EP1969714A1 - Method for determining the magnet temperature in synchronous machines - Google Patents

Method for determining the magnet temperature in synchronous machines

Info

Publication number
EP1969714A1
EP1969714A1 EP06830681A EP06830681A EP1969714A1 EP 1969714 A1 EP1969714 A1 EP 1969714A1 EP 06830681 A EP06830681 A EP 06830681A EP 06830681 A EP06830681 A EP 06830681A EP 1969714 A1 EP1969714 A1 EP 1969714A1
Authority
EP
European Patent Office
Prior art keywords
magnet temperature
uind
determining
electric machine
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06830681A
Other languages
German (de)
French (fr)
Inventor
Martin Eisenhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1969714A1 publication Critical patent/EP1969714A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2217/00Temperature measurement using electric or magnetic components already present in the system to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a method for determining the magnet temperature of an electrical, in particular, permanently excited, electric machine according to the preamble of patent claim 1, and to a corresponding device according to the preamble of patent claim 7.
  • Permanently excited electric machines are often used as electric drives.
  • Permanently excited synchronous machines comprise a rotor in which usually the magnets which generate the magnetic flux are arranged.
  • the magnets are relatively temperature sensitive and can be permanently damaged at temperatures that may already be reached during normal driving of a hybrid vehicle. To prevent this, the phase currents are usually limited from reaching a critical magnet temperature.
  • the magnet temperature is usually estimated from the measured stator temperature. This magnet temperature estimate assumes that the rotor and permanent magnets are at about the same temperature as the stator. However, this estimation is heavily flawed, especially in transient processes.
  • the temperature threshold for the aforementioned limitation of the phase current must be chosen to be relatively low.
  • the maximum performance of the machine can thus not be fully utilized. It is therefore the object of the present invention to provide a method for determining the magnet temperature of the magnets of a permanently excited electrical machine, with which the magnet temperature determined much more accurate and thus the electric machine can be used up to higher temperatures with maximum power.
  • An essential aspect of the invention is to measure a phase voltage and the rotational speed of the electric machine and to determine the magnet temperature from the phase voltage and the rotational speed.
  • the invention uses the knowledge that the magnetic flux ⁇ generated by the magnets is a function of the magnet temperature T, where:
  • the inverse function T f 1 ( ⁇ ) is determined offline and stored in a map.
  • the magnetic flux ⁇ can be determined by the law of induction, according to which:
  • the magnet temperature can thus be determined from the induced voltage Uind and the rotational speed n. This has the significant advantage that the magnetic temperature determined much more accurate and thus the electric machine can be operated up to a higher temperature threshold with high power. Only after reaching this high threshold must measures be taken to protect the electrical machine.
  • the induced phase voltage Uind is preferably measured at idle speed of the electric machine at a sufficiently high speed n.
  • the circuit breakers of the pulse inverter are all open and the voltage applied to the terminals of the machine phase voltage Uind is sinusoidal.
  • the induced voltage Uind can, for example, between any two of the phases, for. B. U and V, or measured between a phase and a reference potential.
  • the peak value of the measured phase voltage is preferably determined. This corresponds to the above-mentioned induced voltage
  • the electric machine is preferably connected to a pulse inverter.
  • the phase voltage is preferably measured at a speed that is less than a predetermined maximum speed.
  • phase voltage is the DC link or Mains voltage does not exceed and the freewheeling diodes of the pulse inverter are not conductive.
  • Fig. 1 shows a schematic representation of a permanent magnet synchronous machine 1 with a pulse inverter 2 (PWR).
  • the PWR 2 determines the power and operating mode of the electric machine 1 and is controlled accordingly by a control unit 12.
  • the electric machine 1 can be operated optionally in motor or generator mode.
  • the electric machine generates an additional drive torque, the engine z. B. supported in an acceleration phase.
  • generator mode mechanical energy is converted into electrical energy and stored in an energy storage such.
  • a battery 9 or a super-cap As a battery 9 or a super-cap.
  • the electric machine 1 is here designed in 3 phases (phases U, V, W) and comprises a stator with three strings 3a-3c and a rotor with a plurality of permanent magnets 11.
  • the ohmic resistances of the strings 3a-3c are marked 10a-10c ,
  • the three phases U, V, W of the electric machine 1 are each connected to the pulse inverter.
  • the PWR 2 comprises in a known manner a plurality of switches 6a-6f, with which the individual phases U, V, W can optionally be connected to a DC link potential U z or a reference potential (ground).
  • the PWR 2 further includes a plurality of free-wheeling diodes 7a-7f, which are respectively connected in parallel to one of the switches 6a-6f.
  • a mathematical model is used which is stored in the control unit 12.
  • the algorithm determines the magnet temperature T from the induced voltage Uind and the rotational speed n of the electric machine 1. The following applies:
  • the speed n of the electric machine is measured by means of a speed sensor 5.
  • the voltage induced in the stator windings 3a-3c is shown schematically here by voltage sources 4a-4c.
  • induced voltage Uind for example, the voltage between two of the phases, for. B. U and V, or the voltage between one of the phases, U, V, W, and a
  • Reference potential can be measured. This voltage is sinusoidal and is preferably measured when the machine 1 is idling. When idling, all six power switches 6a-6f of the pulse-controlled inverter 2 are open.
  • the speed of the electric machine 1 must be sufficiently large in the measurement, but on the other hand may not exceed a maximum speed from which the freewheeling diodes 7a - 7f act as a rectifier bridge.
  • the phase voltages would otherwise be distorted and no longer sinusoidal.
  • the voltage and speed signals (Uind or n) are supplied to the controller 12 at the input.
  • the algorithm stored in the control unit 12 processes the values and determines therefrom the magnet temperature T. When a predetermined temperature threshold is exceeded, the control unit 12 generates an output signal A for the pulse inverter 2, with which the power of the electric machine 1 is reduced and thus overheating can be avoided ,
  • the above function or inverse function T f 1 (n, can be determined either analytically or z. B. deposited as a map in a control unit. In this way, the magnet temperature T can be determined particularly accurately and simply by taking the associated magnet temperature T from the characteristic field for measured values of n and Uind.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention relates to a method for determining the magnet temperature in a permanent magnet electrical machine (1). The magnet temperature (T) can be determined in a particularly simple and precise manner if a phase voltage (U<SUB>ind</SUB>) and the rotation speed (n) of the electrical machine (1) are measured, and the magnet temperature (T) is determined from this.

