EP1969289A1 - Glow, spark or heating element for internal combustion and/or heating devices - Google Patents

Glow, spark or heating element for internal combustion and/or heating devices

Info

Publication number
EP1969289A1
EP1969289A1 EP06819501A EP06819501A EP1969289A1 EP 1969289 A1 EP1969289 A1 EP 1969289A1 EP 06819501 A EP06819501 A EP 06819501A EP 06819501 A EP06819501 A EP 06819501A EP 1969289 A1 EP1969289 A1 EP 1969289A1
Authority
EP
European Patent Office
Prior art keywords
heating element
ignition
layer
annealing
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06819501A
Other languages
German (de)
French (fr)
Inventor
Alexander Klonczynski
Martin Koehne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1969289A1 publication Critical patent/EP1969289A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • C04B41/5089Silica sols, alkyl, ammonium or alkali metal silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/38Selection of materials for insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes

Definitions

  • Annealing, ignition or heating element for combustion and / or heating devices are described.
  • the present invention relates to an annealing, ignition or heating element for combustion and / or heating devices according to the preamble of claim 1.
  • Incandescent, ignition or heating elements for combustion and / or heating devices are made of ceramic composite materials for high temperature resistance.
  • these basic bodies consist of silicon-containing ceramic and have an oxidation-resistant SiO 2 protective layer. This largely protects the main body against reactions with substances with which the respective element comes into contact during its operating time. Under extreme conditions of use, however, conditions may arise which also allow an attack on the oxidation-resistant SiO 2 protective layer. Particularly critical here are high temperatures in combination with the occurrence of certain substances or compounds such.
  • tantalum oxide protective layer for a ceramic heater is known from US Pat. No. 5,578,349. Tantalum oxide is, however, reduced at temperatures greater than about 1110 ° C in contact with carbon according to the reaction equation Ta2O5 + 7C -> 2TaC + 5CO and thus also attacked and destroyed over time.
  • the object of the present invention is to provide protection for incandescent, ignition or to improve heating elements according to the prior art set forth.
  • the present invention relates to an incandescent, ignition or heating element for combustion and / or heating devices, in particular a glow plug, spark plug or a heater, with a corrosion protection layer for silicon-containing ceramic parts having the glow, ignition or heating element. It is characterized in that the corrosion protection layer is composed of a mixture of SiO 2 and at least one other substance.
  • the further material may be, for example, Al 2 O 3 , ZrO 2 , TiO 2 , MgO, Y 2 O 3 , Yb 2 O 3 or Er 2 O 3 .
  • Such a built-corrosion protection layer protects the silicon-containing ceramic body of the glow, ignition or heating element permanently against corrosive and / or erosive damage in contacts with aggressive substances.
  • a particularly stable protective layer By admixing alkali and / or alkaline earth metals and / or boron and / or boron compounds and / or zirconium and / or zirconium compounds and / or gallium, indium, silicon and / or germanium, for example, a particularly stable protective layer can be formed, since the admixture one or more of these additives can positively influence the formation of a larger layer thickness.
  • yttria-stabilized zirconia can also have a positive effect on such a corrosion protection layer due to the compacting properties. In particular, they can cause a significant melting point reduction of the SiO 2 in the formation of the corrosion protection layer.
  • a further, positive influence on the protective effect of the corrosion protection layer can be achieved by deliberately influencing the size ratio of the SiO 2 particles to particles of one or more of the further corrosion protection layer forming basic or additives can be achieved.
  • So z. the use of significantly larger SiO 2 particles in comparison with the particle size of the other additives is positive to the extent that the SiO 2 particles melt earlier than the particles of the additives.
  • dissolution of the additives in the SiO 2 particles can be prevented or at least massively reduced.
  • the range has been found to be a factor of 10 between SiO 2 particles and the particles of the additives.
  • these may, inter alia, depending on the additives used or additive mixtures, even with larger or smaller, particularly favorable factor ratios.
  • the protective layer may, depending on the embodiment, either be applied directly to the ceramic base body, or even on an already applied to the ceramic body additional protective layer.
