EP0028836B1 - Antenna arrangement for an omnidirectional search radar for target location with height detection - Google Patents

Antenna arrangement for an omnidirectional search radar for target location with height detection Download PDF

Info

Publication number
EP0028836B1
EP0028836B1 EP80106933A EP80106933A EP0028836B1 EP 0028836 B1 EP0028836 B1 EP 0028836B1 EP 80106933 A EP80106933 A EP 80106933A EP 80106933 A EP80106933 A EP 80106933A EP 0028836 B1 EP0028836 B1 EP 0028836B1
Authority
EP
European Patent Office
Prior art keywords
radiators
antenna arrangement
row
primary
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80106933A
Other languages
German (de)
French (fr)
Other versions
EP0028836A1 (en
Inventor
Anton Dipl.-Ing. Brunner
Erwin Dipl.-Ing. Kress
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0028836A1 publication Critical patent/EP0028836A1/en
Application granted granted Critical
Publication of EP0028836B1 publication Critical patent/EP0028836B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/138Parallel-plate feeds, e.g. pill-box, cheese aerials

Definitions

  • the invention relates to an antenna arrangement for a radar search method for target location with height detection, in which, for level comparison, several superimposed, overlapping radiation lobes are generated by means of a reflector rotating about a vertical axis together with an essentially vertically arranged row of primary radiators.
  • Ordinary search radar antennas only provide the azimuthal position of the target, but not its elevation angle. With increasing flight density and for a more precise instruction of target tracking systems, however, the additional information about the flight altitude of the target or about the elevation angle of this target is of ever increasing importance.
  • Circular search antennas are usually constructed as reflector antennas with a double-curved reflector.
  • the expansion of such an antenna type for height determination by additional primary emitters is practically impossible because of the vertical reflector curvature, which results in phase errors that are too great when the necessary deflection is required.
  • the electronically phase-controlled beam swiveling is preferred.
  • the disadvantage of such arrangements is that the scanning must take place relatively quickly because of the additional horizontal search movement and thus does not reach the dwell time on the target that is necessary for reliably determining the target position.
  • Circular search radar antennas are also possible, in which both the horizontal and the vertical beam movement take place by means of a phase-controlled individual antenna group. However, this represents an extremely high effort, which is not appropriate for very many tasks.
  • a better possibility for the simultaneous detection of azimuth, distance and elevation of a target is obtained by using a plurality of receiving lobes lying on top of one another and overlapping in the vertical diagram, the elevation angles of the lobe intersection points being known and the angular distance from which these intersection points can be determined by comparing the levels of the two lobe echoes concerned . It is known to use the same antenna with a single parabolic reflector as well as several primary radiators which illuminate it completely or partially from different angular positions in the case of reception and transmission, so that differently inclined and differently wide lobes are generated.
  • a section of a paraboloid of revolution is usually used as the reflector and a vertical row of primary emitters (stacked beam) is arranged around the focal point of the reflector, so that the desired overlapping, somewhat overlapping radiation lobes are created.
  • the exciters of which are further away from the focal point of the reflector however, the gain decreases and the side lobes increase, which limits the available elevation angle range.
  • the transmission antenna if it is not realized by an additional reflector antenna, must be implemented by interconnecting the individual primary radiators in the case of transmission with separate reception evaluation. Such an interconnection of primary radiators, however, leads to an elaborate switching matrix and to splaying up of the transmitting antenna diagram.
  • the object of the invention is to provide an antenna arrangement for a radar search method for target location with height detection, which does not require the technical effort required for phase-controlled antennas and yet works satisfactorily over a relatively large elevation angle range with regard to its gain and its side lobe behavior.
  • the reflector is designed as a cylinder parabolic reflector which produces beam focusing only in the horizontal plane, along the focal line of which the primary radiator row is arranged, that in its horizontal expansion of relatively narrow individual radiators of the primary radiator array are inclined in the vertical plane so that the desired main beam direction of the superimposed individual lobes produced by them is created in the vertical diagram, and that the individual radiators of the primary radiator array are dimensioned in such a way that their vertical extension A desired bundling of the individual lobes lying one above the other is created.
  • the antenna arrangement according to the invention thus has the advantage that a cylinder pair rabol reflector is relatively easy to manufacture.
  • the number of individual emitters in the primary emitter row depends on the accuracy of the desired elevation angle finding and the elevation angle range to be covered.
  • the individual radiators of the primary radiator series can advantageously be designed as flat parabolic antennas (cheese box antennas, pillbox antennas), which consist of metal plates running parallel to one another, which are closed off by a cylindrical parabolic strip and which are fed by a small horn radiator in the focal line of the parabolic strip will.
  • flat parabolic antennas consist of metal plates running parallel to one another, which are closed off by a cylindrical parabolic strip and which are fed by a small horn radiator in the focal line of the parabolic strip will.
  • a single pillbox flat parabolic antenna with a corresponding opening width is known per se; S. Silver: Microwave Antenna Theory and Design, McGraw-Hill 1949, Fig. 13, 28.
  • the flat parabolic antennas can be constructed symmetrically or asymmetrically (offset feed).
  • flat horns with or without lenses can be used.
  • An improvement in the azimuthal focusing can be achieved if the flat parabolic antennas that are more or less inclined relative to the focal line of the cylindrical parabolic reflector are extended on the side of their opening in such a way that the aperture planes contain the focal line of the cylindrical parabolic reflector.
  • This is only possible for the mostly used horizontal polarization. Phase errors would occur for other polarizations.
  • the arrangement of the primary radiator row in front of the cylindrical parabolic reflector can be either symmetrical or asymmetrical (off-set) in front of the cylindrical parabolic reflector.
  • the advantage of the asymmetrical arrangement is that the row of primary emitters lies outside the beam path after reflection and therefore does not cause any aperture coverage.
  • the outputs of the individual radiators of the primary radiator series are either connected simultaneously to one receiver at a time or successively to a total of one receiver, or two adjacent radiators are connected to two receivers in succession.
  • the emitter with the largest received signal level roughly indicates the elevation angle range of the target during a simple evaluation.
  • a monopulse evaluation that is a quantitative level comparison of the reception signals of adjacent radiators, an accuracy of 1/5 and 1 / 10th of the single lobed half-value width can be obtained.
  • the transmission power is expediently emitted by an additional radiator, which also shares the cylinder parabolic reflector. This can be done through a Kosekan 2 chart, as is common for a constant detection height. If only the individual radiators described above are used in the reception case, the vertical transmission antenna diagram can have a greater drop in energy than according to the Kosekans z law.
  • the transmitting antenna can also be used for receiving independently of the other receiving radiators.
  • the ready Kosekan's z- lobe then provides a permanent target connection during the scanning process of the single-lobe radiator.
  • the additional use of the transmitting antenna as a receiving radiator is no longer useful if each of the actual receiving radiators is connected to its own receiver.
  • the supply line to the individual receivers is problem-free if the high-frequency parts of the same rotate with the antenna arrangement. If this is not the case, then a multiple rotary coupling is expediently used, the number of channels of which depends on the number of individual receivers.
  • the number of individual radiators is reduced to the number of receivers by means of a switch device which is expediently arranged above the rotary coupling.
  • the antenna arrangement according to the invention shown schematically in a side view in FIG. 1, consists of a cylindrical parabolic reflector 1, which generates beam focusing only in the horizontal plane.
  • a cylindrical parabolic reflector 1 which generates beam focusing only in the horizontal plane.
  • narrow individual radiators 2 to 6 are arranged with respect to their horizontal extension, the vertical extension of which is so large that a desired bundling of the individual lobes lying one above the other arises.
  • the main radiation directions generated by the individual radiators 2 to 6 acting as receiving radiators are denoted by 7 to 11.
  • the radiators 2 to 6 are designed as flat parabolic antennas and consist of metal plates running parallel to each other, which are closed with a cylindrical parabolic strip, for example 12 for radiator 2, and a small horn radiator, for example 13 for reception radiator 2, are fed at the focal point of the parabolic strip via lines 14 to 18.
  • the flat parabolic antennas 2 to 6 are inclined in the vertical plane so that the desired vertical main beam direction 7 to 11 is created.
  • the leads 14 to 18 of the individual radiators 2 to 6 are guided to a switch device 19. By means of this switch device 19, two adjacent individual radiators can be connected to two receivers 20 and 21 one after the other.
  • the transmission power is emitted by an additional single radiator 22, which is also designed as a flat parabolic antenna and also uses the cylindrical parabolic reflector 1.
  • This single radiator 22 generates a broad vertical radiation diagram, for example a Kosekans 2 diagram, which is indicated by the two directional arrows 23 and 24.
  • the supply line to the single radiator 22 is designated 25. If only the individual radiators 2 to 6 are used in the reception case, the transmission antenna diagram can have a greater energy drop than according to the Kosekans 2 law.
  • the single radiator 22 can also be used for reception independently of the receiving radiators 2 to 6. Due to the wide antenna lobe in the vertical plane, which is generated by the single radiator 22, the individual radiators 2 to 6 are still given a permanent target connection during the scanning process by means of the switch device 19.
  • a multiple rotary coupling 28 is provided, the number of channels of which depends on the number of receivers.
  • the transmitter 26 and the additional receiver 27 are switched on separately via a duplexer switch 29 to the feed line 25.
  • swapping the emitters e.g. the transmitting antenna 22 between the receiving radiators 2 to 6 be cheaper.
  • FIG. 2 shows the cylindrical parabolic reflector 1 and the individual radiators 2 to 6 and 22 of the antenna arrangement according to FIG. 1.
  • the flat parabolic antennas 2 to 6 and 22 which are inclined relative to the focal line of the cylindrical parabolic reflector 1 are extended on the side of their opening in such a way that the aperture planes contain the focal line of the reflector 1.
  • the extension pieces are shown hatched and labeled 30 to 34. This measure improves the azimuthal focus.
  • the aperture level and the focal line of the cylindrical parabolic reflector 1 are included, so that no extension is necessary.
  • 3 and 4 show the position of the primary radiator row with the individual radiators 2 to 6 and 22 with respect to the cylindrical parabolic reflector 1 with a symmetrical antenna structure in a perspective view and in a view from above.
  • FIG 5 and 6 show the position of the primary radiator row consisting of the individual radiators 2 to 6 and 22 in relation to the cylindrical parabolic reflector 1 with an asymmetrical antenna structure, likewise in a perspective view and in a view from above.
  • the advantage of the asymmetrical arrangement, i. H. the so-called off-set supply is that the primary radiator row with the individual radiators 2 to 6 and 22 lies outside the beam path after the reflection at the reflector 1 and thus does not cause an aperture coverage with higher secondary lobes.
  • FIG. 7 shows in a diagram the reception level E of the five individual reception radiators 2 to 6 of the primary radiator row as a function of the respective elevation angle a.
  • the transmission and possibly reception level 22 of the single radiator is shown in dashed lines in FIG. 7, which generates a Kosekans 2 diagram in the vertical plane. Due to the overlap of the main lobes of adjacent radiators 2 to 6, the radiator with the highest received signal roughly indicates the elevation angle of the target during a simple evaluation. With a monopulse evaluation, ie with a quantitative level comparison of the received signals of two adjacent emitters, for example emitters 3 and 4 with the level values P 3 and P., a considerably greater accuracy is achieved when evaluating the elevation angle a of the detected target. The magnitude of the accuracy is approximately V s to V io of the single lobe half-width.

