die gewünschte biologische Aktivität."Precursors" are natural or synthetic precursors of the polypeptides with or without the desired biological activity.
Beispiele für geeignete Aminosäuresubstitutionen sind folgender Tabelle zu entneh- men:Examples of suitable amino acid substitutions are given in the following table:
Ursprünglicher Rest Beispiele der SubstitutionOriginal rest Examples of substitution
AIa SerAIa Ser
Arg LysArg Lys
Asn GIn; HisAsn GIn; His
Asp GIu Cys SerAsp Glu Cys Ser
GIn AsnGIn Asn
GIu AspGiu Asp
GIy ProGIy Pro
His Asn ; GInHis Asn; Gin
Me Leu; VaIMe Leu; Val
Leu Me; VaILeu Me; Val
Lys Arg ; GIn ; GIuLys Arg; GIn; Glu
Met Leu ; HeMet Leu; He
Phe Met ; Leu ; TyrPhe Met; Leu; Tyr
Ser ThrSer Thr
Thr SerThr Ser
Trp TyrTrp Tyr
Tyr Trp ; PheTyr Trp; Phe
VaI Me; LeuVaI Me; Leu
Unter dem Ausdruck „Salze" versteht man sowohl Salze von Carboxylgruppen als auch Säureadditionssalze von Aminogruppen der erfindungsgemäßen Proteinmoleküle. Salze von Carboxylgruppen können in an sich bekannter Weise hergestellt werden und umfassen anorganische Salze, wie zum Beispiel Natrium-, Calcium-, Ammonium-, Eisen- und Zinksalze, sowie Salze mit organischen Basen, wie zum Beispiel Aminen, wie Triethanolamin, Arginin, Lysin, Piperidin und dergleichen. Säureadditionssalze, wie zum Beispiel Salze mit Mineralsäuren, wie Salzsäure oder Schwefelsäure und Salze mit organischen Säuren, wie Essigsäure und Oxalsäure sind ebenfalls Gegenstand der Erfindung.Salts are understood as meaning both salts of carboxyl groups and acid addition salts of amino groups of the protein molecules of the invention Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts such as, for example, sodium, calcium, ammonium, iron and zinc salts, as well as salts with organic bases such as amines such as triethanolamine, arginine, lysine, piperidine and the like, acid addition salts such as salts with mineral acids such as hydrochloric acid or sulfuric acid and salts with organic acids such as acetic acid and oxalic acid also the subject of the invention.
„Funktionale Derivate" erfindungsgemäßer Polypeptide können an funktionellen Aminosäure-Seitengruppen oder an deren N- oder C-terminalen Ende mit Hilfe bekannter Techniken ebenfalls hergestellt werden. Derartige Derivate umfassen beispielsweise aliphatische Ester von Carbonsäuregruppen, Amide von Carbonsäuregruppen, erhältlich durch Umsetzung mit Ammoniak oder mit einem primären oder sekundären Amin; N-Acylderivate freier Aminogruppen, hergestellt durch Umsetzung mit Acylgruppen; oder O-Acylderivate freier Hydroxygruppen, hergestellt durch Umsetzung mit Acylgruppen. (ii) Schwer wasserlösliche Effektstoffe"Functional derivatives" of polypeptides of the invention may also be produced at functional amino acid side groups or at their N- or C-terminal end by known techniques Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups obtainable by reaction with ammonia or with a primary or secondary amine; N-acyl derivatives of free amino groups prepared by reaction with acyl groups; or O-acyl derivatives of free hydroxy groups prepared by reacting with acyl groups. (ii) poorly water-soluble effect substances
Im folgenden werden die Begriffe schwer-wasserlösliche Effektstoffe und hydrophobe Effektstoffe und hydrophobe Wirkstoffe und Effektormoleküle synonym verwendet. Als schwer wasserlöslichen Effektstoffe werden im folgenden solche Verbindungen bezeichnet, deren Wasserlöslichkeit bei 20°C < 5 Gew.-%, bevorzugt < 1 Gew.-%, besonders bevorzugt < 0,5 Gew.-%, ganz besonders bevorzugt < 0,1 Gew.-% beträgt.In the following, the terms heavy water-soluble effect substances and hydrophobic effect substances and hydrophobic agents and effector molecules are used interchangeably. As sparingly water-soluble effect substances are referred to below those compounds whose water solubility at 20 ° C <5 wt .-%, preferably <1 wt .-%, more preferably <0.5 wt .-%, most preferably <0.1 Wt .-% is.
Geeignete schwer wasserlösliche Effektstoffe sind Farbstoffe, insbesondere die in der folgenden Tabelle genannten:Suitable sparingly water-soluble effect substances are dyes, in particular those mentioned in the following table:
Besonders vorteilhafte Farbstoffe sind die in der folgenden Liste genannten öllöslichen oder in Öl dispergierbaren Verbindungen. Die Colour Index Nummern (CIN) sind dem Rowe Colour Index, 3. Auflage, Society of Dyers and Colourists, Bradford, England, 1971 entnommen.Particularly advantageous dyes are the oil-soluble or oil-dispersible compounds mentioned in the following list. The Color Index Numbers (CIN) are taken from the Rowe Color Index, 3rd Edition, Society of Dyers and Colourists, Bradford, England, 1971.
Weitere bevorzugte Effektormoleküle sind Fettsäuren, insbesondere gesättigte Fettsäuren, die eine Alkylverzweigung tragen, besonders bevorzugt verzweigte Eicosan- säuren, wie 18-Methyl-Eicosansäure.Further preferred effector molecules are fatty acids, in particular saturated fatty acids which carry an alkyl branching, particularly preferably branched eicosanoic acids, such as 18-methyl-eicosanoic acid.
Weitere bevorzugte Effektormoleküle sind Carotinoide. Unter Carotinoide sind erfindungsgemäß folgende Verbindungen sowie deren veresterte oder glykosylierte Deriva- te zu verstehen: ß-Carotin, Lycopin, Lutein, Astaxanthin, Zeaxanthin, Cryptoxanthin, Citranaxanthin, Canthaxanthin, Bixin, ß-Apo-4-carotinal, ß-Apo-8-carotinal, ß-Apo-8- carotinsäureester, Neurosporen, Echinenon, Adonirubin, Violaxanthin, Torulen, Toru- larhodin, einzeln oder als Mischung. Bevorzugt verwendete Carotinoide sind ß-Carotin, Lycopin, Lutein, Astaxanthin, Zeaxanthin, Citranaxanthin und Canthaxanthin.Further preferred effector molecules are carotenoids. Carotenoids according to the invention are the following compounds and their esterified or glycosylated derivatives β-carotene, lycopene, lutein, astaxanthin, zeaxanthin, cryptoxanthin, citranaxanthin, canthaxanthin, bixin, β-apo-4-carotenal, β-apo-8-carotenal, β-apo-8-carotenoic acid ester, neurospores, Echinone, adonirubin, violaxanthin, torules, torularyhodine, singly or as a mixture. Preferably used carotenoids are β-carotene, lycopene, lutein, astaxanthin, zeaxanthin, citranaxanthin and canthaxanthin.
Weitere bevorzugte Effektormoleküle sind Vitamine, insbesondere Retinoide und deren Ester.Further preferred effector molecules are vitamins, especially retinoids and their esters.
Unter Retinoide sind im Rahmen der vorliegenden Erfindung Vitamin A Alkohol (Retinol) und seine Derivate wie Vitamin A Aldehyd (Retinal), Vitamin A Säure (Retinsäure) und Vitamin A Ester (z.B. Retinylacetat, Retinylpropionat und Retinylpalmitat) gemeint. Der Begriff Retinsäure umfasst dabei sowohl all-trans Retinsäure als auch 13-cis Retinsäure. Die Begriffe Retinol und Retinal umfassen bevorzugt die all-trans Verbindun- gen. Als bevorzugtes Retinoid verwendet man für die erfindungsgemäßen Formulierungen all-trans-Retinol, im folgenden als Retinol bezeichnet.By retinoids in the context of the present invention is meant vitamin A alcohol (retinol) and its derivatives such as vitamin A aldehyde (retinal), vitamin A acid (retinoic acid) and vitamin A esters (e.g., retinyl acetate, retinyl propionate and retinyl palmitate). The term retinoic acid encompasses both all-trans retinoic acid and 13-cis retinoic acid. The terms retinol and retinal preferably comprise the all-trans compounds. The preferred retinoid used for the formulations according to the invention is all-trans-retinol, referred to below as retinol.
Weitere bevorzugte Effektormoleküle sind Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, C, E und F, insbesondere 3,4-Didehydroretinol, ß-Carotin (Provi- tamin des Vitamin A), Palmitinsäureester der Ascorbinsäure, Tocopherole, insbesondere α-Tocopherol sowie seine Ester, z.B. das Acetat, das Nicotinat, das Phosphat und das Succinat; weiterhin Vitamin F, worunter essentielle Fettsäuren, besonders Linol- säure, Linolensäure und Arachidonsäure, verstanden werden.Further preferred effector molecules are vitamins, provitamins and vitamin precursors from groups A, C, E and F, in particular 3,4-didehydroretinol, .beta.-carotene (provitamin of vitamin A), palmitic acid ester of ascorbic acid, tocopherols, especially .alpha.-tocopherol and its esters, eg the acetate, nicotinate, phosphate and succinate; also vitamin F, which is understood as meaning essential fatty acids, especially linoleic acid, linolenic acid and arachidonic acid.
Weitere bevorzugte Effektormoleküle sind lipophile, öllösliche Antioxidantien aus der Gruppe Vitamin E, d.h. Tocopherol und dessen Derivate, Gallussäureester, Flavonoide und Carotinoide sowie Butylhydroxytoluol/anisol.Further preferred effector molecules are lipophilic, oil-soluble antioxidants from the group vitamin E, i. Tocopherol and its derivatives, gallic acid esters, flavonoids and carotenoids, and butylhydroxytoluene / anisole.
Ein weiteres bevorzugtes Effektormolekül ist Liponsäure und geeignete Derivate (SaI- ze, Ester, Zucker, Nukleotide, Nukleoside, Peptide und Lipide).Another preferred effector molecule is lipoic acid and suitable derivatives (salts, esters, sugars, nucleotides, nucleosides, peptides and lipids).
Weitere bevorzugte Effektormoleküle sind UV-Lichtschutzfilter. Darunter sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme, wieder abzugeben. Als öllösliche UV-B-Filter können z.B. folgende Substanzen verwendet werden:Further preferred effector molecules are UV light protection filters. These are understood to mean organic substances which are able to absorb ultraviolet rays and to release the absorbed energy in the form of longer-wave radiation, eg heat. As oil-soluble UV-B filters, for example, the following substances can be used:
3-Benzylidencampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher;3-benzylidene camphor and its derivatives, e.g. 3- (4-methylbenzylidene) camphor;
4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2- ethylhexylester, 4-( Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)- benzoesäureamylester;4-aminobenzoic acid derivatives, preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester;
Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4 Methoxy- zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester, 4 Methoxyzimtsäureisopenty- lester, 2-Cyano-3-phenyl-zimtsäure-2-ethylhexylester (Octocrylene); Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4 isopropylbenzylester, Salicylsäurehomomenthylester;Esters of cinnamic acid, preferably 2-ethylhexyl 4-methoxycinnamate, 4-propyl methoxy cinnamate, isoamyl 4-methoxycinnamate, 4-isoacetyl methoxycinnamate, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene); Esters of salicylic acid, preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomenthyl salicylate;
Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Derivatives of benzophenone, preferably 2-hydroxy-4-methoxybenzophenone, 2-
Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;Hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2- ethylhexylester;Esters of benzalmalonic acid, preferably di-2-ethylhexyl 4-methoxybenzmalonate;
Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5-triazin (Oc- tyltriazone) und Dioctyl Butamido Triazon (Uvasorb® HEB):Triazine derivatives, such as 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine (octyl tyltriazone) and Dioctyl Butamido Triazone (Uvasorb® HEB):
Propan-1 ,3-dione, wie z.B. 1 -(4-tert. Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3- dion. Besonders bevorzugt ist die Verwendung von Estern der Zimtsäure, vorzugsweise 4-Propane-1,3-diones, e.g. 1- (4-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione. Particularly preferred is the use of esters of cinnamic acid, preferably 4-
Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäureisopentylester, 2-Cyano-3- phenyl-zimtsäure-2-ethylhexylester (Octocrylene).2-ethylhexyl methoxycinnamate, isopentyl 4-methoxycinnamate, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene).
Des weiteren ist die Verwendung von Derivaten des Benzophenons, insbesondere 2-Furthermore, the use of derivatives of benzophenone, in particular 2-
Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4"-methylbenzophenon, 2,2'- Dihydroxy-4-methoxybenzophenon sowie der Einsatz von Propan-1 ,3-dionen, wie z.B.Hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4 " -methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone and the use of propane-1, 3-diones, such as
1 -(4-tert. Butylphenyl)-3-(4-'methoxyphenyl)propan-1 ,3-dion bevorzugt.1- (4-tert-butylphenyl) -3- (4-methoxy-phenyl) -propane-1,3-dione is preferred.
Als typische UV-A-Filter kommen in Frage:Typical UV-A filters are:
Derivate des Benzoylmethans, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'- methoxyphenyl)propan-1 ,3-dion, 4-tert. -Butyl-4'-methoxydibenzoylmethan oder 1- Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion;Derivatives of benzoylmethane, such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert. Butyl 4'-methoxydibenzoylmethane or 1-phenyl-3- (4'-isopropylphenyl) -propane-1,3-dione;
Amino-hydroxy-substituierte Derivate von Benzophenonen wie z.B. N,N-Diethylamino- hyd roxybenzoyl-n-hexyl benzoat. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden.Amino-hydroxy-substituted derivatives of benzophenones such as N, N-diethylamino hydroxybenzoyl-n-hexyl benzoate. Of course, the UV-A and UV-B filters can also be used in mixtures.