Description

Verfahren zum Bestimmen der Magnettemperatur bei Synchronmaschinen Method for determining the magnet temperature in synchronous machines
Die Erfindung betrifft ein Verfahren zum Bestimmen der Magnettemperatur einer elektrischen, insbesondere, permanent erregten, elektrischen Maschine gemäß dem Oberbegriff des Patentanspruchs 1 , sowie eine entsprechende Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 7.The invention relates to a method for determining the magnet temperature of an electrical, in particular, permanently excited, electric machine according to the preamble of patent claim 1, and to a corresponding device according to the preamble of patent claim 7.
In Hybrid-Fahrzeugen werden häufig permanent erregte elektrische Maschinen als elektrischer Antrieb eingesetzt. Permanent erregte Synchronmaschinen umfassen einen Rotor, in dem üblicherweise die Magnete, die den magnetischen Fluss erzeugen, angeordnet sind. Die Magnete sind relativ temperaturempfindlich und können bei Temperaturen, die unter Umständen bereits im normalen Fahrbetrieb eines Hybrid-Fahrzeugs erreicht werden, dauerhaft geschädigt werden. Um dies zu verhindern, werden die Phasenströme ab Erreichen einer kritischen Magnettemperatur üblicherweise begrenzt.In hybrid vehicles, permanently excited electric machines are often used as electric drives. Permanently excited synchronous machines comprise a rotor in which usually the magnets which generate the magnetic flux are arranged. The magnets are relatively temperature sensitive and can be permanently damaged at temperatures that may already be reached during normal driving of a hybrid vehicle. To prevent this, the phase currents are usually limited from reaching a critical magnet temperature.
Da der Rotor ein sich drehendes Bauteil ist und die Magnettemperatur somit nur mit hohem Aufwand direkt gemessen werden kann, wird die Magnettemperatur in der Regel aus der gemessenen Stator-Temperatur abgeschätzt. Bei dieser Abschätzung der Magnettemperatur wird davon ausgegangen, dass der Rotor und die Permanentmagnete etwa die gleiche Temperatur besitzen wie der Stator. Diese Abschätzung ist jedoch insbesondere bei transienten Vorgängen stark fehlerbehaftet.Since the rotor is a rotating component and the magnet temperature can thus be measured directly only with great effort, the magnet temperature is usually estimated from the measured stator temperature. This magnet temperature estimate assumes that the rotor and permanent magnets are at about the same temperature as the stator. However, this estimation is heavily flawed, especially in transient processes.
Um einen ausreichend hohen Sicherheitsabstand zu einer maximal zulässigen Magnettemperatur einzuhalten, muss die Temperaturschwelle für die vorstehend genannte Begrenzung des Phasenstroms relativ niedrig gewählt werden. Die maximale Leistung der Maschine kann somit nicht vollständig ausgenutzt werden. Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren zum Bestimmen der Magnettemperatur der Magnete einer permanent erregten elektrischen Maschine zu schaffen, mit dem die Magnettemperatur wesentlich genauer bestimmt und somit die elektrische Maschine bis zu höheren Temperaturen mit maximaler Leistung eingesetzt werden kann.In order to maintain a sufficiently high safety distance to a maximum permissible magnet temperature, the temperature threshold for the aforementioned limitation of the phase current must be chosen to be relatively low. The maximum performance of the machine can thus not be fully utilized. It is therefore the object of the present invention to provide a method for determining the magnet temperature of the magnets of a permanently excited electrical machine, with which the magnet temperature determined much more accurate and thus the electric machine can be used up to higher temperatures with maximum power.
