EP1962935A2 - Appareil d'anesthesie ventilatoire avec dispositif de mesure de la concentration de xenon - Google Patents

Appareil d'anesthesie ventilatoire avec dispositif de mesure de la concentration de xenon

Info

Publication number
EP1962935A2
EP1962935A2 EP06842137A EP06842137A EP1962935A2 EP 1962935 A2 EP1962935 A2 EP 1962935A2 EP 06842137 A EP06842137 A EP 06842137A EP 06842137 A EP06842137 A EP 06842137A EP 1962935 A2 EP1962935 A2 EP 1962935A2
Authority
EP
European Patent Office
Prior art keywords
xenon
gas
flow
hot wire
inspiratory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06842137A
Other languages
German (de)
English (en)
Inventor
Christian Daviet
Richard Blandin
Noureddine Kissi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1962935A2 publication Critical patent/EP1962935A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/142Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase with semi-permeable walls separating the liquid from the respiratory gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0081Bag or bellow in a bottle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/085Gas sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/104Preparation of respiratory gases or vapours specially adapted for anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0075Bellows-type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0078Breathing bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0808Condensation traps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0833T- or Y-type connectors, e.g. Y-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/18Vaporising devices for anaesthetic preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/22Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0042Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the expiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1025Measuring a parameter of the content of the delivered gas the O2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/103Measuring a parameter of the content of the delivered gas the CO2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1035Measuring a parameter of the content of the delivered gas the anaesthetic agent concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0291Xenon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/432Composition of exhalation partial CO2 pressure (P-CO2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/435Composition of exhalation partial O2 pressure (P-O2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/437Composition of exhalation the anaesthetic agent concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02863Electric or magnetic parameters

Definitions

  • the present invention relates to an anesthesia apparatus using xenon with a device for measuring xenon concentration.
  • a device for measuring the concentration of xenon for integration into an anesthesia machine comprising a main circuit for conveying gas flow for administering to the patient an anesthetic gaseous mixture containing xenon and a ventilatory system for ventilating the anesthetized patient.
  • Numerous ventilatory anesthesia machines can be used to perform the anesthesia of a patient undergoing surgery or the like, by administering to him by inhalation a conventional anesthetic gaseous mixture composed of N 2 O, of halogenated agents (for example SEVOFLURANE, ISOFLURANE, DESFLURANE, etc.).
  • a conventional anesthetic gaseous mixture composed of N 2 O, of halogenated agents (for example SEVOFLURANE, ISOFLURANE, DESFLURANE, etc.).
  • SEVOFLURANE for example SEVOFLURANE, ISOFLURANE, DESFLURANE, etc.
  • gaseous mixtures those based on xenon will be increasingly used with indications particularly adapted to fragile patients (elderly patients, operations, long, cardiac surgery, neurosurgery %), in particular because of the incidence almost zero on blood pressure during anesthesia and the absence of side effects and harmfulness of Xenon.
  • anesthesia performed with xenon requires monitoring or monitoring of the xenon concentrations in the gas flow administered to the patient, that is to say requires to be able to determine in real time the concentration of xenon in the anesthetic flow.
  • EP-A-1499377 EP-A-1318797 or EP-A-523315.
  • the invention proposes to solve all or part of the aforementioned problems of the prior art, in particular the invention aims to provide a xenon respiratory anesthesia apparatus for accurately determining the xenon concentration delivered to the patient during anesthesia. in order to guarantee anesthesia efficacy and increased patient safety, while being of simple architecture and low cost.
  • the invention relates in particular to the problem of monitoring or monitoring the xenon gas concentrations in a gaseous mixture of xenon-based anesthesia containing, moreover, in a variable amount, that is to say 0 to 100% by volume, of one or more of the following main compounds: oxygen (O 2 ), nitrogen (N 2 ), nitrous oxide (N 2 O), carbon dioxide (CO 2 ), halogenated compounds isoflurane, enflurane, desflurane, sevoflurane or halotane, ethanol, and possibly traces or small amounts ( ⁇ 1%) of one or more of the following minor compounds: acetone, methane, carbon monoxide (CO), argon, helium...
  • the invention aims to provide particular means for determining efficiently, easily and with sufficient accuracy the xenon content in a flow of anesthetic gas, said means can be embedded on a new device or in an existing device, c. that is to say constitute an integrated monitoring system, or can be associated with existing devices, that is to say form an external and autonomous monitoring system.
  • the invention proposes an apparatus for ventilatory anesthesia of a patient by administering a gas containing xenon gas, comprising:
  • a main open or closed circuit gas circuit comprising an inspiratory branch for conveying a gaseous mixture containing xenon to the patient and an expiratory limb for conveying the gaseous mixture containing expired xenon by the patient, xenon gas supply means connected to the main circuit for supplying the inspiratory branch of the main circuit with a gas containing xenon,
  • - Xenon concentration determination means for determining the xenon gas content in at least a portion of the main circuit.
  • At least one sensor with hot wire comprising at least one wire of electrically conductive material, preferably of metal, in direct contact with at least a portion of the gaseous flow containing xenon, and
  • Power generating means preferably adjustable, adapted to and designed to generate an electric current, continuous or not, in the hot son or son of said at least one sensor hot wire (s) adjustable, and
  • voltage measuring means capable of measuring at least one voltage value across at least one hot wire or resistor placed in series with at least one hot wire, when said at least one hot wire is in contact with said gas flow and is traversed by an electric current of intensity (I),
  • the calculation means cooperate with the voltage measuring means so as to determine, from the voltage measurement performed by said voltage measuring means, the xenon concentration (Xe%) in said flow.
  • the apparatus of the invention may comprise one or more of the following characteristics:
  • adjustable current generation means adapted to and designed to generate an electric current in the or each of the hot wires of said at least one hot-wire sensor, said current generation means being designed for and able to control the intensity of the electric current flowing through the hot wire or wires of the at least one hot wire sensor in such a way that whatever the composition of the gas passing through said at least one hot wire sensor (s), the intensity of the current flowing through the hot wire (s) is kept substantially constant and / or the temperature of the hot wire (s) of said wires. minus one sensor (s) with hot wire (s) is kept substantially constant.
  • the current generation means make it possible to control the intensity of the current flowing through the wire, whatever the composition of the gas, in such a way that
  • the intensity I is kept constant.
  • the xenon concentration variations around the wire cause a temperature variation which leads to a variation in the resistance R of the wire. Since the current I is kept constant or approximately constant in the hot wire of the hot wire sensor (s), the voltage V (equal to R. I) across the hot wire of the hot wire sensor (s) will be measured. (s) to deduce the concentration Xe% by the linear curve corresponding to the flow D measured or known, as detailed below in the description.
  • the temperature of the wire is kept constant.
  • the variations of the current I are adjusted to maintain constant or approximately constant, the temperature of the hot wire and thus compensate the effect of xenon concentration variations around the wire. If the concentration Xe increases, this increase will tend to cause an increase in the temperature of the wire, and the current generating means will then react to cause a decrease in the current I through the wire since such a decrease will tend to lower the temperature. wire according to Joule's law and thus converge towards a balance allowing to stay at constant temperature.
  • the calculation means use at least one voltage value transmitted by the voltage measuring means and at least one flow rate of the anesthetic gas containing xenon to determine the concentration of xenon (Xe%) in said flow of gas.
  • the hot wire sensor (s) is arranged on a branch line fluidly communicating with the main circuit.
  • the connection of the branch line to the main circuit is made on the inspiratory branch and / or on the expiratory branch and / or in a site located immediately close to the patient's mouth, preferably at a connection site between the inspiratory branch and the exhalation branch of said main circuit for example at a Y connection piece or a bacteriological filter arranged on the main circuit, that is to say at the junction of the inspiratory and expiratory branches of the main circuit.
  • This type of architecture using a branch line is known as the "type side-stream".
  • Gas flow control means in particular a suction pump, are arranged on the bypass line so as to obtain a known anesthetic gas flow rate, preferably a constant and / or stable gas flow rate.
  • a known anesthetic gas flow rate preferably a constant and / or stable gas flow rate.
  • constant and / or stable flow it is meant that the flow rate varies at the most by a few% with respect to its average value, for example about 3% maximum, that is to say that the amplitude of variation of the flow rate , more or less, relative to said average flow rate has a negligible impact on the various sensors and measuring means used.
