EP1963748B1 - Chambre de combustion dotee d'un brûleur et procede d'exploitation correspondant - Google Patents

Chambre de combustion dotee d'un brûleur et procede d'exploitation correspondant Download PDF

Info

Publication number
EP1963748B1
EP1963748B1 EP06830438.5A EP06830438A EP1963748B1 EP 1963748 B1 EP1963748 B1 EP 1963748B1 EP 06830438 A EP06830438 A EP 06830438A EP 1963748 B1 EP1963748 B1 EP 1963748B1
Authority
EP
European Patent Office
Prior art keywords
burner
combustion chamber
synthesis gas
proportion
pilot burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06830438.5A
Other languages
German (de)
English (en)
Other versions
EP1963748A1 (fr
Inventor
Richard Carroni
Timothy Griffin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1963748A1 publication Critical patent/EP1963748A1/fr
Application granted granted Critical
Publication of EP1963748B1 publication Critical patent/EP1963748B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Definitions

  • the present invention relates to a method for operating a combustion chamber of a gas turbine, in particular a power plant.
  • a catalytic burner which, when operating from a rich fuel / air mixture, can generate a syngas containing hydrogen gas and which can be used as a pilot burner for a normally lean burn burner of a gas turbine combustor.
  • a synthesis gas containing hydrogen gas By injecting a synthesis gas containing hydrogen gas into the burner or into a combustion chamber of the combustion chamber, the homogeneous combustion reaction which takes place in the combustion chamber during operation of the combustion chamber can be stabilized. In particular, this can be used to lower the extinguishing temperature of the combustion reaction in lean burners. Overall, this allows the combustion temperatures in the combustion chamber of the combustion chamber can be reduced. This is of particular advantage because the formation of nitrogen oxides increases exponentially with the reaction temperature. Generic stabilized combustion process with Low emissions are also in the documents WO 2004/020901 and WO 2004/020905 described.
  • WO 2004/020901 discloses a hybrid burner and a method of operation thereof, wherein the hybrid burner includes in parallel within a housing a Volloxidationskatalysator and a partial oxidation catalyst, which are traversed by a first and a second fuel-oxidizer mixture.
  • the two mixtures have a different fuel-to-oxidant ratio such that the former is a rich mixture and the second is a lean mixture and that the partial oxidation catalyst is designed to produce a hydrogen-containing off-gas.
  • WO 2004/020905 discloses a method of combusting a fuel-oxidizer mixture and an apparatus for carrying it out, wherein a total oxidizer stream is split into a main and a side stream, the former lean-burned and burned with a main fuel stream in a premix burner and the second split again in a pilot oxidizer stream and a heat exchanger oxidizer stream downstream of preheating the pilot oxidizer stream, the pilot oxidizer stream is fat blended with fuel and partially oxidized in contact with a catalyst to form hydrogen and then co-currently with the second substream is introduced into a combustion zone of the main fuel oxidizer stream.
  • the invention deals with the problem of pointing out a way for a combustion chamber of the type mentioned that allows for varying combustion chamber performance safe operation and low pollutant emissions.
  • the inventive method is based on the general idea of controlling the pilot burner as a function of the combustion chamber performance such that the synthesis gas produced therewith contains a comparatively high proportion of hydrogen gas at a low combustion chamber power, while it contains a relatively low proportion of hydrogen gas at a comparatively high combustion chamber power .
  • the invention uses the knowledge that synthesis gas with a relatively low proportion of hydrogen gas at high flame temperatures reduces the formation of nitrogen relatively strongly. At the same time, lowering the extinguishing limit is not necessary at high flame temperatures. In contrast, a synthesis gas with a high hydrogen gas content at high flame temperatures would increase pollutant emissions, in particular nitrogen oxide emissions.
  • the invention uses the knowledge that at lower flame temperatures, the injection of synthesis gas with a relatively high proportion of hydrogen gas significantly stabilizes the homogeneous combustion reaction by significantly lowering the extinction limit. At the same time, there is no increase in nitrogen oxide formation.
  • the operating method according to the invention thus leads to a stabilized operation of the combustion chamber with a comparatively small combustion chamber power, For example, at low load or partial load, while at the same time with greater combustion chamber performance, for example at full load, the pollutant emissions are reduced compared to a operation without pilot burner.
  • the synthesis gas production of the pilot burner can be controlled by the amount of fuel supplied to the pilot burner, while at the same time the amount of air supplied to the pilot burner is kept constant.
  • the hydrogen gas content in the synthesis gas is thus controlled by the fuel / air ratio supplied to the catalytic pilot burner.
  • a common air supply can be provided for the burner and the associated pilot burner, which is designed so that it distributes the supplied air with a constant distribution to the burner and the associated pilot burner.
