EP1966615A1 - Device, probe, and method for the galvanically decoupled transmission of a measuring signal - Google Patents

Device, probe, and method for the galvanically decoupled transmission of a measuring signal

Info

Publication number
EP1966615A1
EP1966615A1 EP06830608A EP06830608A EP1966615A1 EP 1966615 A1 EP1966615 A1 EP 1966615A1 EP 06830608 A EP06830608 A EP 06830608A EP 06830608 A EP06830608 A EP 06830608A EP 1966615 A1 EP1966615 A1 EP 1966615A1
Authority
EP
European Patent Office
Prior art keywords
signal
transceiver
sensor
microwave signal
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06830608A
Other languages
German (de)
French (fr)
Other versions
EP1966615B1 (en
Inventor
Thomas Hoffmann
Armin Liero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungsverbund Berlin FVB eV
Original Assignee
Forschungsverbund Berlin FVB eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungsverbund Berlin FVB eV filed Critical Forschungsverbund Berlin FVB eV
Publication of EP1966615A1 publication Critical patent/EP1966615A1/en
Application granted granted Critical
Publication of EP1966615B1 publication Critical patent/EP1966615B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/26Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using modulation of waves other than light, e.g. radio or acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06777High voltage probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06788Hand-held or hand-manipulated probes, e.g. for oscilloscopes or for portable test instruments

Definitions

  • the invention relates to a device, a probe and a method for galvanically decoupled transmission of a measuring signal with the features mentioned in the preamble of claims 1, 19 and 22.
  • assemblies and devices signals In the development and testing of electrical or electronic components, assemblies and devices signals must be taken from any point of a test specimen.
  • oscilloscopes are often used for acquisition and graphical representation. Since almost all oscilloscopes are desktop devices, they can not be contacted directly with the DUT, using probes.
  • a probe is a measuring adapter for connecting a measuring device to a measuring point in a circuit.
  • the task of the probe is the most unadulterated transmission of the measured value, if possible without noticeable influence on the test object.
  • An oscilloscope probe consists of the following parts: A probe tip for contacting the measuring signal on a conductor, contacts of a component or the like. ; a short, flexible wire with clamp for tapping the reference potential of the
  • Measurement signal a probe body for holding by hand; and cables and connectors for transmitting the measurement signal to the oscilloscope.
  • Oscilloscope ie low distortion of the waveform and low amplitude errors and a high dynamic range can be mentioned here.
  • the reference potential of the measuring signal is looped through by the measuring object to the oscilloscope (oscilloscope reference potential).
  • this pole of the oscilloscope is connected to the housing and further to the protective conductor of the power supply network.
  • the reference potentials of the measuring signals are connected to each other via the oscilloscope.
  • test object has several reference potentials for the measuring signals and these must not be connected with each other or with the protective conductor of the power supply network, then such measurements were not necessary.
  • Galvanic isolation means the case that there is no way for carriers to flow from one circuit to another, immediately adjacent circuit.
  • the most common application for galvanic isolation are transformers connected to the public grid.
  • a galvanic separation is prescribed, which are realized by two electrically separate coils with a common iron core.
  • differential probes and optoelectronic probe systems realize a "virtual" or true decoupling of measurement signal and oscilloscope. Where decoupling of the measurement signal from the oscilloscope is not required, probes will be used where the measurement signal reference potential is looped through to the oscilloscope. The latter are above all more cost-effective than commercially available differential probes or optoelectronic probe systems.
  • Differential probes work according to the following principle: The output signal of two styli is placed on a differential amplifier located in the probe. Or two probes are connected via lines to a differential amplifier. The differential amplifier output is connected to the oscilloscope. Ideally, the difference signals isolate the two differential signals completely from the reference potential of the oscilloscope.
  • a disadvantage of these systems is a finite common-mode input voltage range. The finite common mode input voltage range of the differential amplifier limits the amplitude of the common mode signal. Furthermore, the common-mode negative pressure decreases with increasing frequency of the common-mode signal. While with common-frequency signals of low frequency (eg 50 Hz) even with low-cost differential
  • the radiation is disadvantageous in differential probes.
  • the two probes are connected via cables to the Differenzverstarker.
  • parts of the measurement signal and its reference potential (common-mode signal) are radiated into the environment.
  • the radiation With increasing frequency and amplitude of the common-mode signal, the radiation increases. This radiation loads the measuring signal and its reference potential, it is unintentionally changed, and the measured value no longer represents the signal to be measured in the undisturbed state even with perfect transmission of the signal.
  • Oscilloscope is connected, improve.
  • the disadvantage, however, is that these solutions are very expensive.
  • systems with optical transmission of the measurement signal are known.
  • the measurement signal is modulated onto an optical carrier, for example by modulation of the radiation power of a semiconductor laser diode.
  • the modulated light is transmitted via a glass fiber.
  • the receiver for example, it is demodulated again by means of a photodiode. This method allows a virtually complete decoupling of the measurement signal from the oscilloscope.
  • the optical signal is neither susceptible nor disturbing.
  • DE 101 01 632 B4 discloses an oscilloscope probe with a fiber optic sensor for potential-free detection of electrical variables.
  • WO 89/09413 A1 describes an oscilloscope probe with a fiber optic sensor for potential-free detection of electrical variables.
  • the sensor head has an electro-optical crystal, by means of which light supplied to it is influenced by a polarization by the action of an electric field. The difference between the original polarization and the changed polarization is then converted into an electrical quantity. Fiber optic cables are used during transmission.
  • a measuring head for the potential-free and storefree detection of the intensity of an electric field or of the absolute value of a voltage is disclosed in US Pat. No. 5,465,043. Again, the change in light polarization reflects the field strength or the voltage value.
  • WO 89/09413 A1 requires in the probe an optical system which has elements to be mechanically fastened and to be adjusted with respect to its axis, such as a beam splitter, a mirror and lenses, and in DE 101 01 632 B4 an expensive electro-optical sensor is used.
  • Inductive transmission modes are limited in the dielectric strength and produce a parasitic capacitive coupling between the sensor and the evaluation device.
  • the problem is inventively solved by the fact that a microwave signal is given by a transceiver via a galvanically decoupling waveguide to a sensor.
  • this signal is partially reflected, wherein the amplitude and / or phase of the reflected microwave signal contains the information about the measured value.
  • the reflected microwave signal passes through the same waveguide back to the transceiver and is evaluated in this.
  • This is a simple and cost-effective design, which requires no power supply, in particular on the sensor side in general by the use of reflection.
  • the sensor can also be realized in a very compact manner, which minimizes the influence of the sensor on the measuring signal. When used as a potential separate probe for oscilloscopes, this design allows for easy handling.
  • a device for the galvanically decoupled transmission of a measuring signal to a transceiver for microwaves, which is connected via a means for galvanically decoupled transmission of microwaves with a sensor.
  • the means for the galvanically decoupled transmission of microwaves is a dielectric waveguide or a waveguide with a plurality of electroconductive conductor pieces, which are connected in isolation from one another.
  • the transceiver is a continuous wave (CW) Signal Transceiver, a transceiver for amplitude modulated, including pulsed microwave signals, a transceiver for frequency modulated microwave signals or a transceiver for microwave signals, consisting of several superimposed frequencies.
  • the transceiver includes an oscillator and a demodulator.
  • the demodulator is preferably designed as a mixer between the oscillator signal and the reflected signal.
  • the sensor may be an electrical signal sensor or a non-electrical signal sensor. If the sensor receives a non-electrical measurement signal, it converts it into an electrical measurement signal.
  • the sensor includes a reflector and an element that modifies the reflection in a manner characterizing the measurement signal (modulator).
  • the modulator has a semiconductor diode, a transistor or a temperature-dependent resistor.
  • the means for transmitting the microwave signal is integrated together with the transceiver and the sensor on a substrate. This allows the miniaturization of the device.
  • the inventive probe for the galvanically decoupled transmission of measurement signals consisting of a
  • Tastspitze a Tastkopfkorper with a housing and a connection to a measuring device is characterized in that the probe according to the invention above Device for the galvanically decoupled transmission of a measuring signal, comprising a transceiver for microwaves, which is connected via a means for the galvanically decoupled transmission of microwaves with a sensor.
  • the stylus tip has a stylus and an input circuit.
  • the probe further includes an amplifier disposed between the transceiver and the connection to a meter. Furthermore, the probe may have a microcontroller which is connected to the amplifier.
  • a method for the galvanically decoupled transmission of a measurement signal comprises the steps of: transmitting a microwave signal from a transceiver, transmitting the microwave signal from the transceiver via a galvanic decoupling means for transmitting microwaves to a sensor, reflecting the signal in Sensor, wherein the microwave signal is changed in a manner characterizing the measured value, transmitting the reflected microwave signal from the sensor via the galvanic decoupling means for transmitting microwaves to the transceiver, and evaluation of the reflected microwave signal in the transceiver.
  • the reflected microwave signal is in the transceiver in terms of amplitude, phase, polarization or a combination of amplitude, phase and
  • the signal is significantly less loaded during the measurement and can thus be measured unadulterated.
  • Fig. 1 The inventive device for the galvanically decoupled transmission of signals in a schematic overview.
  • Fig. 2 A schematic detail view of the device according to the invention in an exemplary embodiment for voltage measurement.
  • Fig. 3 A schematic detail view of the sensor of the inventive device in an exemplary embodiment for temperature measurement.
  • FIG. 4 shows a schematic view of a probe according to the invention.
  • the arrangement of FIG. 1 consists of a transceiver 1, a means for galvanically decoupled transmission of microwaves and a sensor 3.
  • the means for transmitting microwaves as a dielectric waveguide 2 is realized.
  • the transceiver 1 generates a microwave signal and evaluates the signal reflected by the sensor 3. It contains an oscillator for the desired microwave frequency.
  • the reflected microwave signal can be multiplied by a mixer with the oscillator signal and provides a DC signal, which depends on the amplitude and phase of the reflection.
  • the means for the galvanically decoupled transmission of microwaves can, for example, as a dielectric
  • Waveguide 2 can be realized.
  • a shield can be provided.
  • the sensor 3 contains a reflector 17 and a modulator for changing the characteristics of the reflector 17.
  • the measurement signal influences the impedance of the modulator and thus the reflection properties of the reflector 17.
  • the preferred embodiment of the sensor 3 for voltage measurement is shown in FIG.
  • the waveguide 2 is connected to the reflector 17 and this with the drain-source channel of a transistor 6.
  • An electrical input 7 is formed by the gate and source of the transistor 6. At this input 7, an electrical signal is applied, via the
  • FIG. 1 A further realization possibility of the sensor 3 for temperature measurement is shown in FIG. One
  • Transition element 4 connects the waveguide 2 with the
  • Fig. 4 shows a schematic view of the inventive probe.
  • the outer shape of the probe corresponds approximately to that of a fountain pen.
  • Transceiver 1, microwave conductor 2 and sensor 3 form a mechanical unit.
  • the functional units of the probe are a means for contacting the measurement signal, preferably a probe tip 8, the sensor 3, the transceiver 1, the means for transmitting microwaves and the amplifier 9 and possibly a microcontroller 10.
  • the probe tip 8 can also be replaced be educated.
  • the stylus tip 8 preferably contains a stylus 13 and a short, flexible cable with mini-clamp or two styli, which contact the measuring signal and its reference potential.
  • the styli (or stylus 13 + flexible line) are connected to an input circuit 14.
  • the input circuit 14 contains elements for attenuating the measurement signal, for correcting the frequency response and for protecting the active element following in the signal path, see sensor 3.
  • the reflector 17 is a symmetrical dipole
  • the active element is a MOSFET. Its drain and source are each contacted with one leg of the dipole antenna. At the gate and source is measured signal and reference potential. The gate-source voltage changing with the measuring signal modulates the channel resistance of the MOSFETs. The MOSFET channel above the dipole's bottom closes the dipole more or less short. As a result, the phase and amplitude of the reflected wave are changed as a function of the measurement signal.
  • the transceiver 1 includes in a preferred embodiment, a microwave oscillator 15 and a mixer and demodulator 16.
  • the generated in the oscillator 15 RF energy is passed to a part of the sensor or reflector 17, on the other hand given to the mixer 16.
  • the reflected wave is superimposed nonlinearly in the mixer 16 of the oscillator oscillation. If the phase and / or amplitude of the reflected wave changes, the demodulator 16 generates a changing voltage.
  • the means for transmitting microwaves is preferably a dielectric waveguide 2. It passes the microwave from the oscillator 15 to the sensor / reflector 3 and back to the mixer 16.
  • the dielectric waveguide 2 isolates the measuring signal from the connected oscilloscope (not shown).
  • the amplifier 9 amplifies the voltage applied to the demodulator 16.
  • it can contain non-linear elements and switching elements.
  • the non-linear elements can compensate for nonlinearities in the signal path (caused by MOSFETs, sensor 3 and demodulator 16) and thus the increase usable dynamic range.
  • switching elements can be present, which serve for zero and gain adjustment. These can be controlled by a microcontroller 10.
  • microcontroller 10 controls the microcontroller 10
  • the output impedance of the amplifier 9 is adapted to the line to the oscilloscope 11.
  • the use of microwaves over light waves allows the device and probe to be miniaturized.
  • the measuring sensor has a size of about 0.1 cm 3 in one embodiment. This allows a cheaper version.
  • the device can be manufactured integrated on a substrate. For example, the methods of thin-film technology can be applied to an Al 2 O 3 substrate. Also, the immunity of the device is increased by the miniaturization.
  • the device according to the invention allows the bandwidth of the measurement signal to be increased compared to lightwave applications.
  • the microwave frequency is preferably between 12 to 30 GHz.
  • the load of the measurement object is also very small, typically less than 1 pF.
  • broadband measurements at high-impedance measuring points for example, source impedances of 1 kOhm
  • electrical signals can also be measured in strongly electromagnetic interference environments. The use of different reference potentials is not a problem.
  • the measurement is not by the storage capacity of a battery, as in the
  • Signal transmission via optical fiber needed, limited. Both analog and digital signals can be measured. Shortest pulses are measurable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