Description

Die Erfindung bezieht sich auf eine Antennenanordnung für ein Radarrundsuchverfahren zur Zielortung mit Höhenerfassung, bei dem zum Pegelvergleich mehrere übereinanderliegende, sich überlappende Strahlungskeulen mittels eines um eine Vertikalachse zusammen mit einer im wesentlichen vertikal angeordneten Primärstrahlerreihe rotierenden Reflektors erzeugt werden.The invention relates to an antenna arrangement for a radar search method for target location with height detection, in which, for level comparison, several superimposed, overlapping radiation lobes are generated by means of a reflector rotating about a vertical axis together with an essentially vertically arranged row of primary radiators.

Gewöhnliche Rundsuchradarantennen liefern nur die azimutale Lage des Ziels, nicht jedoch dessen Elevationswinkel. Bei zunehmender Flugdichte und für eine genauere Einweisung von Zielfolgeanlagen ist jedoch die zusätzliche Information über die Flughöhe des Zieles bzw. über den Elevationswinkel dieses Ziel von immer grösser werdender Bedeutung.Ordinary search radar antennas only provide the azimuthal position of the target, but not its elevation angle. With increasing flight density and for a more precise instruction of target tracking systems, however, the additional information about the flight altitude of the target or about the elevation angle of this target is of ever increasing importance.

Rundsuchantennen werden meist als Reflektorantennen mit einem doppelt gekrümmten Reflektor aufgebaut. Die Erweiterung eines solchen Antennentyps zur Höhenfindung durch zusätzliche Primärstrahler, ist wegen der vertikalen Reflektorkrümmung, was bei der notwendigen Auslenkung zu grosse Phasenfehler ergibt, praktisch nicht möglich.Circular search antennas are usually constructed as reflector antennas with a double-curved reflector. The expansion of such an antenna type for height determination by additional primary emitters is practically impossible because of the vertical reflector curvature, which results in phase errors that are too great when the necessary deflection is required.

