EP1969285B1 - Steam cycle of a power plant - Google Patents
Steam cycle of a power plant Download PDFInfo
- Publication number
- EP1969285B1 EP1969285B1 EP07703641.6A EP07703641A EP1969285B1 EP 1969285 B1 EP1969285 B1 EP 1969285B1 EP 07703641 A EP07703641 A EP 07703641A EP 1969285 B1 EP1969285 B1 EP 1969285B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- condensate
- steam
- line
- return line
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G3/00—Steam superheaters characterised by constructional features; Details of component parts thereof
- F22G3/003—Superheater drain arrangements
Definitions
- the present invention relates to a steam cycle of a power plant with at least one steam generator and at least one superheater.
- a steam cycle is eg in document US-B1-6,237,542 disclosed.
- Such water vapor circuits are known from steam power plants and combined gas and steam power plants, in which the thermal energy of water vapor in a steam turbine is converted into kinetic energy.
- the steam required to operate the steam turbine is generated in a steam generator from previously purified and desalinated water and superheated in a superheater. From the superheater, the steam is fed to the steam turbine, where it gives off part of its previously recorded heat energy in the form of kinetic energy to the turbine.
- a generator is coupled, which converts the movement of the turbine into electrical energy.
- the expanded and cooled steam is passed into a condenser, where it continues to cool while releasing heat and collects in liquid form as water in the so-called hotwell.
- the steam generator itself can be heated both with conventional fuels, such as oil, gas or coal, but also nuclear.
- the wastewater can generally be divided into two groups.
- Dewatering in the steam zone of the steam cycle such as dewatering the superheater, provides "clean" wastewater, that is, the chemical nature of the waste water allows direct reuse in the steam cycle.
- Dewatering in the water area of the steam cycle such as the emergency drainage on the boiler drum, on the other hand, results in "contaminated” wastewater, which means that the chemical nature of the wastewater does not permit direct reuse in the steam cycle.
- the cleanliness of the sewage from the drainage In the steam sector this is due to the fact that during the separation in the steam generator in water and vapor phase any impurities remain in the water phase and the steam leaves the steam generator clean.
- the steam cycle according to the present invention comprises at least one steam generator and at least one superheater. According to the invention is between the superheater and the steam generator for collecting condensate present in the superheater and for returning the condensate in the evaporator a condensate collection and return line including small pumps provided.
- the corresponding drainage pipes from the steam area, which are located in front of the boiler slide, are integrated into this condensate collection and return line.
- This condensate collection and return line is constantly under pressure, since at least one, advantageously all drainage pipes are connected directly to this, ie it is dispensed with motorized shut-off valves.
- the condensate possibly collecting in the superheater is therefore not pumped via a collection tank and a condensate collection tank to the condenser and fed back to the actual steam circuit of the power plant, but the condensate is collected only in a condensate collection and return line and the Evaporator fed directly back.
- the collecting tank (s) including associated secondary components, such as, for example, pumps, heat exchangers, connecting pipelines, etc.
- a water lock is provided between the drainage line and the condensate collection and return line to minimize any crossflows.
- the diameter of a superheater pipe should be larger than the diameter of the drainage pipe. If necessary, several drain lines with a smaller diameter can lead to the condensate collection and return line. This serves to minimize those cross flows that might occur despite the water lock. To control these possible cross flows due to different pressure at the individual drainage points, the lower pressure drainage lines should also be designed with a larger diameter than the higher pressure drainage lines.
- a pump is advantageously operatively connected, with the aid of which the condensate collected in the condensate collection and return line of the superheater can be pumped back into the steam generator.
- the operation of the pump is preferably controllable in dependence on the amount of condensate present in the condensate collection and return line.
- a 2-point level detector is provided which detects upper and lower condensate level limits in the condensate manifold.
- the pump is operated to pump the condensate from the condensate collection and return line into the evaporator. If then the lower limit level is reached, the pump is switched off accordingly, in order to promote any further condensate in the steam generator. If the condensate reaches the upper limit level of the condensate collector without the operation of the pump, this is an indication that the pump and / or the controller is defective.
- the condensate header preferably comprises a discharge valve provided with an emergency valve, which branches off from the condensate collecting and return line, wherein the discharge line is connected to a waste water tank. In this way, the condensate collection and return line can be emptied poorly in case of failure of the pump or pump control.
- the condensate collection and return line comprises at least one shut-off valve, better still two shut-off valves, which are respectively provided downstream and upstream of the pump. Accordingly, during the operation of the steam cycle maintenance and repair work on the pump can be made.
- At least one drainage line is arranged between the superheater and the condensate collecting line, which is the superheater connects to the condensate collector.
- a water lock is provided between the drainage line and the condensate collecting line in order to minimize any crossflows.
- the diameter of a superheater pipe from which the drainage pipe branches off should be larger than the diameter of the drainage pipe.
- several drain lines with a smaller diameter lead to the condensate collecting line. This serves to minimize those cross flows that might occur despite the water lock.
- the lower pressure drainage lines should also be designed with a larger diameter than the higher pressure drainage lines.
- the evaporator for discharging the condensate present in this via further drainage lines is also preferred. connectable to the condensate collecting and return line, wherein a condensate collecting and return line branches off a valve provided with a discharge line, which is connected to a waste water collection tank. Accordingly, the water present in the evaporator can be dewatered via the condensate collecting line according to the invention in the waste water tank. This has the advantage that the wastewater container does not have to be placed in a correspondingly large pit (to increase the geodetic height), but can be arranged at ground level.
- Fig. 1 is a schematic representation and shows a known concept for minimizing waste water from a steam cycle 10.
- the steam circuit 10 includes three steam generators 12, 14 and 16, which evaporate preheated in the economizers water vapor, wherein Fig. 1 only the corresponding inlets 17a, 17b and 17c are shown by the economizers in the drums of the evaporators 12, 14 and 16.
- the water vapor is passed from the steam generators 12, 14 and 16 via lines 18, 20 and 22 to superheaters 24, 26 and 28, where it is superheated and then passed via respective lines 30, 32 and 34 to corresponding stages of a steam turbine 36.
- the steam turbine 36 a large part of the heat energy of the superheated steam is converted into kinetic energy.
- the cooled water vapor leaves the steam turbine 36 via a line 38 and is supplied to a condenser 40 in which it is further cooled and condensed.
- the condensate enters the hotwell 42 arranged below the condenser 40, from where it is conveyed again in the direction of the steam generators 12, 14 and 16 by means of a pump 44. Between the pump 44 and the steam generators 12, 14 and 16, the condensate by not shown Preheater be brought to a predetermined temperature. In this way, a closed water vapor cycle results.
- the steam circuit 10 includes a special drainage system, which will be described in more detail below.
- drainage lines 46, 48 and 50 are provided which direct the condensate located in the lines 30, 32 and 34 in a collecting container 52, in the remaining vapor condenses.