  • a burner designed in this way can be realized comparatively inexpensively, because said control and regulation devices for the air supply of the pilot burner can be dispensed with.
  • the burner is designed so that a larger proportion of the synthesis gas is introduced radially into the burner and / or into the combustion chamber with respect to a longitudinal axis of the respective burner, while a smaller proportion of the synthesis gas with respect to the longitudinal axis axially into the burner or . is introduced into the combustion chamber. It has been found that with a predominantly radial introduction of the synthesis gas, the best results with regard to pollutant emissions and combustion stabilization can be achieved.
  • Fig. 1 and 2a comprises a burner 1 a combustion chamber 2 (see. Fig. 3
  • the burner 1 comprises a fuel supply 4, which is indicated here merely by an arrow and which supplies it with fuel during operation of the burner 1.
  • an additional fuel supply 5 is provided, which is likewise symbolized by an arrow and which supplies the pilot burner 3 with fuel during operation of the burner 1.
  • an air supply 6 is provided, which is provided jointly for the burner 1 and its pilot burner 3. This common air supply 6 is designed in a manner not further explained in such a way that it distributes the supplied air to the burner 1, see arrows 7, and the pilot burner 3, see arrow 8.
  • the burner 1 is used to generate a homogeneous combustion reaction in a combustion chamber 9 of the combustion chamber 2, which is arranged downstream of the burner 1 in the assembled state.
  • the combustion chamber 2 in turn serves to generate hot gases for acting on a gas turbine, in particular a power plant.
  • the burner 1 also has a mixture forming space 10, which is open in the assembled state to the combustion chamber 9.
  • the air supply 6 brings the burner 1 associated air quantity 7 in this mixture forming space 10 a.
  • the introduction takes place here in a tangential flow over axially aligned gaps in the burner wall 11, which encloses the mixture forming space 10 circumferentially with respect to a longitudinal axis 12 of the burner 1.
  • the fuel supply 4 supplies the amount of fuel allocated to the burner 1 to the mixture-forming space 10, which is symbolized here by a plurality of arrows 13.
  • the fuel supply 4 extends within the burner wall 11. Usually, such a burner 1 is operated lean to achieve the lowest possible combustion reaction in the combustion chamber 9.
  • the catalytically operating pilot burner 3 is a certain proportion of the total amount of air supplied to the burner 1 via the air supply 6
  • the auxiliary fuel supply 5 is now operated so that a rich fuel / air mixture is adjusted, which is supplied to the pilot burner 3.
  • a synthesis gas containing hydrogen gas is produced as combustion exhaust gas.
  • This synthesis gas is then introduced according to arrows 14 and 15 from the pilot burner 3 into the mixture-forming space 10 or into the combustion chamber 9.
  • a part of the synthesis gas with respect to the longitudinal axis 12 is introduced substantially radially into the mixture formation space 10.
  • a different part of the synthesis gas with respect to the longitudinal axis 12 is injected substantially axially into the mixture formation space 10 and into the combustion chamber 9, respectively.
  • the radially introduced synthesis gas fraction 14 is now greater than the axially introduced synthesis gas fraction 15.
  • This particular division of the synthesis gas introduction into the mixture formation space 10 or into the combustion chamber 9 is based on the finding that with the aid of this distribution of the synthesis gas injection, particularly favorable results for low nitrogen oxide production and a stabilizing effect for the homogeneous combustion reaction in the combustion chamber 9 can be achieved.
  • the pilot burner 3 can be configured, for example, such that at least 50% to 70% of the synthesis gas generated by the pilot burner 3 enters the mixture-forming space 10 radially. Accordingly, the proportion of the synthesis gas, which is introduced axially from the pilot burner 3 into the mixture formation space 10 or into the combustion space 9, is at most 30% to 50%.
  • pilot burner 3 it may be expedient to design the pilot burner 3 in addition such that the amount of synthesis gas 14 introduced radially at least partially also has a tangential with respect to the longitudinal axis 12 component.
  • the pilot burner 3 may have a lance 16.
  • the lance 16 extends coaxially with the longitudinal axis 12 of the burner 1. Furthermore, the lance 16 projects axially from a burner head 17 and protrudes into the mixture-forming space 10.
  • the lance 16 has corresponding, only partially indicated radial outlet openings 18 and at least one axial outlet opening 19th
  • the burner 1 in another embodiment, a pilot burner 3, which is integrated into the burner wall 11.
  • a catalytically active channel is integrated into the burner wall 11 for this purpose.
  • the burner wall 11 includes a plurality of radial outlet openings 20 through which the larger radial synthesis gas portion 14 enters the mixture formation space 10.
  • the burner wall 11 contains a plurality of axial outlet openings 21, through which then the smaller axial proportion of synthesis gas 15 can be injected into the combustion chamber 9.