  • the gas flow control means make it possible to control the flow rate of the xenon-containing gas so as to ensure a desired, preferably constant and / or stable, flow rate of said gas carried by the bypass line and brought into contact with minus a hot wire.
  • the gas flow control means comprise a gas suction pump, preferably the suction pump is associated with a control electronics of said pump, that is to say an electronics that manages the pump of suction to draw a desired flow rate in the main circuit, accurate and stable in time gas containing xenon to be analyzed.
  • the ANDROS BGA4800 gas analyzer contains an example of such means associating a suction pump and a control electronics of the pump.
  • the calculation means are incorporated in a gas analyzer module to be connected to the main circuit.
  • one or more sensor (s) hot wire (s) is or are arranged (s) directly on the main circuit, for example, on the inspiratory branch and / or expiratory and / or at the junction between the branches the device comprising means for measuring the inspiratory flow rate and / or the expiratory flow rate and / or the main flow rate at the junction between the inspiratory and expiratory branches of the gas flow flowing in the main circuit, preferably those flow measurement means comprising an inspiratory flow sensor and an expiratory flow sensor, respectively arranged on the inspiratory and expiratory branches of the main circuit (also called "patient circuit"), for measuring the inspiratory and respiratory flows in said branches and transmitting the measurement signals thus obtained to control means for determining, in combination with the voltage measurements transmitted by the associated voltage measurement means one or more hot wire sensor (s) arranged directly on the main circuit, the xenon concentration in the inspiratory limb and / or the expiratory limb and / or at the junction between inspiratory and expiratory limbs.
  • This type of architecture does not use
  • the calculation means are incorporated in the fan control module.
  • the sensor (s) with hot wire (s) comprises or comprise one or more platinum wires
  • the hot-wire sensor (s) comprises or comprises several wires having different orientations relative to the gas flow, preferably two hot wires,
  • calculation means are incorporated or form control means of the apparatus, the calculation means are incorporated or form control means of the gas analyzer module,
  • the calculation means comprise at least one electronic card and / or a computer program for carrying out all or part of the calculations making it possible to determine the xenon content in the anesthetic gas,
  • the apparatus comprises means for measuring a concentration of at least one additional gas distinct from Xenon such as I 1 O 2 , CO 2 , N 2 O, halogenated gases and ethanol; calculation device cooperating with the means for measuring a concentration of at least one additional gas to determine at least one of the following concentrations of Xenon: instantaneous, average, inspired, exhaled,
  • the means for measuring a concentration of at least one additional gas comprise means of the infra-red type (for additional gases such as CO 2 , N 2 O, halogen or ethanol) and / or of the paramagnetic or chemical type (for additional gases such as I 1 O 2 ).
  • the apparatus comprises means for measuring the relative humidity of the gaseous flow analyzed, the calculation means cooperating with these means for measuring the relative humidity in order to improve the calculation accuracy of at least one of the following concentrations; Xenon: instant, average, inspired, expired,
  • the apparatus comprises means for measuring the temperature of the gas analyzed, the calculation means cooperating with these temperature measuring means to improve the calculation accuracy of at least one of the following concentrations of Xenon: instantaneous, average, inspired and / or expired.
  • the apparatus further comprises an auxiliary gas circuit comprising an auxiliary inspiratory branch for conveying a breathing gas containing xenon to the patient by means of a manual insufflator, the means for determining the xenon concentration being adapted and adapted to be connected to said auxiliary gas circuit for xenon content determination, when xenon-containing gas is delivered to the patient via said auxiliary gas circuit, especially in case of shutdown or malfunction of the main circuit.
  • the curve or curves for as much flow value (Dn) as desired or necessary, are calibrated (with a flow rate established at the value (Dn) of gas whose xenon content is known, namely pure Xenon; and / or pure 02 and / or pure AIR) before storage and / or periodically updated and automatically during use of the apparatus.
  • connection of the branch line to the main circuit is done at a site located in the immediate vicinity of the patient's mouth, preferably still at a connection site between the inspiratory branch and the exhalation branch of said main circuit, by example at a Y connection piece or a bacteriological filter arranged on the main circuit.
  • the invention also relates to a method of anesthesia of a patient in which an inhalatory gas containing xenon is administered in the patient's upper airways so as to perform a gas anesthesia of said patient, and the xenon content of the gas is determined. administered to the patient by means of an anesthesia machine according to the invention.
  • the present invention is therefore based on a use of one or more sensor (s) hot wire (s) to determine in real time, the instantaneous and / or average concentration of xenon present in the anesthetic gas.
  • V 0.02 %, N20%, AA%, CO2%, HR, Tg ° (D)
  • the function f o is also dependent on the content O 2 % by volume in the gas, the content by volume N 2 O% nitrous oxide, the content AA% of the anesthetic agent (halogen for example), the CO2 content of carbon dioxide and the relative humidity RH of the gas, the measured gas being at a temperature Tg 0 .
  • the function f 0 02%, N20%, HR, ⁇ g ° can be obtained conventionally by piece linearization or by a least squares approximation from calibration points (on a test bench) as numerous as possible. than necessary to achieve the desired accuracy.
  • This function f 0 is, however, little dependent on the contents 02%, AA%, CO2% and N20%, and the relative humidity RH and the temperature Tg 0 of the gas.
  • V f ⁇ e %, ⁇ 2%, N2 ⁇ %, AA%, co2%, HR, ⁇ G ° (D)
  • the current (I) can be pre-set in the factory or adjusted by user-initiated periodic calibration or machine to center the voltage measurement (V) within a given voltage range, calibration can be performed on a first reference gas (AIR or pure O2) containing no Xenon (0%) or possibly a second reference gas comprising Xenon in a significant amount (from 50 to 100% for example).
  • a first reference gas AIR or pure O2
  • a second reference gas comprising Xenon in a significant amount (from 50 to 100% for example).
  • the hot wire sensor (s) can be made using a single wire placed for example perpendicular to the direction of the gas flow whose Xenon concentration is to be measured.
  • Non-mandatory, more sophisticated but more accurate, the hot wire sensor (s) can be made using two metal wires, one placed perpendicular to the direction of the gas flow (wire 1 traversed by a current 11) and the second more or less in the axis of the same gas flow (wire 2 traversed by a current 12), the formulas for connecting the voltage to the flow rate and to the different concentrations of Xenon, CO2, O2, AA, N2O and HR are as follows:
  • V f Xe%, O2%, N2 ⁇ %, AA%, CO2%, HR (Dc) (1) in which the function h DC, O2%, N2O%, AA%, CO2%, HR is found to be linear and can be obtained by calibration with a flow rate Dc of known concentration gas (pure Xenon and / or pure O2 and / or pure AIR)
  • a linear curve is stored in the storage means of the device, ie a line of type b + a.
  • [Xe] V where V is the voltage, [Xe] the xenon content and a and b are positive or negative coefficients corresponding to each given value of flow Dc, a and b being obtained by calibration with a flow rate Dc of gas at known concentration (pure Xenon and / or pure 02 and / or pure AIR)
  • the calculation means When used in operation, the calculation means then use the voltage values (V) and the flow rate value (Dc) to determine a xenon concentration (Xe%) in the gas flow from the stored linear curve. in storage means of the device corresponding to the selected flow rate value Dc.
  • the curves are, for as much value (s) of flow (Dc) as desired or necessary, are calibrated (with a flow rate established at the value (Dc) of gas whose xenon content is known, namely Xenon pure and / or pure 02 and / or pure AIR) before storage and / or periodically updated and automatically during use of the device.
  • Figures 9a and 9b appended represent an example of such arrays of curves (for 3 Dc rate values) showing the linearity existing between the xenon content (Xe%) and the voltage (V).
  • the single-wire hot or two-wire sensor is placed directly into the anesthetic gas flow infused into and / or exhaled by the patient, i.e., the main flow of gas (see Fig. 5 to 8), provided that the measurement of said main flow (Dp) of gas blown and / or exhaled, for example obtained in a regulatory manner by the inspired flow monitoring system, is available and exhaled with patient gas, it is possible to deduce the Xe concentration xenon inspired and / or expired and / or average and / or instantaneous from the voltage measurement V according to the following formula:
  • a linear curve is stored in the storage means of the device, ie a line of type b + a.