  • they form both corrosive and erosive protective effects for the silicon oxide-containing ceramic base body. This is particularly advantageous for such annealing, ignition or heating elements that are exposed to high flow loads, such.
  • B. glow plugs which are arranged in the injection region of diesel injection nozzles. Due to the permanent application of diesel droplets, which are injected at high speed into the combustion chamber, such ceramic elements are exposed to extreme loads whose protection can be massively improved by the corrosion and / or erosion protective layer according to the invention.
  • a layer of a mixture of SiO 2 particles and particles of at least one of the further substances can be applied to the silicon-containing ceramic body, then dried at a temperature ⁇ about 300 ° C. and then heated by heating in a range of sintered about 1,250 C ° . These are preferably sintering processes.
  • This layer to be cured can be applied both to a first protective layer already protecting the silicon-containing ceramic body, in particular a silicon oxide protective layer, and directly to a ceramic body without such a protective layer.
  • the corrosion protection layer in addition to a sintering of the particles forming the mixture of substances, sintering also takes place with the surface of the ceramic base body. This results in both a very stable and solid corrosion protection layer, as well as a very stable and firm connection between this layer and the ceramic body of the respective annealing, ignition or heating element.
  • the corrosion protection layer forming particle mixture is proposed as a particularly advantageous dipping method.
  • the particle mixture forming the later anticorrosive layer is prepared as a moist or wet slip in preparation, in which the relevant, silicon-containing ceramic body is simply immersed for coating and then pulled out again. This results in a largely uniformly thick and the ceramic body tightly enclosing layer forms.
  • a dipping method is to provide a dry particle mixture, in which the ceramic body to be coated is immersed and subsequently also pulled out again.
  • different adhesion forces are used, which ensure a predominantly uniform layer thickness on the ceramic body, such as. B. electrostatic attractive forces and / or by crosslinking properties of at least one component of the particle mixture in contact with the heated ceramic body.
  • a first possible procedure for producing a corrosion protection layer according to the invention for a silicon-containing ceramic base body of an incandescent, ignition or heating element for combustion and / or heating devices, in particular for glow plugs, spark plugs or heaters consists in the production of a mixture of fumed silica and very fine quartz flour and pyrogenic aluminum minium oxide, which is treated with the addition of a solvent to a suspension. Such suspensions are also known as coating precursors.
  • This Be istungsprecursor is applied to the silicon-containing, ceramic body of the annealing, ignition or heating elements, preferably in the dipping process. The drying of the Be istungsprecursors takes place at temperatures ⁇ about 300 C ° , to which a heat treatment to form a ceramic protective layer at relatively low temperatures in the range of about 1,250 C ° and above.
  • a 15% aqueous solution of LiOH can be used.
  • the distribution of the mass may be, for example, 73% of ultrafine quartz, 0.6% of fumed silica and 26.4% of fumed alumina. This mass in powder form is well mixed and prepared with the solution.
  • the individual constituents may have the following properties, for example:
  • an addition of 1 mass% boron oxide with good mixing can be provided for the mass described above.
  • this powder mixture may be mixed with isopropanol at a ratio of 1:30 to provide another coating precursor into which the silicon-containing ceramic body of the element in question may be immersed.
  • another corrosion protection layer to be formed can be applied to an already existing SiO 2 protective layer with relatively good bonding with the SiO 2 protective layer.
  • the coating precursor can also be modified with a surface-active substance.
  • a further possible variant for producing a corrosion protection layer according to the invention for a silicon-containing ceramic base body consists in mixing 90% by weight of silicic acid ester with 10% by weight of pyrogenic silica.
  • the respective powder mixtures can still be specifically added with further additives or mixtures already mentioned above.
  • the formation of the coatings preferably applied to the respective ceramic body by immersion methods can be carried out in all the methods set out above. Regardless, however, other methods are possible, such. B .:
  • Spraying process eg air brush
  • printing process eg screen printing
  • spin coating process eg spin coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Spark Plugs (AREA)