The invention relates to a device, a probe, and a method for the galvanically decoupling transmission of a measuring signal. A microwave signal is supplied by a transceiver (1) to a sensor (3) by means of a galvanically decoupled waveguide (2). The signal is partially reflected in the sensor (3), the amplitude, phase and/or polarisation of the reflected microwave signal containing the information relating to the measuring value. The reflected microwave signal runs through the same waveguide (2) back to the transceiver (1) and is evaluated therein. The invention provides a more simple and economical structure than conventional devices of prior art, as a voltage supply is not required especially on the sensor side as a result of the reflection. In this way, the sensor (3) can also be produced in a very compact manner, minimising the influence of the measuring signal through the sensor (3).

Description

Vorrichtung, Tastkopf sowie Verfahren zur galvanisch entkoppelten Übertragung eines MesssignalsDevice, probe and method for galvanically decoupled transmission of a measurement signal
Beschreibungdescription
Die Erfindung betrifft eine Vorrichtung, einen Tastkopf sowie ein Verfahren zur galvanisch entkoppelten Übertragung eines Messsignals mit den im Oberbegriff der Ansprüche 1, 19 und 22 genannten Merkmalen.The invention relates to a device, a probe and a method for galvanically decoupled transmission of a measuring signal with the features mentioned in the preamble of claims 1, 19 and 22.
Bei der Entwicklung und Prüfung elektrischer bzw. elektronischer Bauelemente, Baugruppen und Gerate müssen Signale von beliebigen Punkten eines Prüflings abgegriffen werden können.In the development and testing of electrical or electronic components, assemblies and devices signals must be taken from any point of a test specimen.
Bei elektrischen Spannungen zum Beispiel werden oft Oszilloskope zur Erfassung und grafischen Darstellung eingesetzt. Da fast alle Oszilloskope Tischgerate sind, können sie nicht direkt mit dem Messobjekt kontaktiert werden, dazu werden Tastkopfe eingesetzt.For example, in the case of electrical voltages, oscilloscopes are often used for acquisition and graphical representation. Since almost all oscilloscopes are desktop devices, they can not be contacted directly with the DUT, using probes.
Ein Tastkopf ist dabei ein Mess-Adapter zum Anschließen eines Messgerates an einen Messpunkt in einer Schaltung. Aufgabe des Tastkopfes ist die möglichst unverfälschte Übertragung des Messwertes, möglichst ohne merkliche Beeinflussung des Prüflings. Ein Oszilloskop-Tastkopf besteht aus folgenden Teilen: Einer Tastspitze zur Kontaktierung mit dem Mess-Signal auf einer Leiterbahn, Kontakten eines Bauelementes o. a . ; einem kurzen, flexiblen Draht mit Klemme zum Abgriff des Bezugspotenzials desA probe is a measuring adapter for connecting a measuring device to a measuring point in a circuit. The task of the probe is the most unadulterated transmission of the measured value, if possible without noticeable influence on the test object. An oscilloscope probe consists of the following parts: A probe tip for contacting the measuring signal on a conductor, contacts of a component or the like. ; a short, flexible wire with clamp for tapping the reference potential of the
Messsignals; einem Tastkopf-Korper zum Halten mit der Hand; sowie Kabel und Steckverbinder zur Übertragung des Mess- Signals zum Oszilloskop. Es gibt Anforderungen, die an alle Tastkopfe gestellt werden: Eine geringe Beeinflussung des Mess-Signals, insbesondere eine geringe Eingangskapazitat, eine originalgetreue Weiterleitung des Mess-Signals an dasMeasurement signal; a probe body for holding by hand; and cables and connectors for transmitting the measurement signal to the oscilloscope. There are requirements that are made to all probes: A small influence on the measuring signal, in particular a low input capacitance, a faithful transmission of the measuring signal to the
Oszilloskop, das heißt geringe Verzerrungen der Signalform sowie geringe Amplitudenfehler und ein hoher Dynamikbereich sind hier zu nennen.Oscilloscope, ie low distortion of the waveform and low amplitude errors and a high dynamic range can be mentioned here.
Bei Messungen elektrischer Spannungen muss zweipolig abgegriffen und zum Oszilloskop übertragen werden. Man kann den einen Pol „Mess-Signal", den anderen „Bezugspotenzial des Mess-Signals" nennen.When measuring electrical voltages, two-pole measurement must be taken and transferred to the oscilloscope. You can call one pole "measurement signal", the other "reference potential of the measurement signal".
Das Bezugspotenzial des Mess-Signals wird vom Messobjekt zum Oszilloskop (Oszilloskop-Bezugspotenzial) durchgeschleift. Üblicherweise ist dieser Pol des Oszilloskops mit dem Gehäuse und weiter mit dem Schutzleiter des Stromversorgungsnetzes verbunden. Bei mehrkanaligen Messungen werden die Bezugspotenziale der Mess-Signale über das Oszilloskop miteinander verbunden.The reference potential of the measuring signal is looped through by the measuring object to the oscilloscope (oscilloscope reference potential). Usually, this pole of the oscilloscope is connected to the housing and further to the protective conductor of the power supply network. In multi-channel measurements, the reference potentials of the measuring signals are connected to each other via the oscilloscope.
Besitzt das Messobjekt mehrere Bezugspotenziale für die Mess-Signale und dürfen diese nicht miteinander oder mit dem Schutzleiter des Stromversorgungsnetzes verbunden werden, so musste auf solche Messungen verzichtet werden.If the test object has several reference potentials for the measuring signals and these must not be connected with each other or with the protective conductor of the power supply network, then such measurements were not necessary.
Daher wird die galvanisch entkoppelte Übertragung von Messsignalen bei vielen technischen Messaufgaben benotigt. Beispiele sind Oszilloskopmessungen an Stromversorgungen auf der Primär- und Sekundarseite oder im Steuer- und Leistungskreis elektrischer Antriebe. Unter galvanischer Trennung versteht man den Fall, dass es für Ladungsträger keinen Weg gibt, aus einem Stromkreis in einen anderen, unmittelbar benachbarten Stromkreis zu fließen. Häufigster Anwendungsfall für die galvanische Trennung sind Transformatoren mit Verbindung zum öffentlichen Stromnetz. Hier ist eine galvanische Trennung vorgeschrieben, die durch zwei elektrisch getrennte Spulen mit einem gemeinsamen Eisenkern realisiert werden.Therefore, the galvanically decoupled transmission of measurement signals in many technical measurement tasks is needed. Examples are oscilloscope measurements on power supplies on the primary and secondary side or in the control and power circuit of electrical drives. Galvanic isolation means the case that there is no way for carriers to flow from one circuit to another, immediately adjacent circuit. The most common application for galvanic isolation are transformers connected to the public grid. Here, a galvanic separation is prescribed, which are realized by two electrically separate coils with a common iron core.
Ein Informationsaustausch zwischen galvanisch getrennten Stromkreisen ist durch nicht-elektrische Übertrager, zum Beispiel durch Optokoppler (optisch) oder Transformatoren (induktiv) möglich.An exchange of information between galvanically isolated circuits is possible by non-electrical transformers, for example by optocouplers (optical) or transformers (inductive).
Bei Tastkopfen für Ozilloskope realisieren Differenztastkopfe und optoelektronische TastkopfSysteme eine "virtuelle" oder echte Entkopplung von Mess-Signal und Oszilloskop. Wo eine Entkopplung des Mess-Signals vom Oszilloskop nicht erforderlich ist, wird man Tastkopfe einsetzen, bei denen das Mess-Signal-Bezugspotenzial zum Oszilloskop durchgeschleift ist. Letztere sind vor allem kostengünstiger als marktubliche Differenztastkopfe oder optoelektronische TastkopfSysteme .With oscilloscope probe heads, differential probes and optoelectronic probe systems realize a "virtual" or true decoupling of measurement signal and oscilloscope. Where decoupling of the measurement signal from the oscilloscope is not required, probes will be used where the measurement signal reference potential is looped through to the oscilloscope. The latter are above all more cost-effective than commercially available differential probes or optoelectronic probe systems.
Differenztastkopfe funktionieren nach folgendem Prinzip: Das Ausgangssignal zweier Tastnadeln wird auf einen im Tastkopf befindlichen Differenzverstarker gegeben. Oder es werden zwei Tastkopfe über Leitungen an einen Differenzverstarker angeschlossen. Der Differenzverstarker- Ausgang ist mit dem Oszilloskop verbunden. Im Idealfall sind die beiden Differenzsignale durch den Differenzverstarker vollständig vom Bezugspotenzial des Oszilloskops entkoppelt. Nachteilig an diesen Systemen ist jedoch ein endlicher Gleichtakt-Eingangsspannungsbereich. Der endliche Gleichtakt-Eingangsspannungsbereich des Differenzverstarkers setzt der Amplitude des Gleichtaktsignals Grenzen. Ferner sinkt die Gleichtaktunterdruckung mit steigender Frequenz des Gleichtaktsignals. Wahrend bei Gleichtaktsignalen kleiner Frequenz (z. B. 50Hz) auch mit low-cost-Differenz-Differential probes work according to the following principle: The output signal of two styli is placed on a differential amplifier located in the probe. Or two probes are connected via lines to a differential amplifier. The differential amplifier output is connected to the oscilloscope. Ideally, the difference signals isolate the two differential signals completely from the reference potential of the oscilloscope. However, a disadvantage of these systems is a finite common-mode input voltage range. The finite common mode input voltage range of the differential amplifier limits the amplitude of the common mode signal. Furthermore, the common-mode negative pressure decreases with increasing frequency of the common-mode signal. While with common-frequency signals of low frequency (eg 50 Hz) even with low-cost differential
Tastkopfen eine gute Gleichtaktunterdruckung erzielt wird, sind diese bei Gleichtaktsignalen hoher Frequenz oder Spannungs-Anstiegs-Geschwindigkeit oft unbrauchbar.Although good common mode rejection is achieved with these probes, they are often unusable with common-mode, high-frequency or voltage-ramped signals.