Geeignete UV-Filtersubstanzen sind in der folgenden Tabelle genannt.Suitable UV filter substances are mentioned in the following table.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV- Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Tocopherole (Vitamin E) und öllösliche Ascorbinsäurederivate (Vitamin C).In addition to the two aforementioned groups of primary light stabilizers, it is also possible to use secondary light stabilizers of the antioxidant type which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates into the skin. Typical examples are tocopherols (vitamin E) and oil-soluble ascorbic acid derivatives (vitamin C).
Erfindungsgemäß können geeignete Derivate (Salze, Ester, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) der genannten Verbindungen als Effektormoleküle verwendet werden. Weiter bevorzugt sind sogenannte Peroxydzersetzter, d.h. Verbindungen die in der Lage sind Peroxyde, besonders bevorzugt Lipidperoxyde zu zersetzen. Darunter sind organische Substanzen zu verstehen, wie z.B. 5-Pyrimidinol- sowie 3-Pyridinolderivate und Probucol.According to the invention, suitable derivatives (salts, esters, sugars, nucleotides, nucleosides, peptides and lipids) of said compounds can be used as effector molecules. Further preferred are so-called peroxide decomposers, ie compounds which are able to decompose peroxides, particularly preferably lipid peroxides. These include organic substances, such as 5-pyrimidinol and 3-pyridinol derivatives and probucol.
Weiterhin handelt es sich bei den genannten Peroxydzersetzern bevorzugt um die in den Patentanmeldungen WO/0207698 und WO/03059312, auf deren Inhalt hiermit ausdrücklich bezuggenommen wird, beschriebenen Substanzen, bevorzugt die dort beschriebenen Bor-enthaltenden oder Stickstoff-enthaltenden Verbindungen, die Peroxide oder Hydroperoxide zu den entsprechenden Alkoholen ohne Bildung radikalischer Folgestufen reduzieren können. Ferner können für diesen Zweck sterisch gehinderte Amine eingesetzt werden.Furthermore, the abovementioned peroxide decomposers are preferably those described in the patent applications WO / 0207698 and WO / 03059312, the contents of which are hereby incorporated by reference, preferably the boron-containing or nitrogen-containing compounds described there, the peroxides or hydroperoxides can reduce to the corresponding alcohols without radical radical education. Furthermore, sterically hindered amines can be used for this purpose.
Eine weitere Gruppe sind Antiirritantien, die eine entzündungshemmende Wirkung auf durch UV-Licht geschädigte Haut besitzten. Solche Stoffe sind beispielsweise Bisabo- lol, Phytol und Phytantriol.Another group are anti-irritants, which have an anti-inflammatory effect on UV-damaged skin. Such substances are, for example, bisabolol, phytol and phytantriol.
Eine weiter Gruppe von schwer wasserlöslichen Effektorstoffen sind Wirkstoffe, die im Pflanzenschutz eingesetzt werden können, beispielsweise Herbizide, Insektizide und Fungizide.Another group of poorly water-soluble effector substances are active substances that can be used in crop protection, for example herbicides, insecticides and fungicides.
Desweiteren geeignet als schwer wasserlösliche Effektstoffe sind Wirkstoffe für die pharmazeutische Anwendung, insbesondere solche für die orale Verabreichung. Das erfindungsgemäße Verfahren ist prinzipiell unabhängig von der medizinischen Indikation auf eine Vielzahl von Wirkstoffen anwendbar.Also suitable as sparingly water-soluble effect substances are active substances for pharmaceutical use, in particular those for oral administration. The inventive method is in principle applicable regardless of the medical indication on a variety of drugs.
Beispiele für geeignete schwer wasserlösliche pharmazeutische Wirkstoffe sind in der folgenden Tabelle genannt.Examples of suitable sparingly water-soluble pharmaceutical active substances are mentioned in the following table.
(iii) Formulierung hydrophober Wirkstoffe(iii) formulation of hydrophobic drugs
Formulierungen schwer wasserlöslicher Wirkstoffe können unter Verwendung amphiphiler selbstassemblierender Proteine auf verschiedene Art und Weise herge- stellt werden. Schwer wasserlösliche, hydrophobe Wirkstoffe können in Protein- Microbeads verpackt oder kolloidal-dispers durch eine Proteinummantelung, welche z.B. in Mikronisierungsansätzen erzielt werden kann, stabilisiert werden. Die Formulierung hydrophober Wirkstoffe kann durch Einschließen in Microbeads erfolgen. Dieser Prozess umfasst zwei Schritte. Im ersten Schritt werden der hydrophobe Wirkstoff und das amphiphile selbstassemblierende Protein in einer gemeinsamenFormulations of poorly water-soluble drugs can be prepared in a variety of ways using amphiphilic self-assembling proteins. Sparingly water-soluble, hydrophobic drugs can be packaged in protein microbeads or colloidally dispersed by protein coating, e.g. can be achieved in Mikronisierungsansätzen be stabilized. The formulation of hydrophobic drugs can be done by inclusion in microbeads. This process involves two steps. In the first step, the hydrophobic drug and the amphiphilic self-assembling protein are in a common
Phase gelöst. Dazu können der Wirkstoff und das Protein direkt durch ein Lösungsmittel oder eine Lösungsmittelmischung in Lösung gebracht werden. Alternativ können der Wirkstoff und das Protein zunächst in unterschiedlichen Lösungsmitteln gelöst und die Lösungen im Anschluss miteinander vermischt werden, so dass wiederum eine ge- meinsame Phase entsteht. Bei der gemeinsamen Phase kann es sich um eine molekular-disperse Phase oder eine kolloidal-disperse Phase handeln.Phase solved. For this purpose, the active ingredient and the protein can be brought into solution directly by a solvent or a solvent mixture. Alternatively, the active substance and the protein can first be dissolved in different solvents and the solutions subsequently mixed with one another, so that in turn a common phase is formed. The common phase may be a molecular disperse phase or a colloidally disperse phase.
Das Lösen des hydrophoben Wirkstoffes und des Proteins in verschiedenen Lösungsmitteln und das anschließende Mischen beider Lösungen ist insbesondere dann von Vorteil, wenn sich der hydrophobe Wirkstoff und das Protein nicht in einem gemeinsamen Lösungsmittel oder Lösungsmittelgemisch lösen lassen. Auf diese Art und Weise lassen sich durch dieses Vorgehen auch kolloidal-disperse Lösungen hydrophober Wirkstoffe herstellen, indem der in einem geeigneten Lösungsmittel gelöste Wirkstoff in ein anderes Lösungsmittel verdünnt wird, in dem dieser Wirkstoff unlöslich ist. Da Proteine in der Regel gut wasserlöslich sind, wird bevorzugt mit wässrigen Lösungen und Mischungen aus Wasser und wassermischbaren, organischen Lösungsmitteln gearbeitet. Bespiele für geeignete, wassermischbare Lösungsmittel sind Alkohole wie Methanol, Ethanol und Isopropanol, fluorierte Alkohole wie Hexafluorisopropanol und Trifluorethanol, Alkanone wie Aceton oder auch Sulfoxide wie z.B. Dimethylsulfoxid oder Formamide wie Dimethylformamid oder andere organische Lösungsmittel wie z.B. Tetrahydrofuran und Acetonitril oder N-Methyl-2-pyrrolidon. Im allgemeinen kann mit allen Lösungsmitteln und Lösungsmittelgemischen gearbeitet werden, in denen sich die Proteine lösen lassen. Beispiele für geeignete Lösungsmittel sind fluorierte Alkoho- Ie wie z.B. Hexafluorisopropanol oder Trifluorethanol, ionische Flüssigkeiten wie z.B. EMIM-Acetat, wässrige Lösungen chaotroper Salze wie z.B. Harnstoff, Guanidiunium- hydrochlorid und Guanidiniumthiocyanat oder organische Säuren wie z.B. Ameisensäure sowie Mischungen dieser Lösungsmittel mit anderen organischen Lösungsmit- teln. Beispiele für Lösungsmittel, die sich mit den Lösungsmitteln für das Protein mischen lassen sind u.a. Alkohole wie Methanol, Ethanol und Isopropanol, Alkanone wie Aceton, Sulfoxide wie z.B. Dimethylsulfoxid, Formamide wie Dimethylformamid, HaIo- genalkane wie Methylenchlorid oder auch weitere organische Lösungsmittel wie z.B. Tetrahydrofuran. Der zweite Schritt der Formulierung hydrophober Wirkstoffe in Microbeads ist eine Phasentrennung in eine protein- und wirkstoffarme Phase und in eine protein- und wirkstoffreiche Phase, die anschließend aushärtet. Dabei wird der hydrophobe Wirkstoff in die Assemblierungsform des Proteins eingeschlossen. Aufgrund von Oberflächeneffekten während der Phasentrennung bilden sich bevorzugt runde Proteinstruktu- ren, sogenannte Microbeads.The dissolution of the hydrophobic active ingredient and the protein in various solvents and the subsequent mixing of the two solutions is particularly advantageous if the hydrophobic active ingredient and the protein can not be dissolved in a common solvent or solvent mixture. In this way, colloidal-disperse solutions of hydrophobic active ingredients can be prepared by this procedure by the active ingredient dissolved in a suitable solvent is diluted into another solvent in which this active ingredient is insoluble. Since proteins are generally readily water-soluble, preference is given to working with aqueous solutions and mixtures of water and water-miscible organic solvents. Examples of suitable, water-miscible solvents are alcohols such as methanol, ethanol and isopropanol, fluorinated alcohols such as hexafluoroisopropanol and trifluoroethanol, alkanones such as acetone or sulfoxides such as dimethyl sulfoxide or formamides such as dimethylformamide or other organic solvents such as tetrahydrofuran and acetonitrile or N-methyl-2 pyrrolidone. In general, it is possible to work with all solvents and solvent mixtures in which the proteins can be dissolved. Examples of suitable solvents are fluorinated alcohols. Ie such as hexafluoroisopropanol or trifluoroethanol, ionic liquids such as EMIM acetate, aqueous solutions of chaotropic salts such as urea, guanidinium hydrochloride and guanidinium thiocyanate or organic acids such as formic acid and mixtures of these solvents with other organic solvents. Examples of solvents which can be mixed with the solvents for the protein include alcohols such as methanol, ethanol and isopropanol, alkanones such as acetone, sulfoxides such as dimethyl sulfoxide, formamides such as dimethylformamide, haloalkanes such as methylene chloride or other organic solvents such as tetrahydrofuran , The second step in the formulation of hydrophobic drugs in microbeads is a phase separation into a low-protein and low-drug phase and into a protein- and drug-rich phase, which subsequently hardens. The hydrophobic agent is included in the assembly form of the protein. Due to surface effects during the phase separation, preferably round protein structures, so-called microbeads, are formed.
Die Phasentrennung wird bevorzugt durch Zugabe wässriger Lösungen lyotroper Salze zu den Mischungen aus Proteinen und hydrophoben Wirkstoffen induziert. Geeignete lyotrope Salze werden durch die Hofmeister'sche Reihe beschrieben. Besonders ge- eignet sind Ammoniumsulfat und Kaliumphosphat. Die Zugabe dieser Lösungen kann durch einfaches Mischen, Eintropfen oder durch Dialyse erfolgen. Die Wechselwirkungen zwischen dem hydrophoben Wirkstoff und dem Protein beruht im wesentlichen auf ihren hydrophoben Eigenschaften, wobei allerdings auch Wasserstoffbrücken, ionische Wechselwirkungen und van-der-Waals-Wechselwirkungen betei- ligt sein können. Der hydrophobe Wirkstoff kann an die Oberfläche gebunden sein, in die Microbeads eingeschlossen sein oder auch auf beide Arten mit den Microbeads assoziiert sein. Die Bindung des hydrophoben Wirkstoffs an die Microbeads kann durch die Verarmung des Assemblierungsansatzes an gelöstem Wirkstoff bestimmt werden. Die Konzentration des Wirkstoffs kann durch eine quantitative Analyse seiner Eigenschaften gemessen werden. So kann die Bindung von lichtabsorbierenden Wirkstoffen z.B. durch photometrische Methoden analysiert werden. Dazu werden z.B. die Färbung der Microbeads oder die Entfärbung der protein- und Wirkstoff armen Phase des Formulierungsansatzes durch Messen der Absorption eines farbigen Wirkstoffs bestimmt. Mit Hilfe dieser Methoden kann auch bestimmt werden, wie hoch der Wirk- stoffanteil in den Microbeads ist. Die Freisetzung der Wirkstoffe aus den Microbeads kann durch Desorption in geeignete Lösungsmittel, durch den Abbau der Microbeads durch Proteasen oder durch Auflösen der Microbeads durch geeignete Lösungsmittel erfolgen. Geeignete Lösungsmittel für die Desorption sind alle Lösungsmittel oder Lösungsmittelgemische, in denen sich der Wirkstoff lösen lässt. Geeignete Proteasen können als technische Proteasen einer Suspension von Protein-Microbeads gezielt zugesetzt werden oder am gewünschten Wirkort der Effektormoleküle natürlicherweise vorkommen, wie z.B. Hautproteasen, Proteasen des Verdauungstraktes, z.B. Magen- oder Darmproteasen oder von Mikroorganismen freigesetzte Proteasen. Lösungsmittel, die die Microbeads auflösen kön- nen, sind z.B. fluorierte Alkohole wie z.B. Hexafluorisopropanol oder Trifluorethanol, ionische Flüssigkeiten wie z.B. EMIM Acetat, wässrige Lösungen chaotroper Salze wie z.B. Harnstoff, Guanidiuniumhydrochlorid und Guanidiniumthiocyanat oder organische Säuren wie z.B. Ameisensäure sowie Mischungen dieser Lösungsmittel mit anderen organischen Lösungsmitteln. Die Geschwindigkeit und die Kinetik der Freisetzung der Effektormoleküle können z.B. durch die Beladungsdichte mit Wirkstoffen und die Größe der Microbeads bzw. ihrem Verhältnis von Volumen zur Oberfläche gesteuert werden.The phase separation is preferably induced by addition of aqueous solutions of lyotropic salts to the mixtures of proteins and hydrophobic active ingredients. Suitable lyotropic salts are described by the Hofmeister 'sche