Gelöst wird diese Aufgabe gemäß der Erfindung durch die im Patentanspruch 1 sowie im Patentanspruch 7 angegebenen Merkmale. Weitere Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.This object is achieved according to the invention by the features specified in claim 1 and in claim 7. Further embodiments of the invention are the subject of dependent claims.
Ein wesentlicher Aspekt der Erfindung besteht darin, eine Phasenspannung und die Drehzahl der elektrischen Maschine zu messen und die Magnettemperatur aus der Phasenspannung und der Drehzahl zu bestimmen. Dabei nutzt die Erfindung die Erkenntnis, dass der von den Magneten erzeugte magnetische Fluss ψ eine Funktion der Magnettemperatur T ist, wobei gilt:An essential aspect of the invention is to measure a phase voltage and the rotational speed of the electric machine and to determine the magnet temperature from the phase voltage and the rotational speed. The invention uses the knowledge that the magnetic flux ψ generated by the magnets is a function of the magnet temperature T, where:
Ψ = f(T).Ψ = f (T).
Für die Magnettemperatur T gilt entsprechend:For the magnet temperature T applies accordingly:
T = f1(ψ).T = f 1 (ψ).
Für die verwendeten Magnete wird beispielsweise die Umkehrfunktion T = f 1(ψ) beispielsweise offline ermittelt und in einem Kennfeld abgelegt.For example, for the magnets used, the inverse function T = f 1 (ψ) is determined offline and stored in a map.
Der magnetische Fluss ψ kann über das Induktionsgesetz ermittelt werden, wonach gilt:The magnetic flux ψ can be determined by the law of induction, according to which:
Uind induzierte Spannung der elektrischen Maschine im Leerlauf ω elektrische Kreisfrequenz Die elektrische Kreisfrequenz ω ist:Uind induced voltage of the electric machine at idle ω electrical angular frequency The electrical angular frequency ω is:
ω = 2 π n p/60 mitω = 2 π n p / 60 with
p Polpaarzahl n Drehzahl der Maschinep Number of pole pairs n Speed of the machine
Somit gilt:Thus:
T = f1(ψ) = f1 (Uind, n)T = f 1 (ψ) = f 1 (U i nd , n)
Die Magnettemperatur kann somit aus der induzierten Spannung Uind und der Drehzahl n ermittelt werden. Dies hat den wesentlichen Vorteil, dass die Magnettemperatur wesentlich genauer bestimmt und somit die elektrische Maschine bis zu einer höheren Temperaturschwelle mit hoher Leistung betrieben werden kann. Erst nach Erreichen dieser hohen Schwelle müssen Maßnahmen zum Schutz der elektrischen Maschine eingeleitet werden.The magnet temperature can thus be determined from the induced voltage Uind and the rotational speed n. This has the significant advantage that the magnetic temperature determined much more accurate and thus the electric machine can be operated up to a higher temperature threshold with high power. Only after reaching this high threshold must measures be taken to protect the electrical machine.
Die induzierte Phasenspannung Uind wird vorzugsweise im Leerlauf der elektrischen Maschine bei hinreichend hoher Drehzahl n gemessen. Im Leerlauf sind die Leistungsschalter des Pulswechselrichters alle geöffnet und die an den Klemmen der Maschine anliegende Phasenspannung Uind ist sinusförmig.The induced phase voltage Uind is preferably measured at idle speed of the electric machine at a sufficiently high speed n. At idle, the circuit breakers of the pulse inverter are all open and the voltage applied to the terminals of the machine phase voltage Uind is sinusoidal.
Die induzierte Spannung Uind kann beispielsweise zwischen beliebigen zwei der Phasen, z. B. U und V, oder zwischen einer Phase und einem Bezugspotential gemessen werden. Für die nachfolgende Berechnung wird vorzugsweise der Scheitelwert der gemessenen Phasenspannung ermittelt. Dieser entspricht der vorstehend genannten induzierten Spannung The induced voltage Uind can, for example, between any two of the phases, for. B. U and V, or measured between a phase and a reference potential. For the subsequent calculation, the peak value of the measured phase voltage is preferably determined. This corresponds to the above-mentioned induced voltage