Abstract

The present invention relates to a glow, spark or heating element for internal combustion and/or heating devices, in particular a glow plug, spark plug or a heater, having a corrosion prevention layer for those parts of the glow, spark or heating element which comprise silicon-containing ceramic. Said invention is characterized in that the corrosion prevention layer is composed of a mixture of SiO<SUB>2</SUB> and at least one further substance.

Description

Beschreibungdescription
Titeltitle
Glüh-, Zünd- oder Heizelement für Verbrennungs- und/oder Heizvorrichtungen.Annealing, ignition or heating element for combustion and / or heating devices.
Die vorliegende Erfindung betrifft ein Glüh-, Zünd- oder Heizelement für Verbrennungs- und/oder Heizvorrichtungen nach dem Oberbegriff des Anspruchs 1.The present invention relates to an annealing, ignition or heating element for combustion and / or heating devices according to the preamble of claim 1.
Stand der TechnikState of the art
Glüh-, Zünd- oder Heizelemente für Verbrennungs- und/oder Heizvorrichtungen werden zur Erzielung einer hohen Temperaturbeständigkeit aus Keramik- Verbundwerkstoffen hergestellt. In der Regel bestehen diese Grundkörper aus silizi- umhaltiger Keramik und weisen eine oxidationsbeständige SiO2-Schutzschicht auf. Diese schützt den Grundkörper weitgehend gegen Reaktionen mit Stoffen, mit denen das jeweilige Element während seiner Betriebszeit in Kontakt kommt. Bei extremen Einsatzbedingungen können jedoch Voraussetzungen auftreten, die auch einen Angriff auf die an sich oxidationsbeständige SiO2-Schutzschicht ermöglichen. Insbesondere kritisch sind hierbei hohe Temperaturen in Kombination mit dem Auftreten bestimmter Stoffe oder Stoffverbindungen wie z. B. Hochdruckheißwasserdampf, korrosive Oxidschlacken wie Na2O, V2O5, CaO, KO2 und weitere, sowie Schwefel bzw. Schwefelverbindungen, die zur Bildung von korrosivem SO2 und SO3 führen.Incandescent, ignition or heating elements for combustion and / or heating devices are made of ceramic composite materials for high temperature resistance. As a rule, these basic bodies consist of silicon-containing ceramic and have an oxidation-resistant SiO 2 protective layer. This largely protects the main body against reactions with substances with which the respective element comes into contact during its operating time. Under extreme conditions of use, however, conditions may arise which also allow an attack on the oxidation-resistant SiO 2 protective layer. Particularly critical here are high temperatures in combination with the occurrence of certain substances or compounds such. B. high-pressure hot steam, corrosive oxide slags such as Na 2 O, V 2 O 5 , CaO, KO 2 and others, as well as sulfur or sulfur compounds, which lead to the formation of corrosive SO 2 and SO 3 .
Zur Überwindung dieser Problematik ist aus der US 5,578,349 die Aufbringung einer Tantaloxidschutzschicht für einen keramischen Heizer bekannt. Tantaloxid wird aber bei Temperaturen größer etwa 1.110 C° in Kontakt mit Kohlenstoff gemäß der Reaktionsgleichung Ta2O5 + 7C -> 2TaC + 5CO reduziert und damit ebenfalls angegriffen und im Laufe der Zeit zerstört.To overcome this problem, the application of a tantalum oxide protective layer for a ceramic heater is known from US Pat. No. 5,578,349. Tantalum oxide is, however, reduced at temperatures greater than about 1110 ° C in contact with carbon according to the reaction equation Ta2O5 + 7C -> 2TaC + 5CO and thus also attacked and destroyed over time.
Aufgabe und Vorteile der ErfindungPurpose and advantages of the invention
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, den Schutz für Glüh-, Zünd- oder Heizelemente entsprechend des Eingangs dargelegten Standes der Technik zu verbessern.The object of the present invention is to provide protection for incandescent, ignition or to improve heating elements according to the prior art set forth.
Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1. Aus den Merkmalen der Unteransprüche gehen vorteilhafte und zweckmäßige Weiterbildungen hervor.The solution of this object is achieved by the features of claim 1. Advantageous and expedient developments emerge from the features of the subclaims.
Demgemäß betrifft die vorliegende Erfindung ein Glüh-, Zünd- oder Heizelement für Verbrennungs-, und/oder Heizvorrichtungen, insbesondere eine Glühkerze, Zündkerze oder einen Heizer, mit einer Korrosionsschutzschicht für siliziumhaltige Keramik aufweisende Teile des Glüh-, Zünd- oder Heizelementes. Sie zeichnet sich dadurch aus, dass die Korrosionsschutzschicht aus einem Gemisch aus SiO2 und mindestens einem weiteren Stoff zusammengesetzt ist.Accordingly, the present invention relates to an incandescent, ignition or heating element for combustion and / or heating devices, in particular a glow plug, spark plug or a heater, with a corrosion protection layer for silicon-containing ceramic parts having the glow, ignition or heating element. It is characterized in that the corrosion protection layer is composed of a mixture of SiO 2 and at least one other substance.
Der weitere Stoff kann beispielsweise AI2O3, ZrO2, TiO2, MgO, Y2O3, Yb2O3 oder Er2O3 sein. Eine derart aufgebaute Korrosionsschutzschicht schützt den siliziumhalti- gen Keramikgrundkörper des Glüh-, Zünd- oder Heizelementes dauerhaft gegen korrosive und/oder erosive Schädigung bei Kontakten mit aggressiven Stoffen.The further material may be, for example, Al 2 O 3 , ZrO 2 , TiO 2 , MgO, Y 2 O 3 , Yb 2 O 3 or Er 2 O 3 . Such a built-corrosion protection layer protects the silicon-containing ceramic body of the glow, ignition or heating element permanently against corrosive and / or erosive damage in contacts with aggressive substances.