row. Particularly suitable are ammonium sulfate and potassium phosphate. The addition of these solutions can be done by simple mixing, dropwise or by dialysis. The interactions between the hydrophobic drug and the protein are based essentially on their hydrophobic properties, although hydrogen bonds, ionic interactions and van der Waals interactions may also be involved. The hydrophobic drug may be bound to the surface, be included in the microbeads, or be associated with the microbeads in both ways. The binding of the hydrophobic drug to the microbeads can be determined by the depletion of the drug-active assembly set-up. The concentration of the active ingredient can be measured by a quantitative analysis of its properties. For example, the binding of light-absorbing active substances can be analyzed by photometric methods. For this purpose, for example, the color of the microbeads or the decolorization of the protein- and drug-poor phase of the formulation batch are determined by measuring the absorption of a colored active substance. These methods can also be used to determine the level of active ingredient in the microbeads. The release of the active compounds from the microbeads can be effected by desorption into suitable solvents, by the degradation of the microbeads by proteases or by dissolution of the microbeads by suitable solvents. Suitable solvents for the desorption are all solvents or solvent mixtures in which the active ingredient can be dissolved. Suitable proteases can be added as technical proteases to a suspension of protein microbeads or occur naturally at the desired site of action of the effector molecules, such as skin proteases, proteases of the digestive tract, for example gastric or intestinal proteases or proteases released by microorganisms. Solvents that can dissolve the microbeads are, for example, fluorinated alcohols such as hexafluoroisopropanol or trifluoroethanol, ionic liquids such as EMIM acetate, aqueous solutions of chaotropic salts such as urea, guanidinium hydrochloride and guanidinium thiocyanate or organic acids such as formic acid and mixtures of these solvents with others organic solvents. The speed and kinetics of the release of the effector molecules can be controlled, for example, by the loading density with active substances and the size of the microbeads or their ratio of volume to the surface.
Die Formulierung schwer wasserlöslicher hydrophober Wirkstoff kann auch durch Stabilisierung ihrer kolloid-dispersen Lösung z.B. durch Mikronisierung erfolgen.The formulation of poorly water-soluble hydrophobic drug may also be stabilized by stabilizing its colloidally disperse solution, e.g. by micronization.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der unter Benutzung der beschriebenen amphiphilen selbstassemblierenden Proteine hergestellten Protein- Microbeads oder der z.B. durch Mikronisierung hergestellten kolloidal-dispersen Proteinformulierungen zur Speicherung, zum Transport oder zur Freisetzung von Wirkstoffen in pharmazeutischen Produkten, kosmetischen Produkten, Pflanzenschutzprodukten, Nahrungs- und Futtermitteln. Dabei dienen z.B. die Protein-Microbeads weiterhin dem Schutz der verpackten Wirkstoffe vor Umwelteinflüssen, wie z.B. oxidativen Prozessen oder UV-Strahlung, oder vor Zerstörung durch Reaktion mit anderen Bestandteilen der Produkte oder vor Abbau durch bestimmte Proteasen. Der Wirkstoff kann durch De- sorption, proteolytischen Abbau, gezielte Freisetzung oder langsame Freisetzung oder Kombination dieser Mechanismen aus den Protein-Microbeads oder kolloidaldispersen Proteinformulierungen freigesetzt werden.Another object of the invention is the use of the protein microbeads prepared using the described amphiphilic self-assembling proteins or the e.g. micronization-produced colloidal-disperse protein formulations for the storage, transport or release of active ingredients in pharmaceutical products, cosmetic products, crop protection products, food and feed. In this case, e.g. the protein microbeads continue to protect the packaged active ingredients from environmental influences, e.g. oxidative processes or UV radiation, or destruction by reaction with other constituents of the products or degradation by certain proteases. The active substance can be released from the protein microbeads or colloidally disperse protein formulations by desorption, proteolytic degradation, targeted release or slow release or combination of these mechanisms.
Bevorzugt sind Protein-Microbeads und damit formulierte Wirkstoffe in pharmazeutischen Produkten für eine per orale Aufnahme. Dabei kann die Stabilität der Wirkstoffe bei Magenpassage erhöht werden, da unter den dort vorherrschenden Bedingungen kein proteolytischer Abbau der Protein-Microbeads erfolgt. Die Freisetzung der Wirk- Stoffe aus den per oral aufgenommenen Wirkstoff-enthaltenden Microbeads erfolgt dann im Darm. Auch topische Anwendungen der Protein-Microbeads sowie der darin eingebetteten pharmazeutischen Wirkstoffe sind möglich. Der Abbau der Protein- Microbeads und die daraus resultierende Freisetzung der Wirkstoffe wird dann durch auf der Haut bzw. in den oberen Hautschichten enthaltene Proteasen gesteuert.Preference is given to protein microbeads and active ingredients formulated in pharmaceutical products for oral ingestion. In this case, the stability of the active ingredients in gastric passage can be increased because under the prevailing conditions there is no proteolytic degradation of the protein microbeads. The release of the active Substances from the orally absorbed drug-containing microbeads then takes place in the intestine. Also, topical applications of protein microbeads and embedded therein pharmaceutical agents are possible. The degradation of the protein microbeads and the resulting release of the active ingredients is then controlled by proteases contained on the skin or in the upper layers of the skin.
In pharmazeutischen Produkten, Nahrungs- und Futtermitteln bzw. Pflanzenschutzprodukten kann eine Formulierung von Wirkstoffen mit den beschriebenen amphiphilen selbstassemblierenden Proteinen weiterhin zu einer erhöhten Bioverfügbarkeit der Wirkstoffe führen. Die Verpackung von pharmazeutischen Wirkstoffen in Protein- Microbeads bzw. die kolloidal-disperse Formulierung von Wirkstoffen unter Verwendung der beschriebenen amphiphilen selbstassemblierenden Proteine kann weiterhin zur verbesserten Blut-Hirnschranken-Überwindung des Wirkstoffs oder verbesserten Aufnahme über die Darmschleimhaut führen. Pflanzenschutzprodukte können durch Verkapselung bzw. Einbettung in Protein-Microbeads vor Auswaschprozessen geschützt werden. Bestimmte Wirkstoffpartikelgrößen, welche besser aufgenommen oder resorbiert werden bzw. besser bioverfügbar sind, können durch Verpackung in Protein- Microbeads bzw. durch kolloidal-disperse Formulierung, z.B. durch Mikronisierungsan- sätze unter Verwendung von amphiphilen selbstassemblierenden Proteinen eingestellt werden.In pharmaceutical products, food and feed or crop protection products, formulation of active ingredients with the described amphiphilic self-assembling proteins can furthermore lead to increased bioavailability of the active ingredients. The packaging of active pharmaceutical ingredients in protein microbeads or the colloidally disperse formulation of active ingredients using the described amphiphilic self-assembling proteins can further lead to improved blood-brain barrier overcome the drug or improved uptake via the intestinal mucosa. Crop protection products can be protected from being washed out by encapsulation or embedding in protein microbeads. Certain drug particle sizes which are better incorporated or resorbed or more bioavailable may be prepared by packaging in protein microbeads or by colloidally dispersed formulation, e.g. by micronization approaches using amphiphilic self-assembling proteins.
Durch Variation der Aminosäuresequenz der beschriebenen amphiphilen selbstassemblierenden Proteine bzw. Fusionierung mit zusätzlichen Protein- oder Peptidse- quenzen ist es möglich, Strukturen zu generieren, welche bestimmte Oberflächen, z.B. Haut, Haar, Blätter, Wurzeln oder Darm- oder Blutgefäßoberflächen, spezifisch erkennen bzw. von diesen Oberflächen oder den enthaltenen Rezeptoren erkannt und gebunden werden.By varying the amino acid sequence of the described amphiphilic self-assembling proteins or fusing with additional protein or peptide sequences, it is possible to generate structures which have certain surfaces, e.g. Skin, hair, leaves, roots or intestinal or blood vessel surfaces, specifically recognize or be recognized and bound by these surfaces or the receptors contained.
Dadurch ist es möglich, die mit den beschriebenen amphiphilen selbstassemblierenden Proteinen formulierten Wirkstoffe effektiver an den gewünschten Wirkort zu bringen bzw. die Wirkstoffaufnahme zu verbessern. Die Bioverfügbarkeit von pharmazeutischen Wirkstoffen bzw. Wirkstoffen in Nahrungs- und Futtermitteln kann erhöht werden, wenn diese in Protein-Microbeads verpackt werden, welche zusätzlich mit Proteinen fusioniert bzw. assoziert vorliegen, die an bestimmte Oberflächenmarker (z.B. Re- zeptoren) von Zellen des Darmtraktes (z.B. Mucosazellen) binden. Solche Proteine sind z.B. das MapA-Protein oder das Kollagen-bindende Protein CnBP aus Lactobacil- lus reuteri (Miyoshi et al., 2006, Biosci. Biotechnol. Biochem. 70:1622-1628) oder funktional vergleichbare Proteine aus anderen Mikroorganismen, vor allem der natürlichen Magen-Darmflora. Die beschriebenen Bindeproteine vermitteln ein Anhaften der Mikroorganismen an Zelloberflächen. Durch Kopplung bzw. Fusionierung der Bindeproteine an die beschriebenen amphiphilen selbstassemblierenden Proteine würden daraus hervorgehende Wirkstoff-beinhaltende Protein-Microbeads gezielter an entsprechende Aufnahmeorte gelenkt werden bzw. an diesen Orten länger verweilen, was eine verlängerte und verbesserte Wirkstoff-Freisetzung und -aufnähme zur Folge hat. Weiterhin ist es durch Variation der Aminosäuresequenz der für die Wirkstoffformulie- rung beschriebenen amphiphilen selbstassemblierenden Proteine bzw. Fusionierung mit zusätzlichen Protein- oder Peptidsequenzen möglich, Wirkstoffe gezielt an gewünschte Wirkorte zu lenken, um damit z.B. eine höhere Spezifität, geringeren Wirkstoffverbrauch oder Wirkstoffdosis, eine schnellere oder stärkere Wirkung zu erzielen.This makes it possible to more effectively bring the active ingredients formulated with the described amphiphilic self-assembling proteins to the desired site of action or to improve the absorption of active substance. The bioavailability of active pharmaceutical ingredients in food and feed can be increased if they are packaged in protein microbeads, which are additionally fused or associated with proteins that bind to certain surface markers (eg receptors) of cells of the intestinal tract (eg mucosal cells). Such proteins are, for example, the MapA protein or the collagen-binding protein CnBP from Lactobacillus. lus reuteri (Miyoshi et al., 2006, Biosci Biotechnol., Biochem 70: 1622-1628) or functionally comparable proteins from other microorganisms, especially the natural gastrointestinal flora. The described binding proteins mediate attachment of the microorganisms to cell surfaces. By coupling or fusing the binding proteins to the described amphiphilic self-assembling proteins, resulting protein-containing protein microbeads would be more selectively directed to appropriate sites or dwelling at these sites for longer, resulting in prolonged and improved drug release and uptake , Furthermore, by varying the amino acid sequence of the amphiphilic self-assembling proteins described for the active ingredient formulation or fusion with additional protein or peptide sequences, it is possible to target active ingredients to desired sites of action in order, for example, to achieve higher specificity, lower drug consumption or drug dose, faster or to achieve greater impact.
Experimenteller TeilExperimental part
Beispiel 1example 1
Verpacken von ß-Carotin aus THF und THF/Isopropanol in Microbeads und Freisetzung durch Proteolyse Herstellen der ß-CarotinlösungenPackaging of β-carotene from THF and THF / isopropanol in microbeads and release by proteolysis Preparation of β-carotene solutions
Eine Stammlösung wurde hergestellt, indem 80 mg ß-Carotin und 16 mg Tocopherol in 10 g THF gelöst wurden. Im Anschluss wurden aus dieser Stammlösung durch Verdünnen entsprechend der Tabelle 1.1 die Lösungen 1-4 hergestellt. Alle Lösungen wurden kurz vor Gebrauch angesetzt und sofort nach dem Verdünnen weiter verarbeitet.A stock solution was prepared by dissolving 80 mg of β-carotene and 16 mg of tocopherol in 10 g of THF. Following this, solutions 1-4 were prepared from this stock solution by dilution according to Table 1.1. All solutions were prepared shortly before use and processed immediately after dilution.
Tab. 1 .1 : ß-Carotinlösungen Tab. 1 .1: ß-carotene solutions