Die Magnettemperatur T kann z. B. analytisch anhand der genannten Funktion T = f 1 (n, Uind) berechnet oder aus einem entsprechenden Kennfeld abgelesen werden.The magnet temperature T can z. B. analytically based on the above function T = f 1 (n, Uind) calculated or read from a corresponding map.
Die elektrische Maschine ist vorzugsweise mit einem Pulswechselrichter verbunden. In diesem Fall wird die Phasenspannung vorzugsweise bei einer Drehzahl gemessen, die kleiner als eine vorgegebene Maximaldrehzahl ist.The electric machine is preferably connected to a pulse inverter. In this case, the phase voltage is preferably measured at a speed that is less than a predetermined maximum speed.
Dadurch wird sichergestellt, dass die Phasenspannung die Zwischenkreis- bzw. Netzspannung nicht übersteigt und die Freilaufdioden des Pulswechselrichters nicht leitend werden.This ensures that the phase voltage is the DC link or Mains voltage does not exceed and the freewheeling diodes of the pulse inverter are not conductive.
Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert.The invention will now be described by way of example with reference to the accompanying drawings.
Fig. 1 zeigt eine schematische Darstellung einer permanent erregten Synchronmaschine 1 mit einem Pulswechselrichter 2 (PWR). Der PWR 2 bestimmt Leistung und Betriebsart der elektrischen Maschine 1 und wird von einem Steuergerät 12 entsprechend angesteuert. Dadurch kann die elektrische Maschine 1 wahlweise im Motor- oder Generatorbetrieb betrieben werden. Im Motorbetrieb erzeugt die elektrische Maschine ein zusätzliches Antriebsmoment, das den Verbrennungsmotor z. B. in einer Beschleunigungsphase unterstützt. Im Generatorbetrieb wird dagegen mechanische Energie in elektrische Energie gewandelt und in einem Energiespeicher, wie z. B. einer Batterie 9 oder einem Super-Cap gespeichert.Fig. 1 shows a schematic representation of a permanent magnet synchronous machine 1 with a pulse inverter 2 (PWR). The PWR 2 determines the power and operating mode of the electric machine 1 and is controlled accordingly by a control unit 12. As a result, the electric machine 1 can be operated optionally in motor or generator mode. During engine operation, the electric machine generates an additional drive torque, the engine z. B. supported in an acceleration phase. In generator mode, however, mechanical energy is converted into electrical energy and stored in an energy storage such. As a battery 9 or a super-cap.
Die elektrische Maschine 1 ist hier 3-phasig ausgeführt (Phasen U, V, W) und umfasst einen Stator mit drei Strängen 3a-3c und einen Rotor mit mehreren Permanentmagneten 11. Die ohmschen Widerstände der Stränge 3a-3c sind mit 10a-10c gekennzeichnet.The electric machine 1 is here designed in 3 phases (phases U, V, W) and comprises a stator with three strings 3a-3c and a rotor with a plurality of permanent magnets 11. The ohmic resistances of the strings 3a-3c are marked 10a-10c ,
Die drei Phasen U, V, W der elektrischen Maschine 1 sind jeweils mit dem Pulswechselrichter verbunden. Der PWR 2 umfasst in bekannter Weise mehrere Schalter 6a-6f, mit denen die einzelnen Phasen U, V, W wahlweise mit einem Zwischenkreis-Potential Uz oder einem Bezugspotential (Masse) verbunden werden können. Der PWR 2 umfasst ferner mehrere Freilaufdioden 7a-7f, die jeweils parallel zu einem der Schalter 6a-6f geschaltet sind.The three phases U, V, W of the electric machine 1 are each connected to the pulse inverter. The PWR 2 comprises in a known manner a plurality of switches 6a-6f, with which the individual phases U, V, W can optionally be connected to a DC link potential U z or a reference potential (ground). The PWR 2 further includes a plurality of free-wheeling diodes 7a-7f, which are respectively connected in parallel to one of the switches 6a-6f.
