EP1966405A1 - Material for components of a gas turbine - Google Patents

Material for components of a gas turbine

Info

Publication number
EP1966405A1
EP1966405A1 EP06828670A EP06828670A EP1966405A1 EP 1966405 A1 EP1966405 A1 EP 1966405A1 EP 06828670 A EP06828670 A EP 06828670A EP 06828670 A EP06828670 A EP 06828670A EP 1966405 A1 EP1966405 A1 EP 1966405A1
Authority
EP
European Patent Office
Prior art keywords
iron
gas turbine
components
intermetallic
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06828670A
Other languages
German (de)
French (fr)
Inventor
Wilfried Smarsly
Gerhard Sauthoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
Max Planck Institut fuer Eisenforschung
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Institut fuer Eisenforschung, MTU Aero Engines GmbH filed Critical Max Planck Institut fuer Eisenforschung
Publication of EP1966405A1 publication Critical patent/EP1966405A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the invention relates to a material for components of a gas turbine.
  • Modern gas turbines in particular aircraft engines, must meet the highest demands in terms of reliability, weight, performance, economy and service life.
  • the most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys and high-strength steels.
  • the high strength steels are used for shaft parts, gear parts, compressor casings and turbine casings.
  • Titanium alloys are typical materials for compressor parts.
  • Nickel alloys are suitable for the hot turbine parts of an aircraft engine.
  • ODS materials oxide dispersion reinforced superalloys
  • CMC materials ceramic matrix composite materials
  • intermetallic NiAl materials or intermetallic TiAl materials are relatively expensive, so there is a need for a novel material suitable for gas turbine components exposed to temperatures in excess of 900 ° C.
  • the present invention is based on the problem of creating a novel material for components of a gas turbine.
  • the material according to the invention has a matrix of an iron-base alloy material, wherein the matrix of the iron-base alloying material is cured with an intermetallic material of the Laves phase.
  • the material according to the invention represents a cost-effective alternative for the materials known from the prior art and is primarily suitable for gas turbine components which are exposed to temperatures above 900 ° C. With the help of the material according to the invention component costs of gas turbine components can be reduced.
  • the material preferably comprises 70.0 to 99.9% by volume of the iron-base alloying material and 0.1 to 30.0% by volume of the Laves phase intermetallic material.
  • the present invention provides a novel material for components of a gas turbine, namely for components of Gasturbinenflugtriebwer- ken, which are exposed during operation temperatures of preferably more than 900 ° C.
  • the material according to the invention has a matrix of an iron-base alloy material, the matrix of the iron-based alloy material having been hardened with an intermetallic material of the Laves phase.
  • a Laves phase is a hexagonal intermetallic phase.
  • the interlave material of the Laves phase is embedded in the matrix of the iron-based alloy material, wherein the material according to the invention preferably has the following composition:
  • the iron-base alloy material of the matrix of the material according to the invention contains at least iron (Fe), aluminum (Al), chromium (Cr), yttrium (Y) and / or hafnium (Hf).
  • the iron-base alloy material of the matrix of the material according to the invention has the following composition:
  • the LaVes phase intermetallic material used to cure the matrix contains at least iron (Fe), aluminum (Al), niobium (Nb) and / or tantalum (Ta).
  • This Laves phase intermetallic material preferably has the following composition:
  • the invention relates to a component of a gas turbine, preferably a gas turbine aircraft engine, which is made of such a material.
  • the material according to the invention is particularly suitable for the production of housings such as combustion chamber housings, high-pressure compressor housings and low-pressure turbine housings.
  • the material according to the invention is suitable for producing exhaust gas guides, diffuser components, brush seals and sealing elements which are used in the inner-air-seal area and outer-air-seal area of a turbine, in particular a low-pressure turbine or a compressor of a gas turbine aircraft engine.

Abstract

The invention relates to a material for components of a gas turbine, in particular for components of a gas turbine aircraft engine, having a matrix of an iron-based alloy material, with the matrix of the iron-based alloy material being hardened by means of an intermetallic material of the Laves phase.