Verpacken von ß-Carotin in Microbeads durch direkte Zugabe von Kaliumphosphat Um ß-Carotin in die C16-Protein-Microbeads zu verpacken, wurde zunächst eine ge- meinsame Phase aus C16-Protein und ß-Carotin hergestellt. Dazu wurden jeweils 500 μl einer Lösung von 10 mg/ml C16-Protein in 5 mM Kaliumphosphat, pH 8 mit 50 μl bzw. 100 μl der ß-Carotinlösungen (Lösungen 1-4) vermischt (Tab. 1.2). Im Fall der Ansätze mit ß-Carotin aus THF/Isopropanol (Ansätze 1-4) wurden orange Dispersionen erhalten, im Fall der Ansätze mit ß-Carotin aus THF (Ansätze 5-8) gelbe Dispersionen. Um die C16-Protein-Microbeadbildung durch Phasentrennung zu induzieren, wurden zu jedem der Ansätze 1000 μl einer 1 M Kaliumphosphatlösung, pH 8,0 gegeben (Tab. 1.2). Nach 15 min Inkubation bei Raumtemperatur wurden die Ansätze durch Abzentri- fugieren in ein deutlich gefärbtes Pellet aus C16-Protein-Microbeads mit ß-Carotin und farblosen Überstand getrennt. Das eingesetzte ß-Carotin ging bei der Phasentrennung also vollständig in die Microbeads über. Der farblose Überstand wurde abgenommen. Die Pellets wurden im Anschluss zweimal mit destilliertem Wasser gewaschen und redispergiert.Packaging of β-Carotene in Microbeads by Direct Addition of Potassium Phosphate In order to package β-carotene into the C16 protein microbeads, a common phase of C16 protein and β-carotene was first prepared. For this purpose, in each case 500 μl of a solution of 10 mg / ml C16 protein in 5 mM potassium phosphate, pH 8, were mixed with 50 μl or 100 μl of the β-carotene solutions (solutions 1-4) (Table 1.2). In the case of the β-carotene from THF / isopropanol (mixtures 1-4), orange dispersions were obtained, in the case of β-carotene mixtures of THF (mixtures 5-8), yellow dispersions. To induce C16 protein microbead formation by phase separation, 1000 μl of a 1 M potassium phosphate solution, pH 8.0, was added to each of the batches (Table 1.2). After 15 min incubation at room temperature, the mixtures were separated by centrifugation into a distinctly colored pellet of C16 protein microbeads with β-carotene and colorless supernatant. The ß-carotene used went so completely in the phase separation in the microbeads. The colorless supernatant was removed. The pellets were then washed twice with distilled water and redispersed.
Nach dem Redispergieren der C16-Protein-Microbeads erhielt man im Fall der Ansätze mit den ß-Carotinlösungen aus THF/Isopropanol (Ansätze 1-4) orange Dispersionen, im Fall der Ansätze mit den ß-Carotinlösungen aus THF (Ansätze 5-8) gelbe Dispersionen.After redispersion of the C16 protein microbeads, in the case of the batches with the β-carotene solutions of THF / isopropanol (batches 1-4), orange dispersions were obtained, in the case of batches with the β-carotene solutions of THF (batches 5-8). yellow dispersions.
Tab. 1 .2: Verpacken von ß-Carotin aus THF und THF/Isopropanol in C16-Protein- Microbeads durch Zugabe von 1 M Kaliumphosphatlösung Tab. 1 .2: Packaging of β-carotene from THF and THF / isopropanol in C16 protein microbeads by adding 1 M potassium phosphate solution
Verpacken von ß-Carotin in C16-Protein-Microbeads durch Dialyse gegen KaliumphosphatPackaging β-carotene in C16 protein microbeads by dialysis against potassium phosphate
Alternativ zur direkten Zugabe von Kaliumphosphat zu der gemeinsamen Phase aus ß- Carotin und C16-Protein kann die Phasentrennung auch durch Dialyse gegen 1 M Kaliumphosphat erfolgen. Da die Dialyse in Dialyseschläuchen erfolgte, wurde jeweils das 10-fache Ansatzvolumen im Vergleich zur direkten Zugabe der Kaliumphosphatlösung pipettiert (Tab. 1.3).As an alternative to the direct addition of potassium phosphate to the common phase of β-carotene and C16 protein, the phase separation can also be carried out by dialysis against 1 M potassium phosphate. Since the dialysis was carried out in dialysis tubing, the 10-fold batch volume was in each case pipetted in comparison to the direct addition of the potassium phosphate solution (Table 1.3).
Tab. 1 .3: Verpacken von ß-Carotin aus THF und THF/Isopropanol in C16-Protein- Microbeads durch Dialyse gegen 1 M KaliumphosphatlösungTab. 1 .3: Packaging of β-carotene from THF and THF / isopropanol in C16 protein microbeads by dialysis against 1 M potassium phosphate solution
Dazu wurde die C16-Lösung (10 mg/ml in 5 mM Kaliumphosphat, pH 8,0) mit der jeweiligen ß-Carotinlösung vermischt und die Mischung im Anschluss sofort in die Dialyseschläuche gegeben und gegen 1 M Kaliumphosphatlösung dialysiert. Nach Übernacht-Dialyse wurden die Microbeaddispersion aus den Schlächen genommen und durch Abzentrifugieren in einen farblosen Überstand und in ein farbiges Pellet getrennt. Wie auch im Fall der direkten Zugabe von Kaliumphosphat zur gemeinsamen Phase aus C16-Protein und ß-Carotin wurde das ß-Carotin quantitativ durch das C16-Protein in Form der Protein-Microbeads gebunden. Der farblose Überstand wurde abgenom- men. Die Pellets wurden im Anschluss zweimal mit destilliertem Wasser gewaschen und dann redispergiert.For this purpose, the C16 solution (10 mg / ml in 5 mM potassium phosphate, pH 8.0) was mixed with the respective β-carotene solution and the mixture was immediately added to the dialysis tubing and dialyzed against 1 M potassium phosphate solution. After overnight dialysis, the microbead dispersion was removed from the slides and separated by centrifugation into a colorless supernatant and into a colored pellet. As in the case of the direct addition of potassium phosphate to the common phase of C16 protein and β-carotene, the β-carotene was bound quantitatively by the C16 protein in the form of the protein microbeads. The colorless supernatant was removed. men. The pellets were then washed twice with distilled water and then redispersed.
Nach dem Redispergieren der Protein-Microbeads erhielt man im Fall der Ansätze mit den ß-Carotinlösungen aus THF/Isopropanol (Ansätze D1-D4) orange Dispersionen, im Fall der Ansätze mit den ß-Carotinlösungen aus THF (Ansätze D5-D8) gelbe Dispersionen (Abb. 1).After redispersion of the protein microbeads, in the case of mixtures with the β-carotene solutions of THF / isopropanol (mixtures D1-D4), orange dispersions were obtained, in the case of mixtures with the β-carotene solutions of THF (mixtures D5-D8) yellow dispersions (Fig. 1).
Abb. 1 : Dispersionen der C16-Protein-Microbeads mit ß-Carotin aus THF und THF/Isopropanol in Wasser. Von links nach rechts: Ansätze D1 -D4 (THF/Isopropanol) und Ansätze D5-D8 (THF). Der Anteil an ß-Carotin in den C16-Protein-Microbeads ist als Gewichtsprozent bezogen auf das Gewicht der C16-Protein-Microbeads angegeben.FIG. 1: Dispersions of the C16 protein microbeads with β-carotene from THF and THF / isopropanol in water. From left to right: batches D1-D4 (THF / isopropanol) and batches D5-D8 (THF). The proportion of β-carotene in the C16 protein microbeads is given as a percentage by weight based on the weight of the C16 protein microbeads.
Um die unterschiedlichen Färbungen der C16-Protein-Microbeads mit ß-Carotin aus THF und THF/Isopropanol zu reproduzieren, wurden die Ansätze D4 und D5 im größeren Maßstab wiederholt (Tab. 1.4). Wiederum erhielt man mit ß-Carotin aus THF gelbe C16-Protein-Microbeads und mit ß-Carotin aus THF/Isopropanol orange C16-Protein- Microbeads (Abb. 2).In order to reproduce the different staining of the C16 protein microbeads with β-carotene from THF and THF / isopropanol, the mixtures D4 and D5 were repeated on a larger scale (Table 1.4). Again, yellow C16 protein microbeads were obtained with β-carotene from THF and orange C16 protein microbeads with β-carotene from THF / isopropanol (FIG. 2).
Tab. 1 .4: Verpacken von ß-Carotin aus THF und THF/Isopropanol in C16-Protein- Microbeads durch Dialyse gegen 1 M KaliumphosphatlösungTab. 1 .4: Packaging of β-carotene from THF and THF / isopropanol in C16 protein microbeads by dialysis against 1 M potassium phosphate solution
Abb. 1 : Dispersionen der C16-Protein-Microbeads mit ß-Carotin aus THF und THF/Isopropanol in Wasser. Von links nach rechts: Ansätze D1 -D4 (THF/Isopropanol) und Ansätze D5-D8 (THF). Der Anteil an ß-Carotin in den C16-Protein-Microbeads ist als Gewichtsprozent bezogen auf das Gewicht der C16-Protein-Microbeads angegeben.FIG. 1: Dispersions of the C16 protein microbeads with β-carotene from THF and THF / isopropanol in water. From left to right: batches D1-D4 (THF / isopropanol) and batches D5-D8 (THF). The proportion of β-carotene in the C16 protein microbeads is given as a percentage by weight based on the weight of the C16 protein microbeads.
Um die unterschiedlichen Färbungen der C16-Protein-Microbeads mit ß-Carotin aus THF und THF/Isopropanol zu reproduzieren, wurden die Ansätze D4 und D5 im größeren Maßstab wiederholt (Tab. 1.4). Wiederum erhielt man mit ß-Carotin aus THF gelbe C16-Protein-Microbeads und mit ß-Carotin aus THF/Isopropanol orange C16-Protein- Microbeads (Abb. 2).In order to reproduce the different staining of the C16 protein microbeads with β-carotene from THF and THF / isopropanol, the mixtures D4 and D5 were repeated on a larger scale (Table 1.4). Again, β-carotene from THF gave yellow C16 protein microbeads and with β-carotene from THF / isopropanol orange C16 protein microbeads (FIG. 2).
Tab. 1 .4: Verpacken von ß-Carotin aus THF und THF/Isopropanol in C16-Protein- Microbeads durch Dialyse gegen 1 M KaliumphosphatlösungTab. 1 .4: Packaging of β-carotene from THF and THF / isopropanol in C16 protein microbeads by dialysis against 1 M potassium phosphate solution
Abb. 2: Dispersionen der C16-Protein-Microbeads mit ß-Carotin aus THF/Isopropanol (0,9 Gewichtsprozent ß-Carotin, Ansatz G1 , links) und THF (0,3 Gewichtsprozent ß- Carotin, Ansatz G2, rechts).FIG. 2: Dispersions of the C16 protein microbeads with β-carotene from THF / isopropanol (0.9 percent by weight β-carotene, mixture G1, left) and THF (0.3 percent by weight β-carotene, mixture G2, right).
Freisetzung von ß-Carotin aus C16-Protein-Microbeads durch Verdau mit Proteinase K Um zu zeigen, dass das ß-Carotin in den C16-Protein-Microbeads durch Proteolyse freigesetzt werden kann, wurden 200 μl der Microbeaddispersionen G1 und G2 in Wasser mit 500 μl 5 mM Kaliumphosphat pH 8,0 vermischt. Im Anschluss wurden 5 μl Proteinase K (Roche, 19,45 mg/ml) zugegen und über Nacht bei Raumtemperatur inkubiert. Als Kontrolle diente jeweils ein Ansatz der C16-Protein-Microbeaddispersionen ohne Proteinase K. Nach Übernachtinkubation wurde abzentrifugiert. In Anwesenheit der Protease wurden die C16-Protein-Microbeads verdaut und das ß- Carotin freigesetzt. Nach dem Abzentrifugieren war kein Pellet sichtbar. Der Überstand war deutlich gefärbt. Ohne Protease ließen sich die intakten C16-Protein-Microbeads abzentrifugieren. Es wurde ein deutlich gefärbtes Pellet beobachtet. Der Überstand war farblos.Release of β-carotene from C16 protein microbeads by digestion with proteinase K. In order to show that the β-carotene in the C16 protein microbeads can be released by proteolysis, 200 μl of the microbead dispersions G1 and G2 were dissolved in water at 500 5 mM potassium phosphate pH 8.0. Subsequently, 5 μl proteinase K (Roche, 19.45 mg / ml) were added and incubated overnight at room temperature. In each case a batch of C16 protein microbead dispersions without proteinase K served as control. After overnight incubation, centrifugation was carried out. In the presence of the protease, the C16 protein microbeads were digested and the beta-carotene was released. After centrifugation, no pellet was visible. The supernatant was clearly colored. Without protease, the intact C16 protein microbeads could be centrifuged off. A distinctly colored pellet was observed. The supernatant was colorless.
Abb. 3 Verdau der C16-Protein-Microbeaddispersionen durch Proteinase K. A) C16-Protein-Microbeads mit ß-Carotin aus THF/Isopropanol (0,9 Gewichtsprozent ß- Carotin, Ansatz G1 ) ohne Protease; B) C16-Protein-Microbeads mit ß-Carotin aus THF/Isopropanol (0,9 Gewichtsprozent ß-Carotin, Ansatz G1) mit Protease; C) C16- Protein-Microbeads mit ß-Carotin aus THF (0,3 Gewichtsprozent ß-Carotin, Ansatz G2) ohne Protease; D) C16-Protein-Microbeads mit ß-Carotin aus THF (0,3 Gewichtsprozent ß-Carotin, Ansatz G2) mit Protease. Beispiel 2Fig. 3 Digestion of the C16 protein microbead dispersions by proteinase K. A) C16 protein microbeads with β-carotene from THF / isopropanol (0.9 percent by weight β-carotene, mixture G1) without protease; B) C16 protein microbeads with β-carotene from THF / isopropanol (0.9 percent by weight β-carotene, mixture G1) with protease; C) C16 protein microbeads with β-carotene from THF (0.3% by weight β-carotene, batch G2) without protease; D) C16 protein microbeads with β-carotene from THF (0.3% by weight β-carotene, mixture G2) with protease. Example 2
Stabilität von ß-Carotin-enthaltenden Microbeads und Freisetzung von ß-Carotin aus Microbeads durch proteolytischen VerdauStability of β-carotene-containing microbeads and release of β-carotene from microbeads by proteolytic digestion
Durch Behandlung von ß-Carotin-enthaltenden C16-Protein-Microbeads mit unter- schiedlichen Proteasen, welche im humanen Magen bzw. Darm aktiv sind sollte die Eignung von Protein-Microbeads als Speicher-, Transport- bzw. „Delivery"-System für pharmakologische Effektstoffe nachgewiesen werden.By treating β-carotene-containing C16 protein microbeads with different proteases, which are active in the human stomach or intestine, the suitability of protein microbeads as a storage, transport or "delivery" system for pharmacological Effect substances are detected.