  • [Xe] V where V is the voltage, [Xe] the xenon content and a and b are positive or negative coefficients corresponding to each given flow value Dp, a and b being obtained by calibration with a flow rate Dp of gas at known concentration (pure Xenon and / or pure O2 and / or AIR pUr) 1
  • the calculation means then use the voltage values (V) and the flow rate value (Dp) to determine a xenon concentration (Xe%) in the gas flow from the stored linear curve. in storage means of the device corresponding to the selected flow rate value Dp.
  • the curves are, for as much value (s) of flow (Dp) as desired or necessary, are calibrated (with a flow rate established at the value (Dp) of gas whose xenon content is known, namely Xenon pure and / or 02 pure and / or pure AIR) before storage and / or refreshed periodically and automatically during the use of the device.
  • Figures 9c and 9d appended represent an example of such networks of curves (for as many flow values Dp as desired or necessary) showing the linearity existing between the xenon content (Xe%) and the voltage (V).
  • FIG. 1 represents a first embodiment of an apparatus according to the invention that can be used for xenon anesthesia with the possible use of halogens and with hot wire (s) placed in a stream derived from gas,
  • FIG. 2 represents a first variant of the embodiment of the apparatus of FIG. 1,
  • FIGS. 3 and 4 represent respectively a second and third variant of the embodiment of the apparatus of FIG. 1, usable for anesthesia under xenon only, without the use of halogens,
  • FIG. 5 represents a second embodiment of an apparatus according to the invention that can be used for xenon anesthesia with the possible use of halogens and with hot wire (s) placed in the main stream of gas,
  • FIG. 6 represents a first variant of the embodiment of the apparatus of FIG. 5, and
  • FIGS. 7 and 8 respectively represent a second and third variant of the embodiment of the apparatus of FIG. 5, usable for xenon anesthesia only, without the use of halogens.
  • FIG. 1 illustrates a first embodiment of an anesthetic apparatus according to the invention including means for real-time measurement of the xenon flow in a stream derived from gas via the use of a sensor. with hot wire (s) so as to deduce the instantaneous and / or average concentrations of xenon in the main circuit, as well as means for measuring in real time the flow rate of gas insufflated to the patient and exhaled by it in the main circuit, also called "patient circuit".
  • the apparatus or fan of FIG. 1 comprises an input block 1 comprising connecting means to which the source of xenon and the other gas sources supplying the anesthesia apparatus are connected, such as gas bottles or a wall network, in particular for air (AIR), oxygen (O 2 ) and / or nitrous oxide (N 2 O) sources.
  • AIR air
  • O 2 oxygen
  • N 2 O nitrous oxide
  • This block 1 is in fluid communication with the inlet of a mixer 2 where the mixture of xenon is mixed with the other gas or gases which are intended to form the anesthetic gas mixture, in particular oxygen in an amount sufficient to the patient (non-hypoxic)
  • the output of the mixer 2 feeds into a gaseous mixture, a halogenated tank 14, mounted on a tank support 13, containing a halogen compound, such as SEVOFLURANE, ISOFLURANE or DESFLURANE (the most commonly used), HALOTHANE or ENFLURANE (less used), intended to be entrained by the flow of anesthetic gas to the patient 15.
  • a halogen compound such as SEVOFLURANE, ISOFLURANE or DESFLURANE (the most commonly used), HALOTHANE or ENFLURANE (less used
  • the halogen gas mixture leaving the tank 14 is introduced into a main circuit or patient circuit comprising an inspiratory branch 16 for conveying said gas mixture to the patient 15 and an expiratory branch 18 to recover all or part of the exhaled gas (loaded with CO 2 ) by the patient 15.
  • the inspiratory 16 and expiratory 18 branches form a loop circuit or closed circuit.
  • connection between the inspiratory and expiratory limbs 18 with the patient 15 is via, for example, a Y-piece 17 and a respiratory mask, a tracheal tube or the like.
  • the exhalation branch 18 comprises a CO 2 absorber device 9 comprising a tank filled with an absorbent material, such as lime, for removing the CO 2 expired by the patient 15 and carried by the exhaled gas in the exhalation branch 18 the main circuit, and an exhaust valve 10 for evacuating any excess gas and / or any gaseous pressure in the exhalation branch 18.
  • a CO 2 absorber device 9 comprising a tank filled with an absorbent material, such as lime, for removing the CO 2 expired by the patient 15 and carried by the exhaled gas in the exhalation branch 18 the main circuit, and an exhaust valve 10 for evacuating any excess gas and / or any gaseous pressure in the exhalation branch 18.
  • the fan of the invention comprises, in a manner known per se, a bellows 4a for mechanical ventilation incorporated in an enclosure 4b, and a manual ventilation tank 5, which can be selectively fluidly connected to the main circuit CP for supply it with pressurized gas, via a 6 bellows / balloon selector.
  • the main circuit CP indifferently called “patient circuit”
  • the main circuit CP consists of all the elements that have just been mentioned, namely: the elements 4a, 4b, 5 to 12 and 16 to 18.
  • Control means 3 comprising, for example, at least one control electronic card and one or more embedded software or computer programs make it possible to collect at least part of the information or signals coming from all or part of the sensors of the apparatus and from treat them and / or perform all the calculations necessary for monitoring the gas concentrations and / or the control of the various elements of the apparatus.
  • the control means 3 via suitable electrical connections.
  • the control means 3 are able to control the bellows 4 and / or the opening of the exhaust valve 10 and / or the entry of the appropriate gases into the inlet block 1 to which said means of connection are connected.
  • control 3 via dedicated electrical connections, as shown in FIG. 1.
  • the apparatus of the invention incorporates an S6 module.
  • gas analysis system known as a "gas bench” including a sensor with hot wire (s) swept by a flux derived from anesthetic gas.
  • the gas analysis module S6 is represented a second time in an enlarged and detailed manner in FIG. 1 (see the end of the curved arrow).
  • part of the xenon gas flow conveyed by the main circuit CP of gas is taken off at the piece 17 in Y, via a sampling line S1 which communicates fluidly with said the main circuit CP.
  • the line S1 conveys the anesthetic gas to the module S6 by first passing through a water trap S2, where the water vapor it contains is removed before being conveyed, via a transfer line S3, until 'to module S6.
  • the S6 gas analysis module comprises, meanwhile, arranged on the passage of the gas flow:
  • suction pump S6-A for example of the type used on the BGA4800 or BGA4700 gas benches from ANDROS or AION by ARTEMA
  • Dc anesthetic gas suction flow
  • a sensor with hot wire (s) S6-E constituted in the example of a single platinum wire, traversed by an electric current of intensity (I) given, for example an intensity of about 100 mA , with measurement of the voltage (V) across said wire when it is in contact with the flux containing the xenon,
  • an infra-red cell S6-B (of the type for example that fitted to the BGA4800 or BGA4700 gas banks of the company ANDROS or that fitted to the AION gas bench of the company ARTEMA) for measuring the instantaneous and / or average concentrations and / or inspired and / or exhaled of CO 2 dioxide, N 2 O, halogenated, ethanol or any other gas measurable by this infra-red technology,
  • a paramagnetic cell at O2 or a chemical battery S6-C (of the type for example of those equipping the gas banks BGA4800 or BGA4700 of the company ANDROS or AION of the company ARTEMA according to the options) for measuring the instantaneous and / or average concentrations and / or inspired and / or expired from O2, control means S6-D with software integrated on an electronic control board (of the type for example that fitted to the gas banks BGA4800 or BGA4700 of the company ANDROS or AION of the company ARTEMA),
  • the output of the S6-A suction pump of the S6 module is connected to the exhalation branch of the main circuit, via a re-injection line S4, so as to return the gas that has been withdrawn through the sampling line. S1.
  • the measurement signals obtained with the hot wire sensor (s) S6-E are transmitted to the control means S6-D via a suitable connection S6-F, said control means S6-F D being themselves connected, via a suitable electrical connection S5, to the control means 3.
  • the calculations, in particular the xenon concentrations of the anesthetic gas, are carried out by the control means S6-D of the module S6.
  • the gas analysis module S6 is for example a module of the BGA4800, BGA4700 or BGA4900 type from ANDROS or AION from ARTEMA, to which has been added in particular sensor means with hot wire (s) such as, for example, a HOT FIL sensor from TAEMA.