Auch ist die Abstrahlung bei Differenztastkopfen nachteilig. Üblicherweise sind die beiden Tastkopfe über Kabel mit dem Differenzverstarker verbunden. Dadurch werden Teile des Mess-Signals und dessen Bezugspotentials (Gleichtaktsignal) in die Umgebung abgestrahlt. Mit steigender Frequenz und Amplitude des Gleichtaktsignals erhöht sich die Abstrahlung. Diese Abstrahlung belastet das Mess-Signal und dessen Bezugspotenzial, es wird ungewollt verändert, und der Messwert repräsentiert auch bei perfekter Übertragung des Signals nicht mehr das zu messende Signal im ungestörten Zustand.The radiation is disadvantageous in differential probes. Usually, the two probes are connected via cables to the Differenzverstarker. As a result, parts of the measurement signal and its reference potential (common-mode signal) are radiated into the environment. With increasing frequency and amplitude of the common-mode signal, the radiation increases. This radiation loads the measuring signal and its reference potential, it is unintentionally changed, and the measured value no longer represents the signal to be measured in the undisturbed state even with perfect transmission of the signal.
Durch Einsatz hochwertiger Komponenten und aufwandiger Schaltungstechnik lassen sich mit "high-end"-Differenz- Tastkopfen einige Messungen, bei denen das Bezugspotenzial des Mess-Signals nicht mit dem Bezugssignal desBy using high-quality components and sophisticated circuit technology, some measurements can be made with "high-end" differential probes, where the reference potential of the measuring signal does not match the reference signal of the
Oszilloskops verbunden ist, verbessern. Nachteilig ist jedoch, dass diese Losungen sehr teuer sind. Ferner sind Systeme mit optischer Übertragung des Mess- Signals bekannt. Das Messsignal wird dabei auf einen optischen Trager moduliert, zum Beispiel durch Modulation der Strahlungsleistung einer Halbleiter-Laserdiode. Übertragen wird das modulierte Licht über eine Glasfaser. Im Empfanger wird es zum Beispiel mittels Fotodiode wieder demoduliert. Dieses Verfahren erlaubt eine praktisch vollständige Entkopplung des Messsignals vom Oszilloskop. Das optische Signal ist weder störanfällig noch stört es.Oscilloscope is connected, improve. The disadvantage, however, is that these solutions are very expensive. Furthermore, systems with optical transmission of the measurement signal are known. The measurement signal is modulated onto an optical carrier, for example by modulation of the radiation power of a semiconductor laser diode. The modulated light is transmitted via a glass fiber. In the receiver, for example, it is demodulated again by means of a photodiode. This method allows a virtually complete decoupling of the measurement signal from the oscilloscope. The optical signal is neither susceptible nor disturbing.
Die DE 101 Ol 632 B4 und die WO 89/09413 Al sowie die US 5,465,043 geben verschiedene laserbasierte Verfahren unter Verwendung von Lichtwellenleitern an.DE 101 0 632 B4 and WO 89/09413 A1 as well as US Pat. No. 5,465,043 specify various laser-based methods using optical waveguides.
In DE 101 01 632 B4 wird ein Oszilloskoptastkopf mit faseroptischem Sensor zur potentialfreien Erfassung elektrischer Großen vorgestellt.DE 101 01 632 B4 discloses an oscilloscope probe with a fiber optic sensor for potential-free detection of electrical variables.
Die WO 89/09413 Al beschreibt einen Oszilloskoptastkopf mit faseroptischem Sensor zur potentialfreien Erfassung elektrischer Großen. Der Sensorkopf weist einen elektrooptischen Kristall auf, mittels dessen zugefuhrtes Licht mit einer Polarisation durch Einwirkung eines elektrischen Feldes beeinflusst wird. Der Unterschied zwischen ursprunglicher Polarisation und der veränderten Polarisation wird dann in eine elektrische Große umgewandelt. Bei der Übertragung kommen Lichtwellenleiter zum Einsatz.WO 89/09413 A1 describes an oscilloscope probe with a fiber optic sensor for potential-free detection of electrical variables. The sensor head has an electro-optical crystal, by means of which light supplied to it is influenced by a polarization by the action of an electric field. The difference between the original polarization and the changed polarization is then converted into an electrical quantity. Fiber optic cables are used during transmission.
Ein Messkopf zur potential- und storfreien Erfassung der Intensität eines elektrischen Feldes oder des absoluten Wertes einer Spannung ist in der US 5,465,043 offenbart. Auch hier spiegelt die Veränderung der Lichtpolarisation die Feldstarke bzw. den Spannungswert wider.A measuring head for the potential-free and storefree detection of the intensity of an electric field or of the absolute value of a voltage is disclosed in US Pat. No. 5,465,043. Again, the change in light polarization reflects the field strength or the voltage value.
Es handelt sich hierbei um ein relativ aufwandiges Verfahren bezuglich des Bauelemente-Einsatzes und der Herstellung.This is a relatively expensive process for component deployment and fabrication.
So benotigt die WO 89/09413 Al im Tastkopf ein optisches System, das mechanisch zu befestigende und hinsichtlich ihrer Achse zu justierende Elemente wie einen Strahlteiler, einen Spiegel und Linsen aufweist, und in DE 101 01 632 B4 wird ein teurer elektrooptischer Sensor eingesetzt.For example, WO 89/09413 A1 requires in the probe an optical system which has elements to be mechanically fastened and to be adjusted with respect to its axis, such as a beam splitter, a mirror and lenses, and in DE 101 01 632 B4 an expensive electro-optical sensor is used.
Weitere bekannte Losungen zur galvanisch entkoppelten Übertragung über optische Lichtleiter benotigen auf der Sensorseite eine elektrische Spannungsversorgung für die elektronischen Komponenten wie Laser, LED oder Verstarker. Deren galvanisch entkoppelte Bereitstellung stellt eine zusatzliche Schwierigkeit dar, zum Beispiel durch größeren Platzbedarf und begrenzte Funktionsdauer einer Batterie.Other well-known solutions for galvanically decoupled transmission via optical waveguides require an electrical power supply for the electronic components such as lasers, LEDs or amplifiers on the sensor side. Their galvanically decoupled provision presents an additional difficulty, for example due to greater space requirements and limited battery life.
Induktive Ubertragungsarten sind in der Spannungsfestigkeit begrenzt und erzeugen eine parasitäre kapazitive Kopplung zwischen dem Sensor und der Auswerteeinrichtung.Inductive transmission modes are limited in the dielectric strength and produce a parasitic capacitive coupling between the sensor and the evaluation device.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren sowie einen Tastkopf zur galvanisch entkoppelten Übertragung eines Messsignals anzugeben, die kostengünstig sind und ohne Spannungsversorgung auf Mess-Signal-Seite auskommen.It is therefore an object of the present invention to provide a device and a method and a probe for galvanically decoupled transmission of a measurement signal, which are inexpensive and manage without power supply on the measurement signal side.
Diese Aufgabe wird erfindungsgemaß gelost durch die Merkmale im kennzeichnenden Teil der Ansprüche 1 und 19 (Vorrichtungsanspruch) sowie des Anspruchs 22 Verfahrensanspruch) im Zusammenwirken mit den Merkmalen im Oberbegriff. Zweckmäßige Ausgestaltungen der Erfindung sind in den Unteranspruchen enthalten.This object is achieved according to the invention by the features in the characterizing part of claims 1 and 19 (device claim) and the claim 22nd Method claim) in conjunction with the features in the preamble. Advantageous embodiments of the invention are contained in the subclaims.
In der vorliegenden Anmeldung wird die Problematik erfindungsgemaß dadurch gelost, dass ein Mikrowellensignal von einem Transceiver über einen galvanisch entkoppelnden Wellenleiter auf einen Sensor gegeben wird. Im Sensor wird dieses Signal teilweise reflektiert, wobei die Amplitude und/oder Phase des reflektierten Mikrowellensignals die Information über den Messwert enthalt. Das reflektierte Mikrowellensignal lauft durch den selben Wellenleiter zurück zum Transceiver und wird in diesem ausgewertet. Dies ist ein einfacher und kostengünstiger Aufbau, der insbesondere auf der Sensorseite im Allgemeinen durch die Nutzung der Reflexion keine Spannungsversorgung benotigt. Dadurch kann der Sensor auch sehr kompakt realisiert werden, was die Beeinflussung des Messsignals durch den Sensor minimiert. Im Falle der Anwendung als Potenzial getrennter Tastkopf für Oszilloskope gestattet dieser Aufbau eine gute Handhabbarkeit.In the present application, the problem is inventively solved by the fact that a microwave signal is given by a transceiver via a galvanically decoupling waveguide to a sensor. In the sensor, this signal is partially reflected, wherein the amplitude and / or phase of the reflected microwave signal contains the information about the measured value. The reflected microwave signal passes through the same waveguide back to the transceiver and is evaluated in this. This is a simple and cost-effective design, which requires no power supply, in particular on the sensor side in general by the use of reflection. As a result, the sensor can also be realized in a very compact manner, which minimizes the influence of the sensor on the measuring signal. When used as a potential separate probe for oscilloscopes, this design allows for easy handling.
Dazu weist eine erfindungsgemaße Vorrichtung zur galvanisch entkoppelten Übertragung eines Messsignals einen Transceiver für Mikrowellen auf, der über ein Mittel zur galvanisch entkoppelten Übertragung von Mikrowellen mit einem Sensor verbunden ist.For this purpose, a device according to the invention for the galvanically decoupled transmission of a measuring signal to a transceiver for microwaves, which is connected via a means for galvanically decoupled transmission of microwaves with a sensor.