- the resulting in the superheaters 24, 26 and 28 condensate is passed through drainage lines 54, 46 and 58 in a further collecting container 60, in which the remaining water vapor is also condensed.
- the containers 52 and 60 are connected to the condenser. Due to the correspondingly low pressure, the incoming condensate will partially evaporate and pass via the connecting line 61 into the condenser 40.
- the residual condensate collected in the reservoirs 52 and 60 is pumped via lines 62 and 64 into a condensate receiver 70 using pumps 66 and 68 and stored there. If necessary, the condensate stored in the condensate collecting tank 70 can then be fed again via a line 72 to the condenser 40 and in this way the actual water vapor cycle.
- the amount of wastewater generated can be reduced by up to 60%, which saves costs in the long term.
- expenses associated with the generation and subsequent conditioning of demineralised water are reduced.
- the contaminated residual condensate collected in the waste water collection tank 80 can be supplied via a line 82 by means of a pump 84 to a heat exchanger 86, where it is cooled accordingly.
- the cooled condensate can be discarded via a line 88 and supplied to the general sewer system, which can be connected to the line 88 a wastewater treatment plant, not shown, which processes the wastewater so that it complies with the legal requirements.
- the condensate from the heat exchanger 86 can be supplied via a line 90 to a collecting container 92 and stored therein.
- the condensate contained in the collecting container 92 can then be supplied via a line 94 by means of a pump 96 to a condensate treatment device 98, in which it is prepared so that it meets the requirements that are placed on the water used in the steam circuit 10.
- the condensate treated in this way can then be supplied to the condenser 40 in order to feed the condensate back into the actual water vapor circuit 10.
- a disadvantage of in Fig. 1 shown Wasserdämpf Vietnameselaufes 10 is that in particular the drainage of the Superheater 24, 26 and 28 is very expensive and expensive. Firstly, the drainage lines 54, 56 and 58, which lead from the superheaters 24, 26 and 28 to the sump 60, have a relatively large length to bridge the distance between the superheaters 24, 26 and 28 to the sump 60. Furthermore, it requires a separate collection container 60, which is also associated with costs. Finally, the pump 68 must have a relatively high capacity to pump the condensate contained in the sump 60 into the flash tank 70.
- Fig. 2 shows a schematic view of an embodiment of the steam cycle 110 according to the invention. Components which are similar to those of in Fig. 1 correspond to the illustrated steam cycle 10, are identified by the same reference numerals.
- the in Fig. 2 shown steam circuit 110 substantially corresponds to the steam circuit 10 in Fig. 1 , However, the steam circuit 110 differs from the steam circuit 10 by the dehydration of the superheater 24, 26 and 28 and the management of the residual dewatering of the evaporators 12, 14 and 16, which is described in more detail below.
- the superheaters 24, 26 and 28 branch off corresponding drainage lines 112, 114 and 116, each leading to a condensate collection and return line, with reference to Fig. 3 is explained in more detail.
- the condensate collected in the condensate collection lines can be pumped via return lines 118, 120 and 122 directly back into the associated evaporator 12, 14 and 16 using appropriate pumps 124, 126 and 128.
- the wastewater contained in the evaporators 12, 14 and 16 can be fed via drainage lines 130, 132 and 134 to the condensate collecting lines and conveyed via lines 136, 138 and 140 into the waste water collecting tank 80.
- FIG Fig. 3 The detailed structure of a superheater and steam generator drainage system is schematically shown in FIG Fig. 3 shown, where Fig. 3 exemplifies the drainage system of the superheater 24 and the evaporator 12.
- the drainage systems for the superheater 26 and the evaporator 14 and for the superheater 28 and the evaporator 16 correspond to the in Fig. 3 illustrated system.
- Fig. 3 shows the superheater 24 having three manifolds 142a, 142b and 142c.
- headers 142a, 142b and 142c bind the individual superheater tubes.
- Hot exhaust of the power plant flows in the direction of arrow 144 past the three superheater tubes, so that the manifold 142c is heated more than the manifold 142b, which in turn is stronger than the manifold 142a.
- From the respective headers 142a, 142b and 142c drain drainage lines 112a, 112b and 112c, which open into a just over 0 m condensate collection and return line 146.
- each superheater pipe which opens into a collecting pipe 142a, 142b and 142c, is greater than the pipe diameter of the corresponding drainage pipe 112a, 112b and 112c. In this way it should be ensured that superheated steam flows in the direction of the collecting pipes 142a, 142b and 142c and does not reach the drainage pipes 112a, 112b and 112c.
- the drainage lines 112a, 112b and 112c are intended only to dewater condensate contained in the headers 142a, 142b and 142c.
- water locks 148, 150 and 162 which are also intended to prevent the entry of water vapor into the condensate collection and return line 146.
- the water locks 148, 150 and 152 are presently designed as U-shaped lines in which collects condensate, which is intended to prevent ingress of water vapor into the condensate collection and return line 146.
- the condensate collection and return line 146 is presently substantially L-shaped, wherein a substantially vertically downwardly extending portion of the condensate collection and return line 146 extends into a pit 154.
- the condensate collection and return line 146 collects the condensate that has been removed via the drainage lines 112a, 112b and 112c the headers 142a, 142b and 142c.
- the level of the condensate collected in the condensate collection and return line 146 is designated by the reference numeral 156.
- the condensate collection and return line 146 further includes a level detector, not shown, which detects a maximum level 158 and a minimum level 160 of condensate accumulated in the condensate collection and return line 146.
- a line 162 Connected to the Kohdensatsammel- and return line 146, a line 162 which includes a valve 164 and a pump 166 arranged at about -2 m. With the valve 164 open, condensate from the condensate collection and return line 146 can be pumped through line 162 using the pump 166. Behind the pump 166, the line 162 branches into the return line 118, which is provided with a valve 168, and into the line 136, which is also provided with a valve 170. The operation of the condensate collecting line 146 will be described in more detail below.
- the pump 166 If the condensate level 156 reaches the maximum level 158, which is detected by the level detection device, not shown, the pump 166 is turned on, the valves 164 and 168 are opened and the valve 170 is closed. In this way, the condensate collected in the condensate collection and return line 146 is pumped back into the evaporator 12. If the level detector detects that the condensate level 156 has reached the minimum level 160, the pump 166 is stopped, so that no further condensate from the condensate collection and return line 146 is conveyed via the lines 162 and 118 into the evaporator 12. This scenario repeats as soon as the maximum level 158 is reached again.
- the evaporator 12 and the condensate collection and return line 146 are connected to each other via the drainage line 130, wherein the drainage line 130 has a valve 172. If now the condensate contained in the evaporator 12 are emptied, the valve 168 of the return line 118 are closed and the valve 170 of the line 136 and the valve 172 of the drainage line 130 is opened. The pressurized condensate contained in the evaporator 112 may thus flow to the sewage sump 80 via the drainage line 130, the condensate header 146 and the line 136 using the pump 166.