  • This gas analysis module S6 thus makes it possible to carry out on the gas sucked by the sampling line S1 at a continuous flow rate, preferably adjustable to some ten or hundreds of mL / min, at least:
  • the sensor with hot wire (s) S6-E although represented at the input of the module S6 and upstream of the cell S6-C, can also be inserted elsewhere, in particular downstream of the suction pump S6-A and / or upstream of or on the re-injection line S4, the latter being connected or not to the main circuit.
  • the hot wire sensor (s) S6-E realizes, in real time, the measurement of the voltage (V) at the terminals of the hot wire generated by the sucked gas and transmits it via the link S6-F, with a known delay, more or less short, a few tens or even a few hundred ms depending on the set suction rate, the control software S6-D of the anesthetic gas analyzer for it to deduce, via formula (1) above, in particular:
  • a real-time measurement of the xenon content (Xe%) by using the suction flow adjustment value of the anesthesia gas analyzer S6 and the real-time measurement of the hot wire tension possibly compensated by real-time concentration measurements 02%, CO2%, AA%, N2O% and / or
  • FiXe xenon-inspired fraction
  • the gas analysis module S6 can be used to perform a mean xenon concentration measurement using the real time measurement (Xe%) obtained using the analyzer suction flow setting value. of anesthesia gas S6 and the mean value of the hot wire voltage measurement (V) calculated from the real-time measurement of the hot wire voltage, possibly compensated by the average concentration measurements 02%, CO2%, AA%, N20% itself calculated from real-time measurements 02%, C02%, AA%, N20%, using formula (1).
  • the main circuit is doubled by an auxiliary circuit 26 connected to the line 27 for supplying the gas containing the xenon which itself feeds the main circuit.
  • This auxiliary circuit 26 is used in case of stop or malfunction of the main circuit.
  • the auxiliary circuit 26 comprises a manual insufflator 28 fluidly connected to said auxiliary circuit 26 which is manually operable by the user, that is to say the caregiver so as to send anesthetic gas to the patient 15. Downstream of the auxiliary circuit 26 is arranged a patient interface, such as a respiratory mask or a tracheal tube, supplying the upper airway of said patient with anesthetic gas, when the physician or the like activates the insufflator 28, which conventionally comprises a balloon and an inspiratory valve. and expiratory.
  • a patient interface such as a respiratory mask or a tracheal tube
  • the branch line S1 can be fluidly connected to the auxiliary circuit 26 at a site 30 situated between the insufflator 28 and the patient 15, as represented by the line 29, by means of suitable connection means, for example a fitting or a filter or a mask equipped with a connection port of the sampling line, for example, a LUER type connector.
  • suitable connection means for example a fitting or a filter or a mask equipped with a connection port of the sampling line, for example, a LUER type connector.
  • the monitoring of the xenon concentration is done in the auxiliary circuit 26 and no longer in the main circuit CP.
  • the auxiliary circuit 26 is advantageously arranged in the various embodiments of the invention shown in FIGS. 1 to 8.
  • FIG. 2 represents a first variant of the embodiment of the apparatus of the figurel, according to which the measurement signals coming from the sensor with hot wire (s) S6-E are transmitted, in this case, to the means of control 3 via a specific direct link S5-A.
  • the calculations of xenon concentrations of the anesthetic gas are carried out in the control means, such as detailed previously.
  • the control means S6-D are also connected, via a suitable electrical link S5-B, to the control means 3.
  • the monitoring of the xenon concentration is thus carried out by the control means 3 of the fan and not by the S6 module.
  • FIG. 3 represents a second variant of the embodiment of the apparatus of the figure that can be used to carry out anesthesia under xenon only, without the use of halogens.
  • the measurements made by the module S6 are identical to the measurements made in the case of FIG. 1, with the exception of those relating to the halogens, which are no longer carried out because of the elimination of the halogen tank. 14 and the tank support 13. Indeed, as seen in Figure 3, the gas flow from the mixer 2 is sent directly (without loading halogen compounds, tank fault) to the main circuit.
  • Such an apparatus may be useful when, for example, it will be necessary to couple an inhalation anesthesia with xenon to an intravenous type anesthesia or the like since, in such a medical situation, anesthesia by halogenated products is not required because of the use of intravenous products.
  • FIG. 4 represents a third variant of the embodiment of the apparatus of FIG. 1. This variant can also be used to perform xenon anesthesia only, without the use of halogens, based on a combination of the embodiments of FIGS. and 3. More specifically, the apparatus of Figure 4 differs from that of Figure 2 only in that it does not include a halogen tank.
  • FIGS. 1 to 4 are particularly preferred embodiments of the invention.
  • FIG. 5 illustrates a second embodiment of an anesthesia apparatus according to the invention including means for measuring in real time the flow of xenon in the main flow of gas via, as previously, the use of of a sensor wire (s) hot (s) so as to deduce for example the instantaneous and / or average concentrations of xenon in the main circuit CP, and means for measuring in real time the flow of gas blown into the patient and expired by it in the main circuit.
  • the ventilation device comprises the same elements as those of FIG. 1, with the exception of the module S6 which has been deleted and replaced, in this case, by another module M1 gas analyzer coming from position yourself directly on the main gas circuit.
  • the gas analyzer module M1 is plugged into patient connection means, such as a patient adapter M2, itself connected to the Y-shaped part 17 at the end of the main circuit.
  • patient connection means such as a patient adapter M2
  • the analyzer module M1 can perform at least the same measurements on the gas insufflated with the patient and then exhaled by the latter, as in the case of FIG.
  • the module M1 that can be used for this purpose is, for example, the IRMA anesthesia or OR + anesthesia gas analyzer available (with its corresponding patient adapter M2) from the company PHASE IN and to which a wire sensor (s) has been added in particular. hot (s).
  • the IRMA anesthesia or OR + anesthesia gas analyzer available (with its corresponding patient adapter M2) from the company PHASE IN and to which a wire sensor (s) has been added in particular. hot (s).
  • the module M1 is shown a second time in an enlarged and detailed manner in Figure 5 (see the end of the curved arrow).
  • this module M1 receives control software from the control means 3 of the fan, with a known delay, more or less short, from a few tens to a few hundred milliseconds (ms), the real-time measurement of the gas flow. blown and exhaled, this flow rate being measured via the flow sensors 11 and 12 as explained above.
  • the anesthetic gas coming from the Y-shaped part 17 penetrates the module M1 by passing through a hot wire sensor (s) M1-D, arranged in series, between an infrared cell M1-A and a probe intubation 18 to perform, in real time, the measurement of the voltage (V) at the terminals of the hot wire generated by the gas blown and expired, as before, and which transmits it via a connection M1-E, with a known delay more or less short, from a few tens to a few hundreds of ms, the calculation software M1-C control means of the M1 analyzer.
  • the hot wire sensor (s) M1-D is arranged between the Y-piece 17 and the infrared M1-A cell.
  • a cell M 1 -B to O 2 of the module M1 makes it possible to measure the oxygen content.
  • Sending the flow information by the fan control means 3 to the M1-C control means of the module M1 is via a link M3.
  • M1-C of the module M1 control means are themselves connected to the M1-B cell to O 2, the yarn sensor (s) hot (s) M1-D via link M1-E, and to the infra-red cell M1-A.
  • the M1-C control means can deduce the same concentrations, in particular that in xenon, and other information described in the case of Figure 1.
  • FIG. 6 represents a first variant of the embodiment of the apparatus of FIG. 5, in which the monitoring of the average xenon concentration is carried out by the control means 3 of the fan and no longer in the module M1.
  • the measurement signals from the hot wire sensor (s) M1-D are transmitted via the link M3-A to the control software of the control means 3 of the fan.
  • the fan control means 3 can thus deduce therefrom a measurement of the average xenon concentration Xe% by using the real time measurement Xe%, as previously and using formula (2) above.
  • FIGS. 7 and 8 respectively represent variants of the apparatus of FIG. 5 and FIG. 6, usable for anesthesia under xenon only, without the use of halogens, variants for which the halogen tank 14 and the support of tank 13 have been removed (as in the embodiments of Figures 3 and 4 above).
