EP1968158B1 - System-integrated earth station antenna calibration system incl. phase compensation for automatic tracking (autotracking) - Google Patents

System-integrated earth station antenna calibration system incl. phase compensation for automatic tracking (autotracking) Download PDF

Info

Publication number
EP1968158B1
EP1968158B1 EP08003887.0A EP08003887A EP1968158B1 EP 1968158 B1 EP1968158 B1 EP 1968158B1 EP 08003887 A EP08003887 A EP 08003887A EP 1968158 B1 EP1968158 B1 EP 1968158B1
Authority
EP
European Patent Office
Prior art keywords
antenna
calibration system
test antennas
calibration
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08003887.0A
Other languages
German (de)
French (fr)
Other versions
EP1968158A1 (en
Inventor
Gerald Eckert
Helmut Wolf
Christian Hötzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Airbus DS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus DS GmbH filed Critical Airbus DS GmbH
Publication of EP1968158A1 publication Critical patent/EP1968158A1/en
Application granted granted Critical
Publication of EP1968158B1 publication Critical patent/EP1968158B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • the present invention relates to a system integrated ground station antenna calibration system including phase tracking for automatic tracking (autotracking).
  • program tracking As an alternative to automatic tracking, so-called program tracking is known.
  • program tracking a satellite orbit is calculated based on the last measured, flown orbit for the next overflight.
  • this is a completely different type of tracking than the autotracking.
  • the program tracking is due to the precalculated trajectory inaccurate than the auto-tracking, in which the ground station antenna automatically adjusts to the transmission signal of the satellite and the antenna is tracked automatically, according to the trajectory of the satellite.
  • the far field of the antenna is the area of the field in which a plane wave front, i. Waves of uniform amplitude and uniform phase, the radiated waves can be assumed.
  • the distance of the far field from the antenna depends on the used frequency of the radiated wave and the size of the antenna aperture. The higher the frequency of the signal used or the larger the antenna aperture, the greater the distance at which the far field starts.
  • the ESA ESTRACK network and EUMETSAT use signals in S-band (2 GHz).
  • the existing ground station antennas of the ESA ESTRACK network and of EUMETSAT have all the remote antennas which are located in the far field of the antenna with respect to the S band (2 GHz).
  • the present invention is not limited to the ESA ESTRACK network and EUMETSAT nor to signals in S-band or any other band; These are just examples here.
  • ESA European Space Agency
  • a calibration system for the receiving phase of a mirror-reflector antenna is known, by which the amount of a mirror offset is estimated from the phase difference between two receivers.
  • the radiation sources can be adjacent to Struts can be arranged on the main mirror reflector of the antenna or on its back.
  • the US5,721,554 describes a method for generating a plane wave in the near field of an antenna under test, wherein at least three transmit antennas are used to obtain a synthesized one-dimensional linear radiating plane over 10 to 20 wavelengths at a particular position of the antenna under test at a particular frequency and distance typically in a range of 100 to 200 feet.
  • An object of the present invention is a calibration system for an antenna comprising a plurality of test antennas which generate a plurality of individual fields, wherein the test antennas are arranged in a radiation system of the antenna such that an electromagnetic field is generated from the individual fields in an input device of the antenna which an incident level wavefront corresponds to another antenna.
  • Another object of the present invention is a calibration system, wherein the test antennas are arranged in at least part of a contour of a main reflector of a radiation system of the antenna.
  • Another object of the present invention is a calibration system, wherein moreover, the arrangement in the contour of a main reflector of a radiation system of the antenna is largely circular and at substantially equal angles to the main feed device of the antenna.
  • Another object of the present invention is a calibration system, wherein the test antennas are arranged in at least part of a contour of a subreflector of a radiation system of the antenna.
  • Another object of the present invention is a calibration system, wherein moreover, the arrangement in the contour of a subreflector of a radiation system of the antenna is largely circular and at substantially equal angles to the main feed device of the antenna.
  • a further subject of the present invention is a calibration system, wherein the test antennas are arranged on at least part of a main feed device of a radiation system of the antenna.
  • a further subject of the present invention is a calibration system, wherein moreover the arrangement on a part of a main feed device of a radiation system of the antenna takes place largely circularly and at substantially equal angles around the main feed device of the antenna.
  • Another object of the present invention is a calibration system, wherein phase and / or amplitude weights of individual test signals of the test antennas are weighted differently in such a way that a defined Fehlauslenkung the antenna is simulated with respect to the other antenna.
  • Another object of the present invention is a calibration system, wherein the antenna comprises an automatic tracking system and the simulated signal is used to calibrate the automatic tracking system of the antenna.
  • test antennas are multi-frequency radiators and / or single frequency radiators.
  • Another object of the present invention is a calibration system, wherein the multi-frequency radiators and / or individual frequency radiators are aperture, helical, and / or dipole radiator.
  • Another object of the present invention is a calibration system wherein the number of test antennas is 2 or 4.
  • test antennas are oriented so that they are aligned with their bearing direction substantially to the focus of a main reflector or a subreflector.
  • Another object of the present invention is a calibration system, wherein the radiation system of the antenna is a Cassegrain system.
  • Another object of the present invention is a calibration system according to any one of the preceding claims, wherein the antenna is a ground station antenna.
  • Another object of the present invention is a calibration system wherein the other antenna is a far-field remote antenna.
  • An advantage of the calibration system according to the invention is that no relocation (e.g., new construction) of remote antenna into the far field is needed.
  • Another advantage is that the calibration and testing system integrated into the radiation system (e.g., Cassegrain system) can be used in any azimuth and elevation position.
  • gravitational, position-dependent reflector deformations can be taken into account during calibration, an advantage that is important and interesting, especially for large structures.
  • a further advantage is that the calibration system according to the invention makes possible the possibility of improved calibration of the ground station antenna for the expected elevation and azimuth positions of the satellite track to be tracked.
  • inventive calibration system allows for the consideration and measurement of misalignments of the subreflector and the feed subsystem.
  • FIG. 1 shows the phase adjustment concept according to the invention for a plane wave front incident from the main beam direction. It shows FIG. 1 the previous situation (1st case) in which a signal from a remote antenna / satellite antenna, which is located in the far field and generated at the ground station an incident planar wave front of the main beam direction for the phase adjustment. Further shows FIG. 2 the situation according to the invention (2nd case), in which a signal is fed through circularly polarized test antennas (probes), these test antennas simulating an incident planar wavefront from the main beam direction corresponding to the situation in the first case.
  • 2 the situation according to the invention (2nd case) in which a signal is fed through circularly polarized test antennas (probes), these test antennas simulating an incident planar wavefront from the main beam direction corresponding to the situation in the first case.
  • FIG. 2 shows the phase adjustment concept according to the invention for an obliquely incident flat wave front at a defined angle. It shows FIG. 2 the previous situation (1st case) of the signal of a remote antenna / satellite antenna, which is located in the far field and at the ground station a defined obliquely incident planar wavefront for the Phase alignment generated. Further shows FIG. 2 the situation according to the invention in which a signal is fed through circularly polarized test antennas (probes), these test antennas simulating an obliquely incident planar wavefront at a defined angle corresponding to the situation in the first case.
  • probes circularly polarized test antennas
  • the invention is based on the principle that by means of several test antennas (probes), which are located for example in the contour of the main reflector, as in the case of 2 in FIG. 1 is shown, consisting of several individual fields existing electromagnetic field in the feed device (feed) of the ground station antenna is generated. This field corresponds to an incident plane wavefront generated by a far end remote antenna (1st case in FIG. 1 ).
  • a far end remote antenna (1st case in FIG. 1 ).
  • By different phase and amplitude weighting of the individual test signals of the test antennas (probes) (2nd case in FIG. 2 ) it is thus possible to simulate a defined misalignment of the ground station antenna relative to an imaginary remote antenna (1st case in FIG. 2 ), which corresponds to an obliquely incident planar wavefront. This signal can then be used to calibrate the ground station antenna automatic tracking system (2nd case in FIG. 2 ).
  • a remote antenna is therefore no longer needed.
  • a plurality of individual test antennas are arranged in a contour of a main reflector of a radiation system of a ground station antenna, such that it is possible to simulate / generate a test signal which is representative of the signal of a far-field remote antenna, both in the direction of the bearing and outside the direction of the bearing. equivalent.
  • FIGS. 3 to 5 show exemplary arrangements of test antennas in the contour of the main reflector of the radiation system of a ground station antenna.
  • Possible test antennas may be multi-frequency radiators or single frequency radiators in various embodiments (e.g., aperture, helical, or dipole radiators, etc.).
  • test antennas are not limited. However, the use of 2 or 4 test antennas has proven to be particularly advantageous.
  • the arrangement in the contour of the radiation system of the main reflector is largely circular at substantially equal angles (90 ° in the case of four test antennas) around the main feed device of the antennas.
  • FIGS. 3 to 5 An example of an arrangement and orientation of the test antennas is shown in FIGS FIGS. 3 to 5 shown. However, the arrangement and orientation shown is only an example; the invention is not limited thereto.
  • This approach has the advantage that during the S and X-band autotracking phase calibration procedure, the orientation or misalignment of the subreflector, the orientation or misalignment of the feed subsystem, and its adaptation may be taken into account. Further, there is no degradation during the calibration procedure due to conditions of the test track (e.g., ground reflections, high vegetation, multi-path propagation between ground station antenna and multipath fading, and spurious signals due to the presence of other antenna systems).
  • conditions of the test track e.g., ground reflections, high vegetation, multi-path propagation between ground station antenna and multipath fading, and spurious signals due to the presence of other antenna systems.
  • test antennas which eg in the contour of the main reflector of the Radiation system of the ground station antenna, such as a Cassegrain system, are arranged.
  • test antennas The actual arrangement of the test antennas and their number is determined by simulation, e.g. using the Grasp Antenna Analysis Tool.
  • the antenna diagram of the ground station antenna in the far field must be taken into account. Furthermore, the arrangement is to be considered depending on the positioning device (servo system) of the ground station antenna (e.g., elevation over azimuth) and the type of automatic tracking system used (type of tracking modes used in the feed device and location of the mode couplers relative to the direction of movement of the positioning device).
  • the positioning device e.g., azimuth
  • the type of automatic tracking system used type of tracking modes used in the feed device and location of the mode couplers relative to the direction of movement of the positioning device.
  • test antennas are oriented so that they are aligned with their bearing direction to the focus of the main reflector or the subreflector.
  • a plurality of individual test antennas are arranged in the contour of a subreflector of a radiation system of a ground station antenna. Otherwise, this embodiment corresponds to the first embodiment.
  • a plurality of individual test antennas are arranged on a main feed device (feed cone) of a radiation system of a ground station antenna. Otherwise, this embodiment corresponds to the first embodiment.
  • the invention can be used in particular for setting the phases for the automatic tracking system (eg monopulse tracking, autotracking).
  • the test signal can be used in particular for simulating a misaligned Ground station antenna can be used in azimuth and elevation, in particular to calibrate the system for automatic tracking (eg monopulse tracking) in both axes (azimuth and elevation).
  • the invention also takes account of the tilt angle for the calibration of the phases in azimuth and elevation.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Description

