EP1972793B1 - Procédé de détection de défauts dans des unités de pompage - Google Patents
Procédé de détection de défauts dans des unités de pompage Download PDFInfo
- Publication number
- EP1972793B1 EP1972793B1 EP07005995A EP07005995A EP1972793B1 EP 1972793 B1 EP1972793 B1 EP 1972793B1 EP 07005995 A EP07005995 A EP 07005995A EP 07005995 A EP07005995 A EP 07005995A EP 1972793 B1 EP1972793 B1 EP 1972793B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cepstral
- electric motor
- diagram
- module
- recognition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000005086 pumping Methods 0.000 title 1
- 230000000737 periodic effect Effects 0.000 claims abstract description 23
- 238000012545 processing Methods 0.000 claims abstract description 11
- 238000001914 filtration Methods 0.000 claims abstract description 8
- 238000010586 diagram Methods 0.000 claims description 43
- 238000011156 evaluation Methods 0.000 claims description 25
- 238000001514 detection method Methods 0.000 claims description 21
- 239000012530 fluid Substances 0.000 claims description 9
- 238000010606 normalization Methods 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 5
- 238000003909 pattern recognition Methods 0.000 claims description 5
- 230000008054 signal transmission Effects 0.000 claims description 2
- 238000005070 sampling Methods 0.000 description 11
- 208000010201 Exanthema Diseases 0.000 description 8
- 201000005884 exanthem Diseases 0.000 description 8
- 206010037844 rash Diseases 0.000 description 8
- 238000012952 Resampling Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001143 conditioned effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005316 response function Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0066—Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0088—Testing machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/669—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/70—Type of control algorithm
- F05D2270/709—Type of control algorithm with neural networks
Definitions
- the invention relates to a method for detecting faults in a pump unit with an electric motor or in an electric motor.
- GB 2 298 239 A discloses a controlled pump set provided with a vibration pickup by which vibrations from which a certain hydraulic condition can be inferred are absorbed.
- WO 97/08459 discloses a submersible pump which is monitored for vibrations.
- WO 2006/127939 A2 discloses a method for vibration analysis of electric submersible pumps in which vibrations are detected and the speed of the pump is adjusted so that the vibrations occurring do not exceed a certain maximum.
- the method according to the invention is used to detect faults in a pump unit, which has an electric motor for driving, or in an electric motor. These units always have at least one rotating shaft. This shaft is mounted in bearings, in which, for example, errors may occur, as they can be detected by the method according to the invention.
- a vibration signal is detected in the electric motor or in the case of a pump unit in the pump unit or, if appropriate, its drive motor.
- known sensors can be used for vibration detection.
- the detected vibration signal is then processed in a first processing step such that the influence of the current speed of the shaft is eliminated.
- the processed signal is speed-independent, so that regardless of the current speed different operating conditions, in particular error types can be detected.
- the processing for eliminating the speed increase is preferably carried out in such a way that the sampling frequency multiplied by the current speed and divided by a constant speed value, whereby the sampling frequency is practically related to this constant speed value, so that the further frequency analysis carried out without the influence of the current speed can be.
- the vibration signal can be filtered in a low pass before being processed, for example in a 20th order Butterworth filter with a cutoff frequency of 40% of the processed sampling frequency.
- the processing of the vibration signal takes place, if appropriate after passing through the low-pass filter, by resampling or changing the sampling rate with the sampling rate related to the constant speed.
- the resampling can be done, for example, by filtering the time-discrete signal using a non-causal sine function as a pulse-response function.
- the required speed of the shaft can be determined in various known ways, for example by speed sensor or directly from the vibration signal in the sense of a virtual speed sensor, such as in US 7,031,873 B2 is disclosed.
- the speed signal from the vibration signal may also be made by downsampling to 128 Hz and then determining the ten highest excursions of the spectrum for each time window. The highest swings of the current time window are placed over those of the subsequent time window within certain limits. Subsequently, a speed history is recorded based on the coincidence of the deflections.
- the thus prepared vibration signal is then subjected to filtering in which periodic signals are filtered out of the conditioned vibration signal. Based on these periodic signals, the vibration-related operating state of the pump unit or electric motor can then be detected. In particular, it is possible to detect such vibration-like operating conditions, which indicate errors, such as bearing failures.
- the periodic signals can be detected, for example, in such a way that the amplitude of certain characteristic signals, in particular characteristic error signals is detected and then the time intervals between these amplitudes are measured. Based on the time intervals between the amplitudes can then be determined whether these are periodic signals or not.
- the conditioned vibration signal is preferably subjected directly to a cepstral analysis for filtering out the periodic signals or signal parts. This means that no further transformations or evaluations of the vibration signal are made before the cepstral analysis.
- the operating state or possible errors are subsequently detected by the cepstral graph generated by the cepstral analysis. Certain operating states are characterized by certain characteristics in the cepstral diagram, in particular errors can be detected.