- valves 164, 170 and 168 can be closed, so that it is easy to work on the pump 166.
- This in Fig. 3 shown drainage system is designed to be mobile, to counteract a buildup of tension by the cyclic heating and cooling.
- a significant advantage of the previously described drainage system for the superheaters 24, 26 and 28 and the evaporators 12, 14 and 16 is its simple construction. Furthermore, compared with the in Fig. 1 illustrated steam circuit 10 on the (motorized) shut-off valves, to the collecting container 60, the pump 68 and the line 64 are dispensed with, whereby considerable costs can be saved. In addition, the subscript of the waste water tank 80 can be dispensed with, thus reducing the cost of the pits. It should be noted that the pump 166 compared to the pump 68 must have a much lower performance.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Air Humidification (AREA)
- Treatment Of Fiber Materials (AREA)
- Cleaning And Drying Hair (AREA)
Description
Die vorliegende Erfindung bezieht sich auf einen Wasserdampfkreislauf einer Kraftwerksanlage mit wenigstens einem Dampferzeuger und wenigstens einem Überhitzer. Ein solcher Wasserdampfkreislauf ist z.B. in Dokument
Derartige Wasserdampfkreisläufe sind aus Dampfkraftwerken und kombinierten Gas- und Dampfkraftwerken bekannt, bei denen die thermische Energie von Wasserdampf in einer Dampfturbine in kinetische Energie umgewandelt wird. Der zum Betrieb der Dampfturbine erforderliche Dampf wird in einem Dampferzeuger aus zuvor gereinigtem und entsalztem Wasser erzeugt und in einem Überhitzer überhitzt. Vom Überhitzer wird der Dampf der Dampfturbine zugeführt, wo er einen Teil seiner zuvor aufgenommenen Wärmeenergie in Form von Bewegungsenergie an die Turbine abgibt. An die Turbine ist ein Generator gekoppelt, der die Bewegung der Turbine in elektrische Energie wandelt. Nach Durchströmen der Dampfturbine wird der entspannte und abgekühlte Dampf in einen Kondensator geleitet, wo er unter Wärmeabgabe weiter abkühlt und sich in flüssiger Form als Wasser im so genannten Hotwell sammelt. Von dort aus wird er über entsprechende Pumpen in einen Speisewasserbehälter gepumpt und dort zwischengespeichert. Schließlich wird das Kondensat über eine Speisepumpe erneut dem Dampferzeuger zugeführt. Der Dampferzeuger selbst kann sowohl mit konventionellen Brennstoffen, wie beispielsweise Öl, Gas oder Kohle, aber auch nuklear beheizt werden.Such water vapor circuits are known from steam power plants and combined gas and steam power plants, in which the thermal energy of water vapor in a steam turbine is converted into kinetic energy. The steam required to operate the steam turbine is generated in a steam generator from previously purified and desalinated water and superheated in a superheater. From the superheater, the steam is fed to the steam turbine, where it gives off part of its previously recorded heat energy in the form of kinetic energy to the turbine. To the turbine, a generator is coupled, which converts the movement of the turbine into electrical energy. After flowing through the steam turbine, the expanded and cooled steam is passed into a condenser, where it continues to cool while releasing heat and collects in liquid form as water in the so-called hotwell. From there it is pumped via appropriate pumps into a feed water tank and temporarily stored there. Finally, the condensate is fed via a feed pump again to the steam generator. The steam generator itself can be heated both with conventional fuels, such as oil, gas or coal, but also nuclear.
Während des Betriebs des Wasserdampfkreislaufes gelangen Verunreinigungen in das im Kreislauf verwendete Wasser, die mit der Zeit zur Beschädigung der Wasserdampfkreislaufkomponenten führen können. Entsprechend ist es erforderlich, die chemische Beschaffenheit des Kreislaufmediums (Wasser, Dampf) im Rahmen gewisser Grenzwerte sicherzustellen. Bei Kesseln mit Kesseltrommeln (Natur- oder Zwangsumlauf) geschieht dies beispielsweise unter anderem dadurch, dass ständig oder in Intervallen Wasser aus der Trommel abgeschlämmt wird. Darüber hinaus fällt während An- und Abfahrvorgängen auch Wasser bei den Überhitzerheizflächen an. Diese Wässer werden als Abwasser abgeführt und sind durch aufbereitetes Wasser (demineralisiertes Wasser) zu ersetzen. Aus betriebswirtschaftlicher Sicht ist es wünschenswert, die Menge des anfallenden Abwassers zu verringern und den Anteil der wiederverwendeten Betriebsabwässer zu erhöhen. Dem stehen allerdings sehr hohe Aufwendungen beim Bau der Kraftwerksanlage gegenüber, so dass eine Minimierung des anfallenden Abwassers bezogen auf die Wirtschaftlichkeit der Gesamtkraftwerksanlage mit den bisher bekannten technischen Möglichkeiten in der Regel nicht sinnvoll war. Die anfallenden Betriebsabwässer des Wasserdampfkreislaufes werden daher meist nur gesammelt und anschließend komplett verworfen, also schlussendlich dem allgemeinen Abwassersystem zugeführt. Meist muss dabei das Abwasser gemäß den gesetzlichen Bedingungen eine vorbestimmte Aufbereitung erfahren.During operation of the steam cycle, contaminants enter the circulating water which, over time, can damage the steam cycle components. Accordingly, it is necessary to ensure the chemical nature of the circulation medium (water, steam) within certain limits. In boilers with boiler drums (natural or forced circulation), this happens, for example, by the fact that constantly or in Intervals of water are drained from the drum. In addition, during startup and shutdown, water also accumulates in the superheater heating surfaces. These waters are discharged as wastewater and must be replaced with treated water (demineralised water). From a business point of view, it is desirable to reduce the amount of wastewater generated and to increase the proportion of reused wastewater from operations. However, this is offset by very high costs in the construction of the power plant, so that a minimization of the wastewater was based on the cost of the entire power plant with the previously known technical possibilities in the rule was not useful. The accumulated operating waste water of the steam cycle are therefore usually only collected and then completely discarded, so ultimately fed to the general sewer system. Usually, the wastewater must undergo a predetermined treatment in accordance with the legal conditions.
Zukünftig ist aufgrund einer absehbaren weiteren Verschärfung der Umweltschutzbedingungen davon auszugehen, dass eine Reduzierung der Abwassermenge gesetzlich erzwungen wird bzw. die Abwasserabgabe inklusive der Aufbereitung derart verteuert wird, dass eine Reduzierung der Abwassermenge wirtschaftlich sinnvoll sein wird.In the future, due to a foreseeable further tightening of the environmental protection conditions, it can be assumed that a reduction of the waste water quantity will be enforced by law or the wastewater discharge, including the treatment, will become more expensive, so that a reduction of the wastewater volume will be economically viable.