Die vorliegende Erfindung betrifft ein systemintegriertes Bodenstationsantennen-Kalibrierungssystem inkl. Phasenabgleich für automatisches Tracking (Autotracking).The present invention relates to a system integrated ground station antenna calibration system including phase tracking for automatic tracking (autotracking).

Als Alternative zum automatischen Tracking ist das so genannte Programm-Tracking bekannt. Beim Programm-Tracking wird eine Satellitenbahn aufgrund der letzten vermessenen, geflogenen Bahn für den nächsten Überflug berechnet. Dies ist jedoch eine komplett andere Trackingart als das Autotracking. Das Programm-Tracking ist aufgrund der vorausberechneten Flugbahn ungenauer als das Autotracking, bei dem sich die Bodenstationsantenne auf das Sendesignal des Satelliten selbstständig einstellt und die Antenne automatisch, gemäß der Flugbahn des Satelliten, nachgeführt wird.As an alternative to automatic tracking, so-called program tracking is known. During program tracking, a satellite orbit is calculated based on the last measured, flown orbit for the next overflight. However, this is a completely different type of tracking than the autotracking. The program tracking is due to the precalculated trajectory inaccurate than the auto-tracking, in which the ground station antenna automatically adjusts to the transmission signal of the satellite and the antenna is tracked automatically, according to the trajectory of the satellite.