Durch die Beimengung von Alkali- und/oder Erdalkalimetallen und/oder Bor und/oder Borverbindungen und/oder Zirkon und/oder Zirkonverbindungen und/oder Gallium, Indium, Silizium und/oder Germanium kann beispielsweise eine besonders stabile Schutzschicht ausgebildet werden, da die Beimengung eines oder mehrerer dieser Zusatzstoffe die Ausbildung einer größeren Schichtdicke positiv beeinflussen kann.By admixing alkali and / or alkaline earth metals and / or boron and / or boron compounds and / or zirconium and / or zirconium compounds and / or gallium, indium, silicon and / or germanium, for example, a particularly stable protective layer can be formed, since the admixture one or more of these additives can positively influence the formation of a larger layer thickness.
Auch die Beimengung von mit Yttriumoxid stabilisiertem Zirkonoxid kann sich durch die verdichtenden Eigenschaften positiv auf eine solche Korrosionsschutzschicht auswirken. Insbesondere können sie eine erhebliche Schmelzpunktreduzierung des SiO2 bei der Bildung der Korrosionsschutzschicht bewirken.The incorporation of yttria-stabilized zirconia can also have a positive effect on such a corrosion protection layer due to the compacting properties. In particular, they can cause a significant melting point reduction of the SiO 2 in the formation of the corrosion protection layer.
Die Vorteile einer Beimengung solcher Zusatzstoffe liegen neben einer zusätzlichen Schutzwirkungsverbesserung der Korrosionsschutzschicht aufgrund deren größeren Dichte auch in einer Kostenreduzierung bei Herstellung der betreffenden Elemente, u. a. aufgrund vergleichsweise erforderlichen niedrigeren Temperaturen für den Herstellvorgang.The advantages of adding such additives are in addition to an additional protection effect improvement of the corrosion protection layer due to their greater density in a cost reduction in the production of the relevant elements, u. a. due to comparatively lower temperatures required for the manufacturing process.
Eine weitere, positive Einflussnahme auf die Schutzwirkung der Korrosionsschutzschicht kann durch eine gezielte Einflussnahme auf das Größenverhältnis der SiO2- Partikel zu Partikeln eines oder mehrerer der weiteren die Korrosionsschutzschicht bildenden Grund- oder Zusatzstoffe erreicht werden. So wirkt sich z. B. die Verwendung von deutlich größeren SiO2- Partikeln im Vergleich mit der Partikelgröße der übrigen Zusatzstoffe dahingehend positiv aus, dass die SiO2- Partikel früher als die Partikel der Zusatzstoffe aufschmelzen. Dadurch kann ein Auflösen der Zusatzstoffe in den SiO2- Partikeln verhindert oder zumindest massiv reduziert werden. Als ein günstiges Größenverhältnis hat sich der Bereich um den Faktor 10 zwischen SiO2- Partikeln und den Partikeln der Zusatzstoffe herausgestellt. Selbstverständlich sind aber auch Abweichungen davon möglich, diese können unter anderem, je nach verwendeten Zusatzstoffen oder Zusatzstoffgemischen, auch bei größeren oder kleineren, besonders günstigen Faktorverhältnissen liegen.A further, positive influence on the protective effect of the corrosion protection layer can be achieved by deliberately influencing the size ratio of the SiO 2 particles to particles of one or more of the further corrosion protection layer forming basic or additives can be achieved. So z. For example, the use of significantly larger SiO 2 particles in comparison with the particle size of the other additives is positive to the extent that the SiO 2 particles melt earlier than the particles of the additives. As a result, dissolution of the additives in the SiO 2 particles can be prevented or at least massively reduced. As a favorable size ratio, the range has been found to be a factor of 10 between SiO 2 particles and the particles of the additives. Of course, but also deviations are possible, these may, inter alia, depending on the additives used or additive mixtures, even with larger or smaller, particularly favorable factor ratios.
Die Schutzschicht kann, je nach Ausführungsform, entweder direkt auf den Keramikgrundkörper aufgebracht sein, oder auch auf einer bereits auf dem Keramikkörper aufgebrachten zusätzlichen Schutzschicht. Für beide Ausführungen gilt, dass sie sowohl korrosive als auch erosive Schutzwirkungen für den siliziumoxidhaltigen Keramikgrundkörper ausbilden. Dies ist insbesondere bei solchen Glüh-, Zünd- oder Heizelementen von Vorteil, die hohen Strömungsbelastungen ausgesetzt sind, wie z. B. Glühkerzen, die im Einspritzbereich von Dieseleinspritzdüsen angeordnet sind. Durch die permanente Beaufschlagung mit Dieseltröpfchen, die mit hoher Geschwindigkeit in den Brennraum gespritzt werden, sind solche Keramikelemente extremsten Belastungen ausgesetzt, deren Schutz durch die erfindungsgemäße Korrosions- und/oder Erosionsschutzschicht massiv verbessert werden kann.The protective layer may, depending on the embodiment, either be applied directly to the ceramic base body, or even on an already applied to the ceramic body additional protective layer. For both versions, it is true that they form both corrosive and erosive protective effects for the silicon oxide-containing ceramic base body. This is particularly advantageous for such annealing, ignition or heating elements that are exposed to high flow loads, such. B. glow plugs, which are arranged in the injection region of diesel injection nozzles. Due to the permanent application of diesel droplets, which are injected at high speed into the combustion chamber, such ceramic elements are exposed to extreme loads whose protection can be massively improved by the corrosion and / or erosion protective layer according to the invention.
Neben diesen funktionalen Vorteilen der erfindungsgemäßen Korrosions- und Erosionsschutzschicht bietet die Verwendung der oben angeführten Grund- und Zusatzstoffe auch die Möglichkeit der Anwendung günstiger und einfach handzuhabender Herstellungsverfahren. So kann beispielsweise in einem ersten Herstellungsverfahren eine Schicht aus einem Gemisch aus SiO2- Partikeln und Partikeln von mindestens einem der weiteren Stoffe auf den siliziumhaltigen Keramikkörper aufgebracht werden, anschließend bei einer Temperatur < etwa 300 C° getrocknet und anschließend durch Erwärmung in einem Bereich von etwa 1.250 C° gesintert werden. Vorzugsweise handelt es sich hierbei um Sinterverfahren.In addition to these functional advantages of the corrosion and erosion protective layer according to the invention, the use of the abovementioned basic substances and additives also offers the possibility of using favorable and easily manageable production processes. Thus, for example, in a first production method, a layer of a mixture of SiO 2 particles and particles of at least one of the further substances can be applied to the silicon-containing ceramic body, then dried at a temperature <about 300 ° C. and then heated by heating in a range of sintered about 1,250 C ° . These are preferably sintering processes.