In einem Wasserdampfkreislauf können die anfallenden Abwässer allgemein in zwei Gruppen eingeteilt werden. Entwässerungen im Dampfbereich des Wasserdampfkreislaufes, wie beispielsweise eine Entwässerung des Überhitzers, liefert "sauberes" Abwasser, das heißt, die chemische Beschaffenheit des Abwassers lässt eine direkte Wiederverwendung im Wasserdampfkreislauf zu. Entwässerungen im Wasserbereich des Wasserdampfkreislaufes, wie beispielsweise die Notabschlämmung an der Kesseltrommel, ergeben hingegen "verunreinigtes" Abwasser, was bedeutet, dass die chemische Beschaffenheit des Abwassers eine direkte Wiederverwendung im Wasserdampfkreislauf nicht zulässt. Die Sauberkeit des Abwassers aus den Entwässerungen im Dampfbereich rührt daher, dass bei der Trennung im Dampferzeuger in Wasser- und Dampfphase etwaige Verunreinigungen in der Wasserphase verbleiben und der Dampf den Dampferzeuger sauber verlässt.
Wenn es gelingt, die sauberen Abwässer getrennt zu sammeln, so dass eine Rückspeisung in den Wasserdampfkreislauf möglich wird, werden neben einer bis zu 60%igen Reduzierung des Abwasseranfalls und der damit zusammenhängenden Aufwendungen auch entsprechende Aufwendungen im Zusammenhang mit der Generierung und späteren Konditionierung von demineralisiertem Wasser eingespart, dass das verworfene Wasser im Kreislauf ersetzen müsste.In a steam cycle, the wastewater can generally be divided into two groups. Dewatering in the steam zone of the steam cycle, such as dewatering the superheater, provides "clean" wastewater, that is, the chemical nature of the waste water allows direct reuse in the steam cycle. Dewatering in the water area of the steam cycle, such as the emergency drainage on the boiler drum, on the other hand, results in "contaminated" wastewater, which means that the chemical nature of the wastewater does not permit direct reuse in the steam cycle. The cleanliness of the sewage from the drainage In the steam sector, this is due to the fact that during the separation in the steam generator in water and vapor phase any impurities remain in the water phase and the steam leaves the steam generator clean.
If it is possible to collect the clean wastewater separately, so that a return to the steam cycle is possible, in addition to an up to 60% reduction in wastewater discharge and the associated expenses and corresponding expenses in connection with the generation and subsequent conditioning of demineralized Saved water that would have to replace the discarded water in the circulation.
Der größte Anteil von sauberen Abwässern fällt beim An- und vor allem beim Abfahren der Kraftwerksanlage am Überhitzer an. Diese Tatsache macht sich ein bekanntes Konzept zur Minimierung von Abwässern eines Wasserdampfkreislaufes zunutze, bei dem Entwässerungsleitungen der Überhitzer zu einem separaten Sammeltank führen. Das Kondensat wird anschließend von dem Sammeltank unter Verwendung einer Pumpe in einen Kondensatsammeltank und von dort aus weiter zu dem Kondensator des Wasserdampfkreislaufes gepumpt. Das bekannte Konzept wird nachfolgend noch genauer unter Bezugnahme auf
Es ist eine Aufgabe der vorliegenden Erfindung, einen alternativen Wasserdampfkreislauf einer Kraftwerksanlage zu schaffen.It is an object of the present invention to provide an alternative steam cycle of a power plant.
Diese Aufgabe wird gemäß der vorliegenden Erfindung durch einen Wasserdampfkreislauf nach Anspruch 1 gelöst. Die abhängigen Ansprüche beziehen sich auf individuelle Ausgestaltungen des erfindungsgemäßen Wasserdampfkreislaufes.
Der Wasserdampfkreislauf gemäß der vorliegenden Erfindung umfasst wenigstens einen Dampferzeuger und wenigstens einen Überhitzer. Erfindungsgemäß ist zwischen dem Überhitzer und dem Dampferzeuger zum Auffangen von im Überhitzer vorhandenem Kondensat und zur Rückführung des Kondensats in den Verdampfer eine Kondensatsammel - und Rückführleitung inklusive Kleinpumpen vorgesehen. In diese Kondensatsammel - und Rückführleitung werden die entsprechenden Entwässerungsleitungen aus dem Dampfbereich, welche vor dem Kesselschieber liegen, eingebunden. Diese Kondensatsammel - und Rückführleitung steht ständig unter Druck, da mindestens eine, vorteilhaft alle Entwässerungsleitungen direkt mit dieser verbunden sind, d. h. es wird auf motorisierte Absperrarmaturen verzichtet.
Im Gegensatz zum Stand der Technik wird das sich im Überhitzer ggf. sammelnde Kondensat also nicht über einen Sammeltank und einen Kondensatsammeltank zum Kondensator gepumpt und dort dem eigentlichen Wasserdampfkreislauf der Kraftwerksanlage wieder zugeführt, sondern das Kondensat wird lediglich in einer Kondensatsammel - und Rückführleitung gesammelt und dem Verdampfer direkt wieder zugeführt. Neben den motorisierten Absperrarmaturen kann dabei auch auf den/die Sammeltanks inklusive zugehöriger Nebenkomponenten, wie beispielsweise Pumpen, Wärmetauscher, verbindende Rohrleitungen etc. verzichtet werden. Bevorzugt ist zwischen der Entwässerungsleitung und der Kondensatsammel - und Rückführleitung ein Wasserschloss vorgesehen, um etwaige Querströmungen zu minimieren. Ferner sollte der Durchmesser eines Überhitzerrohrs größer als der Durchmesser der Entwässerungsleitung sein. Gegebenenfalls können auch mehrere Entwässerungsleitungen mit geringerem Durchmesser zur Kondensatsammel- und Rückführleitung führen. Dies dient dazu, diejenigen Querströmungen zu minimieren, die trotz Wasserschloss auftreten könnten. Zur Beherrschung dieser etwaigen Querströmungen aufgrund unterschiedlichen Druckes an den einzelnen Entwässerungsstellen sollten ferner die bei niedrigerem Druck angesiedelten Entwässerungsleitungen mit einem größeren Durchmesser als die bei höherem Druck angesiedelten Entwässerungsleitungen ausgelegt werden. Es wäre auch möglich, die einzelnen Entwässerungsleitungen bis auf eine Entwässerungsleitung, über die eine ständig offene Verbindung sichergestellt wird, so dass die Kondensatsammel- und Rückführleitung immer unter Druck steht, jeweils über ein motorisiertes Ventil in die Kondensatsammel- und Rückführleitung zu führen, anstatt direkt auf die Kondensatsammelleitung. Allerdings wäre diese Alternative kostenintensiver.