Das Mittel zur galvanisch entkoppelten Übertragung von Mikrowellen ist ein dielektrischer Wellenleiter oder ein Wellenleiter mit einer Mehrzahl galvanisch leitender Leitungsstucke, die voneinander isoliert hintereinander geschaltet sind. Der Transceiver ist ein Continuous Wave (CW) Signal Transceiver, ein Transceiver für amplitudenmodulierte, einschließlich gepulster Mikrowellensignale, ein Transceiver für frequenzmodulierte Mikrowellensignale oder ein Transceiver für Mikrowellensignale, bestehend aus mehreren überlagerten Frequenzen. Der Transceiver enthalt einen Oszillator und einen Demodulator. Der Demodulator ist bevorzugt als Mischer zwischen dem Oszillator-Signal und dem reflektierten Signal ausgeführt.The means for the galvanically decoupled transmission of microwaves is a dielectric waveguide or a waveguide with a plurality of electroconductive conductor pieces, which are connected in isolation from one another. The transceiver is a continuous wave (CW) Signal Transceiver, a transceiver for amplitude modulated, including pulsed microwave signals, a transceiver for frequency modulated microwave signals or a transceiver for microwave signals, consisting of several superimposed frequencies. The transceiver includes an oscillator and a demodulator. The demodulator is preferably designed as a mixer between the oscillator signal and the reflected signal.
Der Sensor kann ein Sensor für elektrische Signale oder ein Sensor für nichtelektrische Signale sein. Nimmt der Sensor ein nichtelektrisches Messsignal auf, so wandelt er es in ein elektrisches Messsignal. Der Sensor enthalt einen Reflektor und ein Element, das die Reflexion in einer das Mess-Signal charakterisierenden Weise verändert (Modulator) . Der Modulator weist eine Halbleiterdiode, einen Transistor oder einen temperaturabhangigen Widerstand auf .The sensor may be an electrical signal sensor or a non-electrical signal sensor. If the sensor receives a non-electrical measurement signal, it converts it into an electrical measurement signal. The sensor includes a reflector and an element that modifies the reflection in a manner characterizing the measurement signal (modulator). The modulator has a semiconductor diode, a transistor or a temperature-dependent resistor.
Vorteilhafterweise ist das Mittel zur Übertragung des Mikrowellensignals zusammen mit dem Transceiver und dem Sensor auf einem Substrat integriert. Dies erlaubt die Miniaturisierung der Vorrichtung.Advantageously, the means for transmitting the microwave signal is integrated together with the transceiver and the sensor on a substrate. This allows the miniaturization of the device.
Durch die Reflektion des Signal im Sensor kommt dieser ohne zusatzliche Spannungsversorgung aus.Due to the reflection of the signal in the sensor this comes without additional power supply.
Der erfindungsgemaße Tastkopf zur galvanisch entkoppelten Übertragung von Messsignalen, bestehend aus einerThe inventive probe for the galvanically decoupled transmission of measurement signals, consisting of a
Tastspitze, einen Tastkopfkorper mit einem Gehäuse und einer Verbindung zu einem Messgerat ist dadurch gekennzeichnet, dass der Tastkopf obige erfindungsgemaße Vorrichtung zur galvanisch entkoppelten Übertragung eines Messsignals aufweist, bestehend aus einem Transceiver für Mikrowellen, welcher über ein Mittel zur galvanisch entkoppelten Übertragung von Mikrowellen mit einem Sensor verbunden ist.Tastspitze, a Tastkopfkorper with a housing and a connection to a measuring device is characterized in that the probe according to the invention above Device for the galvanically decoupled transmission of a measuring signal, comprising a transceiver for microwaves, which is connected via a means for the galvanically decoupled transmission of microwaves with a sensor.
Die Tastspitze weist eine Tastnadel und eine Eingangsschaltung auf. Der Tastkopf umfasst ferner einen Verstarker, der zwischen dem Transceiver und der Verbindung zu einem Messgerat angeordnet ist. Weiterhin kann der Tastkopf einen Microcontroller aufweisen, der mit dem Verstarker verbunden ist.The stylus tip has a stylus and an input circuit. The probe further includes an amplifier disposed between the transceiver and the connection to a meter. Furthermore, the probe may have a microcontroller which is connected to the amplifier.
Entsprechend ist ein erfindungsgemaßes Verfahren zur galvanisch entkoppelten Übertragung eines Messsignals dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst: Senden eines Mikrowellensignals von einem Transceiver, Übertragen des Mikrowellensignals vom Transceiver über ein galvanisch entkoppelndes Mittel zur Übertragung von Mikrowellen zu einem Sensor, Reflektion des Signals im Sensor, wobei das Mikrowellen-Signal in einer den Messwert charakterisierenden Weise verändert wird, Übertragen des reflektierten Mikrowellensignals vom Sensor über das galvanisch entkoppelnde Mittel zur Übertragung von Mikrowellen zum Transceiver, und Auswertung des reflektierten Mikrowellensignals im Transceiver.Accordingly, a method according to the invention for the galvanically decoupled transmission of a measurement signal is characterized in that the method comprises the steps of: transmitting a microwave signal from a transceiver, transmitting the microwave signal from the transceiver via a galvanic decoupling means for transmitting microwaves to a sensor, reflecting the signal in Sensor, wherein the microwave signal is changed in a manner characterizing the measured value, transmitting the reflected microwave signal from the sensor via the galvanic decoupling means for transmitting microwaves to the transceiver, and evaluation of the reflected microwave signal in the transceiver.
Das reflektierte Mikrowellensignal wird im Transceiver hinsichtlich der Amplitude, der Phase, der Polarisation oder einer Kombination aus Amplitude, Phase undThe reflected microwave signal is in the transceiver in terms of amplitude, phase, polarization or a combination of amplitude, phase and
Polarisation ausgewertet, vorzugsweise in Relation zum Oszillator-Signal. Vorteile der erfinderischen Losung liegen vor allen in der kostengünstigeren Ausfuhrung, die sich gut miniaturisieren und integriert fertigen lasst.Polarization evaluated, preferably in relation to the oscillator signal. Advantages of the inventive solution are above all in the more cost-effective execution, which can be miniaturized well and integrated finished.
Das Signal wird bei der Messung deutlich wenig belastet und lasst sich somit unverfälscht messen.The signal is significantly less loaded during the measurement and can thus be measured unadulterated.
Die Erfindung wird nachstehend anhand einiger Ausfuhrungsbeispiele naher erläutert.The invention will be explained in more detail below with reference to some exemplary embodiments.
Es zeigtIt shows
Fig. 1: Die erfindungsgemaße Vorrichtung zur galvanisch entkoppelten Übertragung von Signalen in schematischer Übersicht.Fig. 1: The inventive device for the galvanically decoupled transmission of signals in a schematic overview.
Fig. 2: Eine schematische Detailansicht der erfindungsgemaßen Vorrichtung in einem Ausfuhrungsbeispiel zur Spannungsmessung.Fig. 2: A schematic detail view of the device according to the invention in an exemplary embodiment for voltage measurement.
Fig. 3: Eine schematische Detailansicht des Sensors der erfindungsgemaßen Vorrichtung in einem Ausfuhrungsbeispiel zur Temperaturmessung.Fig. 3: A schematic detail view of the sensor of the inventive device in an exemplary embodiment for temperature measurement.
Fig. 4: Eine schematische Ansicht eines erfindungsgemaßen Tastkopfs.4 shows a schematic view of a probe according to the invention.
Die Anordnung der Fig. 1 besteht aus einem Transceiver 1, einem Mittel zur galvanisch entkoppelten Übertragung von Mikrowellen und einem Sensor 3. Bevorzugt ist das Mittel zur Übertragung von Mikrowellen als ein dielektrischer Wellenleiter 2 realisiert. Der Transceiver 1 erzeugt ein Mikrowellensignal und wertet das vom Sensor 3 reflektierte Signal aus. Er enthalt einen Oszillator für die gewünschte Mikrowellenfrequenz. Im einfachsten Fall kann das reflektierte Mikrowellensignal durch einen Mischer mit dem Oszillatorsignal multipliziert werden und liefert ein DC-Signal, das von der Amplitude und Phasenlage der Reflektion abhangt.The arrangement of FIG. 1 consists of a transceiver 1, a means for galvanically decoupled transmission of microwaves and a sensor 3. Preferably, the means for transmitting microwaves as a dielectric waveguide 2 is realized. The transceiver 1 generates a microwave signal and evaluates the signal reflected by the sensor 3. It contains an oscillator for the desired microwave frequency. In the simplest case, the reflected microwave signal can be multiplied by a mixer with the oscillator signal and provides a DC signal, which depends on the amplitude and phase of the reflection.
Das Mittel zur galvanisch entkoppelten Übertragung von Mikrowellen kann zum Beispiel als dielektrischerThe means for the galvanically decoupled transmission of microwaves can, for example, as a dielectric
Wellenleiter 2 realisiert werden. Zur Minimierung störender Einflüsse kann eine Abschirmung vorgesehen werden.Waveguide 2 can be realized. To minimize disturbing influences, a shield can be provided.
Der Sensor 3 enthalt einen Reflektor 17 und einen Modulator zur Veränderung der Eigenschaften des Reflektors 17. Das Mess-Signal beeinflusst die Impedanz des Modulators und damit die Reflexionseigenschaften des Reflektors 17.The sensor 3 contains a reflector 17 and a modulator for changing the characteristics of the reflector 17. The measurement signal influences the impedance of the modulator and thus the reflection properties of the reflector 17.
Die bevorzugte Ausfuhrungsvariante des Sensors 3 zur Spannungsmessung ist in Fig. 2 dargestellt. Hier ist der Wellenleiter 2 mit dem Reflektor 17 verbunden und dieser mit dem Drain-Source-Kanal eines Transistors 6. Ein elektrischer Eingang 7 wird durch Gate und Source des Transistors 6 gebildet. An diesem Eingang 7 wird ein elektrisches Signal angelegt, das über dieThe preferred embodiment of the sensor 3 for voltage measurement is shown in FIG. Here, the waveguide 2 is connected to the reflector 17 and this with the drain-source channel of a transistor 6. An electrical input 7 is formed by the gate and source of the transistor 6. At this input 7, an electrical signal is applied, via the
Widerstandsanderung des Drain-Source-Kanals das Eingangsignal auf die Reflektion des Mikrowellsignals abbildet .Resistance change of the drain-source channel, the input signal to the reflection of the microwave signal maps.
Eine weitere Realisierungsmoglichkeit des Sensors 3 zur Temperaturmessung ist in Fig. 3 dargestellt. EinA further realization possibility of the sensor 3 for temperature measurement is shown in FIG. One
Ubergangselement 4 verbindet den Wellenleiter 2 mit denTransition element 4 connects the waveguide 2 with the
Anschlüssen eines temperaturabhangigen Widerstandes 5, zum Beispiel PT 100. Die temperaturabhangige Fehlanpassung am Ausgang des Ubergangselementes 4 fuhrt zur gewünschten temperaturabhangigen Reflektion des Mikrowellensignals.Connections of a temperature-dependent resistor 5, for Example PT 100. The temperature-dependent mismatch at the output of the transition element 4 leads to the desired temperature-dependent reflection of the microwave signal.