Es ist bekannt, zur Zielortung nach Azimut- und Elevationswinkel zwei getrennte Radaranlagen zu verwenden, wobei ein Rundsuchradar der Feststellung des Azimutwinkels und ein davon eingewiesenes Höhensuchradar mit vertikal schwenkbarem Strahl der Erfassung des Elevationswinkels dient. Es treten dabei jedoch zeitliche Verzögerungen und Schwierigkeiten beim Aufbau der doppelten Antennenanordnung auf, insbesondere bei der Auslegung der Schwenklagerung der Höhenerfassungsantenne.It is known to use two separate radar systems for target location according to azimuth and elevation angles, with a circular search radar for determining the azimuth angle and a height search radar instructed thereby with a vertically pivotable beam for detecting the elevation angle. However, there are time delays and difficulties in the construction of the double antenna arrangement, in particular in the design of the swivel mounting of the height detection antenna.

Beim sogenannten 3-D-Radar ist lediglich eine einzige gemeinsame Antennenanordnung zur Erfassung von Azimut und Elevation eines Ziels vorhanden, wobei für die horizontale Erfassung praktisch nur eine mechanische Strahlschwenkung in Betracht kommt und für die vertikale Ebene der mechanischen Strahlschwenkung wegen der dabei erforderlichen Schwenkbewegungen einer grossen Antenne mit daraus resultierenden Massenbeschleunigungen die elektronisch phasengesteuerte Strahlschwenkung vorgezogen wird. Neben dem hohen Aufwand der Phasensteuerung besteht der Nachteil derartiger Anordnungen darin, dass die Abtastung wegen der zusätzlichen horizontalen Suchbewegung relativ rasch erfolgen muss und somit die für ein sicheres Ermitteln der Zielposition notwendige Verweilzeit auf dem Ziel nicht erreicht.In the so-called 3-D radar, there is only a single common antenna arrangement for detecting the azimuth and elevation of a target, with practically only mechanical beam swiveling being considered for the horizontal detection and one for the vertical plane of the mechanical beam swiveling because of the swiveling movements required large antenna with the resulting mass accelerations, the electronically phase-controlled beam swiveling is preferred. In addition to the high cost of phase control, the disadvantage of such arrangements is that the scanning must take place relatively quickly because of the additional horizontal search movement and thus does not reach the dwell time on the target that is necessary for reliably determining the target position.

Es sind zwar auch Rundsuchradarantennen möglich, bei denen sowohl die horizontale als auch die vertikale Strahlbewegung durch eine phasengesteuerte Einzelstrahlergruppe erfolgt. Dies stellt jedoch einen extrem hohen Aufwand dar, der für sehr viele Aufgabenstellungen nicht angemessen ist.Circular search radar antennas are also possible, in which both the horizontal and the vertical beam movement take place by means of a phase-controlled individual antenna group. However, this represents an extremely high effort, which is not appropriate for very many tasks.

Eine bessere Möglichkeit der gleichzeitigen Erfassung von Azimut, Entfernung und Elevation eines Ziels ergibt sich durch Verwendung mehrerer übereinanderliegender, im Vertikaldiagramm sich überlappender Empfangskeulen, wobei die Erhebungswinkel der Keulenschnittpunkte bekannt sind und der Winkelabstand von dem dieser Schnittpunkte durch Pegelvergleich der beiden betreffenden Keulenechos bestimmt werden kann. Es ist bekannt, bei diesem Verfahren im Empfangs- und Sendefall die gleiche Antenne mit einem einzigen Parabolreflektor sowie mehreren, diesen aus unterschiedlichen Winkellagen ganz oder teilweise ausleuchtenden Primärstrahlern zu verwenden, so dass verschieden geneigte und unterschiedlich breite Keulen erzeugt werden. Es wird hierbei meist ein Ausschnitt aus einem Rotationsparaboloid als Reflektor verwendet und eine vertikale Primärstrahlerreihe (stacked beam) um den Brennpunkt des Reflektors angeordnet, so dass die gewünschten übereinanderliegenden, sich etwas überlappenden Strahlungskeulen entstehen. Bei stärker ausgelenkten Strahlen, deren Erreger weiter vom Brennpunkt des Reflektors entfernt sind, geht jedoch der Gewinn zurück und die Nebenzipfel steigen an, was den verfügbaren Erhebungswinkelbereich begrenzt. Da die Einzelkeulen meistens im Empfangsfall verwendet werden, muss die Sendeantenne, wenn sie nicht durch eine zusätzliche Reflektorantenne realisiert ist, durch Zusammenschalten der einzelnen Primärstrahler im Sendefall bei getrennter Empfangsauswertung verwirklicht werden. Eine solche Zusammenschaltung von Primärstrahlern führt jedoch zu einer aufwendigen Schaltmatrix und zu Aufzipfelungen des Sendeantennendiagramms.A better possibility for the simultaneous detection of azimuth, distance and elevation of a target is obtained by using a plurality of receiving lobes lying on top of one another and overlapping in the vertical diagram, the elevation angles of the lobe intersection points being known and the angular distance from which these intersection points can be determined by comparing the levels of the two lobe echoes concerned . It is known to use the same antenna with a single parabolic reflector as well as several primary radiators which illuminate it completely or partially from different angular positions in the case of reception and transmission, so that differently inclined and differently wide lobes are generated. A section of a paraboloid of revolution is usually used as the reflector and a vertical row of primary emitters (stacked beam) is arranged around the focal point of the reflector, so that the desired overlapping, somewhat overlapping radiation lobes are created. With more deflected beams, the exciters of which are further away from the focal point of the reflector, however, the gain decreases and the side lobes increase, which limits the available elevation angle range. Since the individual lobes are mostly used in the case of reception, the transmission antenna, if it is not realized by an additional reflector antenna, must be implemented by interconnecting the individual primary radiators in the case of transmission with separate reception evaluation. Such an interconnection of primary radiators, however, leads to an elaborate switching matrix and to splaying up of the transmitting antenna diagram.

Derartige Rundsuchradarantennen sind in der DE-PS2016391 beschrieben.Such search radar antennas are described in DE-PS2016391.