Description

Werkstoff für Bauteile einer Gasturbine Material for components of a gas turbine
Die Erfindung betrifft einen Werkstoff für Bauteile einer Gasturbine.The invention relates to a material for components of a gas turbine.
Moderne Gasturbinen, insbesondere Flugtriebwerke, müssen höchsten Ansprüchen im Hinblick auf Zuverlässigkeit, Gewicht, Leistung, Wirtschaftlichkeit und Lebensdauer gerecht werden. Bei der Entwicklung von Gasturbinen spielt die Werkstoffauswahl, die Suche nach neuen, geeigneten Werkstoffen sowie die Suche nach neuen Fertigungsverfahren eine entscheidende Rolle. Die wichtigsten, heutzutage für Flugtriebwerke oder sonstige Gasturbinen verwendeten Werkstoffe sind Titanlegierungen, Nickellegierungen und hochfeste Stähle. Die hochfesten Stähle werden für Wellenteile, Getriebeteile, Verdichtergehäuse und Turbinengehäuse verwendet. Titanlegierungen sind typische Werkstoffe für Verdichterteile. Nickellegierungen sind für die heißen Turbinenteile eines Flugtriebwerks geeignet.Modern gas turbines, in particular aircraft engines, must meet the highest demands in terms of reliability, weight, performance, economy and service life. In the development of gas turbines, the selection of materials, the search for new, suitable materials and the search for new production processes play a decisive role. The most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys and high-strength steels. The high strength steels are used for shaft parts, gear parts, compressor casings and turbine casings. Titanium alloys are typical materials for compressor parts. Nickel alloys are suitable for the hot turbine parts of an aircraft engine.
Dann, wenn im Betrieb einer Gasturbine Bauteile derselben Temperaturen oberhalb von ca. 900°C ausgesetzt sind, finden nach der Praxis als Werkstoffe für die Bauteile üblicherweise sogenannte ODS Werkstoffe (oxiddis- persionsverstärkte Superlegierungen) oder CMC Werkstoffe (Keramikmatrix- Verbundwerkstoffe) oder auch intermetallische NiAl-Werkstoffe bzw. intermetallische TiAl-Werkstoffe Verwendung. Diese Werkstoffe sind jedoch relativ teuer, so dass ein Bedarf an einem neuartigen Werkstoff besteht, der für Gasturbinenbauteile geeignet ist, die Temperaturen von mehr als 900° C ausgesetzt sind.Then, when in operation of a gas turbine components of the same temperatures above about 900 ° C are exposed, found in practice usually as materials for the components so-called ODS materials (oxide dispersion reinforced superalloys) or CMC materials (ceramic matrix composite materials) or intermetallic NiAl materials or intermetallic TiAl materials. However, these materials are relatively expensive, so there is a need for a novel material suitable for gas turbine components exposed to temperatures in excess of 900 ° C.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, einen neuartigen Werkstoff für Bauteile einer Gasturbine zu schaffen.On this basis, the present invention is based on the problem of creating a novel material for components of a gas turbine.
Dieses Problem wird durch einen Werkstoff gemäß Anspruch 1 gelöst. Der erfindungsgemäße Werkstoff verfügt über eine Matrix aus einem Eisenbasis- legierungswerkstoff, wobei die Matrix aus dem Eisenbasislegierungswerk- stoff mit einem intermetallischen Werkstoff der Laves-Phase ausgehärtet ist.This problem is solved by a material according to claim 1. The material according to the invention has a matrix of an iron-base alloy material, wherein the matrix of the iron-base alloying material is cured with an intermetallic material of the Laves phase.