Fig. 4 zeigt eine schematische Ansicht des erfindungsgemaßen Tastkopfes. Bevorzugt entspricht die äußere Form des Tastkopfes in etwa der eines Füllfederhalters. Transceiver 1, Mikrowellenleiter 2 und Sensor 3 bilden eine mechanische Einheit. Die funktionalen Einheiten des Tastkopfes sind ein Mittel zur Kontaktierung mit dem Messsignal, bevorzugt eine Tastspitze 8, der Sensor 3, der Transceiver 1, das Mittel zur Übertragung von Mikrowellen und der Verstarker 9 und ggf. ein MikroController 10. Die Tastspitze 8 kann auch auswechselbar ausgebildet sein.Fig. 4 shows a schematic view of the inventive probe. Preferably, the outer shape of the probe corresponds approximately to that of a fountain pen. Transceiver 1, microwave conductor 2 and sensor 3 form a mechanical unit. The functional units of the probe are a means for contacting the measurement signal, preferably a probe tip 8, the sensor 3, the transceiver 1, the means for transmitting microwaves and the amplifier 9 and possibly a microcontroller 10. The probe tip 8 can also be replaced be educated.
Die Tastspitze 8 enthalt bevorzugt eine Tastnadel 13 und eine kurze, flexible Leitung mit Mini-Klemme oder zwei Tastnadeln, die das Messsignal und dessen Bezugspotenzial kontaktieren. Die Tastnadeln (bzw. Tastnadel 13 + flexible Leitung) sind mit einer Eingangsschaltung 14 verbunden.The stylus tip 8 preferably contains a stylus 13 and a short, flexible cable with mini-clamp or two styli, which contact the measuring signal and its reference potential. The styli (or stylus 13 + flexible line) are connected to an input circuit 14.
Die Eingangsschaltung 14 beinhaltet Elemente zur Abschwachung des Messsignals, zur Korrektur des Frequenzganges und zum Schutz des im Signalpfad folgenden aktiven Elementes, siehe Sensor 3.The input circuit 14 contains elements for attenuating the measurement signal, for correcting the frequency response and for protecting the active element following in the signal path, see sensor 3.
In diesem Ausfuhrungsbeispiel sei der Reflektor 17 ein symmetrischer Dipol, das aktive Element ein MOSFET. Dessen Drain und Source sind mit jeweils einem Schenkel der Dipol- Antenne kontaktiert. An Gate und Source liegt Mess-Signal und Bezugspotenzial. Die sich mit dem Mess-Signal ändernde Gate-Source-Spannung moduliert den Kanalwiderstand des MOSFETs. Der über dem Fußpunkt des Dipols liegende MOSFET- Kanal schließt den Dipol mehr oder weniger kurz. Dadurch werden in Abhängigkeit des Mess-Signals Phase und Amplitude der reflektierten Welle verändert.In this exemplary embodiment, the reflector 17 is a symmetrical dipole, the active element is a MOSFET. Its drain and source are each contacted with one leg of the dipole antenna. At the gate and source is measured signal and reference potential. The gate-source voltage changing with the measuring signal modulates the channel resistance of the MOSFETs. The MOSFET channel above the dipole's bottom closes the dipole more or less short. As a result, the phase and amplitude of the reflected wave are changed as a function of the measurement signal.
Der Transceiver 1 beinhaltet in einem bevorzugten Ausfuhrungsbeispiel einen Mikrowellen-Oszillator 15 und einen Mischer und Demodulator 16. Die im Oszillator 15 generierte HF-Energie wird zum einen Teil zum Sensor bzw. Reflektor 17 geleitet, zum anderen Teil auf den Mischer 16 gegeben. Die reflektierte Welle wird im Mischer 16 der Oszillatorschwingung nichtlinear überlagert. Ändert sich die Phase und/oder Amplitude der reflektierten Welle, generiert das am Demodulator 16 eine sich ändernde Spannung.The transceiver 1 includes in a preferred embodiment, a microwave oscillator 15 and a mixer and demodulator 16. The generated in the oscillator 15 RF energy is passed to a part of the sensor or reflector 17, on the other hand given to the mixer 16. The reflected wave is superimposed nonlinearly in the mixer 16 of the oscillator oscillation. If the phase and / or amplitude of the reflected wave changes, the demodulator 16 generates a changing voltage.
Das Mittel zur Übertragung von Mikrowellen ist bevorzugt ein dielektrischer Wellenleiter 2. Er leitet die Mikrowelle vom Oszillator 15 zum Sensor/Reflektor 3 und zurück auf den Mischer 16. Der dielektrische Wellenleiter 2 isoliert das Mess-Signal gegenüber dem angeschlossenen Oszilloskop (nicht gezeigt) .The means for transmitting microwaves is preferably a dielectric waveguide 2. It passes the microwave from the oscillator 15 to the sensor / reflector 3 and back to the mixer 16. The dielectric waveguide 2 isolates the measuring signal from the connected oscilloscope (not shown).
So ist auf der einen Seite (Tastnadel 13, Tastspitze 8, Sensor 3) alles elektrisch Leitende mit dem Mess-Signal verbunden. Eine galvanische Verbindung mit dem Oszilloskop besteht auf der anderen Seite (Transceiver 1, Verstarker 9, Leitung zum Oszilloskop 11) .So on the one hand (stylus 13, stylus tip 8, sensor 3) everything electrically conductive connected to the measuring signal. There is a galvanic connection with the oscilloscope on the other side (transceiver 1, amplifier 9, cable to the oscilloscope 11).
Der Verstarker 9 verstärkt die am Demodulator 16 anliegende Spannung. Zusatzlich kann er nichtlineare Elemente und Schaltelemente enthalten. Die nichtlinearen Elemente können Nichtlinearitaten im Signalpfad (verursacht durch MOSFETs, Sensor 3 und Demodulator 16) ausgleichen und damit den nutzbaren Dynamikbereich vergrößern. Auch Schaltelemente können vorhanden sein, die zum Nullpunkt- und Verstärkungs- Abgleich dienen. Diese können durch einen MikroController 10 gesteuert werden.The amplifier 9 amplifies the voltage applied to the demodulator 16. In addition, it can contain non-linear elements and switching elements. The non-linear elements can compensate for nonlinearities in the signal path (caused by MOSFETs, sensor 3 and demodulator 16) and thus the increase usable dynamic range. Also switching elements can be present, which serve for zero and gain adjustment. These can be controlled by a microcontroller 10.
Zusätzlich kann der Mikrokontroller 10In addition, the microcontroller 10
Signalisierungsfunktionen übernehmen, z. B. Overload, Selbstkalibrierungs-Zyklus und eingestellte Verstärkung. Die Ausgangsimpedanz des Verstärkers 9 ist der Leitung zum Oszilloskop 11 angepasst.Take over signaling functions, z. Overload, self-calibration cycle and set gain. The output impedance of the amplifier 9 is adapted to the line to the oscilloscope 11.
Die Verwendung von Mikrowellen gegenüber Lichtwellen erlaubt es, die Vorrichtung und den Tastkopf zu miniaturisieren. Der Messsensor hat dabei in einem Ausführungsbeispiel eine Größe von ca. 0,1 cm3. Dies erlaubt eine kostengünstigere Ausführung. Die Vorrichtung kann integriert auf einem Substrat gefertigt werden. Zum Beispiel können die Methoden der Dünnschichttechnologie auf eine Al2O3-Substrat angewandt werden. Auch wird durch die Miniaturisierung die Störfestigkeit der Anordnung erhöht.The use of microwaves over light waves allows the device and probe to be miniaturized. The measuring sensor has a size of about 0.1 cm 3 in one embodiment. This allows a cheaper version. The device can be manufactured integrated on a substrate. For example, the methods of thin-film technology can be applied to an Al 2 O 3 substrate. Also, the immunity of the device is increased by the miniaturization.
Ferner erlaubt die erfindungsgemäße Vorrichtung die Bandbreite des Mess-Signals gegenüber Lichtwellenanwendungen zu erhöhen. Die Mikrowellenfrequenz liegt bevorzugt zwischen 12 bis 30 GHz. Die Belastung des Messobjektes ist zudem sehr klein, typischerweise kleiner als 1 pF. Somit lassen sich breitbandige Messungen an hochohmigen Messpunkten (zum Beispiel Quellimpedanzen von 1 kOhm) durchführen, die sich mit laserbasierten Verfahren nach DE 101 01 632 B4, WO 89/09413 Al und US 5,465,043 nicht durchführen lassen. Des Weiteren können elektrisches Signale auch in stark elektromagnetisch gestörter Umgebung gemessen werden. Die Verwendung unterschiedlicher Bezugspotentiale stellt kein Problem dar.Furthermore, the device according to the invention allows the bandwidth of the measurement signal to be increased compared to lightwave applications. The microwave frequency is preferably between 12 to 30 GHz. The load of the measurement object is also very small, typically less than 1 pF. Thus, broadband measurements at high-impedance measuring points (for example, source impedances of 1 kOhm) can be carried out, which can not be carried out using laser-based methods according to DE 101 01 632 B4, WO 89/09413 A1 and US Pat. No. 5,465,043. Furthermore, electrical signals can also be measured in strongly electromagnetic interference environments. The use of different reference potentials is not a problem.
Vorteilhafterweise ist die Messung nicht durch die Speicherkapazität eines Akkus, wie bei derAdvantageously, the measurement is not by the storage capacity of a battery, as in the
Signalübertragung über Lichtleiter vonnöten, begrenzt. Es können sowohl analoge als auch digitale Signale gemessen werden. Kürzeste Impulse sind messbar.Signal transmission via optical fiber needed, limited. Both analog and digital signals can be measured. Shortest pulses are measurable.
Die Erfindung beschränkt sich nicht auf die hier dargestellten Ausführungsbeispiele. Vielmehr ist es möglich, durch Kombination und Modifikation der genannten Mittel und Merkmale weitere Ausführungsvarianten zu realisieren, ohne den Rahmen der Erfindung zu verlassen. The invention is not limited to the embodiments shown here. Rather, it is possible to realize by combining and modifying the means and features mentioned further variants, without departing from the scope of the invention.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Transceiver1 transceiver
2 Mittel zur Übertragung von Mikrowellen2 Means for transmission of microwaves
3 Sensor3 sensor
4 Ubergangselement4 transition element
5 Widerstand 6 Transistor5 resistor 6 transistor
7 Transistoreingang7 transistor input
8 Mittel zur Kontaktierung mit dem Messsignal8 means for contacting with the measuring signal
9 Verstarker9 amplifiers
10 MikroController 11 Leitung zum Oszilloskop10 Microcontroller 11 Line to the oscilloscope
12 Gehäuse12 housing
13 Tastnadel13 stylus
14 Eingangsschaltung14 input circuit
15 Oszillator 16 Mischer und Demodulator15 oscillator 16 mixer and demodulator
17 Reflektor 17 reflector