Eine günstige Temperaturbeaufschlagung zur Bildung der so herzustellenden Korrosionsschutzschicht könnte beispielsweise in einer Erhöhung der Temperatur um 300 K/Stunde bis zu einem über einen längeren Zeitraum hinweg aufrecht zu haltenden, oberen Temperaturbereich vorgesehen sein. Dieser obere Temperaturbereich kann beispielsweise etwa im Bereich um 1.300 0C liegen, und die Haltetemperatur etwa bei 8 Stunden. Im Anschluss daran kann in umgekehrter Temperaturbeaufschlagung eine Abkühlung mit etwa 300 K/Stunde bis auf Raumtemperatur erfolgen. Grundsätzlich kann diese auszuhärtende Schicht sowohl auf einer bereits den siliziumhaltigen Keramikkörper schützenden ersten Schutzschicht, insbesondere einer Siliziumoxidschutzschicht, als auch direkt auf einen Keramikkörper ohne eine solche Schutzschicht aufgetragen werden. Bei der Bildung der erfindungsgemäßen Korrosionsschutzschicht findet neben einer Versinterung der das Stoffgemisch bildenden Partikel untereinander auch eine Versinterung mit der Oberfläche des Keramikgrundkörpers statt. Dadurch entsteht sowohl in sich eine sehr stabile und feste Korrosionsschutzschicht, als auch eine sehr stabile und feste Verbindung zwischen dieser Schicht und dem Keramikgrundkörper des betreffenden Glüh-, Zünd- oder Heizelementes.Favorable exposure to the formation of the anticorrosion layer to be produced in this way could be provided, for example, by increasing the temperature by 300 K / hour to an upper temperature range to be maintained over a relatively long period of time. This upper temperature range may be, for example, in the range of about 1,300 0 C, and the holding temperature about 8 hours. Following this, in reverse temperature exposure a cooling at about 300 K / hour to room temperature. In principle, this layer to be cured can be applied both to a first protective layer already protecting the silicon-containing ceramic body, in particular a silicon oxide protective layer, and directly to a ceramic body without such a protective layer. In the formation of the corrosion protection layer according to the invention, in addition to a sintering of the particles forming the mixture of substances, sintering also takes place with the surface of the ceramic base body. This results in both a very stable and solid corrosion protection layer, as well as a very stable and firm connection between this layer and the ceramic body of the respective annealing, ignition or heating element.
Als Auftragsverfahren für das die Korrosionsschutzschicht bildende Partikelgemisch wird als besonders vorteilhaft ein Tauchverfahren vorgeschlagen. Hierzu wird zur Vorbereitung das die spätere Korrosionsschutzschicht bildende Partikelgemisch als feuchter oder nasser Schlick bereitgehalten, in welchem der betreffende, siliziumhal- tige Keramikkörper zur Beschichtung einfach eingetaucht und anschließend wieder herausgezogen wird. Hierdurch bildet sich eine weitgehend gleichmäßig dicke und den Keramikkörper dicht umschließende Schicht.As an application method for the corrosion protection layer forming particle mixture is proposed as a particularly advantageous dipping method. For this purpose, the particle mixture forming the later anticorrosive layer is prepared as a moist or wet slip in preparation, in which the relevant, silicon-containing ceramic body is simply immersed for coating and then pulled out again. This results in a largely uniformly thick and the ceramic body tightly enclosing layer forms.
Eine weitere Möglichkeit eines Tauchverfahrens besteht in der Bereitstellung eines trockenen Partikelgemisches, in welches der zu beschichtende Keramikkörper eingetaucht und anschließend ebenfalls wieder herausgezogen wird. Hierbei werden je nach Verfahren verschiedene Adhäsionskräfte genutzt, die für eine überwiegend gleichmäßige Schichtdicke auf dem Keramikkörper sorgen, wie z. B. elektrostatische Anziehungskräfte und/oder durch vernetzende Eigenschaften wenigstens eines Bestandteils des Partikelgemisches bei Kontakt mit dem erwärmten Keramikkörper.Another possibility of a dipping method is to provide a dry particle mixture, in which the ceramic body to be coated is immersed and subsequently also pulled out again. Here, depending on the method, different adhesion forces are used, which ensure a predominantly uniform layer thickness on the ceramic body, such as. B. electrostatic attractive forces and / or by crosslinking properties of at least one component of the particle mixture in contact with the heated ceramic body.
Ausführungsbeispielembodiment
Die Erfindung wird aufgrund eines nachfolgend dargelegten Ausführungsbeispiels noch näher erläutert.The invention will be explained in more detail due to an embodiment set forth below.