  • Corresponding Fig. 3 comprises a combustion chamber 2, which is designed here as an annular combustion chamber, a plurality of burners 1 upstream of the in Fig. 3 not shown combustion chamber 9 are arranged distributed in a ring.
  • Each of these burners 1 is equipped with a pilot burner 3, which operates catalytically and can generate the hydrogen gas-containing synthesis gas.
  • a common air supply 22 is provided for all burners 1, which is symbolized here by an arrow.
  • the burners 1 are usually divided into fuel supply groups. For example, two burner groups are provided to which each half of all burners 1 is assigned. Each burner group has its own fuel supply 23 or 23 '.
  • the burners 1 of one group are expediently arranged alternately with the burners 1 of the other group.
  • the pilot burners 3 of one group can be supplied with fuel via a common auxiliary fuel supply 24, while the pilot burners 3 of the other burner group are supplied with fuel via a further common additional fuel supply 24 '.
  • the air supply within the individual burners 1 takes place again together, with a constant distribution of the supplied air quantity to the respective burner 1 and the associated pilot burner 3.
  • the burners 1 are supplied with a correspondingly increased amount of fuel.
  • the pilot burners 3 are controlled so that the synthesis gas generated by them contains a lower proportion of hydrogen gas.
  • the increased fuel supply via the burner 1 leads to an increase in the temperature in the combustion chamber 9, whereby the combustion chamber power increases and the outlet temperature is at least 1800 K.
  • the comparatively low proportion of hydrogen gas in the synthesis gas leads to a significant reduction in nitrogen oxide formation at high combustion chamber temperatures. Accordingly, pollutant emissions can be significantly reduced with the help of synthesis gas injection. In the experiment, the nitrogen oxide formation could be reduced by about 33%.
  • the synthesis gas injected from the pilot burners 3 contains at the low burner chamber capacity a hydrogen gas content of at least 30% by volume.
  • the hydrogen gas content at the low combustor power is between 30% by volume and 50% by volume.
  • the hydrogen gas content in the synthesis gas at a high combustion chamber capacity is at most 30% by volume, in particular in a range from 5% by volume to 30% by volume.
  • the synthesis gas production or the hydrogen gas fraction in the synthesis gas can be changed particularly easily in the catalytically operating pilot burners 3 by varying the fuel / air ratio.
  • This fuel / air ratio can be particularly easy to change by varying the amount of fuel supplied to the pilot burners 3, which is relatively easy to implement.
  • the amount of air supplied remains substantially constant, so that can be dispensed with complex control and regulation facilities here.
  • the inventive operation of the combustion chamber 2 and its burner 1 ensures that the combustion chamber 2 can be operated comparatively stable at low power, while at high combustion chamber performance, the production of nitrogen oxides can be greatly reduced.
  • pilot burners 3 in the burner 1 of the annular combustion chamber 2 has an additional valuable advantage.
  • annular combustion chambers 2 there are usually undesirable interactions of the individual burner 1 with each other. These interactions can lead to pulsations and thus to an undesirable vibration load of the components and to an undesirable noise pollution of the environment.
  • the interactions can reduce the stability of the combustion reactions, locally increase the temperature and thus support the formation of nitrogen oxides.
  • the amount of air supplied to the individual burners 1 can deviate from an ideal air quantity or set air quantity. Since, as explained above, the distribution of the quantity of air supplied to the individual burner 1 to the burner 1 and its pilot burner 3 is constant, the quantity of air supplied to the individual pilot burner 3 changes in the same proportion as the total quantity of air supplied to the individual burner 1 , If the total amount of air or actual air quantity actually supplied to the individual burner 1 deviates from the desired setpoint air quantity, the quantity of air supplied to the respective pilot burner 3 also changes as a result. Since in a stationary operation of the combustion chamber 2, the amount of fuel supplied to the pilot burner 3 remains constant, a change in the amount of air leads to a change in the fuel / air ratio. However, the fuel / air ratio correlates with the synthesis gas production or with the hydrogen gas content in the synthesis gas generated by the catalytic pilot burners 3.
  • the combustion air / fuel ratio increases.
  • An increased combustion air / fuel ratio increases the hydrogen gas content in the synthesis gas and leads to an increased exhaust gas temperature of the respective pilot burner 3, ie to an increased synthesis gas temperature.
  • the portion of the flame front associated with this burner 1 or this pilot burner 3 is moved upstream in the combustion chamber 9.
  • This local change in position of the flame front increases the pressure drop at this burner 1, that is, its flow resistance, and leads to a sequence in the sequence Reduction of this burner 1 supplied amount of air. In this way, the actual air quantity decreases and approaches the set air quantity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Claims (11)