  • the apparatus of the invention is usable in any circumstance and in any place, in particular in the operating theater, during the xenon anesthesia phases, so as to improve the safety of the patients and is part of the obligations of monitoring of anesthetic gases.
  • the gaseous xenon is always mixed with oxygen alone, air or with oxygen and optionally one or more halogenated compounds and / or with nitrous oxide.
  • hot wire sensor (s) could use one or more son composed of any suitable electrically conductive material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Appareil d'anesthésie ventilatoire d'un patient par administration d'un gaz contenant du xénon gazeux avec un circuit principal de gaz (CP) en circuit ouvert ou fermé comportant une branche inspiratoire (16) et une branche expiratoire (18), des moyens d'alimentation (1 , 2) en xénon gazeux pour alimenter la branche inspiratoire (16) du circuit principal (CP), des moyens de détermination de concentration de xénon. Les moyens de détermination de concentration de xénon (S6 ; M1 ) comprennent au moins un capteur à fil(s) chaud(s) (S6-E ; M1-D) comportant au moins un fil conducteur de l'électricité en contact direct avec le flux gazeux contenant le xénon, des moyens de calcul (3 ; S6-D ; M1-C) coopérant avec le capteur à fil(s) chaud(s) pour déterminer la concentration de xénon (Xe%) dans le flux, des moyens de génération de courant électrique pour générer un courant dans au moins un fil chaud, et des moyens de mesure de tension aptes à mesurer au moins une valeur de tension (V) aux bornes d'au moins un fil chaud ou d'au moins une résistance agencée en série avec au moins un fil chaud. Les moyens de calcul coopèrent avec les moyens de mesure de tension de manière à déterminer la concentration de xénon (Xe%).

Description

Appareil d'anesthésie ventilatoire avec dispositif de mesure de la concentration de xénon
La présente invention porte sur un appareil d'anesthésie utilisant le xénon muni d'un dispositif de mesure de la concentration de xénon.
L'invention concerne, en d'autres termes, un dispositif de mesure de la concentration de xénon destiné à être intégré dans un appareil d'anesthésie (système intégré), l'appareil d'anesthésie ventilatoire comprenant un circuit principal d'acheminement de flux de gaz pour administrer au patient un mélange gazeux anesthésiaπt contenant du xénon et un système ventilatoire pour ventiler le patient anesthésié.
On connaît de nombreux appareils d'anesthésie ventilatoire pouvant être utilisés pour réaliser l'anesthésie d'un patient devant subir une intervention chirurgicale ou analogue, en lui administrant par inhalation un mélange gazeux anesthésique classique composé de N2O, d'agents halogènes (par exemple du SEVOFLURANE, ISOFLURANE, DESFLURANE, ...). A ce titre, on peut se reporter par exemple aux documents EP-A-983771 et EP-A-1120126.
Parmi les mélanges gazeux utilisables, ceux à base de xénon seront de plus en plus utilisés avec des indications particulièrement adaptées à des patients fragiles (patients âgés, opérations, longues, chirurgie cardiaque, neurochirurgie...), du fait notamment de l'incidence quasi-nulle sur la pression sanguine durant l'anesthésie et l'absence d'effets secondaires et de nocivité du Xénon.
Toutefois, une anesthésié réalisée avec du xénon nécessite un suivi ou monitorage des concentrations de xénon dans le flux gazeux administré au patient, c'est-à-dire requiert de pouvoir déterminer en temps réel la concentration en xénon dans le flux anesthésique.
A ce titre, on peut se reporter par exemple aux documents EP-A-1499377, EP-A-1318797 ou EP-A-523315.
Actuellement, pour mesurer une concentration de xénon dans un tel mélange gazeux, il est classique d'utiliser un spectromètre de masse ou un chromatographe. Or, ces techniques présentent des inconvénients de coût et surtout de difficulté de mise en oeuvre car leur intégration dans les appareils d'anesthésie existants nécessite des efforts de développement et d'adaptation très importants.
L'invention se propose de résoudre tout ou partie des problèmes de l'art antérieur susmentionnés, en particulier l'invention vise à proposer un appareil d'anesthésie respiratoire au xénon permettant de déterminer avec précision la concentration en xénon délivrée au patient pendant une anesthésie gazeuse de manière à garantir une efficacité d'anesthésie et une sécurité accrue pour le patient, tout en étant d'architecture simple et de coût modique.
En d'autres termes, l'invention concerne notamment le problème du suivi ou monitorage des concentrations de xénon gazeux dans un mélange gazeux d'anesthésie à base de xénon contenant, en outre, en quantité variable, c'est-à- dire de 0 à 100% en volume, de l'un ou plusieurs des composés principaux suivants : oxygène (O2), azote (N2), protoxyde d'azote (N2O), dioxyde de carbone (CO2), composés halogènes de type isoflurane, enflurane, desflurane, sevoflurane ou halotane, éthanol, et éventuellement des traces ou quantités faibles (<1 %) de l'un ou plusieurs des composés mineurs suivants : acétone, méthane, monoxyde de carbone (CO), argon, hélium...
Autrement dit, l'invention vise à proposer des moyens particuliers permettant de déterminer efficacement, aisément et avec la précision suffisante la teneur en xénon dans un flux de gaz anesthésique, lesdits moyens pouvant être embarqués sur un nouvel appareil ou dans un appareil existant, c'est-à-dire constituer un système de monitorage intégré, ou pouvant être associés à des appareils existants, c'est-à-dire former un système de monitorage externe et autonome.
A cet effet, l'invention propose un appareil d'anesthésie ventilatoire d'un patient par administration d'un gaz contenant du xénon gazeux comprenant :
- un circuit principal de gaz en circuit ouvert ou fermé comportant une branche inspiratoire pour acheminer un mélange gazeux contenant du xénon vers le patient et une branche expiratoire pour véhiculer le mélange gazeux contenant du xénon expiré par le patient, - des moyens d'alimentation en xénon gazeux reliés au circuit principal pour alimenter la branche inspiratoire du circuit principal avec un gaz contenant du xénon,
- des moyens de détermination de concentration de xénon pour déterminer la teneur en xénon gazeux dans au moins une partie du circuit principal.
L'appareil selon l'invention est caractérisé en ce que lesdits moyens de détermination de concentration de xénon comprennent :
- au moins un capteur à fil(s) chaud(s) comportant au moins un fil en matériau conducteur de l'électricité de préférence en métal, en contact direct avec au moins une partie du flux gazeux contenant le xénon, et
- des moyens de calcul coopérant avec le capteur à fil(s) chaud(s) de manière à déterminer la concentration de xénon (Xe%) dans ledit flux gazeux,
- des moyens de génération de courant électrique, de préférence réglables, aptes à et conçus pour générer un courant électrique, continu ou non, dans le ou les fils chauds dudit au moins un capteur à fil(s) chaud (s) réglables, et
- des moyens de mesure de tension aptes à mesurer au moins une valeur de tension aux bornes d'au moins un fil chaud ou d'une résistance placée en série avec au moins un fil chaud, lorsque ledit au moins un fil chaud est en contact avec ledit flux gazeux et est parcouru par un courant électrique d'intensité (I),
- et en ce que les moyens de calcul coopèrent avec les moyens de mesure de tension de manière à déterminer, à partir de la mesure de tension effectuée par lesdits moyens de mesure de tension, la concentration de xénon (Xe%) dans ledit flux.
Avantageusement, l'appareil de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- il comporte des moyens de génération de courant réglable aptes à et conçus pour générer un courant électrique dans le ou dans chacun des fils chauds dudit au moins un capteur à fils chauds, lesdits moyens de génération de courant étant conçus pour et aptes à contrôler l'intensité du courant électrique parcourant le ou les fils chauds dudit au moins un capteur à fil chaud de telle manière que, quelle que soit la composition du gaz traversant ledit au moins un capteur à fil(s) chaud(s), l'intensité du courant traversant le ou les fils chauds soit maintenue sensiblement constante et/ou la température du ou des fils chauds desdits au moins un capteur(s) à fil(s) chaud(s) soit maintenue sensiblement constante. En d'autres termes, les moyens de génération de courant permettent de contrôler l'intensité du courant parcourant le fil, quelle que soit la composition du gaz, de telle manière que
- soit, l'intensité I est maintenue constante. Dans ce cas, les variations de concentration de xénon autour du fil provoquent une variation de température qui conduit à une variation de la résistance R du fil. Le courant I étant maintenu constant ou approximativement constant dans le fil chaud du capteur à fil(s) chaud(s), on mesurera la tension V (égal à R. I) aux bornes du fil chaud du capteur à fil(s) chaud(s) pour en déduire la concentration Xe% par la courbe linéaire correspondant au débit D mesuré ou connu, comme détaillé ci-après dans la description.