Eine erste mögliche Vorgehensweise zur Herstellung einer erfindungsgemäßen Korrosionsschutzschicht für einen siliziumhaltigen Keramik-Grundkörper eines Glüh-, Zünd- oder Heizelementes für Verbrennungs- und/oder Heizvorrichtungen, insbesondere für Glühkerzen, Zündkerzen oder Heizer, besteht in der Herstellung einer Mischung von pyrogener Kieselsäure und sehr feinem Quarzmehl und pyrogenem AIu- miniumoxid, welches unter Zusatz eines Lösungsmittels zu einer Suspension aufbereitet wird. Solche Suspensionen werden unter anderem auch als Beschichtungspre- cursor bezeichnet. Dieser Beschichtungsprecursor wird auf die siliziumhaltigen, keramischen Grundkörper der Glüh-, Zünd- oder Heizelemente aufgetragen, vorzugsweise im Tauchverfahren. Die Trocknung des Beschichtungsprecursors erfolgt bei Temperaturen < etwa 300 C°, an die sich eine Wärmebehandlung zur Ausbildung einer Keramikschutzschicht bei verhältnismäßig niedrigen Temperaturen im Bereich um etwa 1.250 C° und darüber erfolgt.A first possible procedure for producing a corrosion protection layer according to the invention for a silicon-containing ceramic base body of an incandescent, ignition or heating element for combustion and / or heating devices, in particular for glow plugs, spark plugs or heaters, consists in the production of a mixture of fumed silica and very fine quartz flour and pyrogenic aluminum minium oxide, which is treated with the addition of a solvent to a suspension. Such suspensions are also known as coating precursors. This Beschichtungsprecursor is applied to the silicon-containing, ceramic body of the annealing, ignition or heating elements, preferably in the dipping process. The drying of the Beschichtungsprecursors takes place at temperatures <about 300 C ° , to which a heat treatment to form a ceramic protective layer at relatively low temperatures in the range of about 1,250 C ° and above.
Als Lösungsmittel kann beispielsweise eine 15 prozentige wässrige Lösung von LiOH verwendet werden. Die Aufteilung der Masse kann beispielsweise 73 % Ultra- feinstmehl aus Quarz, 0,6 % pyrogene Kieselsäure und 26,4 % pyrogenes Aluminiumoxid sein. Diese in Pulverform vorliegende Masse wird gut vermischt und mit der Lösung angesetzt.As the solvent, for example, a 15% aqueous solution of LiOH can be used. The distribution of the mass may be, for example, 73% of ultrafine quartz, 0.6% of fumed silica and 26.4% of fumed alumina. This mass in powder form is well mixed and prepared with the solution.
Die einzelnen Bestandteile können beispielsweise folgende Eigenschaften aufweisen:The individual constituents may have the following properties, for example:
Ultrafeinstmehl aus Quarz: -BET 16m2/g, d85=lμmQuartz ultrafine flour: -BET 16m 2 / g, d 85 = lμm
Pyrogene Kieselsäure: -BET 50m2/g,Pyrogenic silica: -BET 50m 2 / g,
Primärpartikelgröße: 40 nmPrimary particle size: 40 nm
Pyrogenes Aluminiumoxid: -BET 100m2/g, Primärpartikelgröße: 13 nmPyrogenic alumina: -BET 100m 2 / g, primary particle size: 13 nm
In einer abgewandelten Ausführungsform kann für die oben beschriebene Masse eine Zugabe von 1 Masse% Boroxid unter guter Vermischung vorgesehen sein. Diese Pulvermischung kann beispielsweise im Verhältnis 1:30 mit Isopropanol gemischt werden, um einen weiteren Beschichtungsprecursor zur Verfügung zu stellen, in den der siliziumhaltige Keramikgrundkörper des betreffenden Elementes eingetaucht werden kann. Mittels eines solchen Beschichtungsprecursors kann auf einer bereits vorhandenen SiO2-Schutzschicht erfindungsgemäß eine weitere, die zu bildende Korrosionsschutzschicht bei verhältnismäßig guter Verbindung mit der SiO2- Schutzschicht aufgebracht werden.In a modified embodiment, an addition of 1 mass% boron oxide with good mixing can be provided for the mass described above. For example, this powder mixture may be mixed with isopropanol at a ratio of 1:30 to provide another coating precursor into which the silicon-containing ceramic body of the element in question may be immersed. By means of such a coating precursor, according to the invention, another corrosion protection layer to be formed can be applied to an already existing SiO 2 protective layer with relatively good bonding with the SiO 2 protective layer.
Eine noch bessere Verbindung zwischen der herzustellenden Korrosionsschutzschicht und dem siliziumhaltigen Grundkörper ist bei Auftrag auf einen noch unbeschichteten siliziumhaltigen Keramikgrundkörper gegeben, da sich hierbei besonders feste Verbindungen zwischen der auszubildenden Korrosionsschutzschicht und dem Keramikgrundkörper ausbilden. Falls der Keramikkörper nicht benetzt wird, kann der Beschichtungsprecursor auch mit einer oberflächenaktiven Substanz modifiziert wer- den.An even better connection between the corrosion protection layer to be produced and the silicon-containing base body is given when applied to a silicon substrate which is still uncoated, since in this case particularly strong connections are formed between the corrosion protection layer to be formed and the ceramic base body. If the ceramic body is not wetted, the coating precursor can also be modified with a surface-active substance. the.
Eine weitere mögliche Variante zur Herstellung einer erfindungsgemäßen Korrosionsschutzschicht für einen siliziumhaltigen Keramikgrundkörper besteht unter der Vermengung von 90 Masse% Kieselsäureester mit 10 Masse% pyrogener Kieselsäure.A further possible variant for producing a corrosion protection layer according to the invention for a silicon-containing ceramic base body consists in mixing 90% by weight of silicic acid ester with 10% by weight of pyrogenic silica.
Zur Ausbildung speziell abgestimmter Eigenschaften dieser Beschichtungsprecuso- ren können die jeweiligen Pulvergemische noch gezielt mit weiteren, oben bereits angeführten Zusatzstoffen oder Gemischen versetzt werden. Die Bildung der vorzugsweise durch Eintauchverfahren auf den jeweiligen Keramikkörper aufgetragenen Beschichtungen kann bei allen Verfahren in der oben dargelegten Art und Weise erfolgen. Unabhängig davon sind aber auch andere Verfahren möglich, wie z. B.:In order to develop specially adapted properties of these coating precursors, the respective powder mixtures can still be specifically added with further additives or mixtures already mentioned above. The formation of the coatings preferably applied to the respective ceramic body by immersion methods can be carried out in all the methods set out above. Regardless, however, other methods are possible, such. B .:
CVD (chemical vapor deposition) PVD (physical vapor deposition) Thermisches Spritzen PlasmaspritzenCVD (chemical vapor deposition) PVD (physical vapor deposition) Thermal spraying Plasma spraying
Sprühverfahren (z. B. air brush) Druckverfahren (z. B. Siebdruck) Schleuderverfahren (z. B. spin coating) Spraying process (eg air brush) printing process (eg screen printing) spin coating process (eg spin coating)