Der erfindungsgemäße Werkstoff stellt eine kostengünstige Alternative für die aus dem Stand der Technik bekannten Werkstoffe dar und ist in erster Linie für Gasturbinenbauteile geeignet, die Temperaturen oberhalb von 900° C ausgesetzt sind. Mit Hilfe des erfindungsgemäßen Werkstoffs können Bauteilkosten von Gasturbinenbauteilen reduziert werden. Vorzugsweise umfasst der Werkstoff 70,0 bis 99,9 Vol.-% des Eisenbasisle- gierungswerkstoffs und 0,1 bis 30,0 Vol.-% des intermetallischen Werkstoffs der Laves-Phase.The material according to the invention represents a cost-effective alternative for the materials known from the prior art and is primarily suitable for gas turbine components which are exposed to temperatures above 900 ° C. With the help of the material according to the invention component costs of gas turbine components can be reduced. The material preferably comprises 70.0 to 99.9% by volume of the iron-base alloying material and 0.1 to 30.0% by volume of the Laves phase intermetallic material.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ein Ausführungsbeispiel der Erfindung wird, ohne hierauf beschränkt zu sein, nachfolgend näher erläutert.Preferred embodiments of the invention will become apparent from the dependent claims and the description below. An embodiment of the invention will be explained in more detail below, without being limited thereto.
Die hier vorliegende Erfindung stellt einen neuartigen Werkstoff für Bauteile einer Gasturbine, nämlich für Bauteile von Gasturbinenflugtriebwer- ken, bereit, die im Betrieb Temperaturen von vorzugsweise mehr als 900° C ausgesetzt sind. Der erfindungsgemäße Werkstoff verfügt über eine Matrix aus einem Eisenbasislegierungswerkstoff, wobei die Matrix aus dem Eisen- basislegierungswerkstoff mit einem intermetallischen Werkstoff der Laves- Phase ausgehärtet ist. Bei einer Laves-Phase handelt es sich um eine he- xagonale intermetallische Phase.The present invention provides a novel material for components of a gas turbine, namely for components of Gasturbinenflugtriebwer- ken, which are exposed during operation temperatures of preferably more than 900 ° C. The material according to the invention has a matrix of an iron-base alloy material, the matrix of the iron-based alloy material having been hardened with an intermetallic material of the Laves phase. A Laves phase is a hexagonal intermetallic phase.
Der intermetallische Werkstoff der Laves-Phase ist in die Matrix aus dem Eisenbasislegierungswerkstoff eingelagert bzw. eingebettet, wobei der erfindungsgemäße Werkstoff vorzugsweise über die folgende Zusammensetzung verfügt :The interlave material of the Laves phase is embedded in the matrix of the iron-based alloy material, wherein the material according to the invention preferably has the following composition:
70,0 bis 99,9 Vol.-% des Eisenbasislegierungswerkstoffs, und70.0 to 99.9 vol% of the iron-based alloy material, and
0,1 bis 30,0 Vol.-% des intermetallischen Werkstoffs der Laves-Phase.0.1 to 30.0 vol .-% of the intermetallic material of the Laves phase.