Aufgabe der Erfindung ist es, eine Antennenanordnung für ein Radarrundsuchverfahren zur Zielortung mit Höhenerfassung zu schaffen, die ohne den bei phasengesteuerten Antennen erforderlichen technischen Aufwand auskommt und dennoch über einen verhältnismässig grossen Erhebungswinkelbereich hinsichtlich ihres Gewinns und ihres Nebenzipfelverhaltens zufriedenstellend arbeitet. Gemäss der Erfindung, die sich auf eine Antennenanordnung der eingangs genannten Art bezieht, wird diese Aufgabe dadurch gelöst, dass der Reflektor als ein nur in der horizontalen Ebene eine Strahlfokussierung erzeugenden Zylinderparabolreflektor ausgebildet ist, entlang dessen Brennlinie die Primärstrahlerreihe angeordnet ist, dass die in ihrer horizontalen Ausdehnung verhältnismässig schmal ausgebildeten, einzelnen Strahler der Primärstrahlerreihe in der vertikalen Ebene so geneigt sind, dass jeweils die gewünschte Hauptstrahlrichtung der von ihnen erzeugten, übereinanderliegenden Einzelkeulen im Vertikaldiagramm entsteht, und dass die einzelnen Strahler der Primärstrahlerreihe in ihrer vertikalen Ausdehnung so bemessen sind, dass eine gewünschte Bündelung der übereinanderliegenden Einzelkeulen entsteht.The object of the invention is to provide an antenna arrangement for a radar search method for target location with height detection, which does not require the technical effort required for phase-controlled antennas and yet works satisfactorily over a relatively large elevation angle range with regard to its gain and its side lobe behavior. According to the invention, which relates to an antenna arrangement of the type mentioned at the outset, this object is achieved in that the reflector is designed as a cylinder parabolic reflector which produces beam focusing only in the horizontal plane, along the focal line of which the primary radiator row is arranged, that in its horizontal expansion of relatively narrow individual radiators of the primary radiator array are inclined in the vertical plane so that the desired main beam direction of the superimposed individual lobes produced by them is created in the vertical diagram, and that the individual radiators of the primary radiator array are dimensioned in such a way that their vertical extension A desired bundling of the individual lobes lying one above the other is created.

Die Antennenanordnung nach der Erfindung hat somit noch den Vorteil, dass sich ein Zylinderparabolreflektorverhältnismässig einfach herstellen lässt.The antenna arrangement according to the invention thus has the advantage that a cylinder pair rabol reflector is relatively easy to manufacture.

Die Zahl der einzelnen Strahler in der Primärstrahlerreihe richtet sich nach der Genauigkeit der gewünschten Elevationswinkelfindung und des zu überdeckenden Erhebungswinkelbereichs.The number of individual emitters in the primary emitter row depends on the accuracy of the desired elevation angle finding and the elevation angle range to be covered.

Die einzelnen Strahler der Primärstrahlerreihe lassen sich in vorteilhafter Weise als Flachparabolantennen (Cheese-Box-Antennen, Pillbox-Antennen) ausführen, welche aus parallel zueinander verlaufenden Metallplatten bestehen, die durch einen Zylinderparabolstreifen abgeschlossen und die durch einen kleinen Hornstrahler in der Brennlinie des Parabolstreifens gespeist werden. Für die Speisung eines Zylinder-Parabolreflektors durch eine in seiner Brennlinie angeordnete Linienquelle ist die Verwendung einer einzelnen Pillbox-Flachparabolantenne entsprechender Öffnungsbreite an sich bekannt; S. Silver: Microwave Antenna Theory and Design, McGraw-Hill 1949, Fig. 13, 28. Die Flachparabolantennen können symmetrisch oder asymmetrisch (Offsetspeisung) aufgebaut sein. Alternativ können auch flache Hornstrahler mit oder ohne Linsen davor verwendet werden. Eine Verbesserung der azimutalen Fokussierung lässt sich erzielen, wenn die relativ zur Brennlinie des Zylinderparabolreflektors mehr oder weniger geneigten Flachparabolantennen an der Seite ihrer Öffnung so verlängert werden, dass die Aperturebenen die Brennlinie des Zylinderparabolreflektors enthalten. Dies ist allerdings nur für die zumeist verwendete horizontale Polarisation möglich. Für andere Polarisationen würden Phasenfehler auftreten. Die Anordnung der Primärstrahlerreihe vor dem Zylinderparabolreflektor kann entweder symmetrisch oder asymmetrisch (off-set) vor dem Zylinderparabolreflektor erfolgen. Der Vorteil der asymmetrischen Anordnung liegt darin, dass die Primärstrahlerreihe ausserhalb des Strahlengangs nach der Reflexion liegt und damit keine Aperturabdekkung verursacht.The individual radiators of the primary radiator series can advantageously be designed as flat parabolic antennas (cheese box antennas, pillbox antennas), which consist of metal plates running parallel to one another, which are closed off by a cylindrical parabolic strip and which are fed by a small horn radiator in the focal line of the parabolic strip will. For the feeding of a cylinder parabolic reflector by a line source arranged in its focal line, the use of a single pillbox flat parabolic antenna with a corresponding opening width is known per se; S. Silver: Microwave Antenna Theory and Design, McGraw-Hill 1949, Fig. 13, 28. The flat parabolic antennas can be constructed symmetrically or asymmetrically (offset feed). Alternatively, flat horns with or without lenses can be used. An improvement in the azimuthal focusing can be achieved if the flat parabolic antennas that are more or less inclined relative to the focal line of the cylindrical parabolic reflector are extended on the side of their opening in such a way that the aperture planes contain the focal line of the cylindrical parabolic reflector. However, this is only possible for the mostly used horizontal polarization. Phase errors would occur for other polarizations. The arrangement of the primary radiator row in front of the cylindrical parabolic reflector can be either symmetrical or asymmetrical (off-set) in front of the cylindrical parabolic reflector. The advantage of the asymmetrical arrangement is that the row of primary emitters lies outside the beam path after reflection and therefore does not cause any aperture coverage.

Die Ausgänge der einzelnen Strahler der Primärstrahlerreihe werden entweder gleichzeitig jeweils einem Empfänger oder zeitlich nacheinander mit insgesamt einem Empfänger verbunden oder es werden zeitlich nacheinander jeweils zwei benachbarte Strahler an zwei Empfänger angeschlossen.The outputs of the individual radiators of the primary radiator series are either connected simultaneously to one receiver at a time or successively to a total of one receiver, or two adjacent radiators are connected to two receivers in succession.

Durch die Überlappung der Hauptkeulen benachbarter Strahler zeigt bei einer Einfachstauswertung der Strahler mit dem grössten Empfangssignalpegel grob den Elevationswinkelbereich des Ziels an. Bei einer Monopulsauswertung, d.h. einem quantitativen Pegelvergleich der Empfangssignale benachbarter Strahler, kann eine Genauigkeit von 1/5 bis 1/10 der Einzelkeulenhalbwertsbreite erzielt werden.Due to the overlap of the main lobes of adjacent emitters, the emitter with the largest received signal level roughly indicates the elevation angle range of the target during a simple evaluation. In a monopulse evaluation, that is a quantitative level comparison of the reception signals of adjacent radiators, an accuracy of 1/5 and 1 / 10th of the single lobed half-value width can be obtained.