Mit der Kondensatsammel- und Rückführleitung ist vorteilhaft eine Pumpe wirkverbunden, mit deren Hilfe das in der Kondensatsammel- und Rückführleitung aufgefangene Kondensat des Überhitzers zurück in den Dampferzeuger gepumpt werden kann. Der Betrieb der Pumpe ist bevorzugt in Abhängigkeit von der in der Kondensatsammel- und Rückführleitung vorhandenen Kondensatmenge steuerbar. Beispielsweise ist eine 2-Punkt-Niveauerfassungseinrichtung vorgesehen, die einen oberen und unteren Kondensatniveaugrenzwert in der Kondensatsammelleitung erfasst. Bei Erreichen des oberen Grenzwertes wird die Pumpe betrieben, um das Kondensat aus der Kondensatsammel- und Rückführleitung in den Verdampfer zu pumpen. Wird dann das untere Grenzniveau erreicht, so wird die Pumpe entsprechend ausgeschaltet, um kein weiteres Kondensat in den Dampferzeuger zu fördern. Erreicht das Kondensat das obere Grenzniveau der Kondensatsammelleitung, ohne dass der Betrieb der Pumpe einsetzt, so ist dies ein Anzeichen dafür, dass die Pumpe und/oder die Steuerung defekt ist/sind. Für diesen Fall umfasst die Kondensatsammelleitung bevorzugt eine mit einem Notventil versehene Abführleitung, die von der Kondensatsammel- und Rückführleitung abzweigt, wobei die Abführleitung mit einem Abwasserbehälter verbunden ist. Auf diese Weise kann die Kondensatsammel- und Rückführleitung beim Ausfall der Pumpe oder Pumpenregelung notdürftig entleert werden.This object is achieved according to the present invention by a steam circuit according to claim 1. The dependent claims relate to individual embodiments of the water vapor cycle according to the invention.
The steam cycle according to the present invention comprises at least one steam generator and at least one superheater. According to the invention is between the superheater and the steam generator for collecting condensate present in the superheater and for returning the condensate in the evaporator a condensate collection and return line including small pumps provided. The corresponding drainage pipes from the steam area, which are located in front of the boiler slide, are integrated into this condensate collection and return line. This condensate collection and return line is constantly under pressure, since at least one, advantageously all drainage pipes are connected directly to this, ie it is dispensed with motorized shut-off valves.
In contrast to the prior art, the condensate possibly collecting in the superheater is therefore not pumped via a collection tank and a condensate collection tank to the condenser and fed back to the actual steam circuit of the power plant, but the condensate is collected only in a condensate collection and return line and the Evaporator fed directly back. In addition to the motorized shut-off valves, it is also possible to dispense with the collecting tank (s) including associated secondary components, such as, for example, pumps, heat exchangers, connecting pipelines, etc. Preferably, a water lock is provided between the drainage line and the condensate collection and return line to minimize any crossflows. Further, the diameter of a superheater pipe should be larger than the diameter of the drainage pipe. If necessary, several drain lines with a smaller diameter can lead to the condensate collection and return line. This serves to minimize those cross flows that might occur despite the water lock. To control these possible cross flows due to different pressure at the individual drainage points, the lower pressure drainage lines should also be designed with a larger diameter than the higher pressure drainage lines. It would also be possible to lead the individual drainage pipes except for a drainage line, via which a constantly open connection is ensured, so that the condensate collection and return line is always under pressure, in each case via a motorized valve in the condensate collection and return line, rather than directly on the condensate collector. However, this alternative would be more costly.
With the condensate collection and return line, a pump is advantageously operatively connected, with the aid of which the condensate collected in the condensate collection and return line of the superheater can be pumped back into the steam generator. The operation of the pump is preferably controllable in dependence on the amount of condensate present in the condensate collection and return line. For example, a 2-point level detector is provided which detects upper and lower condensate level limits in the condensate manifold. When the upper limit is reached, the pump is operated to pump the condensate from the condensate collection and return line into the evaporator. If then the lower limit level is reached, the pump is switched off accordingly, in order to promote any further condensate in the steam generator. If the condensate reaches the upper limit level of the condensate collector without the operation of the pump, this is an indication that the pump and / or the controller is defective. In this case, the condensate header preferably comprises a discharge valve provided with an emergency valve, which branches off from the condensate collecting and return line, wherein the discharge line is connected to a waste water tank. In this way, the condensate collection and return line can be emptied poorly in case of failure of the pump or pump control.
Gemäß einer weiteren Ausgestaltung der vorliegenden Erfindung umfasst die Kondensatsammel- und Rückführleitung zumindest eine Absperrarmatur, besser noch zwei Absperrarmaturen, die jeweils stromabwärts und stromaufwärts der Pumpe vorgesehen sind. Entsprechend können während des Betriebs des Wasserdampfkreislaufes Wartungs- und Reparaturarbeiten an der Pumpe vorgenommen werden.According to a further embodiment of the present invention, the condensate collection and return line comprises at least one shut-off valve, better still two shut-off valves, which are respectively provided downstream and upstream of the pump. Accordingly, during the operation of the steam cycle maintenance and repair work on the pump can be made.
Gemäß einer weiteren Ausgestaltung der vorliegenden Erfindung ist zwischen dem Überhitzer und der Kondensatsammelleitung zumindest eine Entwässerungsleitung angeordnet, die den Überhitzer mit der Kondensatsammelleitung verbindet. Bevorzugt ist zwischen der Entwässerungsleitung und der Kondensatsammelleitung ein Wasserschloss vorgesehen, um etwaige Querströmungen zu minimieren. Ferner sollte der Durchmesser eines Überhitzerrohrs, von dem die Entwässerungsleitung abzweigt, größer als der Durchmesser der Entwässerungsleitung sein. Gegebenenfalls können auch mehrere Entwässerungsleitungen mit geringerem Durchmesser zur Kondensatsammelleitung führen. Dies dient dazu, diejenigen Querströmungen zu minimieren, die trotz Wasserschloss auftreten könnten. Zur Beherrschung dieser etwaigen Querströmungen aufgrund unterschiedlichen Druckes an den einzelnen Entwässerungsstellen sollten ferner die bei niedrigerem Druck angesiedelten Entwässerungsleitungen mit einem größeren Durchmesser als die bei höherem Druck angesiedelten Entwässerungsleitungen ausgelegt werden. Es wäre auch möglich, die einzelnen Entwässerungsleitungen bis auf eine Entwässerungsleitung, über die eine ständig offene Verbindung sichergestellt wird, so dass die Kondensatsammelleitung immer unter Druck steht, jeweils über ein motorisiertes Ventil in die Kondensatsammelleitung zu führen, anstatt direkt auf die Kondensatsammelleitung. Allerdings wäre diese Alternative kostenintensiver.According to a further embodiment of the present invention, at least one drainage line is arranged between the superheater and the condensate collecting line, which is the superheater connects to the condensate collector. Preferably, a water lock is provided between the drainage line and the condensate collecting line in order to minimize any crossflows. Further, the diameter of a superheater pipe from which the drainage pipe branches off should be larger than the diameter of the drainage pipe. Optionally, several drain lines with a smaller diameter lead to the condensate collecting line. This serves to minimize those cross flows that might occur despite the water lock. To control these possible cross flows due to different pressure at the individual drainage points, the lower pressure drainage lines should also be designed with a larger diameter than the higher pressure drainage lines. It would also be possible to route the individual drainage conduits, except for a drainage line, through which a constantly open connection is made, so that the condensate collecting line is always under pressure, via a motorized valve into the condensate collecting line, rather than directly to the condensate collecting line. However, this alternative would be more costly.