Der Eisenbasislegierungswerkstoff der Matrix des erfindungsgemäßen Werkstoffs enthält zumindest Eisen (Fe), Aluminium (Al), Chrom (Cr), Yttrium (Y) und/oder Hafnium (Hf) . Vorzugsweise verfügt der Eisenbasislegierungswerkstoff der Matrix des erfindungsgemäßen Werkstoffs über folgende Zusammensetzung:The iron-base alloy material of the matrix of the material according to the invention contains at least iron (Fe), aluminum (Al), chromium (Cr), yttrium (Y) and / or hafnium (Hf). Preferably, the iron-base alloy material of the matrix of the material according to the invention has the following composition:
31,0 bis 91,9 Gew.-% Eisen, und 6,0 bis 40,0 Gew.-% Aluminium, und 2,0 bis 25,0 Gew.-% Chrom, und 0,1 bis 2,0 Gew.-% Yttrium, und/oder 0,1 bis 2,0 Gew.-% Hafnium,31.0 to 91.9 wt.% Iron, and 6.0 to 40.0 wt.% Aluminum, and 2.0 to 25.0 wt.% Chromium, and 0.1 to 2.0 wt % Yttrium, and / or 0.1 to 2.0% by weight hafnium,
wobei die obigen Bestandteile so gewählt sind, dass die Summe 100 Gew.-% ergibt. Der zur Aushärtung der Matrix dienende intermetallische Werkstoff der La- ves-Phase enthält zumindest Eisen (Fe) , Aluminium (Al) , Niob (Nb) und/oder Tantal (Ta) . Vorzugsweise verfügt dieser intermetallische Werkstoff der Laves-Phase über folgende Zusammensetzung:wherein the above ingredients are chosen such that the sum is 100% by weight. The LaVes phase intermetallic material used to cure the matrix contains at least iron (Fe), aluminum (Al), niobium (Nb) and / or tantalum (Ta). This Laves phase intermetallic material preferably has the following composition:
15,0 bis 65,0 Gew.-% Eisen, und 1,0 bis 15,0 Gew.-% Aluminium, und 0,5 bis 55,0 Gew.-% Niob, und/oder 0,5 bis 65,0 Gew.-% Tantal enthält,15.0 to 65.0% by weight of iron, and 1.0 to 15.0% by weight of aluminum, and 0.5 to 55.0% by weight of niobium, and / or 0.5 to 65, Contains 0% by weight tantalum
wobei sich die obigen Bestandteile in Abhängigkeit von der Matrix- Zusammensetzung so einstellen, dass die Summe 100 Gew.-% ergibt.wherein the above ingredients adjust depending on the matrix composition such that the sum is 100 wt%.
Weiterhin betrifft die Erfindung ein Bauteil einer Gasturbine, vorzugsweise eines Gasturbinenflugtriebwerks, welches aus einem solchen Werkstoff hergestellt ist. So eignet sich der erfindungsgemäße Werkstoff insbesondere zur Herstellung von Gehäusen wie Brennkammergehäusen, Hochdruckverdichtergehäusen und Niederdruckturbinengehäusen. Weiterhin eignet sich der erfindungsgemäße Werkstoff zur Herstellung von Abgasführungen, Diffusorkomponenten, Bürstendichtungen sowie Dichtungselementen, die im Inner-Air-Seal-Bereich sowie Outer-Air-Seal-Bereich einer Turbine, insbesondere einer Niederdruckturbine, bzw. eines Verdichters eines Gasturbinenflugtriebwerks Verwendung finden. Furthermore, the invention relates to a component of a gas turbine, preferably a gas turbine aircraft engine, which is made of such a material. Thus, the material according to the invention is particularly suitable for the production of housings such as combustion chamber housings, high-pressure compressor housings and low-pressure turbine housings. Furthermore, the material according to the invention is suitable for producing exhaust gas guides, diffuser components, brush seals and sealing elements which are used in the inner-air-seal area and outer-air-seal area of a turbine, in particular a low-pressure turbine or a compressor of a gas turbine aircraft engine.