Zur Kalibrierung und für Systemtests von Bodenstationsantennen gibt es in der Regel zu jeder Bodenstationsantenne eine Gegenstellenantenne, welche sich im Fernfeld der Bodenstationsantenne befindet. Das Fernfeld der Antenne ist der Bereich des Feldes, in welchem von einer ebenen Wellenfront, d.h. Wellen von gleichmäßiger Amplitude und gleichmäßiger Phase, der ausgestrahlten Wellen ausgegangen werden kann. Der Abstand des Fernfeldes von der Antenne hängt von der verwendeten Frequenz der abgestrahlten Welle und der Größe der Antennenapertur ab. Je höher die Frequenz des verwendeten Signals oder je größer die Antennenapertur ist, desto größer ist die Entfernung, bei der das Fernfeld beginnt.For ground station antenna system calibration and testing, there is usually a loop antenna for each ground station antenna located in the far field of the ground station antenna. The far field of the antenna is the area of the field in which a plane wave front, i. Waves of uniform amplitude and uniform phase, the radiated waves can be assumed. The distance of the far field from the antenna depends on the used frequency of the radiated wave and the size of the antenna aperture. The higher the frequency of the signal used or the larger the antenna aperture, the greater the distance at which the far field starts.

Das ESA ESTRACK Netzwerk und EUMETSAT verwenden Signale im S-Band (2 GHz). Die bestehenden Bodenstationsantennen des ESA ESTRACK Netzwerkes und von EUMETSAT besitzen alle Gegenstellenantennen, welche bezüglich des S-Bandes (2 GHz) im Fernfeld der Antenne befinden. Die vorliegende Erfindung ist aber weder auf das ESA ESTRACK Netzwerk und EUMETSAT noch auf Signale im S-Band oder irgendeinem anderen Band beschränkt; diese sind hier nur beispielhaft genannt.The ESA ESTRACK network and EUMETSAT use signals in S-band (2 GHz). The existing ground station antennas of the ESA ESTRACK network and of EUMETSAT have all the remote antennas which are located in the far field of the antenna with respect to the S band (2 GHz). The however, the present invention is not limited to the ESA ESTRACK network and EUMETSAT nor to signals in S-band or any other band; These are just examples here.

Für wissenschaftliche Anwendungen werden zunehmend höhere Datenraten benötigt. Deswegen geht die European Space Agency (ESA) dazu über, zukünftige Satelliten nur noch mit X-Band-Transpondern, auch für die Steuerung der Satelliten (TT&C), auszustatten.For scientific applications increasingly higher data rates are needed. That's why the European Space Agency (ESA) has decided to equip future satellites only with X-band transponders, also for the control of satellites (TT & C).

Daraus ergibt sich ein Problem für die Bodenstationsantennen, da sich bei Verwendung des X-Band (bei 15 m Aperturdurchmessern ab ca. 8 GHz) die Gegenstellenantennen im Nahfeld der Antenne befinden. Um in diesem Falle die Bodenstationsantennen weiterhin auf die bekannte Art kalibrieren zu können, wäre eine Verlagerung bzw. Neubau einer Gegenstellenantennen in den Fernfeldbereich des X-Bandes notwendig. Eine solche Vorgehensweise ist einerseits mit hohen Kosten verbunden und andererseits häufig aufgrund geografischer Gegebenheiten und der Erdkrümmung nicht machbar.This results in a problem for the ground station antennas, since when using the X-band (at 15 m aperture diameters from about 8 GHz), the remote antennas are in the near field of the antenna. In order to be able to continue to calibrate the ground station antennas in the known manner in this case, it would be necessary to relocate or rebuild a remote antenna into the far field region of the X band. On the one hand, such a procedure is associated with high costs and, on the other hand, is often not feasible due to geographic conditions and curvature of the earth.

Aus der US-B1-7 119 739 ist ein Kalibrierungssystem für eine Reflektorantenne bekannt, bei dem eine Testantenne über verschiedene Testpunkte vor der Reflektorantenne bewegt wird. Jedem Messpunkt wird dabei eine bestimmte Phase und Amplitude für ein auszustrahlendes Testsignal zugeordnet, um so eine einfallende ebene Wellenfront zu simulieren. Allerdings besitzt dieses System den Nachteil, dass eine aufwendige mechanische Vorrichtung zum Bewegen der Testantenne vorgesehen werden muss.From the US-B1-7 119 739 a calibration system for a reflector antenna is known in which a test antenna is moved over different test points in front of the reflector antenna. Each measurement point is assigned a specific phase and amplitude for a test signal to be emitted in order to simulate an incident planar wavefront. However, this system has the disadvantage that a complex mechanical device for moving the test antenna must be provided.

Aus der JP2002-261541A ist ein Kalibrierungssystem für die Empfangsphase einer Spiegelreflektorantenne bekannt, durch das der Betrag eines Spiegelversatzes anhand der Phasendifferenz zwischen zwei Empfängern geschätzt wird. Hierzu wird eine kleine Anzahl an Strahlungsquellen für die Kalibrierung verwendet. Die Strahlungsquellen können in Nachbarschaft zu Streben auf dem Haupt-Spiegelreflektor der Antenne oder auf seiner Rückseite angeordnet sein.From the JP2002-261541A For example, a calibration system for the receiving phase of a mirror-reflector antenna is known, by which the amount of a mirror offset is estimated from the phase difference between two receivers. For this a small number of radiation sources are used for the calibration. The radiation sources can be adjacent to Struts can be arranged on the main mirror reflector of the antenna or on its back.