Claims

Ansprüche claims
1. Glüh-, Zünd- oder Heizelement für Verbrennungs-, und/oder Heizvorrichtungen, insbesondere Glühkerze, Zündkerze oder Heizer, mit einer Korrosionsschutzschicht für siliziumhaltige Keramik aufweisende Teile des Glüh-, Zünd- oder Heizelementes, dadurch gekennzeichnet, dass die Korrosionsschutzschicht aus einem Gemisch aus SiO2 und mindestens einem weiteren Stoff zusammengesetzt ist.1. annealing, ignition or heating element for combustion and / or heating devices, in particular glow plug, spark plug or heater, with a corrosion protection layer for silicon-containing ceramic parts having the glow, ignition or heating element, characterized in that the corrosion protection layer of a Mixture of SiO 2 and at least one other substance is composed.
2. Glüh-, Zünd- oder Heizelement nach Anspruch 1, dadurch gekennzeichnet, dass der weitere Stoff AI2O3, ZrO2, TiO2, MgO, Y2O3, Yb2O3 oder Er2O3 ist.2. annealing, ignition or heating element according to claim 1, characterized in that the further material Al 2 O 3 , ZrO 2 , TiO 2 , MgO, Y 2 O 3 , Yb 2 O 3 or He 2 O 3 is.
3. Glüh-, Zünd- oder Heizelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Korrosionsschutzschicht Alkali- und/oder Erdalkalimetalle und/oder Bor und/oder Borverbindungen und/oder Zirkon und/oder Zirkonverbindungen und/oder Gallium, Indium, Silizium und/oder Germanium aufweist.3. annealing, ignition or heating element according to claim 1 or 2, characterized in that the corrosion protection layer alkali and / or alkaline earth metals and / or boron and / or boron compounds and / or zirconium and / or zirconium compounds and / or gallium, indium, Has silicon and / or germanium.
4. Glüh-, Zünd- oder Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Korrosionsschutzschicht mit Yttriumoxid stabilisiertes Zirkonoxid aufweist.4. annealing, ignition or heating element according to one of the preceding claims, characterized in that the anticorrosion layer with yttria stabilized zirconia.
5. Glüh-, Zünd- oder Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Größenverhältnis der SiO2- Partikel zu Partikeln eines der weiteren Grundstoffe der Korrosionsschutzschicht etwa im Bereich 105. annealing, ignition or heating element according to one of the preceding claims, characterized in that the size ratio of the SiO 2 - particles to particles of one of the further basic materials of the corrosion protection layer in the area 10th
: 1 liegt.: 1 is.
6. Glüh-, Zünd- oder Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Korrosionsschutzschicht direkt auf dem Keramikgrundkörper aufgebracht ist.6. annealing, ignition or heating element according to one of the preceding claims, characterized in that the corrosion protection layer is applied directly to the ceramic body.
7. Glüh-, Zünd- oder Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Korrosionsschutzschicht auf einer weiteren, am Keramikkörper ausgebildeten Schutzschicht aufgebracht ist.7. annealing, ignition or heating element according to one of the preceding claims, characterized in that the corrosion protection layer is applied to a further, formed on the ceramic body protective layer.
8. Glüh-, Zünd- oder Heizelement nach einem der vorangehenden Ansprüche, da- durch gekennzeichnet, dass die Korrosionsschutzschicht als Erosionsschutz ausgebildet ist.8. annealing, ignition or heating element according to one of the preceding claims, characterized in that the corrosion protection layer is designed as erosion protection.
9. Verfahren zur Herstellung eines Glüh-, Zünd- oder Heizelementes nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass auf den silizi- umhaltigen Keramikkörper eine Schicht aus einem Gemisch aus SiO2- Partikeln und Partikeln von mindestens einem weiteren Stoff aufgebracht wird, dass die Schicht bei einer Temperatur kleiner etwa 300 0C getrocknet und anschließend durch Erwärmung auf über 1250 0C gebildet wird.9. A method for producing an annealing, ignition or heating element according to one of the preceding claims, characterized in that on the silicon-containing ceramic body, a layer of a mixture of SiO 2 - particles and particles of at least one further material is applied, that the layer is dried at a temperature less than about 300 0 C and then formed by heating to about 1250 0 C.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die auf dem silizi- umhaltigen Keramikkörper aufgebrachte Schicht zur Aushärtung um etwa 300 K/Stunde erwärmt wird, bis zu einer Temperatur von etwa 1300 0C, die etwa 8 Stunden gehalten wird, und anschließend eine Abkühlung mit etwa10. The method according to claim 9, characterized in that the layer applied to the silicon-containing ceramic body for curing is heated by about 300 K / hour, up to a temperature of about 1300 0 C, which is held for about 8 hours, and then a cool with about
300 K/Stunde bis auf Raumtemperatur erfolgt.300 K / hour to room temperature.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Schicht gemeinsam mit dem siliziumhaltigen Keramikkörper der Wärmebehandlung unterzogen wird.11. The method according to claim 9 or 10, characterized in that the layer is subjected to the heat treatment together with the silicon-containing ceramic body.
12. Verfahren nach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, dass die Schicht nachträglich zum siliziumhaltigen Keramikkörper ausgehärtet wird.12. The method according to claim 9, 10 or 11, characterized in that the layer is subsequently cured to the silicon-containing ceramic body.
13. Verfahren nach Anspruch 9, 10, 11 oder 12 dadurch gekennzeichnet, dass die Schicht durch ein Tauchverfahren auf den siliziumhaltigen Keramikkörper aufgetragen wird. 13. The method of claim 9, 10, 11 or 12, characterized in that the layer is applied by a dipping method on the silicon-containing ceramic body.
EP06819501A 2005-12-23 2006-11-15 Glow, spark or heating element for internal combustion and/or heating devices Ceased EP1969289A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005062115A DE102005062115A1 (en) 2005-12-23 2005-12-23 Glow, ignition or heating element for combustion and/or heating devices, especially glow plugs, spark plugs or heaters has highly stable corrosion protection layer comprising mixture of SiO2 and other material
PCT/EP2006/068490 WO2007073983A1 (en) 2005-12-23 2006-11-15 Glow, spark or heating element for internal combustion and/or heating devices

Publications (1)

Publication Number Publication Date
EP1969289A1 true EP1969289A1 (en) 2008-09-17

Family

ID=37685145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819501A Ceased EP1969289A1 (en) 2005-12-23 2006-11-15 Glow, spark or heating element for internal combustion and/or heating devices

Country Status (5)