Claims

Patentansprüche claims
1. Werkstoff für Bauteile einer Gasturbine, insbesondere für Bauteile eines Gasturbinenflugtriebwerks, mit einer Matrix aus einem Eisenba- sislegierungswerkstoff, wobei die Matrix aus dem Eisenbasislegie- rungswerkstoff mit einem intermetallischen Werkstoff der Laves-Phase ausgehärtet ist.1. A material for components of a gas turbine, in particular for components of a gas turbine aircraft engine, with a matrix of a Eisenbasislegierungswerkstoff, wherein the matrix of the Eisenbasislegie- material is cured with a Laves phase intermetallic.
2. Werkstoff nach Anspruch 1, dadurch gekennzeichnet, dass der intermetallische Werkstoff der Laves-Phase in die Matrix aus dem Eisenbasislegierungswerkstoff eingelagert bzw. eingebettet ist.2. Material according to claim 1, characterized in that the intermetallic material of the Laves phase is embedded or embedded in the matrix of the iron-based alloy material.
3. Werkstoff nach Anspruch 1 oder 2, gekennzeichnet durch3. Material according to claim 1 or 2, characterized by
70,0 bis 99,9 Vol.-% des Eisenbasislegierungswerkstoffs, und70.0 to 99.9 vol% of the iron-based alloy material, and
0,1 bis 30,0 Vol.-% des intermetallischen Werkstoffs der Laves-Phase.0.1 to 30.0 vol .-% of the intermetallic material of the Laves phase.
4. Werkstoff nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Eisenbasislegierungswerkstoff zumindest Eisen, Aluminium, Chrom, Yttrium und Hafnium enthält .4. Material according to one or more of claims 1 to 3, characterized in that the iron-based alloy material contains at least iron, aluminum, chromium, yttrium and hafnium.
5. Werkstoff nach Anspruch 4, dadurch gekennzeichnet, dass der Eisenbasislegierungswerkstoff5. Material according to claim 4, characterized in that the iron-based alloy material
31,0 bis 91,9 Gew.-% Eisen, und31.0 to 91.9% by weight of iron, and
6,0 bis 40,0 Gew.-% Aluminium, und6.0 to 40.0% by weight of aluminum, and
2,0 bis 25,0 Gew.-% Chrom, und2.0 to 25.0% by weight of chromium, and
0,1 bis 2,0 Gew.-% Yttrium, und/oder0.1 to 2.0% by weight of yttrium, and / or
0,1 bis 2,0 Gew.-% Hafnium enthält.Contains 0.1 to 2.0 wt .-% hafnium.
6. Werkstoff nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der intermetallische Werkstoff der Laves-Phase zumindest Eisen, Aluminium, Niob und/oder Tantal aufweist. 6. Material according to one or more of claims 1 to 5, characterized in that the intermetallic material of the Laves phase comprises at least iron, aluminum, niobium and / or tantalum.
7. Werkstoff nach Anspruch 6, dadurch gekennzeichnet, dass der intermetallische Werkstoff der Laves-Phase 15,0 bis 65,0 Gew.-% Eisen, und 1,0 bis 15,0 Gew.-% Aluminium, und 0,5 bis 55,0 Gew.-% Niob, und/oder 0,5 bis 65,0 Gew.-% Tantal enthält.7. Material according to claim 6, characterized in that the intermetallic Laves phase 15.0 to 65.0 wt .-% iron, and 1.0 to 15.0 wt .-% aluminum, and 0.5 to 55.0 wt% niobium, and / or 0.5 to 65.0 wt% tantalum.
8. Bauteil einer Gasturbine, insbesondere eines Gasturbinenflugtrieb- werks, dadurch gekennzeichnet, dass dasselbe aus einem Werkstoff nach einem oder mehreren der Ansprüche 1 bis 7 besteht . 8. component of a gas turbine, in particular a gas turbine aircraft engine, characterized in that the same consists of a material according to one or more of claims 1 to 7.
EP06828670A 2005-12-23 2006-12-15 Material for components of a gas turbine Ceased EP1966405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005061790A DE102005061790A1 (en) 2005-12-23 2005-12-23 Material for component of gas turbine comprises matrix based on iron alloy with intermetallic material of Laves phase
PCT/DE2006/002239 WO2007076805A1 (en) 2005-12-23 2006-12-15 Material for components of a gas turbine

Publications (1)

Publication Number Publication Date
EP1966405A1 true EP1966405A1 (en) 2008-09-10

Family

ID=37890904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06828670A Ceased EP1966405A1 (en) 2005-12-23 2006-12-15 Material for components of a gas turbine

Country Status (5)

Country Link
US (1) US8012271B2 (en)
EP (1) EP1966405A1 (en)
JP (1) JP2009520877A (en)
DE (1) DE102005061790A1 (en)
WO (1) WO2007076805A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2840154A1 (en) * 2013-08-21 2015-02-25 MTU Aero Engines GmbH Method for producing components from and with laves phases
EP2840158A1 (en) 2013-08-21 2015-02-25 MTU Aero Engines GmbH Ferritic FeAlCr alloy with ternary Laves phases and with oxides and/or carbides for components of a gas turbine
ES2634089T3 (en) 2013-11-22 2017-09-26 MTU Aero Engines AG Material consisting of Laves phase and Ferritic Fe-Al phase