Die US5,721,554 beschreibt ein Verfahren zum Erzeugen einer ebenen Welle im Nahfeld einer zu testenden Antenne, bei dem mindestens drei Sendeantennen benutzt werden, um eine synthetisierte eindimensionale lineare Strahlungsebene über 10 bis 20 Wellenlängen an einer bestimmten Position der zu testenden Antenne bei einer bestimmten Frequenz und einem bestimmten Abstand, typischerweise in einem Bereich von 100 bis 200 Fuss, zu erzeugen.The US5,721,554 describes a method for generating a plane wave in the near field of an antenna under test, wherein at least three transmit antennas are used to obtain a synthesized one-dimensional linear radiating plane over 10 to 20 wavelengths at a particular position of the antenna under test at a particular frequency and distance typically in a range of 100 to 200 feet.

Es ist eine Aufgabe der vorliegenden Erfindung ein Kalibrierungssystem anzugeben, welches es ermöglicht Bodenstationsantennen ohne Verwendung von Gegenstellenantennen zu kalibrieren.It is an object of the present invention to provide a calibration system that allows ground station antennas to be calibrated without the use of remote antennas.

Diese Aufgabe wird gelöst durch ein Kalibrierungssystem nach Anspruch 1. Vorteilhafte Ausgestaltungen der Erfindung befinden sich in den Unteransprüchen.This object is achieved by a calibration system according to claim 1. Advantageous embodiments of the invention are in the subclaims.

Ein Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem für eine Antenne umfassend mehrere Testantennen, welche mehrere Einzelfelder erzeugen, wobei die Testantennen in einem Strahlungssystem der Antenne so angeordnet sind, dass aus den Einzelfeldern ein elektromagnetisches Feld in einer Einspeisevorrichtung der Antenne erzeugt wird, welches einer einfallenden ebenen Wellenfront einer anderen Antenne entspricht.An object of the present invention is a calibration system for an antenna comprising a plurality of test antennas which generate a plurality of individual fields, wherein the test antennas are arranged in a radiation system of the antenna such that an electromagnetic field is generated from the individual fields in an input device of the antenna which an incident level wavefront corresponds to another antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die Testantennen in zumindest einem Teil einer Kontur eines Hauptreflektors eines Strahlungssystems der Antenne angeordnet werden.Another object of the present invention is a calibration system, wherein the test antennas are arranged in at least part of a contour of a main reflector of a radiation system of the antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei darüber hinaus die Anordnung in der Kontur eines Hauptreflektors eines Strahlungssystems der Antenne weitestgehend kreisförmig und mit im Wesentlichen gleichen Winkeln um die Haupteinspeisevorrichtung der Antenne erfolgt.Another object of the present invention is a calibration system, wherein moreover, the arrangement in the contour of a main reflector of a radiation system of the antenna is largely circular and at substantially equal angles to the main feed device of the antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die Testantennen in zumindest einem Teil einer Kontur eines Subreflektors eines Strahlungssystems der Antenne angeordnet werden.Another object of the present invention is a calibration system, wherein the test antennas are arranged in at least part of a contour of a subreflector of a radiation system of the antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei darüber hinaus die Anordnung in der Kontur eines Subreflektors eines Strahlungssystems der Antenne weitestgehend kreisförmig und mit im Wesentlichen gleichen Winkeln um die Haupteinspeisevorrichtung der Antenne erfolgt.Another object of the present invention is a calibration system, wherein moreover, the arrangement in the contour of a subreflector of a radiation system of the antenna is largely circular and at substantially equal angles to the main feed device of the antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die Testantennen an zumindest einem Teil einer Hauptspeisevorrichtung eines Strahlungssystems der Antenne angeordnet werden.A further subject of the present invention is a calibration system, wherein the test antennas are arranged on at least part of a main feed device of a radiation system of the antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei darüber hinaus die Anordnung an einem Teil einer Hauptspeisevorrichtung eines Strahlungssystems der Antenne weitestgehend kreisförmig und mit im Wesentlichen gleichen Winkeln um die Haupteinspeisevorrichtung der Antenne erfolgt.A further subject of the present invention is a calibration system, wherein moreover the arrangement on a part of a main feed device of a radiation system of the antenna takes place largely circularly and at substantially equal angles around the main feed device of the antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei Phasen- und/oder Amplitudengewichtungen von einzelnen Testsignalen der Testantennen unterschiedlich gewichtet werden und zwar so, dass eine definierte Fehlauslenkung der Antenne gegenüber der anderen Antenne simuliert wird.Another object of the present invention is a calibration system, wherein phase and / or amplitude weights of individual test signals of the test antennas are weighted differently in such a way that a defined Fehlauslenkung the antenna is simulated with respect to the other antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die Antenne ein automatisches Trackingsystem umfasst und das simulierte Signal zur Kalibrierung des automatischen Trackingsystems der Antenne verwendet wird.Another object of the present invention is a calibration system, wherein the antenna comprises an automatic tracking system and the simulated signal is used to calibrate the automatic tracking system of the antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die Testantennen Mehrfrequenzstrahler und/oder Einzelfrequenzstrahler sind.Another object of the present invention is a calibration system, wherein the test antennas are multi-frequency radiators and / or single frequency radiators.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die Mehrfrequenzstrahler und/oder Einzelfrequenzstrahler Apertur-, Helix-, und/oder Dipolstrahler sind.Another object of the present invention is a calibration system, wherein the multi-frequency radiators and / or individual frequency radiators are aperture, helical, and / or dipole radiator.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die Anzahl der Testantennen 2 oder 4 ist.Another object of the present invention is a calibration system wherein the number of test antennas is 2 or 4.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die Testantennen so orientiert sind, dass sie im Wesentlichen mit ihrer Peilrichtung auf den Fokus eines Hauptreflektors oder eines Subreflektors ausgerichtet sind.Another object of the present invention is a calibration system, wherein the test antennas are oriented so that they are aligned with their bearing direction substantially to the focus of a main reflector or a subreflector.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei das Strahlungssystem der Antenne ein Cassegrain-System ist. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem nach einem der vorherigen Ansprüche, wobei die Antenne eine Bodenstationsantenne ist.Another object of the present invention is a calibration system, wherein the radiation system of the antenna is a Cassegrain system. Another object of the present invention is a calibration system according to any one of the preceding claims, wherein the antenna is a ground station antenna.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kalibrierungssystem, wobei die andere Antenne eine Gegenstellenantenne im Fernfeld ist.Another object of the present invention is a calibration system wherein the other antenna is a far-field remote antenna.