- soit, la température du fil est maintenue constante. Dans ce cas, les variations du courant I sont ajustées pour maintenir constante ou approximativement constante, la température du fil chaud et ainsi compenser l'effet des variations de concentration de xénon autour du fil. Si la concentration Xe augmente, cette augmentation aura tendance à provoquer une augmentation de la température du fil, et les moyens de génération de courant réagiront alors pour provoquer une diminution du courant I traversant le fil puisque une telle diminution aura tendance à faire baisser la température du fil selon loi de Joule et ainsi faire converger vers un équilibre permettant de rester à température constante. A l'inverse, si la concentration Xe diminue, cette diminution aura tendance à provoquer une diminution de la température du fil, et les moyens de génération de courant réagiront alors pour provoquer une augmentation du courant I traversant le fil puisque cette augmentation aura tendance à faire augmenter la température du fil et ainsi faire converger vers un équilibre permettant de rester à température constante. On choisira alors de mesurer la tension V aux bornes d'une résistance Rs mise en place en série avec le fil chaud du capteur à fil(s) chaud(s), V étant égal à Rs. I, pour en déduire la concentration Xe% par la courbe linéaire correspondant au débit D mesuré ou connu, comme expliqué en détail ci-après dans la description.
- les moyens de calcul utilisent au moins une valeur de tension (V) transmise par les moyens de mesure de tension et au moins une valeur de débit du gaz anesthésique contenant du xénon pour déterminer la concentration en xénon (Xe%) dans ledit flux de gaz.
- le capteur à fil(s) chaud(s) est agencé sur une ligne de dérivation communiquant fluidiquement avec le circuit principal. Le raccordement de la ligne de dérivation au circuit principal se fait sur la branche inspiratoire et/ou sur la branche expiratoire et/ou en un site localisé à proximité immédiatement de la bouche du patient, de préférence au niveau d'un site de raccordement entre la branche inspiratoire et la branche expiratoire dudit circuit principal par exemple au niveau d'une pièce de raccordement en Y ou d'un filtre bactériologique agencé sur le circuit principal, c'est-à-dire à la jonction des branches inspiratoire et expiratoire du circuit principal. Ce type d'architecture utilisant une ligne de dérivation est connue sous le nom de "Type side-stream" .
- des moyens de contrôle de débit de gaz, en particulier une pompe d'aspiration, sont agencés sur la ligne de dérivation de manière à obtenir un débit de gaz anesthésique connu, de préférence un débit de gaz constant et/ou stable. Par débit constant et/ou stable, on entend que le débit varie au maximum de quelques % par rapport à sa valeur moyenne, par exemple d'environ 3 % maximum, c'est-à-dire que l'amplitude de variation du débit, en plus ou en moins, par rapport à ladite valeur moyenne de débit a un impact négligeable sur les différents capteurs et moyens de mesures utilisés.
- les moyens de contrôle de débit de gaz permettent de contrôler le débit du gaz contenant le xénon de manière à assurer un débit souhaité, de préférence constant et/ou stable, dudit gaz véhiculé par la ligne de dérivation et mis au contact d'au moins un fil chaud.
- les moyens de contrôle de débit de gaz comprennent une pompe d'aspiration de gaz, de préférence la pompe d'aspiration est associée à une électronique de commande de ladite pompe, c'est-à-dire une électronique qui gère la pompe d'aspiration pour prélever dans le circuit principal un débit souhaité, précis et stable dans le temps de gaz contenant du xénon à analyser. On retrouve dans l'analyseur de gaz ANDROS BGA4800 un exemple de tels moyens associant une pompe d'aspiration et une électronique de commande de la pompe.
- les moyens de calcul sont incorporés dans un module analyseur de gaz venant se raccorder au circuit principal.
- un ou plusieurs capteur(s) à fil(s) chaud(s) est ou sont agencé(s) directement sur le circuit principal, par exemple, sur la branche inspiratoire et/ou expiratoire et/ou à la jonction entre les branches inspiratoire et/ou expiratoire, l'appareil comportant des moyens de mesure du débit inspiratoire et/ou du débit expiratoire et/ou du débit principal à la jonction entre les branches inspiratoire et expiratoire du flux gazeux circulant dans le circuit principal, de préférence ces moyens de mesure de débit comprenant un capteur de débit inspiratoire et un capteur de débit expiratoire, agencés respectivement sur les branches inspiratoire et expiratoire du circuit principal (encore appelé "circuit patient"), pour mesurer les débits inspiratoires et respiratoires dans lesdites branches et transmettre les signaux de mesure ainsi obtenus à des moyens de pilotage pour déterminer, en combinaison avec les mesures de tension transmises par les moyens de mesures de tension associés auxdits un ou plusieurs capteur(s) à fil(s) chaud(s) agencé(s) directement sur le circuit principal, la concentration en xénon dans la branche inspiratoire et/ou dans la branche expiratoire et/ou à la jonction entre les branches inspiratoire et expiratoire. Ce type d'architecture n'utilisant pas de ligne de dérivation est connue sous le nom de "Type main-stream".
- les moyens de calcul sont incorporés dans le module de pilotage du ventilateur.
- le ou les capteur(s) à fil(s) chaud(s) comprend ou comprennent un ou plusieurs fils de platine,
- le ou les capteur(s) à fil(s) chaud(s) comprend ou comprennent plusieurs fils ayant des orientations différentes relativement au flux gazeux, de préférence deux fils chauds,
- les moyens de calcul sont incorporés ou forment des moyens de pilotage de l'appareil, - les moyens de calcul sont incorporés ou forment des moyens de commande du module analyseur de gaz,
- les moyens de calcul comprennent au moins une carte électronique et/ou un programme d'ordinateur pour réaliser tout ou partie des calculs permettant de déterminer la teneur en xénon dans le gaz anesthésique,
- l'appareil comprend des moyens de mesure d'une concentration d'au moins un gaz supplémentaire distinct du Xénon tel que de I1O2, du CO2, du N2O, de gaz halogènes et d'éthanol, les moyens de calcul coopérant avec les moyens de mesure d'une concentration d'au moins un gaz supplémentaire pour déterminer au moins l'une des concentrations suivantes en Xénon : instantanées, moyenne, inspirée, expirée,
- les moyens de mesure d'une concentration d'au moins un gaz supplémentaire comportent des moyens du type infra-rouge (pour des gaz supplémentaires tels que CO2, N2O, halogène ou éthanol) et/ou du type paramagnétique ou chimique (pour des gaz supplémentaires tels que I1O2).
- l'appareil comprend des moyens de mesure de l'humidité relative du flux gazeux analysé, les moyens de calcul coopérant avec ces moyens de mesure de l'humidité relative pour améliorer la précision de calcul d'au moins l'une des concentrations suivantes de Xénon : instantanées, moyenne, inspirée, expirée,
- l'appareil comprend des moyens de mesure de la température du gaz analysé, les moyens de calcul coopérant avec ces moyens de mesure de la température pour améliorer la précision de calcul d'au moins l'une des concentrations suivantes de Xénon: instantanées, moyenne, inspirée et/ou expirée.
- l'appareil comporte, en outre, un circuit auxiliaire de gaz comportant une branche inspiratoire auxiliaire permettant d'acheminer un gaz respiratoire contenant du xénon vers le patient au moyen d'un insufflateur manuel, les moyens de détermination de la concentration en xénon étant conçus et adaptés pour pouvoir se raccorder audit circuit auxiliaire de gaz pour y déterminer la teneur en xénon, lorsque du gaz contenant du xénon est administré au patient via ledit circuit auxiliaire de gaz, notamment en cas d'arrêt ou de dysfonctionnement du circuit principal. - les moyens de calcul utilisent les valeurs de tension (V) et de débit (D) pour déterminer une concentration en xénon (Xe %) dans le flux gazeux à partir d'une ou plusieurs courbes linéaires mémorisées dans des moyens de mémorisation de l'appareil, de préférence une ou des droites de type : a. [Xe] + b = V où : V est la tension, [Xe] est la teneur en xénon et a et b sont des coefficients positifs ou négatifs correspondant à un débit de gaz D donné.