Um die Magnettemperatur der Permanentmagneten 11 zu bestimmen, wird, wie eingangs beschrieben, ein mathematisches Modell herangezogen, das im Steuergerät 12 hinterlegt ist. Der Algorithmus bestimmt die Magnettemperatur T aus der induzierten Spannung Uind und der Drehzahl n der elektrischen Maschine 1. Dabei gilt:In order to determine the magnet temperature of the permanent magnets 11, as described above, a mathematical model is used which is stored in the control unit 12. The algorithm determines the magnet temperature T from the induced voltage Uind and the rotational speed n of the electric machine 1. The following applies:
T = f1(ψ) = f1(n, Uind) Die Drehzahl n der elektrischen Maschine wird mittels eines Drehzahlsensors 5 gemessen. Die in den Ständerwicklungen 3a - 3c induzierte Spannung ist hier durch Spannungsquellen 4a - 4c schematisch dargestellt. Als induzierte Spannung Uind kann beispielsweise die Spannung zwischen zwei der Phasen, z. B. U und V, oder die Spannung zwischen einer der Phasen, U, V, W, und einemT = f 1 (ψ) = f 1 (n, Uind) The speed n of the electric machine is measured by means of a speed sensor 5. The voltage induced in the stator windings 3a-3c is shown schematically here by voltage sources 4a-4c. As induced voltage Uind, for example, the voltage between two of the phases, for. B. U and V, or the voltage between one of the phases, U, V, W, and a
Bezugspotential gemessen werden. Diese Spannung ist sinusförmig und wird vorzugsweise im Leerlauf der Maschine 1 gemessen. Im Leerlauf sind alle sechs Leistungsschalter 6a - 6f des Pulswechselrichters 2 geöffnet.Reference potential can be measured. This voltage is sinusoidal and is preferably measured when the machine 1 is idling. When idling, all six power switches 6a-6f of the pulse-controlled inverter 2 are open.
Die Drehzahl der elektrischen Maschine 1 muss bei der Messung hinreichend groß sein, darf aber andererseits auch eine maximale Drehzahl, ab der die Freilaufdioden 7a - 7f als Gleichrichterbrücke wirken, nicht überschreiten. Die Phasenspannungen wären ansonsten verzerrt und nicht mehr sinusförmig.The speed of the electric machine 1 must be sufficiently large in the measurement, but on the other hand may not exceed a maximum speed from which the freewheeling diodes 7a - 7f act as a rectifier bridge. The phase voltages would otherwise be distorted and no longer sinusoidal.
Die Spannungs- und Drehzahl-Signale (Uind bzw. n) werden dem Steuergerät 12 am Eingang zugeführt. Der im Steuergerät 12 hinterlegt Algorithmus verarbeitet die Werte und bestimmt daraus die Magnettemperatur T. Bei Überschreiten einer vorgegebenen Temperaturschwelle erzeugt das Steuergerät 12 ein Ausgangssignal A für den Pulswechselrichter 2, mit dem die Leistung der elektrischen Maschine 1 reduziert wird und damit ein Überhitzen vermieden werden kann.The voltage and speed signals (Uind or n) are supplied to the controller 12 at the input. The algorithm stored in the control unit 12 processes the values and determines therefrom the magnet temperature T. When a predetermined temperature threshold is exceeded, the control unit 12 generates an output signal A for the pulse inverter 2, with which the power of the electric machine 1 is reduced and thus overheating can be avoided ,
Die vorstehend genannte Funktion oder Umkehrfunktion T = f 1 (n, kann entweder analytisch ermittelt werden oder z. B. als Kennfeld in einem Steuergerät hinterlegt sein. Die Magnettemperatur T lässt sich auf diese Weise besonders genau und einfach bestimmen, indem für gemessene Werte von n und Uind die zugehörige Magnettemperatur T aus dem Kennfeld entnommen wird. The above function or inverse function T = f 1 (n, can be determined either analytically or z. B. deposited as a map in a control unit. In this way, the magnet temperature T can be determined particularly accurately and simply by taking the associated magnet temperature T from the characteristic field for measured values of n and Uind.