Ein Vorteil des erfindungsgemäßen Kalibrierungssystems ist, dass keine Verlagerung (z.B. Neubau) von Gegenstellenantenne in das Fernfeld benötigt wird.An advantage of the calibration system according to the invention is that no relocation (e.g., new construction) of remote antenna into the far field is needed.

Ein weiterer Vorteil ist, dass das in das Strahlungssystem (z.B. Cassegrain-System) integrierte Kalibrierungs- und Testsystem in jeder Azimut- und Elevationsposition verwendet werden kann. Es können somit gravitationsbedingte, positionsabhängige Reflektorverformungen bei der Kalibrierung berücksichtigt werden, ein gerade für große Strukturen wichtiger und interessanter Vorteil.Another advantage is that the calibration and testing system integrated into the radiation system (e.g., Cassegrain system) can be used in any azimuth and elevation position. Thus, gravitational, position-dependent reflector deformations can be taken into account during calibration, an advantage that is important and interesting, especially for large structures.

Ein weiterer Vorteil ist, dass das erfindungsgemäße Kalibrierungssystem die Möglichkeit der verbesserten Kalibrierung der Bodenstationsantenne für die erwarteten Elevations- und Azimut-Positionen der zu trackenden Satellitenbahn ermöglicht.A further advantage is that the calibration system according to the invention makes possible the possibility of improved calibration of the ground station antenna for the expected elevation and azimuth positions of the satellite track to be tracked.

Ferner ermöglicht das erfindungsgemäße Kalibrierungssystem die Berücksichtigung und Vermessung von Fehlausrichtungen des Subreflektors und des Einspeisevorrichtungssubsystems (Feed-Subsystems).Further, the inventive calibration system allows for the consideration and measurement of misalignments of the subreflector and the feed subsystem.

Darüber hinaus kommt es bei dem erfindungsgemäßen Kalibrierungssystem zu keiner Degradation aufgrund von Störungen und Mehrwegeausbreitungen auf der Teststrecke zwischen Gegenstellenantenne und Bodenstationsantenne (Device under Test).Moreover, in the calibration system according to the invention there is no degradation due to disturbances and multipath propagation on the test track between the remote station antenna and the ground station antenna (device under test).

Es zeigen:

Figur 1
ein Fernfeldkalibrierungssignal eingespeist aus der Peilrichtung
Figur 2
ein Fernfeldkalibrierungssignal eingespeist von außerhalb der Peilrichtung
Figur 3
beispielhafte Positionen für die Testantennen
Figur 4
Antennendraufsicht (Top View) mit Einspeisevorrichtung (Feed) und Testantennen
Figur 5
Antennenseitenansicht (Side View) mit Einspeisevorrichtung und Testantennen
Show it:
FIG. 1
a far-field calibration signal fed from the direction of the bearing
FIG. 2
a far-field calibration signal fed from outside the direction of the bearing
FIG. 3
exemplary positions for the test antennas
FIG. 4
Aerial top view with feed and test antennas
FIG. 5
Antenna side view (side view) with feed device and test antennas

Die Unabhängigkeit des erfindungsgemäßen Kalibrierungssystems von Gegenstellenantennen wird dadurch gewährleistet, dass das Kalibrierungssystem ein Empfangssignal, welches im Fernfeld einer Bodenstationsantenne erzeugt wurde (Testsignal), generiert bzw. simuliert.The independence of the inventive calibration system of remote antennas is ensured by the fact that the calibration system generates or simulates a received signal, which was generated in the far field of a ground station antenna (test signal).

Figur 1 zeigt das erfindungsgemäße Phasenabgleichskonzept für eine aus Hauptstrahlrichtung einfallende ebene Wellenfront. Dabei zeigt Figur 1 die bisherige Situation (1. Fall) bei dem ein Signal einer Gegenstellenantenne/Satellitenantenne, welche sich im Fernfeld befindet und an der Bodenstation eine einfallende ebene Wellenfront aus Hauptstrahlrichtung für den Phasenabgleich erzeugt. Ferner zeigt Figur 2 die erfindungsgemäße Situation (2. Fall), bei der ein Signal durch zirkular polarisierte Testantennen (Probes) eingespeist wird, wobei diese Testantennen eine einfallende ebene Wellenfront aus Hauptstrahlrichtung entsprechend der Situation im 1. Fall simulieren. FIG. 1 shows the phase adjustment concept according to the invention for a plane wave front incident from the main beam direction. It shows FIG. 1 the previous situation (1st case) in which a signal from a remote antenna / satellite antenna, which is located in the far field and generated at the ground station an incident planar wave front of the main beam direction for the phase adjustment. Further shows FIG. 2 the situation according to the invention (2nd case), in which a signal is fed through circularly polarized test antennas (probes), these test antennas simulating an incident planar wavefront from the main beam direction corresponding to the situation in the first case.

Figur 2 zeigt das erfindungsgemäße Phasenabgleichskonzept für eine schräg einfallend ebene Wellenfront unter einem definierten Winkel. Dabei zeigt Figur 2 die bisherige Situation (1. Fall) des Signals einer Gegenstellenantenne/Satellitenantenne, welche sich im Fernfeld befindet und an der Bodenstation eine definierte schräg einfallende ebene Wellenfront für den Phasenabgleich erzeugt. Ferner zeigt Figur 2 die erfindungsgemäße Situation, bei welcher ein Signal durch zirkular polarisierte Testantennen (Probes) eingespeist wird, wobei diese Testantennen eine schräg einfallende ebene Wellenfront unter einem definierten Winkel entsprechend der Situation im 1. Fall simulieren. FIG. 2 shows the phase adjustment concept according to the invention for an obliquely incident flat wave front at a defined angle. It shows FIG. 2 the previous situation (1st case) of the signal of a remote antenna / satellite antenna, which is located in the far field and at the ground station a defined obliquely incident planar wavefront for the Phase alignment generated. Further shows FIG. 2 the situation according to the invention in which a signal is fed through circularly polarized test antennas (probes), these test antennas simulating an obliquely incident planar wavefront at a defined angle corresponding to the situation in the first case.