- Cepstral analysis is a double frequency analysis, i. the result of a frequency analysis is subjected to a repeated frequency analysis. In this case, periodic signal components are filtered out or extracted from the vibration signal.
- cepstral analysis or cepstral transformation short-term cepstral analysis can be performed on the spectrogram of the vibration signal by performing frequency domain frequency analysis.
- high-pass filtering of the frequency domain may be performed prior to performing the Fourier transform of the frequency domain.
- the resulting cepstral domain will then preferably contain only bearing influences, no engine influences.
- the evaluation of the cepstral diagram for detecting the operating states or errors is preferably carried out by a pattern recognition, which takes into account in particular at which points in the cepstral diagram rashes occur.
- the recognition is preferably performed on the distribution or position of individual rashes in the cepstral diagram, less on the absolute values of the rashes.
- the operating states are detected on the basis of previously known patterns in the periodic signals and in particular the cepstral diagram.
- certain types of errors are e.g. the patterns of the occurring signals, d. H. the position or distribution of individual rashes known.
- By comparing the current signal pattern or cepstral diagram with the known patterns it is then possible to conclude certain operating states or known error types.
- previously known patterns can be used in two ways for detecting operating states. On the one hand, it is possible for the previously known patterns to correspond to specific operating states and specific types of errors to be detected, so that it can be recognized when such a pattern or similar occurs and then concludes that such an operating state or fault exists.
- the prior art patterns desired i. correspond in particular to error-free operating states and a comparison is carried out in such a way that undesired operating states are recognized by the fact that patterns occur in the current periodic signals or in the cepstral diagram which do not correspond to the previously known patterns.
- the previously known patterns can be factory-stored in an electronic control unit of a pump unit or electric motor.
- the patterns which correspond to specific operating states, in particular fault-free nominal operating states, for example are automatically detected by the control or regulating electronics when the pump unit or the electric motor is put into operation. It is then preferably assumed that the pump unit or the electric motor after delivery and works faultlessly during commissioning.
- the detection of operating states, in particular errors in selected sections of the cepstral diagram, which are preferably predetermined sections takes place.
- the recognition in particular the pattern recognition, not the entire cepstral diagram is considered, but only a relevant section.
- predetermined sections can be considered, in which usually certain characteristic signals occur at certain operating conditions, in particular errors. In order to be able to recognize these specific operating states, it is then not necessary to evaluate the entire cepstral diagram or cepstrum. There are thus section enlargements instead.
- Recognition of vibrational operating conditions or errors on the basis of the cepstral diagram is furthermore preferably carried out by means of a neural network and / or a fuzzy logic.
- a neural network and / or a fuzzy logic.
- the evaluation can be adapted to different pumps or types of electric motors, which have different noise levels or different background noise. Because the deflections or signals are set in relation to these background noises, a uniform evaluation for different pumps or motor types can be carried out, since the evaluation takes place independently of the current noise level.
- the invention is further achieved by a pump unit with an electric motor or by an electric motor, in which a device for carrying out an error detection according to the method described above is integrated.
- Such a pump unit has an electric motor for its drive.
- the electric motor or the pump unit has at least one rotating shaft about which rotates in a motor, the rotor or via which at least one impeller is driven in a pump unit.
- an error detection system is integrated into the pump unit or the electric motor. This may include its own electronics or separate electronic components, but may also be integrated into electronic components, in particular microprocessors, that are present anyway for controlling or regulating the pump unit or electric motor, or use these.
- the fault detection system has at least one vibration sensor and an evaluation device connected to the vibration sensor, wherein the evaluation device is preferably formed by one or more microprocessors.
- the evaluation device is provided with a Aufbungsungsmodul, which is designed to eliminate the influence of the current speed of the shaft from a vibration signal detected by the sensor. This can be done in the manner described above by the method by the sampling rate is related to a constant speed and the vibration signal is then processed or resampled this sampling rate.
- the editing module on predetermined computer structures, which can perform the corresponding calculations.
- the error detection system further comprises a filter module which is adapted to receive periodic signals from that of filter out or extract the conditioned vibration signal. Furthermore, a detection module is provided, which is designed to be able to detect the vibration-related operating state of the pump unit or electric motor on the basis of the filtered-out periodic signals or signal components. In this case, an automatic recognition of certain operating conditions with respect to the vibrations occurring in the unit is performed in the detection module based on characteristic periodic signals. In particular, operating states can be detected, which suggest a faulty operation, for example, a bearing damage.
- the evaluation device preferably has as filter module a cepstral analysis module which is designed to carry out a cepstral analysis or cepstral transformation on the vibration signal prepared by the conditioning module in the manner described above.
- the cepstral analysis module is a computer unit or a software component that performs the cepstral transformation or analysis of the vibration signal.
- deep and / or high-pass filters can be integrated in front of the conditioning or the cepstral analysis module in order to eliminate interfering signal influences.