Gemäß einer weiteren Ausgestaltung der vorliegenden Erfindung ist auch der Verdampfer zum Abführen des in diesem vorhandenen Kondensats über weitere Entwässerungsleitungen bevorzugt. mit der Kondensatsammel- und Rückführleitung verbindbar, wobei von der Kondensatsammel- und Rückführleitung eine mit einem Ventil versehene Abführleitung abzweigt, die mit einem Abwassersammelbehälter verbunden ist. Entsprechend kann auch das in dem Verdampfer vorhandene Wasser über die erfindungsgemäße Kondensatsammelleitung in den Abwasserbehälter entwässert werden. Dies hat den Vorteil, dass der Abwasserbehälter nicht in einer entsprechend großen Grube aufgestellt werden muss (zum Zuwachs der geodätischen Höhe), sondern ebenerdig angeordnet werden kann.According to a further embodiment of the present invention, the evaporator for discharging the condensate present in this via further drainage lines is also preferred. connectable to the condensate collecting and return line, wherein a condensate collecting and return line branches off a valve provided with a discharge line, which is connected to a waste water collection tank. Accordingly, the water present in the evaporator can be dewatered via the condensate collecting line according to the invention in the waste water tank. This has the advantage that the wastewater container does not have to be placed in a correspondingly large pit (to increase the geodetic height), but can be arranged at ground level.
Nachfolgend wird die vorliegende Erfindung unter Bezugnahme auf die Zeichnung genauer beschrieben. Darin ist
- Fig. 1
- eine schematische Ansicht eines bekannten Konzeptes eines Wasserdampfkreislaufs einer Kraftwerksanlage;
- Fig. 2
- eine schematische Ansicht einer Ausführungsform des erfindungsgemäßen Wasserdampfkreislaufs; und
- Fig. 3
- eine schematische Ansicht einer Ausführungsform einer Kondensatsammelleitung des erfindungsgemäßen Wasserdampfkreislaufs.
- Fig. 1
- a schematic view of a known concept of a steam cycle of a power plant;
- Fig. 2
- a schematic view of an embodiment of the steam cycle according to the invention; and
- Fig. 3
- a schematic view of an embodiment of a condensate collecting line of the steam cycle according to the invention.
Gleiche Bezugsziffern beziehen sich nachfolgend auf gleichartige Bauteile.Like reference numerals refer to similar components below.
Um bei einer Entwässerung des Wasserdampfkreislaufes 10 das "saubere" Abwasser im Dampfbereich des Wasserdampfkreislaufes 10, also dasjenige Abwasser, das eine direkte Wiederverwendung im Wasserdampfkreislauf 10 zulässt, von dem "verunreinigten" Abwasser im Wasserbereich des Wasserdampfkreislaufes 10, das für eine direkte Wiederverwendung im Wasserdampfkreislauf 10 nicht geeignet ist, ohne dieses zuvor aufzubereiten, zu trennen, umfasst der Wasserdampfkreislauf 10 ein spezielles Entwässerungssystem, das nachfolgend näher beschrieben wird.At a drainage of the
Zur Entwässerung der Leitungen 30, 32 und 34, in denen sich zum Zeitpunkt eines Abschaltens der Kraftwerksanlage Wasserdampf befindet, sind Entwässerungsleitungen 46, 48 und 50 vorgesehen, die das in den Leitungen 30, 32 und 34 befindliche Kondensat in einen Sammelbehälter 52 leiten, in dem der verbliebene Restdampf kondensiert. Das in den Überhitzern 24, 26 und 28 anfallende Kondensat wird über Entwässerungsleitungen 54, 46 und 58 in einen weiteren Sammelbehälter 60 geleitet, in dem der verbliebene Wasserdampf ebenfalls kondensiert wird. Die Behälter 52 und 60 sind mit dem Kondensator verbunden. Aufgrund des entsprechend niedrigen Druckes wird das eintretende Kondensat teilweise verdampfen und über die Verbindungsleitung 61 in den Kondensator 40 gelangen. Das in den Sammelbehältern 52 und 60 gesammelte Restkondensat wird über Leitungen 62 und 64 unter Verwendung von Pumpen 66 und 68 in einen Kondensatsammelbehälter 70 gepumpt und dort gespeichert. Bei Bedarf kann das in dem Kondensatsammelbehälter 70 gespeicherte Kondensat dann über eine Leitung 72 dem Kondensator 40 und auf diese Weise dem eigentlichen Wasserdampfkreislauf erneut zugeführt werden. Durch die Trennung der sauberen Abwässer und die Rückspeisung in den Wasserdampfkreislauf 10 kann die anfallende Abwassermenge um bis zu 60 % reduziert werden, wodurch langfristig Kosten eingespart werden. Zudem werden aufgrund der Reduzierung der anfallenden Abwassermenge Aufwendungen im Zusammenhang mit der Generierung und späteren Konditionierung von demineralisiertem Wasser gesenkt.For dewatering the
Das "verunreinigte" Abwasser im Wasserbereich des in
Ein Nachteil des in
Von den Überhitzern 24, 26 und 28 zweigen entsprechende Entwässerungsleitungen 112, 114 und 116 ab, die jeweils in eine Kondensatsammel- und Rückführleitung münden, was unter Bezugnahme auf
Der genauere Aufbau eines Überhitzer- und Dampferzeugerentwässerungssystems ist schematisch in
Of the
The detailed structure of a superheater and steam generator drainage system is schematically shown in FIG
Erreicht der Kondensatpegel 156 den maximalen Pegel 158, was durch die nicht dargestellte Niveauerfassungseinrichtung detektiert wird, so wird die Pumpe 166 eingeschaltet, wobei die Ventile 164 und 168 geöffnet sind und das Ventil 170 geschlossen ist. Auf diese Weise wird das in der Kondensatsammel- und Rückführleitung 146 gesammelte Kondensat zurück in den Verdampfer 12 gepumpt. Erfasst die Niveauerfassungseinrichtung, dass der Kondensatpegel 156 den minimalen Pegel 160 erreicht hat, so wird die Pumpe 166 angehalten, so dass kein weiteres Kondensat aus der Kondensatsammel- und Rückführleitung 146 über die Leitungen 162 und 118 in den Verdampfer 12 gefördert wird. Dieses Szenario wiederholt sich, sobald der maximale Pegel 158 erneut erreicht wird. Erreicht der Kondensatpegel 156 den maximalen Pegel 158, ohne dass die Pumpe 166 anspringt, so wird ein Alarm ausgelöst, da ein Fehler der Pumpe 166 oder der Pumpenregelung vorliegen muss. Ist die Pumpe 166 defekt, so kann das Ventil 170 der Leitung 156 geöffnet und das Kondensat in den Abwassersammelbehälter 80 abgelassen werden.If the
Zur Entwässerung des Verdampfers 12 sind der Verdampfer 12 und die Kondensatsammel- und Rückführleitung 146 über die Entwässerungsleitung 130 miteinander verbunden, wobei die Entwässerungsleitung 130 ein Ventil 172 aufweist. Soll nun das in dem Verdampfer 12 enthaltene Kondensat entleert werden, so werden das Ventil 168 der Rückführleitung 118 geschlossen und das Ventil 170 der Leitung 136 sowie das Ventil 172 der Entwässerungsleitung 130 geöffnet. Das in dem Verdampfer 112 enthaltene, unter Druck stehende Kondensat kann somit unter Einsatz der Pumpe 166 über die Entwässerungsleitung 130, die Kondensatsammelleitung 146 und die Leitung 136 zum Abwassersammelbehälter 80 strömen.For dewatering the