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920010422B1 (en) * 1987-05-15 1992-11-27 마쯔시다덴기산교 가부시기가이샤 Electrode and method of storage hidrogine
JP3135691B2 (en) * 1991-09-19 2001-02-19 日立金属株式会社 Low thermal expansion super heat resistant alloy
DE69216334T2 (en) * 1991-09-19 1997-04-24 Hitachi Metals Ltd Superalloy with a low coefficient of expansion
JP3289847B2 (en) * 1993-02-05 2002-06-10 日立金属株式会社 Low thermal expansion super heat resistant alloy with excellent oxidation resistance
JP3982069B2 (en) * 1998-07-08 2007-09-26 住友金属工業株式会社 High Cr ferritic heat resistant steel
DE19928842C2 (en) 1999-06-24 2001-07-12 Krupp Vdm Gmbh Ferritic alloy
JP4288821B2 (en) * 2000-02-28 2009-07-01 日立金属株式会社 Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength
JP4304109B2 (en) * 2004-04-02 2009-07-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel for automotive exhaust systems with excellent thermal fatigue properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHNEIDER ANDRE ET AL: "Iron Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications", STEEL RESEARCH INTERNATIONAL, VERLAG STAHLEISEN GMBH., DUSSELDORF, DE, vol. 75, no. 1, 1 January 2004 (2004-01-01), pages 55 - 61, XP009093993, ISSN: 1611-3683 *

Also Published As

Publication number Publication date
JP2009520877A (en) 2009-05-28
WO2007076805A1 (en) 2007-07-12
DE102005061790A1 (en) 2007-07-05
US8012271B2 (en) 2011-09-06
US20090202381A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
DE112009002015B4 (en) Turbocharger and blade bearing ring for this
EP2227571A2 (en) Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
DE112009002098T5 (en) Turbocharger and bypass control assembly in the turbine housing therefor
DE102009049018A1 (en) Component for a high-temperature steam turbine and high-temperature steam turbine
EP1966405A1 (en) Material for components of a gas turbine
DE4010076A1 (en) MATERIAL SYSTEMS FOR USE IN HIGHER TEMPERATURE JET ENGINES
EP3810818B1 (en) Aluminum alloy, method for producing an engine component, engine component, and use of an aluminum alloy to produce an engine component
DE112013007314T5 (en) Precipitation hardened stainless steel alloys
EP1820952B1 (en) Piston for combustion engines and method for manufacturing a piston for combustion engines
EP2000550A1 (en) Material based on a CrNi alloy, semi-finished product, components for a combustion engine and method for manufacturing the material and the semi-finished product
EP3201459B1 (en) Piston, piston machine having such a piston, and motor vehicle having such a piston machine
EP2832872B1 (en) Highly temperature resistant lightweight construction alloy made of NiAl
DE102007047016A1 (en) Inexpensive, high-strength, martensitically hardenable steel, useful for producing automobile fuel injector components, has low alloying element content and is free of cobalt
DE102020211247A1 (en) Pistons for an internal combustion engine, internal combustion engine with a piston and use of an iron-based alloy
DE10123566C1 (en) Nickel-based austenitic alloy used as a valve material for diesel engines of ships contains alloying additions of carbon, chromium, aluminum and zirconium
DE102014214377A1 (en) Piston for an internal combustion engine, method for producing a piston for an internal combustion engine and use of an aluminum alloy for a bearing element of an internal combustion engine
WO1998021375A1 (en) TiAl ALLOY AND ITS USE
WO2016008555A1 (en) Alloy for production of a thin-walled steel component
EP2876177B1 (en) Material from laves phase and ferritic fe-al phase
DE19858913A1 (en) High temperature fretting protective layer, especially for vane foot-disk groove regions of titanium alloy gas turbine engine guide vanes, consists of a copper-aluminum alloy containing chromium and optionally iron
EP2481827B1 (en) Cast steel alloy and cast component
DE102008054007B4 (en) Internal combustion engine and method for producing connecting rods and piston pins for an internal combustion engine
DE3806303C1 (en) Use of a steel alloy
DE102004008337A1 (en) Compound material component for aero engine, especially gas turbines, comprises high tensile fibers with shape memory retention embedded in a metal matrix
WO1998048070A1 (en) High-strength, anti-corrosive iron-manganese-chrome alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20090507

DAX Request for extension of the european patent (deleted)
APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAX-PLANCK-INSTITUT FUER EISENFORSCHUNG GMBH

Owner name: MTU AERO ENGINES AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20141211