Claims

Patentansprüche claims
1. Verfahren zum Bestimmen der Magnettemperatur (T) einer elektrischen, insbesondere permanent erregten, elektrischen Maschine (1 ), dadurch gekennzeichnet, dass eine Phasenspannung (Uind) und die Drehzahl (n) der elektrischen Maschine (1 ) gemessen und daraus die Magnettemperatur (T) bestimmt wird.1. A method for determining the magnet temperature (T) of an electrical, in particular permanently excited, electric machine (1), characterized in that a phase voltage (Uind) and the rotational speed (n) of the electrical machine (1) measured and from the magnet temperature ( T) is determined.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Phasenspannung (Uind) im Leerlauf der elektrischen Maschine (1 ) gemessen wird.2. The method according to claim 1, characterized in that the phase voltage (Uind) is measured during idling of the electric machine (1).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Scheitelwert der Phasenspannung (Uind) ermittelt wird.3. The method according to claim 2, characterized in that the peak value of the phase voltage (Uind) is determined.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Magnettemperatur (T) anhand einer Funktion T = f 1(n, Uind) berechnet wird.4. The method according to any one of the preceding claims, characterized in that the magnet temperature (T) by means of a function T = f 1 (n, Uind) is calculated.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Phasenspannung (Uind) bei einer Drehzahl (n) gemessen wird, die kleiner als eine vorgegebene Maximaldrehzahl ist.5. The method according to any one of the preceding claims, characterized in that the phase voltage (Uind) at a speed (n) is measured, which is smaller than a predetermined maximum speed.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Phasenströme der elektrischen Maschine (1 ) begrenzt werden, wenn die Magnettemperatur (T) einen vorgegebenen Schwellenwert überschreitet.6. The method according to any one of the preceding claims, characterized in that the phase currents of the electric machine (1) are limited when the magnet temperature (T) exceeds a predetermined threshold.
7. Vorrichtung zum Bestimmen der Magnettemperatur (T) einer elektrischen, insbesondere permanent erregten, elektrischen Maschine (1 ), gekennzeichnet durch ein Steuergerät (12) mit einem Algorithmus zum Bestimmen der Magnettemperatur (T), der aus einem Phasenspannungs-Signal und einem Drehzahl-Signal (n), die dem Steuergerät (12) zugeführt werden, die Magnettemperatur (T) bestimmt.7. An apparatus for determining the magnet temperature (T) of an electrical, in particular permanently excited, electrical machine (1), characterized by a control unit (12) having an algorithm for determining the magnet temperature (T), the phase voltage signal and a speed signal (s), which are supplied to the control unit (12) determines the magnet temperature (T).
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das Steuergerät (12) ein Ausgangssignal (A) zum8. Apparatus according to claim 7, characterized in that the control device (12) has an output signal (A) for
Ansteuern eines Pulswechselrichters (2) erzeugt. Controlling a pulse inverter (2) generated.
EP06830681A 2005-12-27 2006-12-18 Method for determining the magnet temperature in synchronous machines Withdrawn EP1969714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005062588A DE102005062588A1 (en) 2005-12-27 2005-12-27 Permanently excited synchronous machine`s magnet temperature determining method, involves measuring phase voltage and rotational speed of machine, and determining magnet temperature of machine from measured phase voltage and speed
PCT/EP2006/069841 WO2007074097A1 (en) 2005-12-27 2006-12-18 Method for determining the magnet temperature in synchronous machines