Zur Herstellung ß-Carotin-haltiger C16-Protein-Microbeads wurden 80 mg ß-Carotin und 16 mg Vitamin E in 10 ml THF gelöst und anschließend mit 90 ml Isopropanol ver- dünnt. Ein Teil dieser Lösung wurde dann mit 10 Volumen C16-Proteinlösung (10 mg/ml in 5 mM Kaliumphosphatpuffer pH 8) gemischt. Anschließend wurde der Ansatz mit 2 Volumen 1 M Kaliumphosphatpuffer pH 8 versetzt. Die dabei entstandenen ß- Carotin-enthaltenden C16-Protein-Microbeads wurden abzentrifugiert und durch Waschen des Sediments mit Wasser überschüssiges, freies ß-Carotin entfernt. 20 mg ß-Carotin-enthaltende C16-Protein-Microbeads wurden mit 2 ml künstlichem Magensaft (6,4 mg Pepsin, 80 mM HCl, 4 mg NaCI) oder 2 ml künstlichem Darmsaft I (20 mg Pankreatin, 0,45 M Natriumphosphat pH 7,5, 0,9 mM Natriumtaurocholat) oder 2 ml künstlichem Darmsaft Il (20 mg Pankreatin, 0,45 M Natriumphosphat pH 7,5, 6 mM Natriumtaurocholat) resuspendiert und für 0, 1 , 2, 6, 24 und 48 h unter Schütteln (140 rpm) bei 37 °C inkubiert. Nicht proteolytisch abgebaute C16-Protein-Microbeads wurden über die Streuung der Suspension bei 600 nm bestimmt (Abb. 4). Intakte C16- Protein-Microbeads wurden anschließend abzentrifugiert und im Überstand der ß- Carotin-Gehalt durch Bestimmen der Absorption bei 445 nm analysiert (Abb. 5). Durch Behandlung mit Pepsin-haltigem künstlichen Magensaft konnten selbst nach 48 h kaum C16-Protein-Microbeads abgebaut (Abb. 4) und somit ß-Carotin freigesetzt (Abb. 5) werden. Bei Behandlung mit Pankreatin-haltigem künstlichen Darmsaft I und Il hingegen wurden C16-Protein-Microbeads schon innerhalb 6 h nahezu vollständig abgebaut (Abb. 4) und das enthaltene ß-Carotin freigesetzt (Abb. 5). Demnach würden C16-Protein-Microbeads die humane Magenpassage ohne wesentlichen Abbau über- stehen und erst im Darmtrakt die gebundenen Effektorstoffe durch proteolytischen Abbau freigeben.To prepare β-carotene-containing C16 protein microbeads, 80 mg of β-carotene and 16 mg of vitamin E were dissolved in 10 ml of THF and then diluted with 90 ml of isopropanol. A portion of this solution was then mixed with 10 volumes of C16 protein solution (10 mg / ml in 5 mM potassium phosphate buffer pH 8). Subsequently, the batch was mixed with 2 volumes of 1 M potassium phosphate buffer pH 8. The resulting β-carotene-containing C16 protein microbeads were centrifuged off and excess free, free β-carotene was removed by washing the sediment with water. 20 mg of β-carotene-containing C16 protein microbeads were mixed with 2 ml of artificial gastric juice (6.4 mg pepsin, 80 mM HCl, 4 mg NaCl) or 2 ml of artificial intestinal juice I (20 mg pancreatin, 0.45 M sodium phosphate pH 7.5, 0.9 mM sodium taurocholate) or 2 ml of artificial intestinal juice II (20 mg pancreatin, 0.45 M sodium phosphate pH 7.5, 6 mM sodium taurocholate) and resuspended for 0, 1, 2, 6, 24 and 48 h with shaking (140 rpm) at 37 ° C incubated. Non-proteolytically degraded C16 protein microbeads were determined by scattering the suspension at 600 nm (Figure 4). Intact C16 protein microbeads were then centrifuged off and the supernatant analyzed for the β-carotene content by determining the absorbance at 445 nm (FIG. 5). By treatment with pepsin-containing artificial gastric juice, C16 protein microbeads could hardly be degraded even after 48 hours (Figure 4) and thus β-carotene was released (Figure 5). In contrast, when treated with pancreatin-containing artificial intestinal juice I and II, C16 protein microbeads were almost completely degraded within 6 h (Fig. 4) and the contained ß-carotene was released (Fig. 5). Accordingly, C16 protein microbeads would survive the human gastric passage without substantial degradation and only release the bound effector substances by proteolytic degradation in the intestinal tract.
Abb. 4: Bestimmung intakter C16-Protein-Microbeads durch photometrische Messung der Absorption bei 600 nm. Abb. 5: Bestimmung des aus C16-Protein-Microbeads freigesetzten ß-Carotins durch photometrische Absorptionsmessung bei 445 nm.Fig. 4: Determination of intact C16 protein microbeads by photometric measurement of the absorption at 600 nm. Fig. 5: Determination of β-carotene released from C16 protein microbeads by photometric absorption measurement at 445 nm.
Beispiel 3 Mikronisierung mit C16-SpinnenseidenproteinExample 3 Micronization with C16 spider silk protein
2 g kristallines Lycopin und 0,4 g Alpha-Tocopherol wurden in 500 g THF gelöst. Die Wirkstofflösung wurde bei Raumtemperatur und einer Flussrate von 2,42 g/min kontinuierlich mit einer wässrigen Lösung, bestehend aus 0,2 g/l C16-Protein in 5 mM Kaliumphosphatpuffer (pH 8), und einer Flussrate von 25,4 g/min vermischt. Die bei der Mischung entstandenen Wirkstoffteilchen wiesen im THF/Wasser-Gemisch eine Teilchengröße von 103 nm auf. Nach 2 Stunden zeigte sich eine klare Dispersionsstabilisierung der mit C16-Protein behandelten Probe (Abb. 6B) im Vergleich zur unbehandelten Probe (Abb. 6A). Auch nach mehreren Tagen schien die Lycopindispersion mit C16-Protein stabil, während die unbehandelte Lycopindispersion stark ausflockte (Abb. 7). Ein Teil der mit C16-Protein stabilisierten Lycopin-Dispersion wurde auf einen Feststoffgehalt von 0,28% aufkonzentriert. In diesem Zustand getrocknetes Lycopin wäre schlecht redispergierbar. Alternativ wurde eine mit C16- Protein stabilisierte Lycopin-Dispersion mit 330 mM Kaliumphosphat (Endkonzentration in der Mischung) behandelt und getrocknet. Das dabei erhaltene Lycopin-Pulver war gut redispergierbar.2 g of crystalline lycopene and 0.4 g of alpha-tocopherol were dissolved in 500 g of THF. The drug solution was continuously stirred at room temperature and a flow rate of 2.42 g / min with an aqueous solution consisting of 0.2 g / l C16 protein in 5 mM potassium phosphate buffer (pH 8), and a flow rate of 25.4 g / min mixed. The drug particles formed during the mixing had a particle size of 103 nm in the THF / water mixture. After 2 hours, clear dispersion stabilization of the sample treated with C16 protein (FIG. 6B) was shown in comparison with the untreated sample (FIG. 6A). Even after several days, the lycopene dispersion with C16 protein appeared stable, while the untreated lycopene dispersion was highly flocculent (Figure 7). A portion of the C16 protein-stabilized lycopene dispersion was concentrated to a solids content of 0.28%. Lycopene dried in this state would be poorly redispersible. Alternatively, a C16 protein-stabilized lycopene dispersion was treated with 330 mM potassium phosphate (final concentration in the mixture) and dried. The resulting lycopene powder was readily redispersible.
Abb. 6: Formulierung von Lycopin mit C16-Spinnenseidenprotein. Absorption von unbehandelter Lycopin-Probe (A) und mit C16-Protein behandelter Lycopin-Probe (B) direkt nach Mischung (schwarzer Graph) bzw. 2 Stunden nach Mischung (roter Graph).Fig. 6: Formulation of lycopene with C16 spider silk protein. Absorption of untreated lycopene sample (A) and C16 protein-treated lycopene sample (B) immediately after mixing (black graph) and 2 hours after mixing (red graph).
Abb. 7: Formulierung von Lycopin mit C16-Spinnenseidenprotein. Vergleich von unbehandelter Lycopin-Dispersion (links) mit einer C16-Protein-stabilisierten Lycopin- Dispersion (rechts) etwa 30 Tage nach Mischung.Fig. 7: Formulation of lycopene with C16 spider silk protein. Comparison of untreated lycopene dispersion (left) with a C16 protein-stabilized lycopene dispersion (right) about 30 days after mixing.
Beispiel 4Example 4
Verpacken von Metazachlor aus Isopropanol in Microbeads und Freisetzung durch ProteolysePackaging of metazachlor from isopropanol in microbeads and release by proteolysis
Schwer wasserlösliche Pflanzenwirkstoffe lassen sich in Protein-Microbeads verpa- cken, welche aus amphiphilen selbstassemblierenden Proteinen hergestellt werden und anschließend auch daraus freisetzen. Dazu wurde als nicht limitierendes Beispiel der Herbizid-Wirkstoff Metazachlor ausgewählt.Poorly water-soluble plant compounds can be packaged in protein microbeads, which are made from amphiphilic self-assembling proteins and then release from it. For this purpose, the herbicide active substance metazachlor was selected as a non-limiting example.
500 μl einer 10 mg/ml C16-Protein enthaltenden Kaliumphosphat-Lösung (5 mM, pH 8,0) wurden mit 100 μl einer Metazachlor-Lösung (50 mg/ml in Isopropanol) gemischt. Die C16-Protein-Microbeadbildung wurde durch Zugabe von 1 ml 1 M Kaliumphosphat- Puffer (pH 8,0) induziert. Der Ansatz wurde für 1 h bei Raumtemperatur inkubiert und anschließend für 10 min bei 20000 x g abzentrifugiert. Das Pellet wurde zweimal mit 5 ml H2O bidest. gewaschen und dann lyophilisiert. Als Kontrolle wurde ein gleicher An- satz ohne C16-Protein durchgeführt.500 μl of a 10 mg / ml C16 protein-containing potassium phosphate solution (5 mM, pH 8.0) were mixed with 100 μl of a metazachlor solution (50 mg / ml in isopropanol). C16 protein microbead formation was induced by the addition of 1 ml of 1 M potassium phosphate buffer (pH 8.0). The mixture was incubated for 1 h at room temperature and then centrifuged for 10 min at 20,000 x g. The pellet was redistilled twice with 5 ml H2O. washed and then lyophilized. As a control, a similar batch was carried out without C16 protein.
Nach Fällung mit Kaliumphosphat bildeten sich im Ansatz mit C16-Protein und Metazachlor Microbeads. Diese waren morphologisch mit denen eines Standardansatzes mit C16-Protein aber ohne Wirkstoff vergleichbar. Im C16-Metazachlor-Ansatz waren keine Metazachlor-Kristalle sichtbar. Im Ansatz Metazachlor ohne C16-Protein bildeten sich dagegen große Wirkstoffkristalle. Dies verdeutlicht, dass das C16-Protein signifikanten inhibierenden Einfluß auf die Kristallisation von Metazachlor in Anwesenheit von wässrigem Kaliumphosphat-Puffer hat.After precipitation with potassium phosphate, microbeads formed in the batch with C16 protein and metazachlor. These were morphologically comparable to those of a standard mixture with C16 protein but no active ingredient. In the C16-metazachlor approach, no metazachlor crystals were visible. In the approach metazachlor without C16 protein, however, formed large drug crystals. This illustrates that the C16 protein has a significant inhibiting effect on the crystallization of metazachlor in the presence of aqueous potassium phosphate buffer.
Die Bestimmung der Metazachlor-Konzentration im Überstand nach C16-Proteinfällung bzw. C16-Microbeadbildung zeigte, dass etwa 90% des Wirkstoffes in die Protein- Microbeads verpackt bzw. mit diesen assoziiert vorlagen. In den Waschüberständen waren jeweils etwa 20% des Wirkstoffes enthalten.The determination of the metazachlor concentration in the supernatant after C16 protein precipitation or C16 microbead formation showed that about 90% of the active ingredient was packed in or associated with the protein microbeads. The wash supernatants each contained about 20% of the active ingredient.
Die lyophilisierten Metazachlor enthaltenden C16-Protein-Microbeads wurden in 1 ml 10 mM Tris-Puffer; 0,1 % SDS; 100 μg Proteinase K für 1 h bei 37°C proteolytisch verdaut. Die nach zehnminütiger Zentrifugation (20000 x g) aus diesem Ansatz zurück- bleibenden Wirkstoff-Kristalle wurden in 500 μl Isopropanol gelöst. Im Überstand des Proteaseverdaues wurde etwa 1 1 % der eingesetzten Metazachlor-Menge detektiert. Die in Isopropanol wieder gelösten Wirkstoff-Kristalle machten etwa 35% der eingesetzten Metazachlor-Menge aus.The lyophilized metazachlor-containing C16 protein microbeads were resuspended in 1 ml of 10 mM Tris buffer; 0.1% SDS; 100 μg proteinase K proteolytically digested at 37 ° C for 1 h. After ten minutes of centrifugation (20,000 x g) remaining from this approach drug crystals were dissolved in 500 ul of isopropanol. In the supernatant of the protease digestion about 1 1% of the amount of metazachlor used was detected. The redissolved in isopropanol drug crystals accounted for about 35% of the amount of metazachlor used.
Analyse der Wirkstoffverteilung (photometrische Bestimmung bei λ=215 nm) Analysis of drug distribution (photometric determination at λ = 215 nm)
Beispiel 5Example 5
Verpacken und Stabilisierung von Retinol in Protein-MicrobeadsPackaging and stabilization of retinol in protein microbeads