  1. Procédé d'exploitation d'une chambre de combustion (2) d'une turbine à gaz, en particulier d'une installation de centrale électrique,
    - dans lequel la chambre de combustion (2) présente au moins un brûleur (1), qui est équipé d'un brûleur pilote catalytique (3),
    caractérisé en ce que
    - pour une faible puissance de la chambre de combustion (2), on commande le brûleur pilote (3) de telle manière qu'il produise comme produit de réaction un gaz de synthèse avec une proportion élevée d'hydrogène gazeux, et
    - pour une haute puissance de la chambre de combustion (2), on commande le brûleur pilote (3) de telle manière qu'il produise comme produit de réaction un gaz de synthèse avec une faible proportion d'hydrogène gazeux.
  2. Procédé selon la revendication 1, caractérisé en ce que le gaz de synthèse contient, pour une faible puissance de la chambre de combustion, une proportion d'au moins 30 % en volume d'hydrogène gazeux.
  3. Procédé selon la revendication 2, caractérisé en ce que, pour une faible puissance de la chambre de combustion, la proportion d'hydrogène gazeux dans le gaz de synthèse se situe entre 30 % en volume et 50 % en volume.
  4. Procédé selon la revendication 1, caractérisé en ce que le gaz de synthèse contient, pour une haute puissance de la chambre de combustion, une proportion d'au plus 30 % en volume d'hydrogène gazeux.
  5. Procédé selon la revendication 4, caractérisé en ce que, pour une haute puissance de la chambre de combustion, la proportion d'hydrogène gazeux dans le gaz de synthèse se situe entre 5 % en volume et 30 % en volume.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que
    - pour une faible puissance de la chambre de combustion, la chambre de combustion (2) présente une température de sortie de 1600 K au maximum, et/ou
    - pour une haute puissance de la chambre de combustion, la chambre de combustion (2) présente une température de sortie d'au moins 1800 K.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que
    - on introduit une plus grande proportion (14) du gaz de synthèse radialement dans le brûleur (1) et/ou dans la chambre de combustion (2) par rapport à un axe longitudinal (12) du brûleur respectif (1), et
    - on introduit une plus petite proportion (15) du gaz de synthèse axialement dans le brûleur (1) et/ou dans la chambre de combustion (2) par rapport à l'axe longitudinal (12).
  8. Procédé selon la revendication 7, caractérisé en ce que
    - on introduit radialement une proportion du gaz de synthèse d'au moins 50 % à 70 %, et
    - on introduit axialement une proportion du gaz de synthèse d'au plus 30 % à 50 %.
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce que le gaz de synthèse introduit radialement présente au moins en partie également une composante tangentielle par rapport à l'axe longitudinal (12).
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il est prévu pour le brûleur (1) et le brûleur pilote correspondant (3) une alimentation en air commune (6) avec une répartition constante de l'air sur le brûleur (1) et le brûleur pilote (3).
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'on commande la production de gaz de synthèse du brûleur pilote (3) par la quantité de combustible fournie au brûleur pilote (3), tandis que la quantité d'air fournie au brûleur pilote (3) est maintenue constante.
EP06830438.5A 2005-12-22 2006-12-07 Chambre de combustion dotee d'un brûleur et procede d'exploitation correspondant Not-in-force EP1963748B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005061486.8A DE102005061486B4 (de) 2005-12-22 2005-12-22 Verfahren zum Betreiben einer Brennkammer einer Gasturbine
PCT/EP2006/069429 WO2007074033A1 (fr) 2005-12-22 2006-12-07 Chambre de combustion dotee d'un brûleur et procede d'exploitation correspondant