- the evaluation device preferably has a recognition module, which is designed to detect operating states or errors on the basis of the cepstral diagram generated by the cepstral analysis module.
- the recognition module can likewise be a hardware and / or software component of the rendering module, which is designed for the corresponding evaluation of the cepstral diagram.
- the recognition module is designed such that, in the manner described above with reference to the method, it can recognize different operating states or errors from the cepstral diagram.
- the recognition module preferably has fuzzy logic and / or a neural network in order to carry out the recognition on the basis of the cepstral diagram.
- the evaluation device preferably has a memory module in which characteristic patterns of a periodic signal, in particular a cepstral diagram or sections of a cepstral diagram are stored for specific operating states, and the detection module is for detecting specific operating states on the periodic signal or cepstral diagram formed on the basis of the stored pattern.
- the memory module can be a separate memory module, but it is also possible to share memory components which are present in any case in a control device of the pump unit or of the electric motor.
- the recognition module compares the current signal patterns or cepstral diagrams or sections thereof with the previously known and stored patterns and recognizes, as soon as it identifies identity or similarities to the known patterns, the corresponding operating states. Via an output device can then be issued a message, in particular error message.
- a warning light may be attached to the electric motor or the pump unit.
- an error code or an error description in plain text can be output in a display. It is also conceivable to transmit the error type to an external evaluation device, for example a remote control, in order to be able to carry out a closer error evaluation here.
- patterns may be stored which correspond to undesired operating states, for example characteristic errors. If the recognition module recognizes a corresponding pattern in the current signal, it can thus conclude such an undesired operating state.
- the patterns can be stored at the factory.
- a calibration module which is designed to detect the previously known patterns to be stored.
- the calibration module can be designed in such a way that it can be used during commissioning, in particular during the first startup of the unit, i. of the pump unit or electric motor, detects the vibration-related operating state or detects various vibration-related operating states and deposits them as previously known patterns in the memory module. It is assumed that the unit operates essentially error-free during initial commissioning.
- the calibration module can also be designed so that it can store patterns during later operation of the unit. So it is conceivable, for example, that the calibration module can be activated to store previously known patterns after a repair of the unit, if it works correctly.
- the vibration sensor is preferably based on the mechanical structure of the Pump unit or the electric motor, arranged in a terminal box, within an array of electronic components and / or in a fluid line for a pump to be pumped by the fluid.
- the vibration to be detected for example bearing errors or impeller errors in a pump unit
- the arrangement of a vibration sensor within an assembly of electronic components or in a terminal box has the advantage that the wiring and assembly is simplified.
- the vibration sensor with other electronic components can be dispensed with integrating additional sensors in the unit and then to wire control or display components in the terminal box. Furthermore, the sensor can be arranged protected in the terminal box. Overall, the assembly is considerably simplified, since the sensor can ideally be placed together with the other electronic components on a circuit board. Also, the vibration detection in a pumped by a pump unit fluid can be very beneficial, since this can be used a possibly anyway required pressure sensor, which dips into the fluid. For example impeller but possibly also bearing errors are transmitted as vibrations to the fluid to be delivered and can be detected by a sufficiently sensitive sensor also indirectly in the fluid here.
- other electronic components such as a control device or a frequency converter
- the signal transmission between the vibration sensor and the evaluation device is wireless, particularly preferably by radio.
- the sensor can be placed very easily in the electric motor or pump set, the arrangement being preferably selected according to where the vibrations required for the evaluation can best be detected.
- the cabling does not have to be considered.
- the vibration sensor may be provided with a battery, but it is also conceivable that the required electrical energy is provided by energy conversion, for example of vibration or heat energy in the vibration sensor itself.
- the evaluation device has a normalization module, which is designed to normalize the cepstral diagram generated by the cepstral analysis module, such that the deflections in the diagram are set in relation to the background noise as described above.
- This standardization module can be integrated as a hardware component in the error detection system or can also be provided as a pure software component in this.
- the fault detection system as a whole may be constructed by separate hardware components that provide the described functions. It is also conceivable here that all or individual functions or modules of the error detection system are designed as software components which are executed in a computer unit which has a microprocessor. For this purpose, a separate computer unit may be provided, but it is also conceivable that the software components are integrated into a computer unit, which simultaneously performs other functions in the electric motor or pump unit, for example, controls or regulates this.
- a vibration measurement or a vibration signal detection takes place by means of a suitable sensor, for example an acceleration sensor, an optical sensor, a microphone or a hydrophone.
- the output signal of this sensor or the vibration measurement is provided in steps 2 and 3.
- step 2 there is a signal preparation or conditioning, in which the influence of the current speed of the motor shaft or the pump impeller, depending on the device in which the error detection system according to the invention is integrated, is minimized or eliminated.
- This processing of the vibration signal is carried out by resampling with a sampling frequency, which is related to a constant predetermined speed.