Schwer bzw. nicht wasserlösliche Wirkstoffe, welche labil gegenüber Einflüssen wie Sauerstoffradikalen, UV u.a. sind, lassen sich in Protein-Microbeads verpacken, welche aus amphiphilen selbstassemblierenden Proteinen hergestellt werden. Anschließend können sie auch wieder daraus freigesetzt werden. Zusätzlich werden die Wirk- Stoffe durch Formulierung bzw. Verpackung in Protein-Microbeads vor den schädigenden Einflüssen und daraus resultierendem Abbau geschützt. Um dies zu zeigen wurde als nicht limitierendes Beispiel der Wirkstoff Retinol ausgewählt, welcher in C16- Protein-Microbeads verpackt und unter Luftbegasung sowie homogener Durchmischung für mehrere Stunden gerührt wurde. Zu verschiedenen Zeitpunkten wurden Proben entnommen und das verbliebene Retinol nach THF-Extraktion quantifiziert. Die in Tabelle 5.1 dargestellten Ansätze wurden untersucht. Dabei wurde zuerst die Retinol-THF-Lösung in Isopropanol verdünnt, anschließend mit der wässrigen C16- Proteinlösung versetzt und dann im Falle von Ansatz 1 die C16-Protein- Microbeadbildung durch Zugabe von 1 M Kaliumphosphatlösung induziert. Da das Vorhandensein von Kationen, z. B. durch Kaliumphosphat im C16-Protein- Verpackungsansatz, prinzipiell zur Steigerung der Oxidation von frei gelöstem oder partikulär auftretendem Retinol beiträgt, wurde in Kontrollansätzen mit und ohne C16- Spinnenseidenprotein, bei denen aber keine C16-Protein-Microbeadbildung induziert werden sollte, eine 154 mM Natriumchlorid-Lösung zugegeben (siehe Fisher et al., 1972, Biochem. J. 132: 259-270). Die Ansätze wurden in mit Plastikdeckeln verschließbaren Glasgefäßen unter Rühren auf einem Magnetrührer sowie kontinuierlicher Begasung über eine Kanüle bis zu 7 Stunden inkubiert. Bei Probennahme wurden je- weils 4 x 300 μl entnommen, in welchen rechnerisch maximal je 9,38 μg Retinol enthalten sein sollten. Nach Entnahme wurden die C16-Microbeads des Verpackungsansatzes abzentrifugiert und das enthaltene Retinol mit 1 ,5 ml THF extrahiert und absorpti- onsphotometrisch bei 325 nm quantifiziert. Bei den Ansätzen ohne C16-Microbeads wurde direkt 1 ,5 ml THF zu den 300 μl Probe gegeben, die Probe gemischt und zentri- fugiert, um eine Phasentrennung zu erzeugen. Das dann in der oberen THF-Phase enthaltene Retinol wurde ebenfalls absorptionsphotometrisch bei 325 nm quantifiziert.Substances which are difficult or not water-soluble and which are labile to influences such as oxygen radicals, UV, etc., can be packaged in protein microbeads which are produced from amphiphilic self-assembling proteins. Then they can be released from it again. In addition, the active ingredients are protected by formulation or packaging in protein microbeads from the damaging effects and the resulting degradation. To show this, the active substance retinol was selected as a non-limiting example, which was packed in C16 protein microbeads and stirred under air aeration and homogeneous mixing for several hours. Samples were taken at various times and the remaining retinol quantitated after THF extraction. The approaches presented in Table 5.1 were examined. First, the retinol-THF solution was diluted in isopropanol, then treated with the aqueous C16 protein solution and then in the case of approach 1, the C16 protein microbead formation induced by the addition of 1 M potassium phosphate solution. Since the presence of cations, eg. For example, by potassium phosphate in the C16 protein packaging approach, in principle contributes to increase the oxidation of freely dissolved or particulate occurring retinol was in control batches with and without C16 spider silk protein, but in which no C16 protein microbead formation should be induced 154 mM sodium chloride solution (see Fisher et al., 1972, Biochem J. 132: 259-270). The batches were incubated in plastic containers with closed glass vessels with stirring on a magnetic stirrer and continuous gassing via a cannula for up to 7 hours. When taking samples, 4 x 300 .mu.l taken, in which mathematically a maximum of 9.38 ug Retinol should be included. After removal, the C16 microbeads of the packaging batch were centrifuged off and the retinol contained was extracted with 1.5 ml of THF and quantitated by absorption photometry at 325 nm. For the batches without C16 microbeads, directly 1.5 ml of THF were added to the 300 μl sample, and the sample was mixed and centrifuged to produce a phase separation. The retinol then contained in the upper THF phase was also quantified by absorption photometry at 325 nm.
Ansatz 1 : Verpackungsansatz 0,9 ml lsopropanol (Fa. Sigma, kristallin)Approach 1: Packaging batch 0.9 ml of isopropanol (Sigma, crystalline)
0,1 ml Retinol 5mg/ml in THF0.1 ml retinol 5 mg / ml in THF
5 ml C16-Lösung 10 mg/ml in 5 mM K2HPO4-Puffer5 ml C16 solution 10 mg / ml in 5 mM K 2 HPO 4 buffer
10 ml 1 M K2HPO4-Puffer10 ml of 1 MK 2 HPO 4 buffer
Ansatz 2: Stabilisierungsansatz 0,9 ml lsopropanol (Fa. Sigma, kristallin)Approach 2: Stabilization mixture 0.9 ml of isopropanol (from Sigma, crystalline)
„Coating" 0,1 ml Retinol 5mg/ml in THF"Coating" 0.1 ml Retinol 5 mg / ml in THF
5 ml C16-Lösung 10 mg/ml in 5 mM K2HPO4-Puffer5 ml C16 solution 10 mg / ml in 5 mM K 2 HPO 4 buffer
10 ml 154 mM NaCI-Lösung10 ml of 154 mM NaCl solution
Ansatz 3: Kontrollansatz ohne 0,9 ml lsopropanol (Fa. Sigma, kristallin)Batch 3: Control batch without 0.9 ml of isopropanol (from Sigma, crystalline)
C16-Protein 0,1 ml Retinol 5 mg/ml in THFC16 protein 0.1 ml retinol 5 mg / ml in THF
5 ml 5 mM K2HPO4-Puffer5 ml of 5 mM K 2 HPO 4 buffer
10 ml 154 mM NaCI-Lösung10 ml of 154 mM NaCl solution
Tab. 5.1 : Verschiedene Ansätze zur Quantifizierung der C16-Spinnenseidenprotein- vermittelten Oxidationsstabilität von Retinol.Table 5.1: Different approaches to quantify the C16 spider silk protein mediated oxidation stability of retinol.
In den Verläufen der Ansätze mit C16-Spinnenseidenprotein (Ansatz 1 -Verpackung in C16-Microbeads, Ansatz 2 - lösliches C16) ist im Vergleich zur Kontrolle ohne C16- Protein eine deutliche Stabilisierung von Retinol unter Luftsauerstoff zu beobachten (Tab. 5.2; Abb. 8) Während sich im Ansatz 2 die Retinolmenge ab 5-7 h allerdings auch deutlich reduziert, ist im Ansatz 1 , bei dem der Wirkstoff in die C16-Microbeads verpackt wurde, auch nach 7 h noch mehr als 70 % intaktes Retinol nachweisbar (Tab. 5.2; Abb. 8). Demnach scheint die Verpackung von Retinol in C16-Protein-Microbeads ein geeignetes Verfahren zu sein, mit dem eine Stabilisierung gegen Sauerstoffradikal- induzierten Abbau erzielt werden kann. Durch einen proteolytischen Abbau der Retinol- beladenen C16-Microbeads mit Proteinase K (2,25 U) in 1 ml 5 mM Kaliumphosphatpuffer pH 8 konnte der Wirkstoff freigesetzt werden. In the course of the mixtures with C16 spider silk protein (batch 1 packaging in C16 microbeads, batch 2-soluble C16), a clear stabilization of retinol under atmospheric oxygen is to be observed in comparison to the control without C16 protein (Table 5.2, Fig. 8) While in approach 2, the amount of retinol but also significantly reduced from 5-7 h, in approach 1, in which the drug was packaged in the C16 microbeads, even after 7 h even more than 70% intact retinol detectable (Tab 5.2, Fig. 8). Thus, the packaging of retinol in C16 protein microbeads appears to be a convenient method by which stabilization against oxygen radical induced degradation can be achieved. Proteolytic degradation of the retinol-loaded C16 microbeads with proteinase K (2.25 U) in 1 ml of 5 mM potassium phosphate buffer pH 8 allowed the drug to be released.
Tab. 5.2: Bestimmung der Retinol-Stabilität in C16-Formulierungsansätzen.Table 5.2: Determination of retinol stability in C16 formulation approaches.
Abb. 8: Bestimmung der Retinol-Stabilität in C16-Formulierungsansätzen in Abhängig- keit von der Inkubationsdauer.Fig. 8: Determination of retinol stability in C16 formulations depending on the incubation period.
Um die maximale Beladungsdichte der C16-Microbeads mit Wirkstoff zu ermitteln, wurden in Verpackungsansätze (siehe Ansatz 1 ) verschiedene Mengen Retinol eingesetzt. Als Lösungsmittel für den Wirkstoff wurde hier ausschließlich THF genutzt. An- schließend wurde die C16-Protein-Microbeadbildung durch Zugabe von 1 M Kaliumphosphat-Puffer (pH 8,0) induziert. Der Ansatz wurde für 1 h bei 10 °C inkubiert und anschließend für 10 min bei 20000 x g abzentrifugiert. Das Pellet wurde zweimal mit destilliertem Wasser gewaschen. Danach wurde der Wirkstoff durch Waschen der C16- Protein-Microbeads mit 2 ml THF herausgelöst und absorptionsphotometrisch bei 325 nm quantifiziert (siehe Tab. 5.3). Es zeigte sich, dass die maximale Beladungsdichte für Retinol in diesem Versuch bei etwa 1 ,9 mg pro eingesetzten 5 mg C16-Protein liegt (Tab. 5.3). Bei quantitativer Fällung zu C16-Microbeads liegt die Retinol- Wirkstoffkonzentration bzw. Beladungsdichte demnach bei etwa 38 %.In order to determine the maximum loading density of the C16 microbeads with active ingredient, various amounts of retinol were used in packaging approaches (see approach 1). The solvent used for the active ingredient was exclusively THF. Subsequently, C16 protein microbead formation was induced by the addition of 1 M potassium phosphate buffer (pH 8.0). The mixture was incubated for 1 h at 10 ° C and then centrifuged for 10 min at 20,000 x g. The pellet was washed twice with distilled water. Thereafter, the active ingredient was removed by washing the C16 protein microbeads with 2 ml of THF and quantified by absorption photometry at 325 nm (see Table 5.3). It was found that the maximum loading density for retinol in this experiment is about 1.9 mg per 5 mg C16 protein used (Table 5.3). In quantitative precipitation to C16 microbeads, the retinol active substance concentration or loading density is therefore about 38%.
Tab. 5.3: Quantifizierung des in 5 mg C16-Microbeads verpackten und daraus wieder freigesetzten Retinols. Tab. 5.3: Quantification of the retinol packed in 5 mg C16 microbeads and released therefrom.
Beispiel 6Example 6
Verpacken von Ibuprofen aus THF in Microbeads und Freisetzung durch ProteolysePackaging of ibuprofen from THF in microbeads and release by proteolysis
Schwer bzw. nicht wasserlösliche pharmakologisch aktive Wirkstoffe lassen sich in Protein-Microbeads verpacken, welche aus amphiphilen selbstassemblierenden Prote- inen hergestellt werden. Anschließend können sie auch wieder daraus freigesetzt werden. Zusätzlich können diese Wirkstoffe durch Formulierung bzw. Verpackung in Protein-Microbeads vor den schädigenden Einflüssen, z.B. bestimmten Proteasen oder stark sauren pH-Werten und daraus resultierendem Abbau geschützt werden. Bestimmte Wirkstoffpartikelgrößen oder Wirkstoffstrukturen, welche besser resorbiert werden bzw. besser bioverfügbar sind, können durch Verpackung in Protein-Microbeads bzw. durch Mikronisierungsansätze unter Verwendung von amphiphilen selbstassemblierenden Proteinen eingestellt werden. Um dies zu zeigen wurde als nicht limitierendes Beispiel der Wirkstoff Ibuprofen [(RS)-2-(4-lsobutylphenyl)propionsäure] ausgewählt. 500 μl einer 10 mg/ml C16-Protein enthaltenden Kaliumphosphat-Lösung (5 mM, pH 8,0) wurden mit 100 μl einer Ibuprofen-Lösung (5 mg/ml in Isopropanol) vermischt. Die C16-Protein-Microbeadbildung wurde durch Zugabe von 1 ml 1 M Kaliumphosphat- Puffer (pH 8,0) induziert. Der Ansatz wurde für 1 h bei Raumtemperatur inkubiert und anschließend für 10 min bei 20000 x g abzentrifugiert. Das Pellet wurde zweimal mit 5 ml H2O bidest. gewaschen. Nach Fällung mit Kaliumphosphat bildeten sich im Ansatz mit C16-Protein und Ibuprofen Microbeads. Diese waren morphologisch mit denen eines Standardansatzes mit C16-Protein aber ohne Wirkstoff vergleichbar. Die Verpackung von Ibuprofen in die C16-Protein-Microbeads erfolgte in diesem Ansatz quantitativ, weshalb im Überstand nach Induktion der Microbead-Bildung kein Ibuprofen absorptionsphotometrisch nach- gewiesen werden konnte. Durch einen unspezifischen proteolytischen Abbau der I- buprofen-beladenen C16-Microbeads mit Proteinase K (2,25 U) in 1 ml 5 mM Kaliumphosphatpuffer pH 8 konnte der Wirkstoff freigesetzt werden.Hardly or not water-soluble pharmacologically active substances can be packaged in protein microbeads, which are produced from amphiphilic self-assembling proteins. Then they can be released from it again. In addition, these agents can be protected from the deleterious effects, e.g. by packaging in protein microbeads, e.g. certain proteases or strongly acidic pHs and resulting degradation. Certain drug particle sizes or drug structures that are better absorbed or better bioavailable can be adjusted by packaging in protein microbeads or by micronization approaches using amphiphilic self-assembling proteins. To demonstrate this, the active substance ibuprofen [(RS) -2- (4-isobutylphenyl) propionic acid] was selected as a non-limiting example. 500 μl of a 10 mg / ml C16 protein-containing potassium phosphate solution (5 mM, pH 8.0) were mixed with 100 μl of an ibuprofen solution (5 mg / ml in isopropanol). C16 protein microbead formation was induced by the addition of 1 ml of 1 M potassium phosphate buffer (pH 8.0). The mixture was incubated for 1 h at room temperature and then centrifuged for 10 min at 20,000 x g. The pellet was redistilled twice with 5 ml H2O. washed. After precipitation with potassium phosphate, microbeads formed in the batch with C16 protein and ibuprofen. These were morphologically comparable to those of a standard mixture with C16 protein but no active ingredient. The packaging of ibuprofen in the C16 protein microbeads was quantitative in this approach, which is why in the supernatant after induction of microbead formation no ibuprofen could be detected by absorption photometry. Non-specific proteolytic degradation of the I-buprofen-loaded C16 microbeads with proteinase K (2.25 U) in 1 ml of 5 mM potassium phosphate buffer pH 8 enabled the release of the active substance.
Ein proteolytischer Verdau der Ibuprofen-beladenen C16-Protein-Microbeads in einem Pepsin-enthaltenden Ansatz (analog Beispiel 2) führte nicht zur Freisetzung des Wirk- Stoffes. Die Behandlung der Ibuprofen-beladenen C16-Protein-Microbeads in Pankrea- tin-enthaltenden Ansätzen (analog Beispiel 2) führte zur Freisetzung des Wirkstoffes. Die C16-Microbeads können demnach einen Schutz vor Magenprotease sowie den im Magen vorherrschenden sehr sauren pH-Werten vermitteln. Eine Freisetzung unter Darmbedingungen ist aber möglich. C16-Microbeads eignen sich deshalb u.a. für die Verpackung und Formulierung von per oral applizierten Wirkstoffen, die im Darm aufgenommen werden oder wirken, und die bei Magenpassage geschützt werden sollen. A proteolytic digestion of the ibuprofen-loaded C16 protein microbeads in a pepsin-containing batch (analogous to Example 2) did not lead to the release of the active ingredient. The treatment of the ibuprofen-loaded C16 protein microbeads in pancreatin-containing mixtures (analogously to Example 2) led to the release of the active ingredient. Accordingly, the C16 microbeads can provide protection against gastric protease as well as the very acidic pH values prevailing in the stomach. A release under intestinal conditions is possible. C16 microbeads are therefore suitable, among other things, for the packaging and formulation of orally administered active substances which are absorbed or act in the intestine and which are to be protected in the case of gastric passage.