- la ou les courbes, pour autant de valeur(s) de débit (Dn) que souhaitées ou nécessaires, sont étalonnées (avec un débit établi à la valeur (Dn) de gaz dont la teneur en xénon est connue, à savoir Xénon pur et/ou 02 pur et/ou AIR pur) avant mémorisation et/ou réactualisées périodiquement et automatiquement au cours de l'utilisation de l'appareil.
- le raccordement de la ligne de dérivation au circuit principal se fait en un site localisé à proximité immédiatement de la bouche du patient, de préférence encore au niveau d'un site de raccordement entre la branche inspiratoire et la branche expiratoire dudit circuit principal, par exemple au niveau d'une pièce à de raccordement en Y ou d'un filtre bactériologique agencé sur le circuit principal.
L'invention concerne également une méthode d'anesthésie d'un patient dans laquelle on administre un gaz inhalatoire contenant du xénon dans les voies aériennes supérieures du patient de manière à réaliser une anesthésie gazeuse dudit patient, et on détermine la teneur en xénon du gaz administré au patient au moyen d'un appareil d'anesthésie selon l'invention.
La présente invention est donc basée sur une utilisation d'un ou plusieurs capteur(s) à fil(s) chaud(s) pour déterminer en temps réel, la concentration instantanée et/ou moyenne de xénon présente dans le gaz d'anesthésie.
Le principe de mesure du débit d'un gaz anesthésique au moyen d'un capteur à fil(s) chaud(s) est le suivant.
D'une manière générale, lorsque l'on fait passer un courant électrique donné (I) dans un fil (F) de métal (on utilise classiquement un fil de platine) de section donnée (S), placé dans un flux de gaz d'anesthésie, au repos ou non, c'est à dire à débit nul ou non, sa température se stabilise à une température donnée (T) et la tension aux bornes du fil de métal ou d'une résistance placée en série avec ledit fil s'établit alors à une valeur donnée (V). De manière classique, mais pas obligatoire, si on souhaite travailler avec un fil chaud maintenu à température constante, le courant étant asservi de manière à obtenir cette caractéristique, on choisit de réaliser la mesure de tension (V) aux bornes d'une résistance placée en série avec ledit fil chaud._Dans le cas où l'on souhaite travailler à courant constant, on fait le choix de réaliser la mesure de tension (V) aux bornes du fil chaud.
Donc, lorsque ce fil de métal, toujours parcouru par le courant (I), est placé dans un débit (D) de gaz d'anesthésie, dépourvu de xénon, la tension aux bornes du fil de métal ou de la résistance placée en série avec ledit fil varie comme une fonction f0 du débit D selon la formule suivante :
V = f002%,N20%,AA%,C02%,HR,Tg° ( D )
La fonction fo est également dépendante de la teneur 02% volumique en O2 dans le gaz, de la teneur volumique N2O% en protoxyde d'azote, de la teneur AA% de l'agent anesthésiant (halogène par exemple), de la teneur CO2% de dioxyde de carbone et de l'humidité relative HR du gaz, le gaz mesuré étant à une température Tg0.
La fonction f0 02%,N20%,HR,τg° peut être obtenue classiquement par une linéarisation par morceaux ou par une approximation par la méthode des moindre carrés à partir de points d'étalonnage (sur banc d'essai) aussi nombreux que nécessaires pour obtenir la précision souhaitée.
Cette fonction f0 est cependant peu dépendante des teneurs 02%, AA%,C02% et N20%, et de l'humidité relative HR et de la température Tg0 du gaz.
Ainsi, en mesurant la tension V aux bornes du fil de métal ou de la résistance placée en série avec ledit fil parcouru par le courant électrique donné (I), on peut en déduire le débit (D) de gaz d'anesthésie sans xénon balayant le fil de métal par la formule :
D = f o 02%,N20%,AA%,C02%,HR,Tg° " ( V)
Par ailleurs, lorsque ce fil de métal, toujours parcouru par le courant (I), est placé dans un débit de gaz d'anesthésie contenant une proportion non nulle de xénon Xe%, la tension V aux bornes du fil de métal varie selon la formule suivante : V = f χe%,θ2%,N2θ%,AA%,co2%,HR,τG° ( D )
Le courant (I) peut être pré-réglé en usine voire réglé par étalonnage périodique déclenché par l'utilisateur ou la machine pour centrer la mesure de tension (V) dans une plage de tension utile donnée, l'étalonnage pouvant être réalisé sur un premier gaz de référence (AIR ou 02 pur) ne comportant aucun Xénon (0%) voire éventuellement sur un deuxième gaz de référence comportant du Xénon en quantité significative (de 50 à 100% par exemple).
Ainsi, comme précédemment, en mesurant la tension (V) aux bornes du fil de métal parcouru par le courant donné (I) ou aux bornes de la résistance en série avec le fil on peut en déduire le débit (D) de gaz d'anesthésie avec une teneur en xénon Xe% dans lequel se trouve le fil de métal en utilisant la formule :
D = f Xe%,O2%,N2θ%,AA%,CO2%,HR,Tg° " ( V)
De manière classique et simple, le capteur à fil(s) chaud(s) peut être réalisé en utilisant un seul fil de métal placé par exemple perpendiculairement à la direction du flux de gaz dont on souhaite mesurer la concentration en Xénon.
De manière non obligatoire, plus sophistiquée mais plus précise, le capteur à fil(s) chaud(s) peut être réalisé en utilisant deux fils de métal, l'un placé perpendiculairement à la direction du flux de gaz (fil 1 parcouru par un courant 11 ) et le second plus ou moins dans l'axe du même flux de gaz (fil 2 parcouru par un courant 12), les formules permettant de relier la tension au débit et aux différentes concentrations de Xénon, CO2, 02, AA, N2O et HR s'établissent comme suit:
V = f Xe%,O2%,N2θ%,AA%,CO2%,HR,Tg(b ( D ) = f1 Xθ%,O2%,N2O%,AA%,CO2%,HR,Tg° ( D ) - f 2 Xθ%,O2%,N2O%,AA%,CO2%,HR,Tg° ( D ) et
D = f Xe%,O2%,N2O%,AA%,CO2%,HR,Tg° " ( V)
Le principe de mesure du débit d'un gaz anesthésique dont on connait la composition (et notamment la concentration de Xénon) au moyen d'un capteur à fil(s) chaud(s) ayant été décrit, on inverse le raisonnement menant à la réalisation du système de mesure de la concentration de Xénon... Connaissant le débit ou la mesure de débit, on en déduit la concentration en Xénon dans le gaz analysé. Ainsi, dans un appareil d'anesthésie respiratoire, la mesure du débit de xénon peut être réalisée dans le flux principal ou dans un flux dérivé dudit flux principal de gaz.
Lorsque le capteur à fil(s) chaud(s) (à un seul fil de métal ou à deux fils de métal) est placé dans un flux dérivé de gaz prélevé dans le flux principal de gaz (cf. figures 1 à 4 ci-après), tel qu'un débit d'aspiration de gaz anesthésique connu (Dc), obtenu par exemple au moyen d'une pompe d'aspiration, on peut en déduire la concentration Xe% de xénon inspirées et/ou expirées et/ou moyenne et/ou instantanée à partir de la mesure de tension V selon la formule suivante :
Xe% = h Dc,02%,N20%,AA%,C02%,HR ( V ) βVβC
V = f Xe%,O2%,N2θ%,AA%,CO2%,HR ( Dc) (1 ) formule dans laquelle la fonction h DC,O2%,N2O%,AA%,CO2%,HR se trouve être linéaire et peut être obtenue par étalonnage avec un débit Dc de gaz à concentration connu (Xénon pur et/ou 02 pur et/ou AIR pur)
Ainsi, pour autant de valeurs de débit d'aspiration Dc que souhaitées ou que nécessaires, on mémorise une courbe linéaire dans des moyens de mémorisation de l'appareil, soit une droite de type b + a. [Xe] = V où V est la tension, [Xe] la teneur en xénon et a et b sont des coefficients positifs ou négatifs correspondant à chaque valeur de débit Dc donnée, a et b étant obtenus par étalonnage avec un débit Dc de gaz à concentration connu (Xénon pur et/ou 02 pur et/ou AIR pur^
Lors de l'utilisation en fonctionnement, les moyens de calcul utilisent alors les valeurs de tension (V) et la valeur de débit (Dc) pour déterminer une concentration en xénon (Xe %) dans le flux gazeux à partir de la courbe linéaire mémorisée dans des moyens de mémorisation de l'appareil correspondante à la valeur de débit Dc sélectionné.