Die Sendeleistung wird in zweckmässiger Weise von einem zusätzlichen Strahler, der den Zylinderparabolreflektor ebenfalls mitbenutzt, abgestrahlt. Dies kann durch ein Kosekans2-Diagramm geschehen, wie dies für eine konstante Erfassungshöhe üblich ist. Wenn im Empfangsfall nur die vorher beschriebenen einzelnen Strahler benutzt werden, kann das vertikale Sendeantennendiagramm einen stärkeren Energieabfall aufweisen als nach dem Kosekansz-Gesetz. Die Sendeantenne kann unabhängig von den übrigen Empfangsstrahlern ebenfalls zum Empfang eingesetzt werden. Durch die bereite Kosekansz-Keule ist dann während des Abtastvorgangs der Einzelkeulenstrahler eine andauernde Zielverbindung gegeben. Die zusätzliche Verwendung der Sendeantenne als Empfangsstrahler ist aber dann nicht mehr sinnvoll, wenn jeder der eigentlichen Empfangsstrahler mit einem eigenen Empfänger verbunden ist.The transmission power is expediently emitted by an additional radiator, which also shares the cylinder parabolic reflector. This can be done through a Kosekan 2 chart, as is common for a constant detection height. If only the individual radiators described above are used in the reception case, the vertical transmission antenna diagram can have a greater drop in energy than according to the Kosekans z law. The transmitting antenna can also be used for receiving independently of the other receiving radiators. The ready Kosekan's z- lobe then provides a permanent target connection during the scanning process of the single-lobe radiator. However, the additional use of the transmitting antenna as a receiving radiator is no longer useful if each of the actual receiving radiators is connected to its own receiver.

Die Zuleitung zu den einzelnen Empfängern ist problemlos, wenn die Hochfrequenzteile derselben mit der Antennenanordnung mitdrehen. Wenn dies nicht der Fall ist, so wird in zweckmässiger Weise eine Mehrfachdrehkupplung verwendet, deren Kanalzahl sich nach der Zahl der einzelnen Empfänger richtet. Die Reduzierung der Zahl der einzelnen Strahler auf die Empfängerzahl folgt durch eine Schaltereinrichtung, die in zweckmässiger Weise über der Drehkupplung angeordnet ist.The supply line to the individual receivers is problem-free if the high-frequency parts of the same rotate with the antenna arrangement. If this is not the case, then a multiple rotary coupling is expediently used, the number of channels of which depends on the number of individual receivers. The number of individual radiators is reduced to the number of receivers by means of a switch device which is expediently arranged above the rotary coupling.

Die Erfindung wird im folgenden anhand von 7 Figuren beschrieben. Es zeigen

  • Fig. 1 eine seitliche Darstellung des Antennenprinzips nach der Erfindung mit zugehörigen Strahlrichtungen,
  • Fig. 2 einen Teil der Antenne nach Fig. 1, jedoch mit ausgerichteten Aperturen der einzelnen Strahler in der Primärstrahlerreihe,
  • Fig. 3 und 4 die Lage der Primärstrahlerreihe bezüglich des Reflektors bei einem symmetrischen Antennenaufbau in einer perspektivischen Ansicht bzw. in einer Ansicht von oben,
  • Fig. 5 und 6 die Lage der Primärstrahlerreihe bezüglich des Reflektors bei asymmetrischem Antennenaufbau in einer perspektivischen Ansicht bzw. in einer Ansicht von oben, und
  • Fig. 7 in einem Diagramm die Empfangspegel von fünf einzelnen Strahlern der Primärstrahlerreihe sowie das Kosekans2-Diagramm eines zusätzlichen Primärstrahlers für Senden und Empfangen in Abhängigkeit vom jeweiligen Elevationswinkel.
The invention is described below with reference to 7 figures. Show it
  • 1 is a side view of the antenna principle according to the invention with associated beam directions,
  • 2 shows part of the antenna according to FIG. 1, but with aligned apertures of the individual radiators in the primary radiator row,
  • 3 and 4, the position of the primary radiator row with respect to the reflector in a symmetrical antenna structure in a perspective view and in a view from above,
  • 5 and 6, the position of the primary radiator row with respect to the reflector with asymmetrical antenna structure in a perspective view and in a view from above, and
  • 7 in a diagram the reception level of five individual radiators of the primary radiator series and the Kosekans 2 diagram of an additional primary radiator for transmission and reception depending on the respective elevation angle.

Die in Fig. 1 schematisch in einer seitlichen Darstellung gezeigte Antennenanordnung nach der Erfindung besteht aus einem Zylinderparabolreflektor 1, welcher nur in der horizontalen Ebene eine Strahlfokussierung erzeugt. Entlang der Brennlinie des Zylinderparabolreflektors 1 sind hinsichtlich ihrer Horizontalausdehnung schmale Einzelstrahler 2 bis 6 angeordnet, deren vertikale Ausdehnung so gross ist, dass eine gewünschte Bündelung der übereinanderliegenden Einzelkeulen entsteht. Die von den als Empfangsstrahler wirkenden Einzelstrahlern 2 bis 6 erzeugten Hauptstrahlungsrichtungen sind mit 7 bis 11 bezeichnet. Die Strahler 2 bis 6 sind als Flachparabolantennen ausgeführt und bestehen aus parallel zueinander verlaufenden Metallplatten, die mit einem Zylinderparabolstreifen, z.B. 12 beim Strahler 2, abgeschlossen und die durch einen kleinen Hornstrahler, z.B. 13 beim Empfangsstrahler 2, im Brennpunkt des Parabolstreifens über Leitungen 14 bis 18 gespeist werden. Die Flachparabolantennen 2 bis 6 sind in der vertikalen Ebene so geneigt, dass jeweils die gewünschte vertikale Hauptstrahlrichtung 7 bis 11 entsteht. Die Zuleitungen 14 bis 18 der Einzelstrahler 2 bis 6 sind an eine Schaltereinrichtung 19 geführt. Mittels dieser Schaltereinrichtung 19 lassen sich zeitlich nacheinander jeweils zwei benachbarte Einzelstrahler mit zwei Empfängern 20 und 21 verbinden. Die Sendeleistung wird von einem zusätzlichen Einzelstrahler 22, der ebenfalls als Flachparabolantenne ausgebildet ist und den Zylinderparabolreflektor 1 auch mitbenutzt, abgestrahlt. Dieser Einzelstrahler 22 erzeugt ein breites vertikales Strahlungsdiagramm, z.B. ein Kosekans2-Diagramm, was durch die beiden Richtungspfeile 23 und 24 angedeutet ist. Die Zuleitung zum Einzelstrahler 22 ist mit 25 bezeichnet. Wenn im Empfangsfall nur die Einzelstrahler 2 bis 6 benutzt werden, kann das Sendeantennendiagramm einen stärkeren Energieabfall aufweisen als nach dem Kosekans2-Gesetz. Der Einzelstrahler 22 kann unabhängig von den Empfangsstrahlern 2 bis 6 ebenfalls zum Empfang verwendet werden. Durch die in der Vertikalebene breite Antennenkeule, die durch den Einzelstrahler 22 erzeugt wird, ist während des Abtastvorgangs der Einzelstrahler 2 bis 6 mittels der Schaltereinrichtung 19 dann trotzdem eine andauernde Zielverbindung gegeben. Da der Sender 26 und die beiden Empfänger 20 und 21 sowie ggf. ein Empfänger 27 mechanisch feststehend ausgebildet sind, ist eine Mehrfachdrehkupplung 28 vorgesehen, deren Kanalzahl sich nach der Zahl der Empfänger richtet. Der Sender 26 und der zusätzliche Empfänger 27 werden über einen Duplexerschalter 29 an die Zuleitung 25 getrennt angeschaltet.The antenna arrangement according to the invention, shown schematically in a side view in FIG. 1, consists of a cylindrical parabolic reflector 1, which generates beam focusing only in the horizontal plane. Along the focal line of the cylindrical parabolic reflector 1, narrow individual radiators 2 to 6 are arranged with respect to their horizontal extension, the vertical extension of which is so large that a desired bundling of the individual lobes lying one above the other arises. The main radiation directions generated by the individual radiators 2 to 6 acting as receiving radiators are denoted by 7 to 11. The radiators 2 to 6 are designed as flat parabolic antennas and consist of metal plates running parallel to each other, which are closed with a cylindrical parabolic strip, for example 12 for radiator 2, and a small horn radiator, for example 13 for reception radiator 2, are fed at the focal point of the parabolic strip via lines 14 to 18. The flat parabolic antennas 2 to 6 are inclined in the vertical plane so that the desired vertical main beam direction 7 to 11 is created. The leads 14 to 18 of the individual radiators 2 to 6 are guided to a switch device 19. By means of this switch device 19, two adjacent individual radiators can be connected to two receivers 20 and 21 one after the other. The transmission power is emitted by an additional single radiator 22, which is also designed as a flat parabolic antenna and also uses the cylindrical parabolic reflector 1. This single radiator 22 generates a broad vertical radiation diagram, for example a Kosekans 2 diagram, which is indicated by the two directional arrows 23 and 24. The supply line to the single radiator 22 is designated 25. If only the individual radiators 2 to 6 are used in the reception case, the transmission antenna diagram can have a greater energy drop than according to the Kosekans 2 law. The single radiator 22 can also be used for reception independently of the receiving radiators 2 to 6. Due to the wide antenna lobe in the vertical plane, which is generated by the single radiator 22, the individual radiators 2 to 6 are still given a permanent target connection during the scanning process by means of the switch device 19. Since the transmitter 26 and the two receivers 20 and 21 and possibly a receiver 27 are designed to be mechanically fixed, a multiple rotary coupling 28 is provided, the number of channels of which depends on the number of receivers. The transmitter 26 and the additional receiver 27 are switched on separately via a duplexer switch 29 to the feed line 25.