- the current sampling frequency is multiplied by the current speed and by a constant speed, for example, 3,000 Revolutions per minute, divided.
- the vibration signal appears to have been recorded at this constant speed, so that the subsequent evaluation is independent of the current engine speed.
- the vibration signal is further filtered by a low-pass filter before resampling is performed.
- the required speed signal is supplied to the processing step 2 via the step 3.
- the speed signal can be detected directly by suitable sensors (f s ), or, for example, in step 3 also directly determined from the detected vibration signal, as described for example in the patent US 7,031,873 is described.
- step 4 filtering is performed in the form of cepstral analysis to extract periodic signals from the vibration signal.
- cepstral analysis comprises a Fourier transform, wherein the Fourier spectrogram is subjected to frequency domain frequency analysis.
- the advantage of such a cepstral analysis is that the characteristic noise of the motor or the pump unit is set to zero and so can be separated from a periodic signal.
- cepstral analysis in order to exclude influences of the motor design, high-pass filtering of the frequency domain is performed before the frequency domain Fourier transform. The resulting cepstral domain then contains substantially no influences of engine noise.
- step 5 begins the actual detection of operating conditions or errors.
- Fig. 5 Figure 12 shows a cepstral chart (cepstrum) as generated in step 4 of the method.
- cepstrum cepstral chart
- This section can either be determined by where in the cepstrum rashes occur, or predetermined sections can be considered, in which, as is known, characteristic signals, in particular error signals are to be expected.
- a normalization of the cepstrum or signal of in Fig. 6 selected section This standardization serves to exclude influences of different engine or aggregate sizes. Depending on the size and power of the unit, the resulting deflections differ. By normalization, these deflections are set in relation to the background noise that occurs, which is also different according to the performance of the unit. The fact that the curve or the deflections are set in relation to the background noise, the evaluation is independent of the current dimension of the engine or the unit, so that one and the same error detection system can be used for different sized units.
- step 7 the average of the background noise is shown as line 10. This value is used to refer to the rashes or signals to be examined.
- the actual recognition of the operating states or errors then takes place in step 7 by means of a neural network or fuzzy logic, where pattern recognition takes place.
- the operating states are determined by the distribution of the individual deflections in the cepstral diagram. Ie. It does not depend on the absolute values of the rashes, but only where or when in which temporal repetition rates the rashes occur.
- the patterns may be compared with previously stored patterns representing particular operating conditions to detect faults such as bearing or wheel damage. If an error is detected, this is then output in step 8 in a suitable manner. For this purpose, error signals can be transmitted to other control or control modules or acoustically or visually the error can be signaled.
- Fig. 2 shows examples of ways that a vibration sensor 20 or 22 can be placed on the electric motor.
- the sensor 20 is placed in a terminal box 24 disposed on the motor housing 26. This arrangement is very advantageous because the sensor is protected on the one hand in the terminal box 24 and on the other there can be very easily arranged with other electronic components. In addition, the cabling routes are short.
- the sensor 22 is arranged directly on the mechanical structure of the electric motor 23, here on the motor housing 26.
- the sensor 22 is preferably arranged as close as possible to the bearing of the motor shaft in order to be able to detect particularly well the vibrations or noises occurring in the bearing.
- a sensor 28 can be arranged directly on a pump housing 30 in order to detect vibrations here.
- a sensor 32 may be integrated into the pump housing 30.
- a vibration sensor 34 on the outside to arrange on the connecting piece of a pump unit.
- a sensor 36 in the connecting piece, ie in the flow, and to detect the vibrations indirectly via the fluid to be delivered.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Claims (14)
- Procédé de détection de défauts dans un groupe motopompe comportant un moteur électrique (23) ou dans un moteur électrique (23) comportant au moins un arbre rotatif, dans lequel un signal de vibration est détecté, caractérisé en ce que le signal de vibration détecté est traité de façon à supprimer l'influence de la vitesse de rotation en cours de l'arbre, en ce que des signaux périodiques sont extraits par filtrage du signal de vibration traité et en ce qu'au moyen des signaux périodiques, on identifie l'état de fonctionnement vibratoire, et en particulier d'éventuels défauts.
- Procédé selon la revendication 1, caractérisé en ce que le signal de vibration traité est soumis à une analyse cepstrale et en ce qu'au moyen du diagramme cepstral de l'état de fonctionnement vibratoire, généré par l'analyse cepstrale, on identifie en particulier d'éventuels défauts.
- Procédé selon la revendication 1 ou 2, caractérisé en ce que, pour identifier l'état de fonctionnement, on réalise à partir du diagramme cepstral une reconnaissance de modèle dans laquelle on tient compte en particulier des emplacements du diagramme cepstral où surviennent des déviations.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'état de fonctionnement est identifié au moyen d'un modèle préalablement connu dans le diagramme cepstral.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'identification de l'état de fonctionnement se fait dans des segments sélectionnés du diagramme cepstral, et il s'agit alors, de préférence, de segments prédéterminés.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'identification de l'état de fonctionnement au moyen du diagramme cepstral se fait à l'aide d'un réseau neuronal et/ou d'une logique floue.
- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'après l'analyse cepstrale et avant l'identification de l'état de fonctionnement est réalisée une normalisation du diagramme cepstral de façon telle que les déviations dans le diagramme sont mises en relation avec le bruit de fond.
- Groupe motopompe comportant un moteur électrique (23) ou moteur électrique (23) comportant au moins un arbre rotatif, comprenant un système de détection de défauts pourvu d'au moins un capteur de vibrations (20, 22), caractérisé par un dispositif d'évaluation relié au capteur de vibrations (20, 22), le dispositif d'évaluation comportant un module de traitement (2), qui est conçu pour éliminer l'influence de la vitesse de rotation en cours de l'arbre à partir d'un signal de vibration détecté par le capteur de vibrations (20, 22), un module de filtrage (4) qui est conçu pour extraire par filtrage des signaux périodiques du signal de vibration traité par le module de traitement, et un module d'identification (7) qui est conçu pour identifier l'état de fonctionnement vibratoire au moyen des signaux périodiques.
- Groupe motopompe selon la revendication 8, caractérisé en ce que le module de filtrage est formé d'un module d'analyse cepstrale (4) qui est conçu pour réaliser une analyse cepstrale sur le signal de vibration traité par le module de traitement (2), et en ce que le module d'identification (7) est conçu pour identifier l'état de fonctionnement au moyen du diagramme cepstral généré par le module d'analyse cepstrale.
- Groupe motopompe comportant un moteur électrique ou moteur électrique selon la revendication 8 ou 9, caractérisé en ce que le module d'identification (7) présente une logique floue et/ou un réseau neuronal.
- Groupe motopompe comportant un moteur électrique ou moteur électrique selon l'une des revendications 8 à 10, caractérisé en ce que le dispositif d'évaluation présente un module de mémoire dans lequel sont consignés des modèles d'un diagramme cepstral caractéristiques d'états de fonctionnement déterminés, et en ce que le module d'identification (7) est conçu pour identifier l'état de fonctionnement au niveau du diagramme cepstral à l'aide des modèles mémorisés.
- Groupe motopompe comportant un moteur électrique ou moteur électrique selon l'une des revendications 8 à 11, caractérisé en ce que le capteur de vibrations (20, 22) est disposé au niveau de la structure mécanique (26) du groupe motopompe ou du moteur électrique (23), dans une boîte à bornes (24), au sein d'un agencement de composants électroniques et/ou dans une conduite de fluide destinée à un fluide que le groupe motopompe doit transporter.
- Groupe motopompe comportant un moteur électrique ou moteur électrique selon l'une des revendications 8 à 12, caractérisé en ce que la transmission du signal entre le capteur de vibrations (20, 22) et le dispositif d'évaluation est réalisée sans fil.
- Groupe motopompe comportant un moteur électrique ou moteur électrique selon l'une des revendications 8 à 13, caractérisé en ce que le dispositif d'évaluation présente un module de normalisation (6) qui est conçu pour normaliser le diagramme cepstral généré par le module d'analyse cepstrale (4) de façon que les déviations dans le diagramme soient mises en relation avec le bruit de fond.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07005995A EP1972793B1 (fr) | 2007-03-23 | 2007-03-23 | Procédé de détection de défauts dans des unités de pompage |
PL07005995T PL1972793T3 (pl) | 2007-03-23 | 2007-03-23 | Sposób wykrywania usterek w zespołach pompowych |
AT07005995T ATE474140T1 (de) | 2007-03-23 | 2007-03-23 | Verfahren zur detektion von fehlern in pumpenaggregaten |
DE502007004387T DE502007004387D1 (de) | 2007-03-23 | 2007-03-23 | Verfahren zur Detektion von Fehlern in Pumpenaggregaten |
CN200880008952.0A CN101636589B (zh) | 2007-03-23 | 2008-02-23 | 用于检测泵机组中的故障的方法及检测系统 |
PCT/EP2008/001449 WO2008116538A1 (fr) | 2007-03-23 | 2008-02-23 | Procédé de détection de défauts dans des groupes de pompage |
US12/532,284 US8401806B2 (en) | 2007-03-23 | 2008-02-23 | Method for the detection of errors in pump units |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07005995A EP1972793B1 (fr) | 2007-03-23 | 2007-03-23 | Procédé de détection de défauts dans des unités de pompage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1972793A1 EP1972793A1 (fr) | 2008-09-24 |
EP1972793B1 true EP1972793B1 (fr) | 2010-07-14 |
Family