Publications (1)

Publication Number Publication Date
EP1969714A1 true EP1969714A1 (en) 2008-09-17

Family

ID=37814641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830681A Withdrawn EP1969714A1 (en) 2005-12-27 2006-12-18 Method for determining the magnet temperature in synchronous machines

Country Status (4)

Country Link
US (1) US8222844B2 (en)
EP (1) EP1969714A1 (en)
DE (1) DE102005062588A1 (en)
WO (1) WO2007074097A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008054216A1 (en) * 2008-10-31 2010-05-06 Bayerische Motoren Werke Aktiengesellschaft Method for adjusting an electric drive and motor vehicle
DE102008043945A1 (en) * 2008-11-20 2010-05-27 Robert Bosch Gmbh Method and device for operating a hybrid drive for a vehicle
JP5331208B2 (en) * 2009-08-28 2013-10-30 日産自動車株式会社 Abnormality detection device for permanent magnet type synchronous motor
DE102010039766A1 (en) 2010-08-25 2012-03-01 Robert Bosch Gmbh Method and device for controlling a synchronous machine
JP5735305B2 (en) * 2011-02-25 2015-06-17 Ntn株式会社 Electric car
FR2995742B1 (en) * 2012-09-18 2015-10-16 Renault Sas MONITORING A PERMANENT MAGNET MOTOR
DE112012007006T5 (en) * 2012-10-11 2015-07-02 Mitsubishi Electric Corporation Engine control device and engine control method
WO2014107496A1 (en) 2013-01-02 2014-07-10 Trane International Inc. Permanent magnet motor degradation diagnostics system
DE102013201468A1 (en) * 2013-01-30 2014-07-31 Zf Lenksysteme Gmbh METHOD FOR OPERATING AN ELECTRIC MOTOR
DE102013208335A1 (en) * 2013-05-07 2014-11-13 Mahle International Gmbh Motor and method for driving a pump
DE102015005555A1 (en) 2015-04-29 2016-11-03 Daimler Ag Method for determining a magnet temperature of a permanently excited electrical machine
JP2017108568A (en) * 2015-12-11 2017-06-15 株式会社エクセディ Motor control device, and drive control device for hybrid type vehicle
CA3080814A1 (en) * 2017-10-30 2019-05-09 Annexair Inc. System for controlling a plurality of synchronous permanent magnet electronically commutated motors
KR102570296B1 (en) * 2018-11-08 2023-08-24 현대자동차주식회사 Vehicle and method for controlling thereof
DE102019126268A1 (en) * 2019-09-30 2021-04-01 Audi Ag Determination of the rotor temperature of a PSM
JP7363528B2 (en) * 2020-01-28 2023-10-18 マツダ株式会社 Motor magnet temperature estimation device and hybrid vehicle equipped with the same
JP7363529B2 (en) * 2020-01-28 2023-10-18 マツダ株式会社 Motor magnet temperature estimation device and hybrid vehicle equipped with the same
DE102020117279A1 (en) 2020-07-01 2022-01-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft System and method for determining the magnet temperature in a permanently excited synchronous machine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2314257C2 (en) * 1973-03-22 1982-10-21 Papst-Motoren GmbH & Co KG, 7742 St Georgen Circuit arrangement for speed control of a brushless DC motor
DE3342031B4 (en) * 1982-11-23 2005-01-13 Papst Licensing Gmbh & Co. Kg Circuit arrangement for speed control of an electric motor
DE3706659A1 (en) * 1987-03-02 1988-09-15 Heidelberger Druckmasch Ag DEVICE FOR DETECTING THE WINDING TEMPERATURE OF A PARTICULARLY BRUSHLESS DC MOTOR
DE3736303A1 (en) * 1987-10-27 1989-05-11 Heidelberger Druckmasch Ag METHOD AND DEVICE FOR MEASURING THE TEMPERATURE OF A BRUSHLESS DC MOTOR
DE4141837B4 (en) * 1991-12-18 2006-08-03 Robert Bosch Gmbh Device for controlling a generator
JPH08317684A (en) 1995-05-22 1996-11-29 Toshiba Corp Control device of permanent magnet type motor and washing machine with it
US6046554A (en) * 1998-02-13 2000-04-04 General Electric Company Method and apparatus for calibrating a permanent-magnet motor using back EMF measurement
DE69916765T2 (en) 1998-12-18 2005-04-21 Toyota Motor Co Ltd Apparatus and method for detecting the electrical angle and motor control device
US7071649B2 (en) * 2001-08-17 2006-07-04 Delphi Technologies, Inc. Active temperature estimation for electric machines
US6900607B2 (en) * 2001-08-17 2005-05-31 Delphi Technologies, Inc. Combined feedforward and feedback parameter estimation for electric machines
DE10212751A1 (en) * 2002-03-22 2003-10-02 Bosch Gmbh Robert Method and device for determining the rotor temperature in a PM synchronous machine
US7340968B2 (en) * 2002-05-21 2008-03-11 Thermo Fisher Scientific (Asheville) Llc Back EMF measurement to overcome the effects of motor temperature change
US7692399B2 (en) * 2003-04-01 2010-04-06 Hewlett-Packard Development Company, L.P. DC motor control
JP2005012914A (en) 2003-06-19 2005-01-13 Koyo Seiko Co Ltd Driver for motor
EP1727268A2 (en) * 2005-05-27 2006-11-29 ebm-papst St. Georgen GmbH & Co. KG Method for operating an electronically commutated motor, and motor for carrying out one such method
DE102005026439A1 (en) * 2005-06-08 2006-12-14 Siemens Ag Method and apparatus for controlling a brushless DC motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2007074097A1 *