Die Erfindung basiert auf dem Prinzip, dass mittels mehrerer Testantennen (Probes), welche sich z.B. in der Kontur des Hauptreflektors befinden, wie im Fall 2 in Figur 1 gezeigt ist, ein aus mehreren Einzelfeldern bestehendes elektromagnetisches Feld in der Einspeisevorrichtung (Feed) der Bodenstationsantenne erzeugt wird. Dieses Feld entspricht einer einfallenden ebenen Wellenfront, die von einer Gegenstellenantenne im Fernfeld generiert wird (1. Fall in Figur 1). Durch unterschiedliche Phasen- und Amplitudengewichtung der einzelnen Testsignale der Testantennen (Probes) (2. Fall in Figur 2) ist es somit möglich, eine definierte Fehlauslenkung der Bodenstationsantenne gegenüber einer gedachten Gegenstellenantenne zu simulieren (1. Fall in Figur 2), welches einer schräg einfallenden ebenen Wellenfront entspricht. Dieses Signal kann dann für die Kalibrierung des automatischen Trackingsystems der Bodenstationsantenne verwendet werden (2. Fall in Figur 2). Eine Gegenstellenantenne wird somit nicht mehr benötigt.The invention is based on the principle that by means of several test antennas (probes), which are located for example in the contour of the main reflector, as in the case of 2 in FIG. 1 is shown, consisting of several individual fields existing electromagnetic field in the feed device (feed) of the ground station antenna is generated. This field corresponds to an incident plane wavefront generated by a far end remote antenna (1st case in FIG FIG. 1 ). By different phase and amplitude weighting of the individual test signals of the test antennas (probes) (2nd case in FIG. 2 ), it is thus possible to simulate a defined misalignment of the ground station antenna relative to an imaginary remote antenna (1st case in FIG. 2 ), which corresponds to an obliquely incident planar wavefront. This signal can then be used to calibrate the ground station antenna automatic tracking system (2nd case in FIG. 2 ). A remote antenna is therefore no longer needed.

Gemäß einer Ausführungsform der Erfindung werden mehrere einzelne Testantennen in einer Kontur eines Hauptreflektors eines Strahlungssystems einer Bodenstationsantenne so angeordnet, dass es möglich ist, ein Testsignal zu simulieren/erzeugen, welches dem Signal einer Gegenstellenantenne im Fernfeld, sowohl in Peilrichtung als auch außerhalb der Peilrichtung, entspricht.According to one embodiment of the invention, a plurality of individual test antennas are arranged in a contour of a main reflector of a radiation system of a ground station antenna, such that it is possible to simulate / generate a test signal which is representative of the signal of a far-field remote antenna, both in the direction of the bearing and outside the direction of the bearing. equivalent.

Die Figuren 3 bis 5 zeigen beispielhafte Anordnungen von Testantennen in der Kontur des Hauptreflektors des Strahlungssystems einer Bodenstationsantenne.The FIGS. 3 to 5 show exemplary arrangements of test antennas in the contour of the main reflector of the radiation system of a ground station antenna.

Mögliche Testantennen (Probes) können Mehrfrequenzstrahler oder Einzelfrequenzstrahler in verschiedenen Ausführungsformen (z.B. Apertur-, Helix-, oder Dipolstrahler etc.) sein.Possible test antennas (probes) may be multi-frequency radiators or single frequency radiators in various embodiments (e.g., aperture, helical, or dipole radiators, etc.).

Die Anzahl der Testantennen ist nicht beschränkt. Allerdings hat sich die Verwendung von 2 oder 4 Testantennen als besonders vorteilhaft erwiesen.The number of test antennas is not limited. However, the use of 2 or 4 test antennas has proven to be particularly advantageous.

Die Anordnung in der Kontur des Strahlungssystems des Hauptreflektors erfolgt weitestgehend kreisförmig mit im Wesentlichen gleichen Winkeln (90° im Falle von vier Testantennen) um die Haupteinspeisevorrichtung der Antennen.The arrangement in the contour of the radiation system of the main reflector is largely circular at substantially equal angles (90 ° in the case of four test antennas) around the main feed device of the antennas.

Ein Beispiel einer Anordnung und Ausrichtung der Testantennen ist in den Figuren 3 bis 5 gezeigt. Die gezeigte Anordnung und Ausrichtung ist allerdings nur beispielhaft; die Erfindung nicht darauf beschränkt.An example of an arrangement and orientation of the test antennas is shown in FIGS FIGS. 3 to 5 shown. However, the arrangement and orientation shown is only an example; the invention is not limited thereto.

Diese Vorgehensweise hat den Vorteil, dass während der Kalibrierungsprozedur für die Phasebestimmung für das S- und X-band Autotracking die Ausrichtung bzw. die Fehlausrichtung des Subreflektors, die Ausrichtung bzw. die Fehlausrichtung des Einspeise-Subsystems und dessen Anpassung mit berücksichtigt werden können. Ferner erfolgt keine Verschlechterung während der Kalibrierungsprozedur, welche auf Bedingungen der Teststrecke zurückzuführen ist (z.B. durch Reflektionen des Bodens, hoher Vegetation, Mehrwegeausbreitung zwischen Bodenstationsantenne und Gegenstellenantenne (Multipath Fading) und Störsignale durch die Anwesenheit anderer Antennensysteme).This approach has the advantage that during the S and X-band autotracking phase calibration procedure, the orientation or misalignment of the subreflector, the orientation or misalignment of the feed subsystem, and its adaptation may be taken into account. Further, there is no degradation during the calibration procedure due to conditions of the test track (e.g., ground reflections, high vegetation, multi-path propagation between ground station antenna and multipath fading, and spurious signals due to the presence of other antenna systems).