Je nach Hauptstrahlrichtungen der Strahler kann eine Vertauschung der Strahler, z.B. der Sendeantenne 22 zwischen den Empfangsstrahlern 2 bis 6 günstiger sein.Depending on the main beam directions of the emitters, swapping the emitters, e.g. the transmitting antenna 22 between the receiving radiators 2 to 6 be cheaper.

Fig. 2 zeigt den Zylinderparabolreflektor 1 und die Einzelstrahler 2 bis 6 sowie 22 der Antennenanordnung nach Fig. 1. Hierbei sind jedoch die relativ zur Brennlinie des Zylinderparabolreflektors 1 geneigten Flachparabolantennen 2 bis 6 und 22 an der Seite ihrer Öffnung so verlängert, dass die Aperturebenen die Brennlinie des Reflektors 1 enthalten. Die Verlängerungsstücke sind schraffiert dargestellt und mit 30 bis 34 bezeichnet. Durch diese Massnahme wird eine Verbesserung der azimutalen Fokussierung erreicht. Beim Einzelstrahler 4 enthält die Aperturebene sowie die Brennlinie des Zylinderparabolreflektors 1, so dass keine Verlängerung mehr nötig ist.FIG. 2 shows the cylindrical parabolic reflector 1 and the individual radiators 2 to 6 and 22 of the antenna arrangement according to FIG. 1. Here, however, the flat parabolic antennas 2 to 6 and 22 which are inclined relative to the focal line of the cylindrical parabolic reflector 1 are extended on the side of their opening in such a way that the aperture planes contain the focal line of the reflector 1. The extension pieces are shown hatched and labeled 30 to 34. This measure improves the azimuthal focus. In the case of the single radiator 4, the aperture level and the focal line of the cylindrical parabolic reflector 1 are included, so that no extension is necessary.

Die Fig. 3 und 4 zeigen die Lage der Primärstrahlerreihe mit den Einzelstrahlern 2 bis 6 und 22 in bezug auf den Zylinderparabolreflektor 1 bei einem symmetrischen Antennenaufbau in einer perspektivischen Ansicht bzw. in einer Ansicht von oben.3 and 4 show the position of the primary radiator row with the individual radiators 2 to 6 and 22 with respect to the cylindrical parabolic reflector 1 with a symmetrical antenna structure in a perspective view and in a view from above.

Die Fig. 5 und 6 zeigen die Lage der aus den einzelnen Strahlern 2 bis 6 sowie 22 bestehenden Primärstrahlerreihe in bezug auf den Zylinderparabolreflektor 1 bei einem asymmetrischen Antennenaufbau ebenfalls in einer perspektivischen Ansicht bzw. in einer Ansicht von oben. Der Vorteil der asymmetrischen Anordnung, d. h. der sogenannten off-set-Speisung, liegt darin, dass die Primärstrahlerreihe mit den einzelnen Strahlern 2 bis 6 und 22 ausserhalb des Strahlengangs nach der Reflexion am Reflektor 1 liegt und damit keine Aperturabdeckung mit höheren Nebenzipfeln verursacht.5 and 6 show the position of the primary radiator row consisting of the individual radiators 2 to 6 and 22 in relation to the cylindrical parabolic reflector 1 with an asymmetrical antenna structure, likewise in a perspective view and in a view from above. The advantage of the asymmetrical arrangement, i. H. the so-called off-set supply is that the primary radiator row with the individual radiators 2 to 6 and 22 lies outside the beam path after the reflection at the reflector 1 and thus does not cause an aperture coverage with higher secondary lobes.