Publications (2)

Publication Number Publication Date
EP1963748A1 EP1963748A1 (fr) 2008-09-03
EP1963748B1 true EP1963748B1 (fr) 2015-08-05

Family

ID=37776558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830438.5A Not-in-force EP1963748B1 (fr) 2005-12-22 2006-12-07 Chambre de combustion dotee d'un brûleur et procede d'exploitation correspondant

Country Status (5)

Country Link
US (1) US7568907B2 (fr)
EP (1) EP1963748B1 (fr)
DE (1) DE102005061486B4 (fr)
MY (1) MY153409A (fr)
WO (1) WO2007074033A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7841180B2 (en) * 2006-12-19 2010-11-30 General Electric Company Method and apparatus for controlling combustor operability
EP2072899B1 (fr) 2007-12-19 2016-03-30 Alstom Technology Ltd Procédé d'injection de carburant
US8286594B2 (en) * 2008-10-16 2012-10-16 Lochinvar, Llc Gas fired modulating water heating appliance with dual combustion air premix blowers
EP2299091A1 (fr) * 2009-09-07 2011-03-23 Alstom Technology Ltd Procédé de commutation de l' opération d'un brûleur d'une turbine à gaz de combustible liquide à combustible gazeux et vice versa.
CH701905A1 (de) 2009-09-17 2011-03-31 Alstom Technology Ltd Verfahren zum Verbrennen wasserstoffreicher, gasförmiger Brennstoffe in einem Brenner sowie Brenner zur Durchführung des Verfahrens.
US11774093B2 (en) 2020-04-08 2023-10-03 General Electric Company Burner cooling structures
JP7435328B2 (ja) * 2020-07-13 2024-02-21 三浦工業株式会社 燃焼装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1063699B (it) * 1975-09-16 1985-02-11 Westinghouse Electric Corp Metodo di avviamento di una turbina a gas di grande potenza con un combustore catalitico
DE3474714D1 (en) * 1983-12-07 1988-11-24 Toshiba Kk Nitrogen oxides decreasing combustion method
DE4426351B4 (de) * 1994-07-25 2006-04-06 Alstom Brennkammer für eine Gasturbine
DE4439619A1 (de) * 1994-11-05 1996-05-09 Abb Research Ltd Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners
DE19654022A1 (de) * 1996-12-21 1998-06-25 Abb Research Ltd Verfahren zum Betrieb einer Gasturbogruppe
US6358040B1 (en) 2000-03-17 2002-03-19 Precision Combustion, Inc. Method and apparatus for a fuel-rich catalytic reactor
US6415608B1 (en) * 2000-09-26 2002-07-09 Siemens Westinghouse Power Corporation Piloted rich-catalytic lean-burn hybrid combustor
EP1286112A1 (fr) * 2001-08-09 2003-02-26 Siemens Aktiengesellschaft Brûleur à prémélange et procédé opératoire dudit brûleur
WO2003072919A1 (fr) * 2002-02-22 2003-09-04 Catalytica Energy Systems, Inc. Systeme de combustion pilote par voie catalytique et procedes de fonctionnement
AU2003240374A1 (en) 2002-08-30 2004-03-19 Alstom Technology Ltd Hybrid burner and corresponding operating method
EP1532400B1 (fr) 2002-08-30 2017-07-26 Ansaldo Energia Switzerland AG Procede et dispositif pour faire bruler un melange combustible-oxydant
DE10329162A1 (de) * 2003-06-27 2005-01-13 Alstom Technology Ltd Katalytischer Reaktor und zugehöriges Betriebsverfahren
EP1510761A1 (fr) * 2003-08-13 2005-03-02 Siemens Aktiengesellschaft Procédé de combustion d'un combustible fluide ainsi que brûleur, en particulier de turbine à gaz, pour la mise en oeuvre du procédé
EP1568942A1 (fr) * 2004-02-24 2005-08-31 Siemens Aktiengesellschaft Brûleur à prémélange et procédé pour brûler un gaz pauvre