Zur Wartung oder Reparatur der Pumpe 166 können die Ventile 164, 170 und 168 geschlossen werden, so dass an der Pumpe 166 problemlos gearbeitet werden kann.For maintenance or repair of the
Das in
Ein wesentlicher Vorteil des zuvor beschriebenen Entwässerungssystems für die Überhitzer 24, 26 und 28 sowie die Verdampfer 12, 14 und 16 besteht in seinem einfachen Aufbau. Ferner kann verglichen mit dem in
Es sollte klar sein, dass die vorliegende Erfindung nicht auf das zuvor beschriebene Ausführungsbeispiel beschränkt ist. Vielmehr sind Modifikationen und Änderungen möglich, ohne den Schutzbereich der vorliegenden Erfindung zu verlassen, der durch die beiliegenden Ansprüche definiert ist.It should be understood that the present invention is not limited to the embodiment described above. Rather, modifications and changes are possible without departing from the scope of the present invention, which is defined by the appended claims.
Claims (10)
- Steam circuit (110) in a power station comprising at least one evaporator (12; 14; 16) and at least one overheater (24; 26; 28),
characterised in that
a condensate collector and return line (146) is provided between the overheater (24; 26; 28) and the evaporator (12; 14; 16) in order to trap condensate present in the overheater (24; 26; 28) and to return the condensate to the evaporator (12; 14; 16). - Steam circuit (110) according to one of the previous claims,
wherein the volume of the evaporator (12; 14; 16) is greater than the volume of the overheater (24; 26; 28). - Steam circuit (110) according to one of the previous claims,
wherein the condensate collector and return line (146) has a pump (166). - Steam circuit (110) according to claim 3,
wherein the operation of the pump (166) can be controlled as a function of the amount of condensate present in the condensate collector and return line (146). - Steam circuit (110) according to one of the previous claims,
wherein the condensate collector and return line (146) has at least one flow control device (164; 168; 170). - Steam circuit (110) according to claim 5,
wherein there is a flow control device (164; 168; 170) upstream and downstream respectively of the pump (166). - Steam circuit (110) according to one of the previous claims,
wherein at least one drain line (112; 114; 116) is arranged between the overheater (24; 26; 28) and the condensate collector and return line (146). - Steam circuit (110) according to claim 7,
wherein the diameter of a manifold (142a; 142b; 142c), from which the drain line (112a; 112b; 112c) branches off, is greater than the diameter of the drain line (112a; 112b; 112c). - Steam circuit (110) according to one of claims 3 to 8, wherein a line (136) provided with an emergency valve (170) and connected to a waste water tank (80) branches off from the condensate collector and return line (146).
- Steam circuit (110) according to one of the previous claims,
wherein the evaporator (12; 14; 16) for removing the condensate present in it can be connected to the condensate collector and return line (146) via additional drain lines (130) and a line (136) with a valve (170) branches off from the condensate collector and return line (146) and is connected to a waste water tank (80).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07703641.6A EP1969285B1 (en) | 2006-01-05 | 2007-01-04 | Steam cycle of a power plant |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06000183A EP1806533A1 (en) | 2006-01-05 | 2006-01-05 | Steam cycle of a power plant |
EP07703641.6A EP1969285B1 (en) | 2006-01-05 | 2007-01-04 | Steam cycle of a power plant |
PCT/EP2007/050081 WO2007077248A2 (en) | 2006-01-05 | 2007-01-04 | Steam circuit in a power station |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1969285A2 EP1969285A2 (en) | 2008-09-17 |
EP1969285B1 true EP1969285B1 (en) | 2016-09-14 |
Family
ID=37188868
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06000183A Withdrawn EP1806533A1 (en) | 2006-01-05 | 2006-01-05 | Steam cycle of a power plant |
EP07703641.6A Not-in-force EP1969285B1 (en) | 2006-01-05 | 2007-01-04 | Steam cycle of a power plant |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06000183A Withdrawn EP1806533A1 (en) | 2006-01-05 | 2006-01-05 | Steam cycle of a power plant |
Country Status (7)
Country | Link |
---|---|
US (1) | US8651067B2 (en) |
EP (2) | EP1806533A1 (en) |
CN (1) | CN101415992B (en) |
EG (1) | EG25000A (en) |
ES (1) | ES2609393T3 (en) |
IL (1) | IL192620A (en) |
WO (1) | WO2007077248A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2956153B1 (en) * | 2010-02-11 | 2015-07-17 | Inst Francais Du Petrole | DEVICE FOR MONITORING A LOW FREEZING WORK FLUID CIRCULATING IN A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND METHOD USING SUCH A DEVICE |
ITMI20120837A1 (en) * | 2012-05-15 | 2013-11-16 | Ansaldo Energia Spa | COMBINED CYCLE PLANT FOR ENERGY PRODUCTION AND METHOD TO OPERATE THIS SYSTEM |
DE102012217717A1 (en) * | 2012-09-28 | 2014-04-03 | Siemens Aktiengesellschaft | Process for the recovery of process waste water from a steam power plant |
EP3066310B1 (en) | 2014-03-05 | 2018-10-31 | Siemens Aktiengesellschaft | Flash tank design |
DE102015206484A1 (en) * | 2015-04-10 | 2016-10-13 | Siemens Aktiengesellschaft | Process for preparing a liquid medium and treatment plant |
US10138139B2 (en) | 2016-02-12 | 2018-11-27 | Babcock Power Environmental Inc. | Wastewater treatment systems and methods |
DE102016113007B4 (en) * | 2016-07-14 | 2018-06-07 | Mathias Jörgensen | Return arrangement and method of return |
AU2020200725A1 (en) * | 2019-02-14 | 2020-09-03 | Croplands Equipment Pty Ltd | Spray head for an agricultural sprayer |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2321390A (en) * | 1938-12-13 | 1943-06-08 | Sulzer Ag | Flow-through tubular steam generator |
GB788704A (en) * | 1956-05-10 | 1958-01-08 | Andre Huet | Improvements in and relating to steam superheater or steam reheater installations |
CH475509A (en) * | 1967-05-23 | 1969-07-15 | Sulzer Ag | Forced once-through steam generator with recirculation of working medium |
US5333677A (en) * | 1974-04-02 | 1994-08-02 | Stephen Molivadas | Evacuated two-phase head-transfer systems |
US4031404A (en) * | 1974-08-08 | 1977-06-21 | Westinghouse Electric Corporation | Combined cycle electric power plant and a heat recovery steam generator having improved temperature control of the steam generated |