Mit Hilfe der Erfindung ist es möglich, definierte Kalibrierungswinkel während des Autotrack-Phasings über die Gegenstellenantenne (Boresight-Tower), z.B. 0,3 Grad im S-Band und 0,08 Grad im X-Band durch die Einspeisung eines definiert phasenverschobenen und amplitudengewichteten Signals zu simulieren, welches durch mehrere einzelne, z.B. vier, Testantennen ausgestrahlt wird, welche z.B. in der Kontur des Hauptreflektors des Strahlungssystems der Bodenstationsantenne, z.B. ein Cassegrain-System, angeordnet sind.With the aid of the invention, it is possible to define defined calibration angles during auto track phasing via the remote antenna (eg Boresight Tower), eg 0.3 degrees in the S band and 0.08 degrees in the X band through the feed of a defined phase shifted and amplitude weighted one To simulate signals which is emitted by several individual, eg four, test antennas, which eg in the contour of the main reflector of the Radiation system of the ground station antenna, such as a Cassegrain system, are arranged.

Die tatsächliche Anordnung der Testantennen und ihre Anzahl wird durch Simulation, z.B. mit Hilfe des Grasp Antenna Analysis Tools, ermittelt.The actual arrangement of the test antennas and their number is determined by simulation, e.g. using the Grasp Antenna Analysis Tool.

Dabei ist das Antennendiagramm der Bodenstationsantenne im Fernfeld zu berücksichtigen. Weiterhin ist die Anordnung abhängig von der verwendeten Positioniereinrichtung (Servosystem) der Bodenstationsantenne (z.B. Elevation über Azimuth) und der Art des angewendeten automatischen Trackingsystems (Art der verwendeten Trackingmoden in der Einspeisevorrichtung (Feed) und Lage der Modenkoppler zur Bewegungsrichtung der Positioniereinrichtung) zu berücksichtigen.The antenna diagram of the ground station antenna in the far field must be taken into account. Furthermore, the arrangement is to be considered depending on the positioning device (servo system) of the ground station antenna (e.g., elevation over azimuth) and the type of automatic tracking system used (type of tracking modes used in the feed device and location of the mode couplers relative to the direction of movement of the positioning device).

Die Testantennen sind so orientiert, dass sie mit ihrer Peilrichtung auf den Fokus des Hauptreflektors oder des Subreflektors ausgerichtet sind.The test antennas are oriented so that they are aligned with their bearing direction to the focus of the main reflector or the subreflector.

Um ein Testsignal zu simulieren/erzeugen, werden, gemäß einer anderen Ausführungsform der Erfindung, mehrere einzelne Testantennen in der Kontur eines Subreflekors eines Strahlungssystems einer Bodenstationsantenne angeordnet. Ansonsten entspricht diese Ausführungsform der ersten Ausführungsform.In order to simulate / generate a test signal, according to another embodiment of the invention, a plurality of individual test antennas are arranged in the contour of a subreflector of a radiation system of a ground station antenna. Otherwise, this embodiment corresponds to the first embodiment.

Um ein Testsignal zu simulieren/erzeugen, werden gemäß einer weiteren Ausführungsform der Erfindung mehrere einzelne Testantennen an einer Haupteinspeisevorrichtung (Einspeisekonus) eines Strahlungssystem einer Bodenstationsantenne angeordnet. Ansonsten entspricht diese Ausführungsform der ersten Ausführungsform.In order to simulate / generate a test signal, according to a further embodiment of the invention, a plurality of individual test antennas are arranged on a main feed device (feed cone) of a radiation system of a ground station antenna. Otherwise, this embodiment corresponds to the first embodiment.

Die Erfindung ist insbesondere für die Einstellung der Phasen für das automatische Trackingsystem (z.B. Monopulstracking, Autotracking) verwendbar. Das Testsignal kann insbesondere zur Simulation einer fehlausgerichteten Bodenstationsantenne in Azimut und Elevation verwendet werden, insbesondere, um das System für automatisches Tracking (z.B. Monopulstracking) in beiden Achsen (Azimut und Elevation) zu kalibrieren.The invention can be used in particular for setting the phases for the automatic tracking system (eg monopulse tracking, autotracking). The test signal can be used in particular for simulating a misaligned Ground station antenna can be used in azimuth and elevation, in particular to calibrate the system for automatic tracking (eg monopulse tracking) in both axes (azimuth and elevation).

Bei Bodenstationsantennen mit einem Tiltmechanismus berücksichtigt die Erfindung ebenso den Tiltwinkel für die Kalibrierung der Phasen in Azimut und Elevation.For ground station antennas with a tilt mechanism, the invention also takes account of the tilt angle for the calibration of the phases in azimuth and elevation.

Claims (13)

  1. Calibration system for an antenna comprising several test antennas which generate several individual fields, wherein the test antennas have been arranged in a radiation system of the antenna in such a way that by means of the test antennas an electromagnetic field that corresponds to an incident plane wavefront of another antenna is generated in a feeding device of the antenna from the individual fields of the test antennas, and the radiation system exhibits the feeding device of the antenna and at least one reflector, wherein the test antennas have been arranged in at least one part of a contour of a main reflector of the radiation system of the antenna, in at least one part of a contour of a subreflector of the radiation system of the antenna, or on at least one part of a main feed device of the radiation system of the antenna.
  2. Calibration system according to Claim 2, wherein the arrangement in the contour of a main reflector of the radiation system of the antenna is undertaken very largely in the form of a circle and with substantially equal angles around the main feed device of the antenna.
  3. Calibration system according to Claim 1, wherein the arrangement in the contour of a subreflector of the radiation system of the antenna is undertaken very largely in the form of a circle and with substantially equal angles around the main feed device of the antenna.
  4. Calibration system according to Claim 1, wherein the arrangement on a part of a main feed device of the radiation system of the antenna is undertaken very largely in the form of a circle and with substantially equal angles around the main feed device of the antenna.
  5. Calibration system according to one of the preceding claims, wherein phase weightings and/or amplitude weightings of individual test signals of the test antennas are weighted differently, specifically in such a way that a defined faulty deflection of the antenna with respect to the other antenna is simulated.
  6. Calibration system according to one of the preceding claims, wherein the antenna encompasses an automatic tracking system, and the simulated signal is used for calibrating the automatic tracking system of the antenna.
  7. Calibration system according to one of the preceding claims, wherein the test antennas are multi-frequency emitters and/or single-frequency emitters.
  8. Calibration system according to one of the preceding claims, wherein the multi-frequency emitters and/or single-frequency emitters are aperture emitters, helical emitters and/or dipole emitters.
  9. Calibration system according to one of the preceding claims, wherein the number of test antennas is two or four.
  10. Calibration system according to one of the preceding claims, wherein the test antennas have been oriented in such a way that their bearing directions are substantially aligned with the focus of a main reflector or of a subreflector.
  11. Calibration system according to one of the preceding claims, wherein the radiation system of the antenna is a Cassegrain system.
  12. Calibration system according to one of the preceding claims, wherein the antenna is a ground-station antenna.
  13. Calibration system according to one of the preceding claims, wherein the other antenna is a remote-terminal antenna in the far field.
EP08003887.0A 2007-03-07 2008-03-03 System-integrated earth station antenna calibration system incl. phase compensation for automatic tracking (autotracking) Active EP1968158B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007011469.0A DE102007011469B4 (en) 2007-03-07 2007-03-07 System-integrated ground station antenna calibration system including phase alignment for automatic tracking (autotracking)