ID=38314617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07005995A Not-in-force EP1972793B1 (fr) | 2007-03-23 | 2007-03-23 | Procédé de détection de défauts dans des unités de pompage |
Country Status (7)
Country | Link |
---|---|
US (1) | US8401806B2 (fr) |
EP (1) | EP1972793B1 (fr) |
CN (1) | CN101636589B (fr) |
AT (1) | ATE474140T1 (fr) |
DE (1) | DE502007004387D1 (fr) |
PL (1) | PL1972793T3 (fr) |
WO (1) | WO2008116538A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018122016A1 (fr) | 2016-12-30 | 2018-07-05 | Grundfos Holding A/S | Ensemble capteur et procédé de détection de défaillance dans des pompes, et ensemble pompe comprenant un tel ensemble capteur |
EP3647597A1 (fr) | 2018-11-05 | 2020-05-06 | Grundfos Holding A/S | Agencement de capteur et procédé de surveillance d'un système à pompe de circulation |
US11253738B2 (en) | 2018-08-14 | 2022-02-22 | Minimax Viking Research & Development Gmbh | Water extinguishing system and associated method for controlling the water extinguishing system |
US11691042B2 (en) | 2019-12-27 | 2023-07-04 | Minimax Viking Research & Development Gmbh | Water extinguishing system and method for controlling a pump test run in a water extinguishing system |
DE102023103395A1 (de) | 2023-02-13 | 2024-08-14 | KSB SE & Co. KGaA | Verfahren zur Erkennung einer Anomalie einer in einem Schacht oder Becken nasslaufend aufgestellten Abwasserpumpe |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8676387B2 (en) | 2008-10-13 | 2014-03-18 | General Electric Company | Methods and systems for determining operating states of pumps |
US8620622B2 (en) | 2009-04-02 | 2013-12-31 | Honeywell International Inc. | System and method for determining health indicators for impellers |
US8807959B2 (en) * | 2010-11-30 | 2014-08-19 | General Electric Company | Reciprocating compressor and methods for monitoring operation of same |
US10138724B2 (en) | 2012-07-31 | 2018-11-27 | Landmark Graphics Corporation | Monitoring, diagnosing and optimizing gas lift operations by presenting one or more actions recommended to achieve a GL system performance |
US9261097B2 (en) * | 2012-07-31 | 2016-02-16 | Landmark Graphics Corporation | Monitoring, diagnosing and optimizing electric submersible pump operations |
FR2999711B1 (fr) * | 2012-12-13 | 2015-07-03 | Snecma | Methode et dispositif de detection acoustique d'un dysfonctionnement d'un moteur equipe d'un controle actif du bruit. |
DE102013017828B4 (de) * | 2013-10-24 | 2015-05-13 | Fresenius Medical Care Deutschland Gmbh | Verfahren und Vorrichtung zur Überwachung einer in einem extrakorporalen Blutkreislauf oder einer in einem Dialysatkreislauf angeordneten Impellerpumpe und Blutbehandlungsvorrichtung |
RU2718999C2 (ru) * | 2014-07-23 | 2020-04-15 | Шлюмбергер Текнолоджи Б.В. | Кепстральный анализ исправности нефтепромыслового насосного оборудования |
WO2015197141A1 (fr) * | 2014-10-15 | 2015-12-30 | Grundfos Holding A/S | Procédé et système pour détection de défauts dans un ensemble de pompe à l'aide d'un dispositif de communication portable |
GB2536461A (en) * | 2015-03-18 | 2016-09-21 | Edwards Ltd | Pump monitoring apparatus and method |
CA3023612A1 (fr) * | 2016-05-16 | 2017-11-23 | Weir Minerals Australia Ltd | Controle de pompe |
US10202975B2 (en) | 2016-08-29 | 2019-02-12 | Caterpillar Inc. | Method for determining cavitation in pumps |
JP6339707B1 (ja) * | 2017-01-23 | 2018-06-06 | ファナック株式会社 | モータ振動要因判定システム |
CN107701468B (zh) * | 2017-09-27 | 2019-07-05 | 郑州大学 | 一种混流泵在线综合监测方法及装置 |
ES2820227T3 (es) * | 2017-12-28 | 2021-04-20 | Ebara Corp | Aparato de bomba, procedimiento de operación de prueba del aparato de bomba, conjunto de motor y procedimiento para identificar la vibración anómala del conjunto de motor |
WO2020033682A1 (fr) | 2018-08-08 | 2020-02-13 | Fluid Handling Llc | Système de commande de pompage à vitesse variable avec surveillance active de température et de vibration et moyen de commande |
CN109490776B (zh) * | 2018-11-06 | 2020-10-02 | 杭州君谋科技有限公司 | 一种基于机器学习的手机振动马达良次品检测方法 |
JP7067505B2 (ja) * | 2019-02-15 | 2022-05-16 | トヨタ自動車株式会社 | 燃料ポンプの診断装置 |
DE102019105692A1 (de) | 2019-03-06 | 2020-09-10 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Vorrichtung zur kontinuierlichen Schwingungsüberwachung |
DE102019002826A1 (de) * | 2019-04-18 | 2020-10-22 | KSB SE & Co. KGaA | Verfahren zur Schwingungsvermeidung in Pumpen |
US11713237B2 (en) * | 2020-07-14 | 2023-08-01 | Paragon Tank Truck Equipment, Llc | Liquid discharge system including liquid product pump having vibration sensor |