Claims

Patentansprüche claims
1. Vorrichtung zur galvanisch entkoppelten Übertragung eines Messsignals, dadurch gekennzeichnet, dass ein Transceiver für Mikrowellen (1) über ein Mittel zur galvanisch entkoppelten Übertragung von Mikrowellen mit einem Sensor (3) verbunden ist.1. A device for galvanically decoupled transmission of a measuring signal, characterized in that a transceiver for microwaves (1) via a means for galvanically decoupled transmission of microwaves with a sensor (3) is connected.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Oszillator des Transceivers (1) ein CW-2. Apparatus according to claim 1, characterized in that the oscillator of the transceiver (1) is a CW
Signal-Oszillator ist, das heißt, dass das generierte Mikrowellensignal in Amplitude und Frequenz zeitlich konstant ist.Signal oscillator is, that is, that the generated microwave signal in amplitude and frequency is constant in time.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Oszillator des Transceivers (1) ein Oszillator für amplitudenveranderliche, einschließlich gepulste Mikrowellensignale ist.3. Apparatus according to claim 1, characterized in that the oscillator of the transceiver (1) is an oscillator for amplitude variable, including pulsed microwave signals.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Oszillator des Transceiver (1) ein Oszillator für frequenzmodulierte Mikrowellensignale ist.4. Apparatus according to claim 1, characterized in that the oscillator of the transceiver (1) is an oscillator for frequency-modulated microwave signals.
5. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Transceiver (1) mehrere Oszillatoren aufweist, die5. Device according to at least one of the preceding claims, characterized in that the transceiver (1) comprises a plurality of oscillators, the
Mikrowellensignale verschiedener Frequenz generieren, die überlagert werden.Generate microwave signals of different frequency, which are superimposed.
6. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Transceiver (1) einen Demodulator (16) enthalt. 6. Device according to at least one of the preceding claims, characterized in that the transceiver (1) contains a demodulator (16).
7. Vorrichtung nach mindestens einem der vorhergehenden7. Device according to at least one of the preceding
Ansprüche, dadurch gekennzeichnet, dass im Transceiver (1) ein Mischer integriert ist, der das Oszillatorsignal mit dem reflektiertem Mikrowellensignal multipliziert.Claims, characterized in that in the transceiver (1), a mixer is integrated, which multiplies the oscillator signal with the reflected microwave signal.
8. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (3; ein Sensor für elektrische Signale ist.8. Device according to at least one of the preceding claims, characterized in that the sensor (3; is a sensor for electrical signals.
9. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (3; ein Sensor für nichtelektrische Signale ist.9. Device according to at least one of the preceding claims, characterized in that the sensor (3; is a sensor for non-electrical signals.
10. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (3) einen Transistor (6) zur Veränderung der Reflektion des Mikrowellensignals umfasst.10. The device according to at least one of the preceding claims, characterized in that the sensor (3) comprises a transistor (6) for changing the reflection of the microwave signal.
11. Vorrichtung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Sensor (3) einen Halbleiterdiode zur Veränderung der Reflektion des Mikrowellensignals umfasst.11. The device according to at least one of claims 1 to 9, characterized in that the sensor (3) comprises a semiconductor diode for changing the reflection of the microwave signal.
12. Vorrichtung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Sensor (3) einen temperaturabhängigen Widerstand zur Veränderung der Reflektion umfasst.12. The device according to at least one of claims 1 to 9, characterized in that the sensor (3) comprises a temperature-dependent resistor for changing the reflection.
13. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (3) eine Dipol-Antennenstruktur zur Reflektion des Mikrowellensignals umfasst.13. Device according to at least one of the preceding claims, characterized in that the sensor (3) a dipole antenna structure for reflecting the microwave signal comprises.
14. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mittel zur Übertragung des Mikrowellensignals auf einem Substrat integriert ist.14. The device according to at least one of the preceding claims, characterized in that the means for transmitting the microwave signal is integrated on a substrate.
15. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mittel zur15. Device according to at least one of the preceding claims, characterized in that the means for
Übertragung des Mikrowellensignals durch einen flexiblen Wellenleiter (2) realisiert ist.Transmission of the microwave signal by a flexible waveguide (2) is realized.
16. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die16. Device according to at least one of the preceding claims, characterized in that the
Vorrichtung keine zusatzliche Spannungsversorgung umfasst .Device includes no additional power supply.
17. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mittel zur17. Device according to at least one of the preceding claims, characterized in that the means for
Übertragung von Mikrowellen durch eine Hintereinanderschaltung einer Mehrzahl voneinander isolierter, galvanisch leitender Leitungsstucke realisiert ist.Transmission of microwaves is realized by a series connection of a plurality of mutually insulated, electrically conductive Leitungsstucke.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass ferner eine Abschirmung für das Mikrowellensignal vorgesehen ist.18. The device according to claim 17, characterized in that further comprises a shield for the microwave signal.
19. Tastkopf zur galvanisch entkoppelten Übertragung von Messsignalen, bestehend aus einer Tastspitze (8), einen Tastkopfkorper mit einem Gehäuse (12), einer Verbindung zu einem Messgerat (11), dadurch gekennzeichnet, dass der Tastkopf eine Vorrichtung zur galvanisch entkoppelten Übertragung eines Messsignals aufweist, bestehend aus einem Transceiver für Mikrowellen (1), welcher über ein Mittel zur galvanisch entkoppelten Übertragung von Mikrowellen mit einem Sensor (3) verbunden ist.19. Probe for the galvanically decoupled transmission of measurement signals, consisting of a probe tip (8), a Tastkopfkorper with a housing (12), a connection to a measuring device (11), characterized in that the probe has a device for the galvanically decoupled transmission of a measuring signal, consisting of a transceiver for microwaves (1), which is connected via a means for the galvanically decoupled transmission of microwaves with a sensor (3).
20. Tastkopf nach Anspruch 19, dadurch gekennzeichnet, dass die Vorrichtung zur galvanisch entkoppelten Übertragung mindestens eines der Merkmale der Ansprüche 1 bis 18 umfasst.20. Probe according to claim 19, characterized in that the device for galvanically decoupled transmission comprises at least one of the features of claims 1 to 18.
21. Tastkopf nach mindestens einem der Ansprüche 19 bis 20, dadurch gekennzeichnet, dass der Tastkopf einen Verstarker (9) und ferner einen MikroController (10) umfasst, wobei der Verstarker (9) zwischen dem Transceiver (1) und der Verbindung zu einem Messgerat (11) angeordnet ist und der MikroController (10) mit dem Verstarker (9) verbunden ist.21. A probe according to at least one of claims 19 to 20, characterized in that the probe comprises an amplifier (9) and further comprises a microcontroller (10), wherein the amplifier (9) between the transceiver (1) and the connection to a measuring device (11) is arranged and the microcontroller (10) is connected to the amplifier (9).