Publications (2)

Publication Number Publication Date
EP1968158A1 EP1968158A1 (en) 2008-09-10
EP1968158B1 true EP1968158B1 (en) 2016-10-05

Family

ID=39591665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08003887.0A Active EP1968158B1 (en) 2007-03-07 2008-03-03 System-integrated earth station antenna calibration system incl. phase compensation for automatic tracking (autotracking)

Country Status (2)

Country Link
EP (1) EP1968158B1 (en)
DE (1) DE102007011469B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663572B (en) * 2018-02-23 2020-06-30 北京无线电计量测试研究所 Plane wave phase multi-section measurement splicing method
CN110345923B (en) * 2018-04-08 2021-06-18 孟艳艳 Antenna main and auxiliary reflecting surface pose measuring system and auxiliary reflecting surface pose adjusting method
CN114062793B (en) * 2021-11-12 2024-04-09 上海毫微太科技有限公司 Correction method, device, equipment and storage medium of array antenna system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721554A (en) * 1996-12-20 1998-02-24 Hughes Electronics Near field planar wave generation for electronic range testing
JP2002261541A (en) * 2001-02-28 2002-09-13 Mitsubishi Electric Corp Device for calibrating reception phase mirror reflector antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2199447B (en) * 1984-10-25 1988-10-26 Stc Plc Monitoring arrangement for a receive array system
DE10112894B4 (en) * 2001-03-15 2006-03-09 Eads Deutschland Gmbh Method and arrangement for checking the transmission and reception properties of a radar sensor
US6531989B1 (en) * 2001-11-14 2003-03-11 Raytheon Company Far field emulator for antenna calibration
US7119739B1 (en) 2002-05-14 2006-10-10 Bae Systems Information And Electronic Systems Integration Inc. Near field to far field DF antenna array calibration technique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721554A (en) * 1996-12-20 1998-02-24 Hughes Electronics Near field planar wave generation for electronic range testing
JP2002261541A (en) * 2001-02-28 2002-09-13 Mitsubishi Electric Corp Device for calibrating reception phase mirror reflector antenna

Also Published As

Publication number Publication date
DE102007011469B4 (en) 2021-08-12
EP1968158A1 (en) 2008-09-10
DE102007011469A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
EP2353029B1 (en) Device for receiving secondary radio signals with quasi-dynamic or dynamic sectoring of the space to be monitored and corresponding method
EP2735055B1 (en) Reflector antenna for a synthetic aperture radar
EP2322944B1 (en) High frequency measurement assembly and method for measuring a high frequency test subject, in particular an antenna
DE60302379T2 (en) Radar processing system and method for detecting and monitoring targets
EP1312135B1 (en) Arrangement and method for influencing and controlling electromagnetic alternating fields and/or antennae and antennae diagrams
DE102011088045B4 (en) Phased array antenna and phase calibration method
DE102011101049A1 (en) Sensor and alignment method
DE10237823A1 (en) Calibration device for an antenna array and associated antenna array and method for its operation
EP2965382B1 (en) Antenna arrangement with variable direction characteristic
EP0028836B1 (en) Antenna arrangement for an omnidirectional search radar for target location with height detection
EP3701280B1 (en) Radar sensor having a plurality of main beam directions
EP1968158B1 (en) System-integrated earth station antenna calibration system incl. phase compensation for automatic tracking (autotracking)
DE3248879A1 (en) METHOD AND DEVICE FOR GENERATING ARTIFICIAL TARGET BRANDS IN THE IMAGE OF A RADAR WITH SYNTHETIC APERTURE (SAR)
EP2167364A1 (en) Communication device and method for the operation thereof
DE69904795T2 (en) Antenna system of a satellite terminal
DE69900353T2 (en) Digital spacecraft antenna tracking system
DE69430556T2 (en) Active antenna with electronic scanning in azimuth and elevation, especially for microwave imaging using satellite
WO2019158251A1 (en) Antenna array for a radar sensor
DE102007058236A1 (en) Bistatic array antenna and method
DE10112894B4 (en) Method and arrangement for checking the transmission and reception properties of a radar sensor
DE69803671T2 (en) ANTENNA WITH HIGH BEAM SWIVELING CAPACITY
DE2752680A1 (en) Directional aerial for very short waves - has main exciter producing main lobe, and secondary exciters producing secondary lobes compensating interferences
DE2260028C1 (en)
EP4334734A1 (en) Method and system for automatically measuring and/or obtaining parameters from systems and/or antennas
DE102021121648A1 (en) An antenna for a weather radar system, a method for controlling an antenna for a weather radar system, and a computer program

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20081029

17Q First examination report despatched

Effective date: 20081201

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160428

INTG Intention to grant announced

Effective date: 20160512

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOLF, HELMUT

Inventor name: ECKERT, GERALD

Inventor name: HOETZEL, CHRISTIAN

INTG Intention to grant announced

Effective date: 20160428

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014670

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008014670

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008014670

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008014670

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, 82024 TAUFKIRCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180405 AND 20180411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220321

Year of fee payment: 15

Ref country code: CH

Payment date: 20220321

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220322

Year of fee payment: 15

Ref country code: FR

Payment date: 20220322

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230303