US11828160B2 (en) | 2021-05-28 | 2023-11-28 | Saudi Arabian Oil Company | Vibration monitoring and data analytics for vertical charge pumps |
US11795960B2 (en) | 2021-05-28 | 2023-10-24 | Saudi Arabian Oil Company | Molten sulfur pump vibration and temperature sensor for enhanced condition monitoring |
US11761909B2 (en) | 2021-05-28 | 2023-09-19 | Saudi Arabian Oil Company | Nanosensor coupled with radio frequency for pump condition monitoring |
US20230250824A1 (en) * | 2022-02-04 | 2023-08-10 | Enssel Inc. | Pump control system capable of detecting fault of pump |
EP4361582A1 (fr) | 2022-10-24 | 2024-05-01 | Wilo Se | Procédé d'inspection de l'état d'un groupe motopompe ainsi qu'application logicielle, support de stockage et appareil d'inspection pour la mise en oeuvre du procédé |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3520734A1 (de) | 1985-06-10 | 1986-12-11 | Kraftwerk Union AG, 4330 Mülheim | Verfahren und einrichtung zum betrieb einer kreiselpumpe |
FR2730767B1 (fr) | 1995-02-21 | 1997-04-18 | Inst Francais Du Petrole | Procede et dispositif de regulation d'un ensemble de pompage polyphasique |
WO1997008459A1 (fr) | 1995-08-30 | 1997-03-06 | Baker Hughes Incorporated | Pompe electrique submersible amelioree et procedes pour une meilleure utilisation de pompes electriques submersibles dans la completion et l'exploitation des puits de forage |
US5825657A (en) * | 1996-02-23 | 1998-10-20 | Monitoring Technology Corporation | Dynamic, non-uniform clock for resampling and processing machine signals |
US6260004B1 (en) * | 1997-12-31 | 2001-07-10 | Innovation Management Group, Inc. | Method and apparatus for diagnosing a pump system |
JP4635282B2 (ja) * | 1999-09-24 | 2011-02-23 | ダイキン工業株式会社 | 自律形インバータ駆動油圧ユニット |
US7031873B2 (en) * | 2002-06-07 | 2006-04-18 | Exxonmobil Research And Engineering Company | Virtual RPM sensor |
US7860663B2 (en) * | 2004-09-13 | 2010-12-28 | Nsk Ltd. | Abnormality diagnosing apparatus and abnormality diagnosing method |
US20060266913A1 (en) | 2005-05-26 | 2006-11-30 | Baker Hughes Incororated | System, method, and apparatus for nodal vibration analysis of a device at different operational frequencies |
WO2007033258A2 (fr) * | 2005-09-14 | 2007-03-22 | University Of Massachusetts | Traitement de signal de spectrogramme d'enveloppe multi-echelle pour la surveillance d'etats et analogues |
-
2007
- 2007-03-23 PL PL07005995T patent/PL1972793T3/pl unknown
- 2007-03-23 AT AT07005995T patent/ATE474140T1/de active
- 2007-03-23 DE DE502007004387T patent/DE502007004387D1/de active Active
- 2007-03-23 EP EP07005995A patent/EP1972793B1/fr not_active Not-in-force
-
2008
- 2008-02-23 CN CN200880008952.0A patent/CN101636589B/zh not_active Expired - Fee Related
- 2008-02-23 WO PCT/EP2008/001449 patent/WO2008116538A1/fr active Application Filing
- 2008-02-23 US US12/532,284 patent/US8401806B2/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018122016A1 (fr) | 2016-12-30 | 2018-07-05 | Grundfos Holding A/S | Ensemble capteur et procédé de détection de défaillance dans des pompes, et ensemble pompe comprenant un tel ensemble capteur |
RU2726968C1 (ru) * | 2016-12-30 | 2020-07-17 | Грундфос Холдинг А/С | Узел датчика и способ обнаружения повреждений в насосах и узел насоса, содержащий такой узел датчика |
US11253738B2 (en) | 2018-08-14 | 2022-02-22 | Minimax Viking Research & Development Gmbh | Water extinguishing system and associated method for controlling the water extinguishing system |
EP3647597A1 (fr) | 2018-11-05 | 2020-05-06 | Grundfos Holding A/S | Agencement de capteur et procédé de surveillance d'un système à pompe de circulation |
US11867186B2 (en) | 2018-11-05 | 2024-01-09 | Grundfos Holding A/S | Sensor arrangement and method for monitoring a circulation pump system |
US11691042B2 (en) | 2019-12-27 | 2023-07-04 | Minimax Viking Research & Development Gmbh | Water extinguishing system and method for controlling a pump test run in a water extinguishing system |
DE102023103395A1 (de) | 2023-02-13 | 2024-08-14 | KSB SE & Co. KGaA | Verfahren zur Erkennung einer Anomalie einer in einem Schacht oder Becken nasslaufend aufgestellten Abwasserpumpe |
Also Published As
Publication number | Publication date |
---|---|
CN101636589B (zh) | 2014-10-01 |
DE502007004387D1 (de) | 2010-08-26 |
CN101636589A (zh) | 2010-01-27 |
ATE474140T1 (de) | 2010-07-15 |
WO2008116538A1 (fr) | 2008-10-02 |
US8401806B2 (en) | 2013-03-19 |
PL1972793T3 (pl) | 2010-12-31 |