22. Verfahren zur galvanisch entkoppelten Übertragung eines Messsignals, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:22. A method for galvanically decoupled transmission of a measuring signal, characterized in that the method comprises the following steps:
Senden eines Mikrowellensignals von einem Transceiver (1),Transmitting a microwave signal from a transceiver (1),
Übertragen des Mikrowellensignals vom Transceiver (1) über ein galvanisch entkoppeltes Mittel zur Übertragung von Mikrowellen (2) zu einem Sensor (3), - Reflektion des Signals im Sensor (3) , wobei dasTransmission of the microwave signal from the transceiver (1) via a galvanically decoupled means for transmitting microwaves (2) to a sensor (3), - Reflection of the signal in the sensor (3), wherein the
Signal in einer den Messwert charakterisierenden Weise verändert wird, Übertragen des reflektierten Mikrowellensignals vom Sensor (3) über das galvanisch entkoppelte Mittel zur Übertragung von Mikrowellen (2) zum Transceiver (1) , - und Auswertung des reflektiertenSignal is changed in a manner characterizing the measured value, Transmission of the reflected microwave signal from the sensor (3) via the galvanically decoupled means for transmitting microwaves (2) to the transceiver (1), - and evaluation of the reflected
Mikrowellensignals im Transceiver (1).Microwave signal in the transceiver (1).
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass die Veränderung des Mikrowellensignals durch das Messsignal durch die am Ende des Mittels zur Übertragung von Mikrowellen anliegende Abschlussimpedanz bestimmt ist.23. The method according to claim 22, characterized in that the change of the microwave signal is determined by the measuring signal by the applied at the end of the means for transmitting microwaves termination impedance.
24. Verfahren nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass bei der Auswertung des reflektierten Mikrowellensignals im Transceiver (1) die Amplitude des reflektierten Mikrowellensignals ausgewertet wird.24. The method according to claim 22 or 23, characterized in that in the evaluation of the reflected microwave signal in the transceiver (1), the amplitude of the reflected microwave signal is evaluated.
25. Verfahren nach mindestens einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, dass bei der Auswertung des reflektierten Mikrowellensignals im Transceiver (1) die Phase des reflektierten Mikrowellensignals ausgewertet wird.25. The method according to at least one of claims 22 to 24, characterized in that in the evaluation of the reflected microwave signal in the transceiver (1), the phase of the reflected microwave signal is evaluated.
26. Verfahren nach mindestens einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, dass bei der Auswertung des reflektierten Mikrowellensignals im Transceiver26. The method according to at least one of claims 22 to 24, characterized in that in the evaluation of the reflected microwave signal in the transceiver
(1) die Polarisation des reflektierten Mikrowellensignals ausgewertet wird.(1) the polarization of the reflected microwave signal is evaluated.
27. Verfahren nach mindestens einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, dass bei der Auswertung des reflektierten Mikrowellensignals im Transceiver (1) eine Kombination aus Amplitude, Phase oder/und Polarisation des reflektierten Mikrowellensignals ausgewertet wird.27. The method according to at least one of claims 22 to 24, characterized in that in the evaluation the reflected microwave signal in the transceiver (1) a combination of amplitude, phase and / or polarization of the reflected microwave signal is evaluated.
28. Verfahren nach mindestens einem der Ansprüche 22 bis 27, dadurch gekennzeichnet, dass der Transceiver (1) ein CW-Signal sendet.28. The method according to at least one of claims 22 to 27, characterized in that the transceiver (1) sends a CW signal.
29. Verfahren nach mindestens einem der Ansprüche 22 bis 27, dadurch gekennzeichnet, dass der Transceiver (1) ein amplitudenmoduliertes, einschließlich gepulstem Mikrowellensignal sendet.29. The method according to at least one of claims 22 to 27, characterized in that the transceiver (1) transmits an amplitude modulated, including pulsed microwave signal.
30. Verfahren nach mindestens einem der Ansprüche 22 bis 27, dadurch gekennzeichnet, dass der Transceiver (1) frequenzmoduliertes Mikrowellensignal sendet.30. The method according to at least one of claims 22 to 27, characterized in that the transceiver (1) transmits frequency-modulated microwave signal.
31. Verfahren nach mindestens einem der Ansprüche 22 bis 30, dadurch gekennzeichnet, dass der Transceiver (1) ein Mikrowellensignal sendet, das aus mehreren überlagerten Frequenzen besteht.31. The method according to at least one of claims 22 to 30, characterized in that the transceiver (1) transmits a microwave signal consisting of a plurality of superimposed frequencies.
32. Verfahren nach mindestens einem der Ansprüche 22 bis 31, dadurch gekennzeichnet, dass der Sensor (3) ein elektrisches Signal aufnimmt.32. The method according to at least one of claims 22 to 31, characterized in that the sensor (3) receives an electrical signal.
33. Verfahren nach mindestens einem der Ansprüche 22 bis 31, dadurch gekennzeichnet, dass der Sensor (3) ein nichtelektrisches Signal aufnimmt. 33. The method according to at least one of claims 22 to 31, characterized in that the sensor (3) receives a non-electrical signal.
34. Verfahren nach mindestens einem der Ansprüche 22 bis 33, dadurch gekennzeichnet, dass die Reflektion durch einen Transistor verändert wird.34. The method according to at least one of claims 22 to 33, characterized in that the reflection is changed by a transistor.
35. Verfahren nach mindestens einem der Ansprüche 22 bis 33, dadurch gekennzeichnet, dass die Veränderung der Reflektion durch eine Halbleiterdiode erzeugt wird.35. The method according to at least one of claims 22 to 33, characterized in that the change in the reflection is generated by a semiconductor diode.
36. Verfahren nach mindestens einem der Ansprüche 22 bis 33, dadurch gekennzeichnet, dass die Reflektion durch einen temperaturabhängigen Widerstand (5) verändert wird.36. The method according to at least one of claims 22 to 33, characterized in that the reflection by a temperature-dependent resistor (5) is changed.
37. Verfahren nach mindestens einem der Ansprüche 22 bis 36, dadurch gekennzeichnet, dass das Verfahren keine zusätzliche Spannungsversorgung umfasst.37. The method according to at least one of claims 22 to 36, characterized in that the method comprises no additional power supply.
38. Verfahren nach mindestens einem der Ansprüche 22 bis 37, dadurch gekennzeichnet, dass das Verfahren den Schritt des Mischens des Mikrowellensignals mit dem Signal der reflektierten Welle in einem Mischer im Transceiver (1) umfasst.38. The method according to at least one of claims 22 to 37, characterized in that the method comprises the step of mixing the microwave signal with the signal of the reflected wave in a mixer in the transceiver (1).
39. Verfahren nach mindestens einem der Ansprüche 22 bis 38, dadurch gekennzeichnet, dass der Schritt des39. The method according to at least one of claims 22 to 38, characterized in that the step of
Mischens des Mikrowellensignals mit dem Signal der reflektierten Welle durch eine Multiplikation der Signale erfolgt. Mixing the microwave signal with the signal of the reflected wave by multiplying the signals takes place.
EP06830608.3A 2005-12-21 2006-12-13 DEVICE and PROBE FOR THE GALVANICALLY DECOUPLED TRANSMISSION OF A MEASURING SIGNAL Not-in-force EP1966615B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005061683A DE102005061683B4 (en) 2005-12-21 2005-12-21 Device, probe and method for the galvanically decoupled transmission of a measurement signal
PCT/EP2006/069684 WO2007071608A1 (en) 2005-12-21 2006-12-13 Device, probe, and method for the galvanically decoupled transmission of a measuring signal