Fig. 7 zeigt in einem Diagramm die Empfangspegel E der fünf einzelnen Empfangsstrahler 2 bis 6 der Primärstrahlerreihe in Abhängigkeit vom jeweiligen Elevationswinkel a. Ausserdem ist in Fig. 7 in gestrichelter Darstellung der Sende- und evtl. Empfangspegel 22 des Einzelstrahlers dargestellt, der in der Vertikalebene ein Kosekans2- Diagramm erzeugt. Durch die Überlappung der Hauptkeulen benachbarter Strahler 2 bis 6 zeigt bei einer Einfachstauswertung der Strahler mit dem höchsten Empfangssignal grob den Elevationswinkel des Ziels an. Bei einer Monopulsauswertung, d.h. bei einem quantitativen Pegelvergleich der Empfangssignale zweier benachbarter Strahler, z.B. der Strahler 3 und 4 mit den Pegelwerten P3 und P., wird eine erhebliche grössere Genauigkeit bei der Auswertung des Elevationswinkels a des erfassten Ziels erreicht. Die Grössenordnung der Genauigkeit liegt bei etwa Vs bis Vio der Einzelkeulenhalbwertsbreite.7 shows in a diagram the reception level E of the five individual reception radiators 2 to 6 of the primary radiator row as a function of the respective elevation angle a. In addition, the transmission and possibly reception level 22 of the single radiator is shown in dashed lines in FIG. 7, which generates a Kosekans 2 diagram in the vertical plane. Due to the overlap of the main lobes of adjacent radiators 2 to 6, the radiator with the highest received signal roughly indicates the elevation angle of the target during a simple evaluation. With a monopulse evaluation, ie with a quantitative level comparison of the received signals of two adjacent emitters, for example emitters 3 and 4 with the level values P 3 and P., a considerably greater accuracy is achieved when evaluating the elevation angle a of the detected target. The magnitude of the accuracy is approximately V s to V io of the single lobe half-width.

Claims (16)

1. An antenna arrangement for a surveillance radar system for target location with altitude detection, wherein for the purpose of level comparison a plurality of overlapping radiation lobes lying one above another are generated by a reflector which rotates about a vertical axis, together with an essentially vertically arranged row of primary radiators, characterised in that the reflector consists of a parabolic cylinder reflector (1) which generates radiation focusing only in the horizontal plane, and along whose focal line the row of primary radiators is arranged, in that the individual radiators (2 to 6) of the row of primary radiators, designed to be relatively narrow with respect to their horizontal expanse, are inclined in the vertical plane in such a manner that the respectively desired primary beam direction of the individual lobes lying above one another and generated thereby arises in the vertical diagram (Figure 7) and in that the vertical extent of each of the individual radiators (2 to 6) of the row of primary radiators is dimensioned in such a manner that a desired focusing of the individual lobes, lying one above another, arises.
2. An antenna arrangement as claimed in Claim 1, characterised in that the individual radiators (2 to 6) of the row of primary radiators are so-called flat parabolic antennae more or less inclined relative to the focal line of the parabolic cylinder reflector (1) and consist of two metal plates which run parallel to one another and which are terminated by a metallic parabolic cylinder strip (12) in whose focal line is arranged a horn radiator (13) (cheese-box antenna, pillbox antenna), where the feed can take place symmetrically or asymmetrically.
3. An antenna arrangement as claimed in Claim 2, characterised in that the flat parabolic antennae (2 to 6) inclined relative to the focal line of the parabolic cylinder reflector (1) are extended (30 to 33) on the side of their opening in such a manner that their aperture planes contain the focal line of the parabolic cylinder reflector (1).
4. An antenna arrangement as claimed in Claim 1, characterised in that the individual radiators of the row of primary radiators consist of flat horn radiators.
5. An antenna arrangement as claimed in Claim 4, characterised in that in front of the horn radiators are arranged lenses.
6. An antenna arrangement as claimed in one of the preceding Claims, characterised in that the row of primary radiators (2 to 6) is arranged symmetrically in front of the parabolic cylinder reflector (1) (Figures 3 and 4).
7. An antenna arrangement as claimed in one of Claims 1 to 5, characterised in that the row of primary radiators (2 to 6) is arranged asymmetrically (off-set) in front of the parabolic cylinder reflector (1) (Figures 5 and 6).
8. An antenna arrangement as claimed in one of the preceding Claims, characterised in that the individual radiators of the row of primary radiators are each connected simultaneously to a receiver.
9. An antenna arrangement as claimed in one of Claims 1 to 7, characterised in that the individual radiators of the row of primary radiators are connected consecutively to one single receiver by means of a switch device.
10. An antenna arrangement as claimed in one of Claims 1 to 7, characterised in that a switch device (19) consecutively connects two adjacent individual radiators (2 to 6) of the row of primary radiators in each case to two receivers (20, 21).
11. An antenna arrangement as claimed in one of the preceding Claims, characterised in that an additional primary radiator (22) supplies radiation to the parabolic cylinder reflector (1) to radiate the transmission of power.
12. An antenna arrangement as claimed in Claim 11, characterised in that the additional primary radiator (22) is so designed and so arranged in front of the parabolic cylinder reflector (1) that a vertical transmission antenna diagram in the form of an at least approximate cosec2 diagram is produced.
13. An antenna arrangement as claimed in Claim 12, excluding the case in accordance with Claim 8, where the individual radiators of the row of primary radiators are each connected to a receiver, characterised in that the additional primary radiator (22) is also used for reception.
14. An antenna arrangement as claimed in Claim 12 or 13, characterised in that the additional radiator (22) consists of a flat parabolic antenna arranged in the row of primary radiators.
15. An antenna arrangement as claimed in one of the preceding Claims, characterised in that the transmitter (26) is mechanically fixed and the receivers (20, 21, 27) are mechanically fixed, and the supply line to the primary radiators runs via a multiple rotary coupling (28).
16. An antenna arrangement as claimed in Claim 15, characterised in that if there are fewer receivers (20, 21) than individual radiators (2 to 6) provided in the row of primary radiators there is arranged above the rotary coupling (28) a switch device (19) which serves to consecutively connect individual radiators (2 to 6) to the receivers (20, 21).
EP80106933A 1979-11-13 1980-11-10 Antenna arrangement for an omnidirectional search radar for target location with height detection Expired EP0028836B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792945789 DE2945789A1 (en) 1979-11-13 1979-11-13 AERIAL ARRANGEMENT FOR A RADAR ROUND SEARCH FOR TARGET LOCATION WITH ALTITUDE DETECTION
DE2945789 1979-11-13

Publications (2)

Publication Number Publication Date
EP0028836A1 EP0028836A1 (en) 1981-05-20
EP0028836B1 true EP0028836B1 (en) 1984-10-24

Family

ID=6085869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106933A Expired EP0028836B1 (en) 1979-11-13 1980-11-10 Antenna arrangement for an omnidirectional search radar for target location with height detection

Country Status (3)