Also Published As

Publication number Publication date
US20080314045A1 (en) 2008-12-25
EP1963748A1 (fr) 2008-09-03
MY153409A (en) 2015-02-13
DE102005061486B4 (de) 2018-07-12
WO2007074033A1 (fr) 2007-07-05
DE102005061486A1 (de) 2007-07-12
US7568907B2 (en) 2009-08-04

Similar Documents

Publication Publication Date Title
EP1532400B1 (fr) Procede et dispositif pour faire bruler un melange combustible-oxydant
EP1621811B1 (fr) Procédé de fonctionnement pour un dispositif de combustion
EP1730441B1 (fr) Dispositif et procede pour stabiliser une flamme
EP1255080B1 (fr) Brûleur catalytique
EP1963748B1 (fr) Chambre de combustion dotee d'un brûleur et procede d'exploitation correspondant
DE3854666T2 (de) Gasturbinenbrenner.
EP1532394B1 (fr) Bruleur hybride et procede d'utilisation correspondant
EP2116766B1 (fr) Brûleur avec lance à combustible
EP2115353B1 (fr) Chambre de combustion pour une turbine à gaz
EP1205653B1 (fr) Brûleur avec injection de combustible étagée et procédé de fonctionnement
DE69719688T2 (de) Gasturbinenbrenner und Betriebsverfahren dafür
EP2329196B1 (fr) Brûleur et procédé d'utilisation d'un brûleur
EP0576697A1 (fr) Chambre de combustion pour turbine à gaz
EP1754002A2 (fr) Injecteur pour carburant liquide et bruleur a premelange etage pourvu dudit injecteur
EP1319895A2 (fr) Brûleur à prémélange à combustion pauvre pour turbine à gaz et son procédé de fonctionnement
EP1673576B1 (fr) Procede et dispositif de combustion d'un combustible
EP1062461B1 (fr) Chambre de combustion et mode de fonctionnement d'une chambre de combustion
EP1555484B1 (fr) Procédé d'opération d'une chambre de combustion de turbine à gaz.
EP3246558B1 (fr) Procede de fonctionnement d'un systeme de propulsion de fusee et systeme de propulsion de fusee
EP1491824B1 (fr) Réacteur catalytique et procédé d'utilisation correspondant
DE10334228A1 (de) Verfahren zum Betrieb eines Vormischbrenners sowie Vorrichtung zur Durchführung des Verfahrens
EP3584501A1 (fr) Système de brûleur et procédé de production de gaz chaud dans une installation de turbine à gaz
EP2808612A1 (fr) Chambre de combustion d'une turbine à gaz avec injection tangentielle comme injection pauvre tardive
EP3926238B1 (fr) Module d'une turbine à gaz pourvu de dérivation d'air de la chambre de combustion
EP4163546A1 (fr) Dispositif et procédé de réalisation d'une oxydation partielle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 740934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014463

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014463

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151207

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014463

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014463

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151207

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH; CH

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: ALSTOM TECHNOLOGY LTD

Effective date: 20161006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 740934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151207

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ANSALDO ENERGIA SWITZERLAND AG; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: GENERAL ELECTRIC TECHNOLOGY GMBH

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151207

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014463

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20171219

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211210

Year of fee payment: 16

Ref country code: GB

Payment date: 20211221

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006014463

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221207

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701