Claims

Patentansprüche claims
1. Verwendung von amphiphilen selbstassemblierenden Proteinen zur Formulierung von schwer wasserlöslichen Effektstoffen.1. Use of amphiphilic self-assembling proteins for the formulation of sparingly water-soluble effect substances.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den amphiphilen selbstassemblierenden Proteinen um Microbead-bildende Proteine handelt.2. Use according to claim 1, characterized in that the amphiphilic self-assembling proteins are microbead-forming proteins.
3. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den amphiphilen selbstassemblierenden Proteinen um intrinsisch entfaltete Proteine handelt.3. Use according to claim 1, characterized in that the amphiphilic self-assembling proteins are intrinsically unfolded proteins.
4. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den amphiphilen selbstassemblierenden Proteinen um Seidenproteine handelt.4. Use according to claim 1, characterized in that the amphiphilic self-assembling proteins are silk proteins.
5. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den amphiphilen selbstassemblierenden Proteinen um Spinnenseidenprotei- ne handelt.5. Use according to claim 1, characterized in that the amphiphilic self-assembling proteins are spider silk proteins.
6. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den amphiphilen selbstassemblierenden Proteinen um das C16- Spinnenseidenprotein handelt.Use according to claim 1, characterized in that the amphiphilic self-assembling proteins are the C16 spider silk protein.
7. Verwendung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass als Effektstoffe pharmazeutische Wirkstoffe verwendet werden.7. Use according to claim 1 to 6, characterized in that pharmaceutically active substances are used as effect substances.
8. Verwendung nach Anspruch bis 1 bis 6, dadurch gekennzeichnet, dass als Effektstoffe Pflanzenschutzwirkstoffe verwendet werden.8. Use according to claim 1 to 6, characterized in that are used as effect substances crop protection agents.
9. Verwendung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass als Effektstoffe Wirkstoffe für die Haut- und Haarkosmetik verwendet werden.9. Use according to claim 1 to 6, characterized in that are used as effect substances active ingredients for the skin and hair cosmetics.
10. Verfahren zur Herstellung von Effektstoffformulierungen, wobei man10. A process for the preparation of Effektstoffformulierungen, wherein
(i) den schwer wasserlöslichen Effektstoff zusammen mit dem amphiphilen selbstassemblierenden Protein in einer gemeinsamen dispersen Phase mischt und(i) mixing the sparingly water-soluble effect substance together with the amphiphilic self-assembling protein in a common disperse phase and
(ii) anschliessend eine Phasentrennung in eine protein- und effektstoff- reiche Phase sowie eine protein- und effektstoffarme Phase durchführt. (ii) subsequently carrying out a phase separation into a protein- and effect-rich phase and a phase which is low in protein and effect.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man die Phasentrennung (ii) durch lyotrope Salze bewirkt.1 1. A method according to claim 10, characterized in that one causes the phase separation (ii) by lyotropic salts.
12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man bei einer Temperatur zwischen 5 und 50°C arbeitet.12. The method according to claim 10, characterized in that one operates at a temperature between 5 and 50 ° C.
13. Verfahren nach Anspruch 10-12, dadurch gekennzeichnet, dass die protein- und effektstoffreiche Phase aushärtet und als mechanisch stabile effektstoff- enthaltende Protein-Microbeads abgetrennt und ggf. getrocknet wird.13. The method according to claim 10-12, characterized in that the protein- and effect-rich phase hardens and separated as mechanically stable effect-containing protein microbeads and possibly dried.
14. Kosmetische Zubereitungen enthaltend einen schwer wasserlöslichen Effektstoff, der mit mindestens einem amphiphilen selbstassemblierenden Protein formuliert worden ist, zusammen mit weiteren kosmetischen Hilfsstoffen.14. Cosmetic preparations containing a sparingly water-soluble effect substance which has been formulated with at least one amphiphilic self-assembling protein, together with further cosmetic adjuvants.
15. Pharmazeutische Zubereitungen enthaltend einen schwer wasserlöslichen15. Pharmaceutical preparations containing a sparingly water-soluble
Effektstoff, der mit mindestens einem amphiphilen selbstassemblierenden Protein formuliert worden ist, zusammen mit weiteren pharmazeutischen Hilfsstoffen.Effect substance that has been formulated with at least one amphiphilic self-assembling protein, together with other pharmaceutical excipients.
16. Agrochemische Zubereitungen enthaltend einen schwer wasserlöslichen Effektstoff, der mit mindestens einem amphiphilen selbstassemblierenden Protein formuliert worden ist, zusammen mit weiteren agrochemischen Hilfsstoffen. 16. Agrochemical preparations containing a sparingly water-soluble effect substance which has been formulated with at least one amphiphilic self-assembling protein, together with other agrochemical auxiliaries.
EP07704011A 2006-01-20 2007-01-19 Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances Withdrawn EP1978937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07704011A EP1978937A1 (en) 2006-01-20 2007-01-19 Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06100671 2006-01-20
PCT/EP2007/050541 WO2007082936A1 (en) 2006-01-20 2007-01-19 Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances
EP07704011A EP1978937A1 (en) 2006-01-20 2007-01-19 Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances

Publications (1)

Publication Number Publication Date
EP1978937A1 true EP1978937A1 (en) 2008-10-15

Family

ID=37875797

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07704011A Withdrawn EP1978937A1 (en) 2006-01-20 2007-01-19 Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances
EP07712054A Ceased EP1979055A2 (en) 2006-01-20 2007-01-19 Use of protein microbeads in cosmetics

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07712054A Ceased EP1979055A2 (en) 2006-01-20 2007-01-19 Use of protein microbeads in cosmetics

Country Status (6)