EP1972793A1 (fr) | 2008-09-24 |
US20100082275A1 (en) | 2010-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1972793B1 (fr) | Procédé de détection de défauts dans des unités de pompage | |
DE102011116961B4 (de) | Verfahren zur Bestimmung einer mechanischen Beschädigung eines Rotorblatts einer Windenergieanlage | |
EP2880404B1 (fr) | Méthode pour la détection d'une erreur dans un ensemble moteur comprenant une machine électrique et une unité de commande de moteur | |
EP1564411A1 (fr) | Procédé de detection des erreurs de fonctionnement d'une unité de pompage | |
WO2014023275A1 (fr) | Procédé et dispositif pour la reconnaissance et la surveillance d'états | |
WO2010133425A1 (fr) | Procédé et dispositif de détermination d'un point de fonctionnement d'une machine de travail | |
EP1573188B1 (fr) | Dispositif et procede pour la reconnaissance de defauts dans un systeme d'injection de carburant | |
DE102006016527A1 (de) | Verfahren zum Erfassen eines Ausfalls eines Fahrzeuggeschwindigkeitssensors | |
EP2404059A2 (fr) | Procédé de surveillance d'éoliennes | |
EP2122177B1 (fr) | Groupe motopompe | |
EP3661829B1 (fr) | Procédé de détermination d'une force de réglage dans un aiguillage ferroviaire à partir de mesures d'émission acoustique et système de commande pour un aiguillage ferroviaire | |
DE102018204648A1 (de) | Führung, Sensoranordnung und Verfahren | |
WO2014001143A2 (fr) | Procédé d'essai et banc d'essai pour détecter des émissions bruit-vibrations-rudesse (nhv) d'un groupe moteur | |
DE102011115650B4 (de) | Verfahren zur Diagnose des Zustandes einer hydrostatischen Verdrängermaschine und hydraulische Anordnung mit hydrostatischer Verdrängermaschine | |
DE102010009941A1 (de) | Verfahren zum Überwachen von Windturbinen | |
EP3706308B1 (fr) | Dispositif de surveillance continue des vibrations et procédé | |
DE202019101262U1 (de) | Vorrichtung zur kontinuierlichen Schwingungsüberwachung | |
DE202021101831U1 (de) | Elektrische Pumpe | |
DE102016222069A1 (de) | Vorrichtung zur Zustandsüberwachung einer Einrichtung und Einrichtung mit einer derartigen Vorrichtung und Verfahren zur Zustandsüberwachung | |
KR20180112258A (ko) | 선회장치의 고장진단 장치 및 방법 | |
DE102007052453A1 (de) | Diagnosevorrichtung bzw. Diagnoseverfahren bei Abgasturboladern im Betrieb am Verbrennungsmotor | |
WO2020234256A1 (fr) | Procédé de détermination d'un défaut d'une machine électrique et machine électrique | |
DE102007019846A1 (de) | Vorrichtung und Verfahren zur Überwachung einer Funktionseinheit in einem Fahrzeug | |
DE102021133891A1 (de) | Verfahren zum Betreiben von rotierender Maschinerie mittels einer drehzahlvariablen Ansteuerung und drehzahlvariable Ansteuerung zum Durchführen des Verfahrens | |
DE102014222637A1 (de) | Verfahren und Vorrichtung zur Überwachung einer rotierenden Maschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20090130 |
|
17Q | First examination report despatched |
Effective date: 20090310 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502007004387 Country of ref document: DE Date of ref document: 20100826 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100714 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100714 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101115 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101014 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101015 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
26N | No opposition filed |
Effective date: 20110415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101025 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007004387 Country of ref document: DE Effective date: 20110415 |
|
BERE | Be: lapsed |
Owner name: GRUNDFOS MANAGEMENT A/S Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 474140 Country of ref document: AT Kind code of ref document: T Effective date: 20120323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100714 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220324 Year of fee payment: 16 Ref country code: DE Payment date: 20220323 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20220311 Year of fee payment: 16 Ref country code: FR Payment date: 20220322 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220331 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502007004387 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007004387 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230323 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230323 |