Country Link
US (1) US20090302021A1 (en)
EP (1) EP1969289A1 (en)
JP (1) JP2009521079A (en)
DE (1) DE102005062115A1 (en)
WO (1) WO2007073983A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207330A1 (en) * 2006-03-01 2007-09-06 Sonia Tulyani Adhesive protective coatings, non-line of sight methods for their preparation, and coated articles
US9221720B2 (en) * 2006-03-01 2015-12-29 United Technologies Corporation Dense protective coatings, methods for their preparation and coated articles
DE102007047590A1 (en) * 2007-10-05 2009-04-09 Robert Bosch Gmbh Ceramic layer composite and process for its preparation
DE102009055397A1 (en) * 2009-12-30 2011-07-07 Robert Bosch GmbH, 70469 Ceramic insulator for use in spark plug in direct injection engine, has UV-protection layer absorbing UV-radiation and comprising thickness that ranges from forty to sixty micrometers, where insulator is designed based on aluminum oxide

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2673817A (en) * 1947-08-01 1954-03-30 Hart And Burns Inc Corrosionproof tank lining and protective coating
JPS61101715A (en) * 1984-10-24 1986-05-20 Nippon Denso Co Ltd Glow plug
JPH01317182A (en) * 1988-06-16 1989-12-21 Ngk Spark Plug Co Ltd Heat-resistant coating material of saucer made of ceramic of silicon carbide or silicon nitride
DD294703A5 (en) * 1990-05-31 1991-10-10 Energiewerke Schwarze Pumpe Ag,De APPLICATION FOR THE FIRE-RESISTANT SILICON CARBIDE DELIVERY OF FIXED BED PRESSURE GASES
JP2000096204A (en) * 1998-09-19 2000-04-04 Nippon Steel Hardfacing Co Ltd Manufacture of member for molten metal bath having film excellent in corrosion resistance to molten metal
DE19910895A1 (en) * 1999-03-11 2000-09-21 Fraunhofer Ges Forschung Hydrolyzable and polymerizable silanes
US6410148B1 (en) * 1999-04-15 2002-06-25 General Electric Co. Silicon based substrate with environmental/ thermal barrier layer
GB2355005B (en) * 1999-10-04 2004-03-24 Caterpillar Inc Rare earth silicate coating on a silicon-based ceramic component by controlled oxidation for improved corrosion resistance
US6428616B1 (en) * 2000-07-19 2002-08-06 Neely Industries, Inc. Curable coating compositions
JP4031244B2 (en) * 2001-12-28 2008-01-09 京セラ株式会社 Corrosion resistant ceramics
US6753089B2 (en) * 2002-05-23 2004-06-22 Saint-Gobain Ceramics & Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
JP2004010381A (en) * 2002-06-04 2004-01-15 Kyocera Corp Surface-coated silicon nitride sintered compact
JP2004149395A (en) * 2002-11-01 2004-05-27 Kyocera Corp Method for producing surface coated silicon nitride sintered compact

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2007073983A1 *

Also Published As

Publication number Publication date
JP2009521079A (en) 2009-05-28
DE102005062115A1 (en) 2007-06-28
US20090302021A1 (en) 2009-12-10
WO2007073983A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
DE60021464T2 (en) Substrate based on silicon with a thermal barrier coating
DE60023392T2 (en) Silicon-based substrate having a yttrium silicate-containing thermal barrier coating and method of making an article therefrom
DE60012605T2 (en) Silicon-containing substrate with calcium aluminum silicate thermal barrier coating
DE19748461B4 (en) A slurry coating composition for application to a metallic substrate, associated methods and use of the coating composition
DE10119538C2 (en) Process for coating substrates and their uses
EP2197813B1 (en) Ceramic layer composite
EP1969289A1 (en) Glow, spark or heating element for internal combustion and/or heating devices
WO2006034674A1 (en) Production of a gas-tight, crystalline mullite layer by using a thermal spraying method
DE19616217C2 (en) Protective coating and method for coating a workpiece
DE102004053959B4 (en) Ceramic material and its use, as well as methods for producing coatings with the ceramic material
DE10229338B4 (en) Spark plug and spark plug insulator
DE102011003977A1 (en) Protective coating especially for aerospace components and their manufacture
DE2544437B2 (en) Process for the production of silicon nitride-containing objects coated with a self-glaze
DE102019206940A1 (en) Ceramics with an anti-corrosion layer, processes for their manufacture and their use
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
EP0036558A1 (en) Coated metal article and method of manufacturing the same
EP2808422B1 (en) Electrically conductive protective coating aerospace components and their preparation
EP2788296B1 (en) Electronically conductive enamel composition
DE102015206332A1 (en) Process for the preparation of a corrosion protection layer for thermal insulation layers of hollow aluminum oxide spheres and outermost glass layer and component
DE4028173C2 (en) Use of cerium dioxide doped with yttrium oxide
DE102008002436A1 (en) Process for producing a ceramic layer composite
DE102019215938A1 (en) Process for the production of reinforcement fibers coated with boron nitride and / or reinforcement fiber bundles coated with boron nitride, reinforcement fibers or reinforcement fiber bundles which can be produced by the process and their use
WO2018130534A1 (en) Coating material for a self-cleaning coating, and method for producing same
DE2152011B2 (en) Process for metallizing surfaces of ceramic bodies
DE102008031766A1 (en) Production of a coated crucible used e.g. for heating silicon comprises applying an intermediate layer on the inner wall of the crucible green body or body, applying a layer containing silicon nitride on the intermediate layer and calcining

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081008

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190228