US4241701A (en) * | 1979-02-16 | 1980-12-30 | Leeds & Northrup Company | Method and apparatus for controlling steam temperature at a boiler outlet |
ATE22152T1 (en) * | 1980-01-18 | 1986-09-15 | Hamon Sobelco Sa | REHEATING SYSTEM FOR A STEAM TURBINE POWER PLANT. |
DE3216588C1 (en) * | 1982-05-04 | 1983-11-03 | Evt Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart | Device for dewatering the superheater heating surfaces of a steam generator |
DE19544225A1 (en) * | 1995-11-28 | 1997-06-05 | Asea Brown Boveri | Cleaning the water-steam cycle in a positive flow generator |
DE19721854A1 (en) * | 1997-05-26 | 1998-12-03 | Asea Brown Boveri | Improvement in the degree of separation of steam contaminants in a steam-water separator |
DE19749452C2 (en) * | 1997-11-10 | 2001-03-15 | Siemens Ag | Steam power plant |
JP3115294B2 (en) * | 1999-01-29 | 2000-12-04 | 株式会社東芝 | Exhaust heat recovery boiler and hot banking release method |
DE19919653A1 (en) * | 1999-04-29 | 2000-11-02 | Abb Alstom Power Ch Ag | Barrier steam feed |
EP1199445A1 (en) * | 2000-10-17 | 2002-04-24 | Siemens Aktiengesellschaft | Apparatus and method of fuel preheating in combined gas and steam turbine plants |
US7107774B2 (en) * | 2003-08-12 | 2006-09-19 | Washington Group International, Inc. | Method and apparatus for combined cycle power plant operation |
EP1801363A1 (en) * | 2005-12-20 | 2007-06-27 | Siemens Aktiengesellschaft | Power plant |
-
2006
- 2006-01-05 EP EP06000183A patent/EP1806533A1/en not_active Withdrawn
-
2007
- 2007-01-04 US US12/087,383 patent/US8651067B2/en not_active Expired - Fee Related
- 2007-01-04 EP EP07703641.6A patent/EP1969285B1/en not_active Not-in-force
- 2007-01-04 ES ES07703641.6T patent/ES2609393T3/en active Active
- 2007-01-04 CN CN2007800079115A patent/CN101415992B/en not_active Expired - Fee Related
- 2007-01-04 WO PCT/EP2007/050081 patent/WO2007077248A2/en active Application Filing
-
2008
- 2008-06-29 EG EG2008061112A patent/EG25000A/en active
- 2008-07-03 IL IL192620A patent/IL192620A/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US8651067B2 (en) | 2014-02-18 |
WO2007077248A3 (en) | 2008-10-16 |
CN101415992A (en) | 2009-04-22 |
EP1806533A1 (en) | 2007-07-11 |
EG25000A (en) | 2011-04-27 |
EP1969285A2 (en) | 2008-09-17 |
ES2609393T3 (en) | 2017-04-20 |
WO2007077248A2 (en) | 2007-07-12 |
CN101415992B (en) | 2011-05-18 |
US20090165460A1 (en) | 2009-07-02 |
IL192620A (en) | 2012-02-29 |
IL192620A0 (en) | 2009-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1969285B1 (en) | Steam cycle of a power plant | |
EP1819909A1 (en) | Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electric power, and corresponding steam power station | |
EP2224104B1 (en) | Method for operating a power plant | |
EP2885578B1 (en) | Method for recovering process wastewater from a steam power plant | |
EP1064954A1 (en) | Steam steriliser | |
EP1320663A1 (en) | Method and device for preheating and draining steam supply lines connected to steam turbines | |
DE112008000892B4 (en) | condensation device | |
EP0981014B1 (en) | Power plant and process for starting and for purification of its water-steam cycle | |
DE202007015582U1 (en) | Plant for the desalination of saline raw water | |
EP3448813B1 (en) | Sea water desalination device for desalinating sea water | |
WO2014095337A2 (en) | Draining a power plant | |
DE102009011953B4 (en) | Device for removing pressurized hot water from the boiler of a steam generator | |
EP3066310B1 (en) | Flash tank design | |
WO2013170916A1 (en) | Method and device for cleaning waste process water | |
DE102012108992A1 (en) | Method for operating air-cooled condensing system of steam turbine plant, involves determining that majority of steam pipe system of air-cooled condensing system contains external gas | |
DE102009031246A1 (en) | System for the desalination of seawater, comprises an evaporation body, a first line system, which guides salt-containing raw water to the evaporation body, a heater arranged to the evaporation body, and a second line system | |
WO2020212383A1 (en) | Heat exchanger module, heat exchanger system and method for producing the heat exchanger system | |
EP3042047B1 (en) | Module for the condensation of water vapour and for cooling turbine waste water | |
EP2672188A1 (en) | Heat pump assembly for heat recovery from waste water | |
DE3124111C2 (en) | Device for seawater desalination | |
DE102008022462A1 (en) | Device for recovering heat from warm water running off from showering tub, in house, has container formed as heat exchanger, where wall is sectionally formed by heat exchanger pipes by which cold water is conducted | |
EP1647768A1 (en) | Closed system for feeding back condensate and closed method for feeding back condensate | |
WO2019219472A1 (en) | Combined use of waste heat and waste water/sols for the production of drinking water in combined-cycle power plants | |
DE10240952A1 (en) | Fuel cell system for home energy supply | |
WO2022008415A1 (en) | Method and system for cooling or heating waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080702 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
R17D | Deferred search report published (corrected) |
Effective date: 20081016 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160419 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 829425 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007015108 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161215 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2609393 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161214 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170116 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007015108 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
26N | No opposition filed |
Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170104 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170104 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 829425 Country of ref document: AT Kind code of ref document: T Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200319 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20200422 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502007015108 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210120 Year of fee payment: 15 Ref country code: IT Payment date: 20210125 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007015108 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220104 |