Country Link
US (1) US4353073A (en)
EP (1) EP0028836B1 (en)
DE (1) DE2945789A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3211707C2 (en) * 1982-03-30 1984-07-12 Siemens AG, 1000 Berlin und 8000 München Omnidirectional radar antenna with height detection
US4951059A (en) * 1988-11-02 1990-08-21 Westinghouse Electric Corp. Dual stacked beam radar
US5175562A (en) * 1989-06-23 1992-12-29 Northeastern University High aperture-efficient, wide-angle scanning offset reflector antenna
US4961075A (en) * 1989-09-11 1990-10-02 Raytheon Company Two and one-half dimensional radar system
FR2664985B1 (en) * 1990-07-20 1992-11-27 Thomson Csf DEVICE FOR MEASURING THE SITE ANGLE FOR A RADAR EQUIPPED WITH A REFLECTOR ANTENNA OF THE DOUBLE CURVED TYPE.
US5150170A (en) * 1991-08-26 1992-09-22 The Boeing Company Optical phase conjugate velocimeter and tracker
EP0546812B1 (en) * 1991-12-10 1997-08-06 Texas Instruments Incorporated Wide field-of-view fixed body conformal antenna direction finding array
US6440063B1 (en) * 1997-04-30 2002-08-27 University Of Massachusetts Surgical access port and laparoscopic surgical method
US6208312B1 (en) * 2000-03-15 2001-03-27 Harry J. Gould Multi-feed multi-band antenna
US7292202B1 (en) 2005-11-02 2007-11-06 The United States Of America As Represented By The National Security Agency Range limited antenna
US7642986B1 (en) 2005-11-02 2010-01-05 The United States Of America As Represented By The Director, National Security Agency Range limited antenna
US8558734B1 (en) * 2009-07-22 2013-10-15 Gregory Hubert Piesinger Three dimensional radar antenna method and apparatus
EP2478588A4 (en) 2009-09-15 2013-05-29 Ems Technologies Inc Mechanically steered reflector antenna
DE102010061032B4 (en) * 2010-12-06 2014-07-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for locating sources of waves with multiple receivers and a concave mirror for the waves
BR102012013956B1 (en) * 2012-06-11 2022-02-22 Embraer S.A. weather radar system
US9477865B2 (en) 2013-12-13 2016-10-25 Symbol Technologies, Llc System for and method of accurately determining true bearings of radio frequency identification (RFID) tags associated with items in a controlled area
US9755294B2 (en) 2014-07-07 2017-09-05 Symbol Technologies, Llc Accurately estimating true bearings of radio frequency identification (RFID) tags associated with items located in a controlled area
US9773136B2 (en) 2015-10-19 2017-09-26 Symbol Technologies, Llc System for, and method of, accurately and rapidly determining, in real-time, true bearings of radio frequency identification (RFID) tags associated with items in a controlled area
US10726218B2 (en) 2017-07-27 2020-07-28 Symbol Technologies, Llc Method and apparatus for radio frequency identification (RFID) tag bearing estimation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2526675A (en) * 1945-04-28 1950-10-24 Sperry Corp Antenna structure
US2471284A (en) * 1945-05-25 1949-05-24 Bell Telephone Labor Inc Directive antenna system
US2870441A (en) * 1952-10-23 1959-01-20 Raytheon Mfg Co Microwave antennas
US3016531A (en) * 1955-03-14 1962-01-09 Sperry Rand Corp Antenna distribution system
GB796549A (en) * 1955-08-04 1958-06-11 Decca Record Co Ltd Improvements in or relating to directional radio antennae
FR1605303A (en) * 1958-10-27 1974-08-02 Panoramatic radar signal processor and monitor - has rotary antenna array each with defocussed primary sources
FR1573820A (en) * 1966-09-01 1969-07-11
US3931624A (en) * 1974-03-21 1976-01-06 Tull Aviation Corporation Antenna array for aircraft guidance system
US3916416A (en) * 1974-09-24 1975-10-28 Us Navy 360{20 {0 Azimuth scanning antenna without rotating RF joints
DE2533179C3 (en) * 1975-07-24 1984-08-30 Siemens AG, 1000 Berlin und 8000 München Panoramic radar antenna with height detection
DE2550699C2 (en) * 1975-11-12 1983-01-13 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Radar antenna with an elevational double diagram
GB1558107A (en) * 1976-05-13 1979-12-19 Commw Scient Ind Res Org Monitoring commutated scanning radio beams
US4129872A (en) * 1976-11-04 1978-12-12 Tull Aviation Corporation Microwave radiating element and antenna array including linear phase shift progression angular tilt
US4156243A (en) * 1977-10-14 1979-05-22 Rca Corporation Paraboloid reflector antenna

Also Published As

Publication number Publication date
DE2945789A1 (en) 1981-05-21
EP0028836A1 (en) 1981-05-20
US4353073A (en) 1982-10-05

Similar Documents

Publication Publication Date Title
EP0028836B1 (en) Antenna arrangement for an omnidirectional search radar for target location with height detection
EP0027643B1 (en) Directional antenna arrangement for a jammer tracking a target equipped with radar
DE60004487T2 (en) PHASE CONTROLLED MONOPULAR RADAR SYSTEM
EP3701280B1 (en) Radar sensor having a plurality of main beam directions
DE2140082A1 (en) Autonomous collision warning system for aircraft
DE2306407C3 (en) Antenna system with high angular resolution for radar devices with separate transmitting and receiving antennas
DE2415020A1 (en) ANTENNA SYSTEM
DE1941268A1 (en) Radar antenna arrangement
DE2434924B2 (en) ANTENNA SYSTEM FOR A PRIMARY AND SECONDARY RADAR WITH REFLECTOR, PRIMARY BEAM AND TWO AUXILIARY BEAMS
DE1616508B2 (en) Antenna arrangement on board an aircraft for location determination by means of back-beam direction finding
DE102019212553A1 (en) Radar sensor, motor vehicle and method for operating a radar sensor
EP0989416A2 (en) Method for precisely measuring target direction using a radar system having multiple beams
DE2139216A1 (en) DIRECTIONAL ANTENNA ARRANGEMENT
DE2540763A1 (en) RADIATOR ARRANGEMENT FOR THE COMMON ANTENNA OF A PRIMARY / SECONDARY RADAR WITH ONE CONTROL CHANNEL
DE2929254C2 (en) Antenna system for direction finding of a microwave signal source
DE3211707C2 (en) Omnidirectional radar antenna with height detection
DE1591633C3 (en) Radar omnidirectional antenna
WO2019158251A1 (en) Antenna array for a radar sensor
DE3544092A1 (en) Multi-band antenna for the GHz band
DE2533179A1 (en) Surveillance radar aerial with altitude determination - has cylindrical parabolic reflector supplied from linear source
DE2127518A1 (en) Antenna with toroidal reflector
DE2353504C3 (en) Primary radar-secondary radar arrangement with offset main radiation directions and a certain echo processing time
DE2605870C2 (en) Phased antenna system for wide-angle scanning
DE69830199T2 (en) ANTENNA ARRANGEMENT AND METHOD CONNECTED WITH SUCH AN ARRANGEMENT
DE2624398C2 (en) Phased antenna system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH FR GB IT NL

17P Request for examination filed

Effective date: 19811028

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH FR GB IT LI NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841120

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19841130

Year of fee payment: 5

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19841231

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19851130

Ref country code: CH

Effective date: 19851130

Ref country code: BE

Effective date: 19851130

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19851130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118