Country Link
US (2) US20100278882A1 (en)
EP (2) EP1978937A1 (en)
JP (2) JP2009523766A (en)
CN (3) CN101370481A (en)
CA (2) CA2637065C (en)
WO (2) WO2007082936A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7823214B2 (en) 2005-01-07 2010-10-26 Apple Inc. Accessory authentication for electronic devices
EP1978937A1 (en) 2006-01-20 2008-10-15 Basf Se Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances
JP5743542B2 (en) * 2007-06-20 2015-07-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Synthetic repeat proteins, their production and use
JP2011530491A (en) * 2008-08-08 2011-12-22 ビーエーエスエフ ソシエタス・ヨーロピア Biopolymer-based continuous fiber layers containing active substances, their use, and methods for their production
CN102176905A (en) 2008-08-08 2011-09-07 巴斯夫欧洲公司 Fibrous surface structure containing active ingredients with controlled release of active ingredients, use thereof and method for the production thereof
WO2010072665A1 (en) 2008-12-23 2010-07-01 Basf Se Modification of nano- or mesofibers or textile fabrics manufactured by way of electrospinning using amphiphilic proteins
EP2437769B1 (en) 2009-06-03 2019-09-25 Basf Se Recombinant production of peptides
WO2011029777A1 (en) 2009-09-11 2011-03-17 Basf Se Methods for producing coated polymer fibers
EP2506837B1 (en) 2009-11-30 2020-07-01 Amsilk GmbH Spider silk particles for controlled and sustained delivery of compounds
KR20140048067A (en) 2010-08-26 2014-04-23 바스프 에스이 Method for producing highly concentrated solutions of self-assembling proteins
DE102011105369A1 (en) 2011-06-20 2012-12-20 Carl Freudenberg Kg Stable, aqueous protein solution or protein dispersion, process for the preparation of the stable, aqueous solution or dispersion and process for the production of moldings, fabrics, impregnations or coatings from the stable, aqueous protein solution or protein dispersion and their use
DE102011105372A1 (en) 2011-06-20 2012-12-20 Carl Freudenberg Kg Stable, aqueous protein solution or protein dispersion, process for the preparation of the stable, aqueous solution or dispersion and process for the production of moldings, fabrics, impregnations or coatings from the stable, aqueous protein solution or protein dispersion and their use
EP2615107A1 (en) 2012-01-16 2013-07-17 Universität Bayreuth A novel biopolymer having excellent tensile strength, extensibility and toughness
US9732125B2 (en) 2013-04-25 2017-08-15 Spiber Inc. Polypeptide particle and method for producing same
EP2990413B1 (en) 2013-04-25 2019-05-29 Spiber Inc. Polypeptide porous body and method for producing same
JP5782580B2 (en) 2013-04-25 2015-09-24 Spiber株式会社 Polypeptide hydrogel and method for producing the same
US9672952B2 (en) 2013-08-14 2017-06-06 Industrial Technology Research Institute Polymer and conductive composition
CA2935144C (en) 2014-08-25 2017-01-24 The Governors Of The University Of Alberta Functionalized beta-sheet peptide stabilized membrane proteins, constructs comprising same, and methods of forming and using same
GB201415681D0 (en) 2014-09-04 2014-10-22 Cambridge Entpr Ltd And President And Fellows Of Harvard College Protien Capsules
KR20180038508A (en) * 2015-08-13 2018-04-16 아치 퍼스널 케어 프로덕츠, 엘.피. Wet wipe concentrate
GB201615047D0 (en) * 2016-09-05 2016-10-19 Spheritech Ltd Microparticle composition and use thereof
SG11202003987VA (en) * 2017-11-10 2020-05-28 Givaudan Sa Silk alcohol formulations
DE102017010930A1 (en) 2017-11-25 2019-05-29 Dr. 3 Entwicklungsgesellschaft mbH i. Gr. Topical preparations
CN111214385B (en) * 2020-03-13 2022-05-17 珀莱雅化妆品股份有限公司 Nanoparticle emulsion loaded with skin nutrient and preparation method thereof
BR112023005311A2 (en) * 2020-09-30 2023-04-25 Oreal AQUEOUS GEL SUNSCREEN COSMETIC COMPOSITION, PROCESS FOR MANUFACTURING THE AQUEOUS GEL SUNSCREEN COSMETIC COMPOSITION AND USE OF THE AQUEOUS GEL SUNSCREEN COSMETIC COMPOSITION
ES2933628A1 (en) * 2021-08-10 2023-02-10 Cocunat S L HAIR BALM FOR HAIR RESTORATION AND REPAIR (Machine-translation by Google Translate, not legally binding)
WO2023052393A1 (en) 2021-09-29 2023-04-06 Smart Material Printing B.V. Mechanochemically pre-treated, heavy-metal-free activated carbon particles a, topical medications, medicinal products and cosmetics, production method, and uses
DE102021004906A1 (en) 2021-09-29 2023-03-30 Smart Material Printing B.V. Heavy metal-free topical medical devices and cosmetics, processes for their preparation and their use
DE102021004907A1 (en) 2021-09-29 2023-03-30 Smart Material Printing B.V. Mechanochemically pretreated, heavy metal-free activated carbon particles A for use in medicine
CN114149339B (en) * 2021-12-28 2023-01-31 黄冈美丰化工科技有限公司 Ultraviolet absorbent, composition, cosmetic and process for preparing cosmetic
CN114588070A (en) * 2022-03-03 2022-06-07 深圳亿汀生物有限公司 Composition for dynamically adjusting water-oil balance of skin to achieve rapid relief and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213013A2 (en) * 2000-11-29 2002-06-12 Basf Aktiengesellschaft Process for preparing solid compositions of water-soluble, hardly water-soluble or water-insoluble active agents
EP1757276A1 (en) * 2005-08-01 2007-02-28 Technische Universität München Method of producing nano- and microcapsules of spider silk protein

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0011161B1 (en) * 1978-11-13 1981-10-14 Kanebo, Ltd. Finely powdered fibroin and process for producing same
US5023080A (en) * 1988-06-17 1991-06-11 Basic Bio Systems, Inc. Time release protein
JPH0248502A (en) * 1988-08-09 1990-02-19 Kikkoman Corp Agricultural chemical composition and production thereof
JP2854687B2 (en) * 1990-07-30 1999-02-03 鐘紡株式会社 Manufacturing method of dyed silk fibroin powder
JP2601779B2 (en) * 1991-05-13 1997-04-16 鐘紡株式会社 Method for producing fine powder modified silk powder aqueous dispersion and method for producing fine powder modified silk powder
FR2683159B1 (en) * 1991-10-31 1994-02-25 Coletica PROCESS FOR PRODUCING WALL NANOCAPSULES BASED ON CROSSLINKED PROTEINS; NANOCAPSULES THUS OBTAINED AND COSMETIC, PHARMACEUTICAL AND FOOD COMPOSITIONS INCLUDING APPLICATION.
JPH08268905A (en) * 1995-03-31 1996-10-15 Takayuki Nagashima Colloidal silk fibroin and composition containing the same
JP4125811B2 (en) * 1996-10-30 2008-07-30 住友化学株式会社 Aqueous emulsified suspension agricultural chemical composition and method for producing the same
JP3101711B2 (en) * 1997-11-20 2000-10-23 農林水産省蚕糸・昆虫農業技術研究所長 Adsorbent / sustained-release body comprising biopolymer and method for producing the same
FR2774588B1 (en) * 1998-02-11 2000-05-05 Oreal COSMETIC OR DERMATOLOGICAL COMPOSITION CONTAINING AT LEAST ONE NATURAL, RECOMBINANT ARACHNID SILK PROTEIN OR THE LIKE
JP2972877B1 (en) * 1998-07-24 1999-11-08 農林水産省蚕糸・昆虫農業技術研究所長 Dope of polymer material, microbeads made of polymer material and method for producing the beads
JP2001163899A (en) * 1999-12-09 2001-06-19 Natl Inst Of Sericultural & Entomological Science Method for producing functional silk fibroin and its use
DE10036655A1 (en) 2000-07-26 2002-02-07 Basf Ag Cosmetic or dermatological preparations to prevent skin damage from peroxides
JP2002138024A (en) * 2000-10-27 2002-05-14 Riaru Kagaku Kk Hair dyeing agent, hair dyeing set and hair dyeing method using the same
DE10059213A1 (en) 2000-11-29 2002-06-13 Basf Ag Preparing solid composition of poorly soluble compounds, useful e.g. for carotenoid animal feed additives, by flocculating a dispersion with protective colloid
US7105176B2 (en) * 2000-11-29 2006-09-12 Basf Aktiengesellschaft Production of solid preparations of water-soluble, sparingly water-soluble or water-insoluble active compounds
JP2002308720A (en) * 2001-04-16 2002-10-23 Pola Chem Ind Inc Skin-protecting cosmetic
FR2825293B1 (en) * 2001-06-05 2004-05-07 Coletica SOLID WATER INSOLUBLE PARTICLES TREATED, PREPARATION AND USE
US7901668B2 (en) * 2001-11-29 2011-03-08 Eaudelman Co., Ltd. Silk fibroin emulsifier and process for the production thereof
JP3659352B2 (en) * 2001-11-29 2005-06-15 独立行政法人農業生物資源研究所 Emulsifier having skin cell growth promoting property and method for producing the same
JP2005060404A (en) * 2001-11-29 2005-03-10 National Institute Of Agrobiological Sciences Emulsifier having skin cell growth promoting property and method for producing the same
CA2471712A1 (en) 2002-01-18 2003-07-24 Basf Aktiengesellschaft Cosmetic or dermatological preparations for preventing damages to skin caused by peroxides
US20040132978A1 (en) * 2002-11-12 2004-07-08 Fahnestock Stephen R. Method for purifying and recovering silk proteins in soluble form and uses thereof
JP3738247B2 (en) * 2002-11-18 2006-01-25 株式会社オードレマン Detergent composition containing amorphous silk fibroin
US7060260B2 (en) * 2003-02-20 2006-06-13 E.I. Du Pont De Nemours And Company Water-soluble silk proteins in compositions for skin care, hair care or hair coloring
JP3738255B2 (en) * 2003-02-21 2006-01-25 株式会社オードレマン Cosmetics containing amorphous silk fibroin
JP4698596B2 (en) * 2003-04-10 2011-06-08 タフツ ユニバーシティー Concentrated aqueous silk fibroin solutions and their use
US20050023316A1 (en) 2003-07-31 2005-02-03 Anderson Carl B. Document holder for identification
JP2008502739A (en) * 2004-06-11 2008-01-31 トラスティーズ オブ タフツ カレッジ Silk-based drug delivery system
CA2573780C (en) * 2004-07-22 2013-11-19 Technische Universitaet Muenchen Recombinant spider silk proteins
DE102004057587A1 (en) 2004-11-29 2006-06-08 Basf Ag Aqueous dispersions of a mixture of poorly water-soluble or water-insoluble active ingredients and a single-celled protein material and dry powder prepared therefrom
JP2009505668A (en) * 2005-08-29 2009-02-12 テヒニシェ ウニヴェルズィテート ミュンヘン Modified spider silk protein
EP1978937A1 (en) 2006-01-20 2008-10-15 Basf Se Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213013A2 (en) * 2000-11-29 2002-06-12 Basf Aktiengesellschaft Process for preparing solid compositions of water-soluble, hardly water-soluble or water-insoluble active agents
EP1757276A1 (en) * 2005-08-01 2007-02-28 Technische Universität München Method of producing nano- and microcapsules of spider silk protein

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREA S GOBIN ET AL: "Silk-fibroin-coated liposomes for long-term and targeted drug delivery", INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 1, no. 1, 1 January 2006 (2006-01-01), pages 81 - 88, XP055139628, ISSN: 1176-9114, DOI: 10.2147/nano.2006.1.1.81 *
N.N.: "Emodin | 518-82-1", 1 January 2010 (2010-01-01), XP055139704, Retrieved from the Internet <URL:http://www.chemicalbook.com/ChemicalProductProperty_EN_CB2258856.htm> [retrieved on 20140911] *
See also references of WO2007082936A1 *

Also Published As

Publication number Publication date
US8288512B2 (en) 2012-10-16
CN101370556A (en) 2009-02-18
US20100278882A1 (en) 2010-11-04
CN101370481A (en) 2009-02-18
JP2009523766A (en) 2009-06-25
CN104856962A (en) 2015-08-26
CA2637065C (en) 2014-03-18
US20100278883A1 (en) 2010-11-04
CA2637065A1 (en) 2007-07-26
CA2638870A1 (en) 2007-07-26
JP2009523767A (en) 2009-06-25
JP5236498B2 (en) 2013-07-17
WO2007082923A3 (en) 2007-10-04
WO2007082936A1 (en) 2007-07-26
WO2007082923A2 (en) 2007-07-26
EP1979055A2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
EP1978937A1 (en) Use of amphiphilic self-assembling proteins for formulating poorly water-soluble effect substances
Gómez-Estaca et al. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin
EP0347751B1 (en) Stable compositions dispersible in cold water
Liu et al. Formation, characterization, and application of chitosan/pectin-stabilized multilayer emulsions as astaxanthin delivery systems
US5753264A (en) Method of making positively charged microcapsules of emulsions of oils and its uses
DE69434224T2 (en) Oral delivery system for desferrioxamine, insulin and cromolyn sodium
EP1259120B1 (en) Method for isolating collagen from marine sponge and producing nanoparticulate collagen, and the use thereof
DE69924352T2 (en) TOPICAL COMPOSITIONS FOR INCREASING GLUTATHION PRODUCTION
WO2010003762A1 (en) Particles containing active agents
JP2013532630A (en) Nanoparticles for encapsulating compounds, methods for their production and their use
US20230338298A1 (en) Plant protein-based microcapsules
Yan et al. Effect of interfacial composition on the physical stability and co-oxidation of proteins and lipids in a soy protein isolate-(−)-epigallocatechin gallate conjugate emulsion
US9782610B2 (en) Nontoxic, non-endocrine disrupting, cytoprotective, UV-radiation resistant sunblock compositions
DE10200657A1 (en) 2: 1 complex of beta or gamma cyclodextrin and alpha tocopherol
EP1213013A2 (en) Process for preparing solid compositions of water-soluble, hardly water-soluble or water-insoluble active agents
WO1995005144A1 (en) Functional oxygenated composition containing phospholipids and fluorocarbon
CN107875038A (en) A kind of olive oil microemulsion formulation and its application as whitening sunscreen agent
CA3130712A1 (en) Lipid encasing amphipathic peptides
EP0988859A1 (en) Active substance preparations and a process for producing the same
KR102246331B1 (en) Biodegradable nano-particle containing pinus bungeana extract and preparation method thereof
JP2009269844A (en) Composition for hair
KR20040011881A (en) Anti-wrinkle cosmetic compositions
Wang et al. Enhanced in vitro bioavailability of resveratrol-loaded emulsion stabilized by β-lactoglobulin-catechin with excellent antioxidant activity
RU2575745C2 (en) Nanoparticle (versions), method for nanoparticle obtaining (versions), composition and food product
DE10129713A1 (en) Preparations based on water-soluble or -insoluble active agents, for use in foods, animal feed, pharmaceuticals or cosmetics, are obtained by flocculation together with protein-containing protective colloids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120112

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISCHE UNIVERSITAET MUENCHEN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150328