Also Published As

Publication number Publication date
DE102005062588A1 (en) 2007-06-28
US8222844B2 (en) 2012-07-17
US20090174351A1 (en) 2009-07-09
WO2007074097A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
EP1969714A1 (en) Method for determining the magnet temperature in synchronous machines
DE102008058434B4 (en) Motor drive device for a power steering system
EP2186188B1 (en) Method and apparatus for determining a field current in brushless electrical machines
DE102014016452A1 (en) Method for determining a winding temperature of an electrical machine
DE102010001427A1 (en) Sensor unit for attachment to an electric machine and motor system
DE112018003078T5 (en) NEW PULSE INJECTION CURRENT PATTERN FOR ROTOR POSITION CONTROL
EP2619899B1 (en) Method and device for the sensorless determination of a rotor position of an electric motor
DE102014109254A1 (en) METHOD AND DEVICE FOR MONITORING AND CONTROLLING A SYNCHRONIZED ELECTRICAL MACHINE
DE102012222315A1 (en) Control device and method for determining the rotor angle of a synchronous machine
EP2609444A2 (en) Method and device for controlling a synchronous machine
DE112017001330T5 (en) Motor control device
EP1985006A2 (en) Method and device for determining the torque of an electric machine
EP3602772B1 (en) Method of operation for an electric motor, and soft starter
EP2596579B1 (en) Method and device for the sensorless position determination of an electronically commutated electric machine
DE102014211881A1 (en) Method for checking a position of a rotor of an electrical machine
EP3476038B1 (en) Method for controlling a synchronous machine and control device for a synchronous machine
DE102015108308A1 (en) Diagnosis of demagnetization by flux linkage
DE112020001316T5 (en) Motor drive control device and motor drive control method
EP2998753A2 (en) Monitoring device for an electric machine, control device and method
DE102021116963B4 (en) Method for estimating the torque of an electric machine, control unit for carrying out this method and electric traction drive with such a control unit
DE102017217865A1 (en) Monitoring the measurement components required for current measurement on an electrical coil
DE102017127410A1 (en) Method and circuit arrangement for determining the position of a rotor of an electric motor
DE102015211248A1 (en) Method for operating a separately excited electrical machine
DE102016203595A1 (en) Method and monitoring system for monitoring the operation of an electric induction machine and vehicle drive device
DE102021206317A1 (en) Method for estimating a magnetic stator flux of an electrical machine, method for determining a torque generated by an electrical machine, method for testing an electrical machine, method for operating an electrical drive device, device for estimating a magnetic stator flux of an electrical machine, electrical drive device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080728

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20110406

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180913