Publications (2)

Publication Number Publication Date
EP1966615A1 true EP1966615A1 (en) 2008-09-10
EP1966615B1 EP1966615B1 (en) 2013-11-27

Family

ID=37836644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830608.3A Not-in-force EP1966615B1 (en) 2005-12-21 2006-12-13 DEVICE and PROBE FOR THE GALVANICALLY DECOUPLED TRANSMISSION OF A MEASURING SIGNAL

Country Status (4)

Country Link
US (1) US7893683B2 (en)
EP (1) EP1966615B1 (en)
DE (1) DE102005061683B4 (en)
WO (1) WO2007071608A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082335B2 (en) * 2006-08-21 2012-11-28 富士通株式会社 Electronic board and backboard transmission method
DE102009019039A1 (en) 2009-04-27 2010-11-11 Rohde & Schwarz Gmbh & Co. Kg Measuring device and measuring method for measuring differential signals
EP3542136B1 (en) * 2016-11-15 2023-10-25 Ohio State Innovation Foundation Antenna-coupled radio frequency (rf) probe with a replaceable tip
US10996178B2 (en) * 2017-06-23 2021-05-04 Tektronix, Inc. Analog signal isolator
CN113608037B (en) * 2021-08-09 2022-06-17 西安电子科技大学 Pulse electric field sensor based on asymmetric straight waveguide interferometer

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA704856B (en) 1969-08-06 1971-06-30 Siemens Ag Improvements in or relating to arrangements for measuring currents in high tension conductors
US3805198A (en) * 1972-08-28 1974-04-16 Bell Telephone Labor Inc Resonance control in interdigital capacitors useful as dc breaks in diode oscillator circuits
CA1060098A (en) * 1976-12-09 1979-08-07 Stanislaw S. Stuchly System for monitoring and measuring high voltage d.c. transmission line current
US4392074A (en) * 1980-09-19 1983-07-05 Siemens Aktiengesellschaft Trigger device and piezo-ignition coupler with galvanic decoupling
WO1989009413A1 (en) * 1988-03-25 1989-10-05 Princeton Applied Research Corporation Electro-optic probe
US5273610A (en) * 1992-06-23 1993-12-28 Association Institutions For Material Sciences, Inc. Apparatus and method for determining power in plasma processing
JPH06102295A (en) * 1992-07-28 1994-04-15 Hewlett Packard Co <Hp> Non-contact type probe and non-contact voltage measuring device
EP0668507B1 (en) * 1993-07-07 2002-10-09 NEC TOKIN Corporation Electric field sensor
EP0696739B1 (en) * 1994-08-12 2002-11-20 Matsushita Electric Industrial Co., Ltd. Optical sensor
US5923175A (en) 1997-06-03 1999-07-13 The United States Of America As Represented By The Secretary Of The Navy Apparatus for contactless measurement of the electrical resistance of a conductor
SE515783C2 (en) * 1997-09-11 2001-10-08 Ericsson Telefon Ab L M Electrical devices and process for their manufacture
GB2342161B (en) * 1998-09-30 2000-12-20 Ando Electric Electro-optic probe
DE19955978C2 (en) 1998-11-24 2002-06-27 Ando Electric Electro-optical probe for an oscilloscope that measures a signal waveform
DE19933978A1 (en) * 1999-07-20 2001-01-25 Abb Research Ltd Transponder-based wireless information transfer method, e.g. for process variables or actuator commands, involves substation performing phase modulation of received HF signal and reflecting modulated narrow band signal back to base station
DE10010846A1 (en) 2000-03-06 2001-09-20 Siemens Ag Appliance for determining measured variables corresponding to reactive resistance of sensor connected to surface acoustic wave (SAW) element matching network
DE20011084U1 (en) * 2000-06-23 2000-10-05 Schumann Mathias Oscilloscope probe with fiber optic sensor for potential-free detection of electrical quantities
JP4265206B2 (en) * 2002-11-27 2009-05-20 株式会社 東北テクノアーチ Non-contact conductivity measurement system
WO2004109583A1 (en) * 2003-06-06 2004-12-16 Stemco Llc Wireless communication device, system for communication and communication method
DE10361991A1 (en) * 2003-09-27 2005-04-28 Univ Hamburg Harburg Tech Telemetrically interrogated passive potential sensor
DE102004014563B4 (en) * 2004-03-25 2011-01-13 Atmel Automotive Gmbh Method and device for improved wireless data transmission
US7859071B2 (en) * 2005-03-31 2010-12-28 Finisar Corporation Power and communication interface for sensors using a single tethered fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007071608A1 *

Also Published As

Publication number Publication date
DE102005061683B4 (en) 2011-12-08
EP1966615B1 (en) 2013-11-27
US20080290856A1 (en) 2008-11-27
DE102005061683A1 (en) 2007-07-19
US7893683B2 (en) 2011-02-22
WO2007071608A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
DE10393724B4 (en) Probe arrangements, test apparatus and method suitable for this purpose
DE10101632B4 (en) Oscilloscope probe with fiber optic sensor for potential-free detection of electrical quantities
EP1966615B1 (en) DEVICE and PROBE FOR THE GALVANICALLY DECOUPLED TRANSMISSION OF A MEASURING SIGNAL
DE69014790T2 (en) Calibration of a lightwave analyzer for testing optical devices.
DE69009215T2 (en) Optical component analyzer.
DE19861240B4 (en) Optical type voltage sensor for IC testing equipment
JP2000506612A (en) Parameter measuring equipment for electronic devices
DE102007045756B4 (en) Electronic circuit board and method for automatic testing
CN110350966A (en) Wide-band microwave direction of arrival degree measuring device and method based on photon technology
Andrews Pulse measurements in the picosecond domain
US7855544B1 (en) AC low current probe card
DE19838586A1 (en) Interchangeable oscilloscope probe tip with high-frequency cable-loss compensation network
EP1782080A1 (en) Assembly for supplying electric energy to a measuring device
DE102007007357B4 (en) Integrated circuit arrangement
DE102009027677B4 (en) Probe and method of use
KR101386014B1 (en) High frequency and high voltage pulse measuring unit using non-inductive resistance
US5191303A (en) High speed probe attenuator
US7042232B1 (en) Cable and substrate compensating custom resistor
DE102007042783A1 (en) Data transfer device
DE202006019953U1 (en) Oscilloscope probe for measuring voltages on oscilloscope, has sensor that receives energy in form of light with constant intensity, where light is supplied to sensor and light signal is transferred from probe to receiver via optical fiber
Hiscocks et al. Oscilloscope Probes: Theory and Practice
DE3719275C2 (en) Arrangement for interference-free and low-impact measurement of an electrical variable
DE102005018865B4 (en) Method and apparatus for measuring using a main and a remote unit
DE19938660A1 (en) Electrooptic probe for electrooptic oscilloscope, comprises laser diode, electrooptic element, photodiodes and support formed of polyacetal resin insulator
DE102008002444A1 (en) Test equipment for testing of test object, has network analyzer for creating stimulus signal at test object and for evaluating reply signal of test object in reaction to creation of stimulus signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110505

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 642927

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013390

Country of ref document: DE

Effective date: 20140123

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

BERE Be: lapsed

Owner name: FORSCHUNGSVERBUND BERLIN E.V.

Effective date: 20131231

Owner name: HOFFMANN, THOMAS

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013390

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013390

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131213

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

26N No opposition filed

Effective date: 20140828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 642927

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200430 AND 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211221

Year of fee payment: 16

Ref country code: GB

Payment date: 20211223

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231