Avantageusement, les courbes sont, pour autant de valeur(s) de débit (Dc) que souhaitées ou que nécessaires, sont étalonnées (avec un débit établi à la valeur (Dc) de gaz dont la teneur en xénon est connue, à savoir Xénon pur et/ou 02 pur et/ou AIR pur) avant mémorisation et/ou réactualisées périodiquement et automatiquement au cours de l'utilisation de l'appareil. Les figures 9a et 9b annexées représentent un exemple de telles réseaux de courbes (pour 3 valeurs de débit Dc) montrant la linéarité existant entre la teneur en xénon (Xe%) et la tension (V).
De manière alternative, lorsque le capteur à un seul fil chaud ou à deux fils est placé directement dans le débit de gaz d'anesthésie insufflé au patient et/ou expiré par celui-ci, c'est-à-dire le flux principal de gaz (cf. Fig. 5 à 8), sous réserve que l'on dispose de la mesure dudit débit principal (Dp) de gaz insufflé et/ou expiré, par exemple obtenu de manière réglementaire par le système de monitorage des débits inspirés et expirés de gaz patient, on peut en déduire la concentration Xe% de xénon inspirées et/ou expirées et/ou moyenne et/ou instantanée à partir de la mesure de tension V selon la formule suivante:
Xβ% = h Dp,O2%,N2O%,AA%,CO2%,HR,Tg° ( V ) avec V = f Xe%,O2%,N2θ%,AA%,CO2%,HR,Tg° ( Dp) (2) formule dans laquelle la fonction h DP,O2%,N2O%,AA%,CO2%,HR se trouve être linéaire et peut être obtenue par étalonnage avec un débit Dp de gaz à concentration connu (xénon pur et/ou O2 pur et/ou air pur)
Ainsi, pour autant de valeurs de débit d'aspiration Dp que souhaitées ou que nécessaires, on mémorise une courbe linéaire dans des moyens de mémorisation de l'appareil, soit une droite de type b + a. [Xe] = V où V est la tension, [Xe] la teneur en xénon et a et b sont des coefficients positifs ou négatifs correspondant à chaque valeur de débit Dp donnée, a et b_étant obtenus par étalonnage avec un débit Dp de gaz à concentration connu (Xénon pur et/ou 02 pur et/ou AIR pUr)1
Lors de l'utilisation en fonctionnement, les moyens de calcul utilisent alors les valeurs de tension (V) et la valeur de débit (Dp) pour déterminer une concentration en xénon (Xe %) dans le flux gazeux à partir de la courbe linéaire mémorisée dans des moyens de mémorisation de l'appareil correspondante à la valeur de débit Dp sélectionné.
Avantageusement, les courbes sont, pour autant de valeur(s) de débit (Dp) que souhaitées ou que nécessaires, sont étalonnées (avec un débit établi à la valeur (Dp) de gaz dont la teneur en xénon est connue, à savoir Xénon pur et/ou 02 pur et/ou AIR pur) avant mémorisation et/ou réactualisées périodiquement et automatiquement au cours de l'utilisation de l'appareil.
Les Figures 9c et 9d annexées représentent un exemple de tels réseaux de courbes (pour autant de valeurs de débit Dp que souhaitées ou que nécessaires) montrant la linéarité existant entre la teneur en xénon (Xe%) et la tension (V).
Dans tous les cas, si l'on souhaite obtenir la teneur en xénon (Xe%) avec une précision peu importante, on négligera les dépendances aux concentrations 02% et/ou AA% et/ou CO2% et/ou N2O% et/ou à l'humidité relative du gaz HR. Si au contraire l'on souhaite obtenir la teneur en xénon (Xe%) avec une précision plus importante, on tiendra compte de ces paramètres. Néanmoins, il est à noter que ces formules (1 ) et (2) sont peu dépendantes des teneurs en 02 et N20 et de l'humidité relative HR du gaz, l'étant encore moins des teneurs en C02 et AA.
L'invention va être mieux comprise grâce à la description suivante faite en références aux figures annexées, parmi lesquelles :
- la figure 1 représente un premier mode de réalisation d'un appareil selon l'invention utilisable pour une anesthésie sous xénon avec utilisation éventuelle d'halogénés et avec fil(s) chaud(s) placé dans un flux dérivé de gaz,
- la figure 2 représente une première variante du mode de réalisation de l'appareil de la figure 1 ,
- les figures 3 et 4 représentent respectivement une deuxième et troisième variante du mode de réalisation de l'appareil de la figure 1 , utilisables pour une anesthésie sous xénon uniquement, sans utilisation d'halogénés,
- la figure 5 représente un second mode de réalisation d'un appareil selon l'invention utilisable pour une anesthésie sous xénon avec utilisation éventuelle d'halogénés et avec fil(s) chaud(s) placé dans le flux principal de gaz,
- la figure 6 représente une première variante du mode de réalisation de l'appareil de la figure 5, et
- les figures 7 et 8 représentent respectivement une deuxième et troisième variante du mode de réalisation de l'appareil de la figure 5, utilisables pour une anesthésie sous xénon uniquement, sans utilisation d'halogénés. La figure 1 illustre un premier mode de réalisation d'un appareil d'anesthésle selon l'invention incluant des moyens de mesure en temps réel du débit de xénon dans un flux dérivé de gaz par l'intermédiaire de l'utilisation d'un capteur à fil(s) chaud(s) de manière à en déduire les concentrations instantanées et/ou moyenne de xénon dans le circuit principal, ainsi que des moyens de mesure en temps réel du débit de gaz insufflé au patient et expiré par celui-ci dans le circuit principal, encore appelé "circuit patient".
L'appareil ou ventilateur de la figure 1 comprend un bloc d'entrée 1 comprenant des moyens de raccordement auxquelles viennent se raccorder la source de xénon et les autres sources de gaz alimentant l'appareil d'anesthésie, telles des bouteilles de gaz ou un réseau mural, en particulier pour les sources d'air (AIR), d'oxygène (O2) et/ou de protoxyde d'azote (N2O).
Ce bloc 1 est en communication fluidique avec l'entrée d'un mélangeur 2 où se fait le mélange du xénon avec le ou les autres gaz qui sont destinés à former le mélange gazeux anesthésique, en particulier de l'oxygène en une quantité suffisante pour le patient (non hypoxique).
La sortie du mélangeur 2 alimente en mélange gazeux, une cuve à halogénées 14, montée sur un support 13 de cuve, contenant un composé halogène, tel que le SEVOFLURANE, l'ISOFLURANE ou le DESFLURANE (les plus couramment employés), l'HALOTHANE ou l'ENFLURANE (moins utilisés), destinés à être entraînés par le flux de gaz anesthésique jusqu'au patient 15.
Le mélange gazeux halogène sortant de la cuve 14 est introduit dans un circuit principal ou circuit patient comportant une branche inspiratoire 16 pour acheminer ledit mélange gazeux vers le patient 15 et une branche expiratoire 18 pour récupérer tout ou partie du gaz expiré (chargé en CO2) par le patient 15. Les branches inspiratoire 16 et expiratoire 18 forment un circuit en boucle ou circuit fermé.
La liaison entre les branches inspiratoire 16 et expiratoire 18 avec le patient 15 se fait via, par exemple, une pièce 17 en Y et un masque respiratoire, une sonde trachéale ou analogue.
Des clapets anti-retour inspiratoire 7 et expiratoire 8 sont de préférence aménagés respectivement sur lesdites branches inspiratoire 16 et expiratoire 18. La branche expiratoire 18 comporte un dispositif 9 absorbeur de CO2 comprenant une cuve remplie d'un matériau absorbant, telle de la chaux, permettant d'éliminer le CO2 expiré par le patient 15 et véhiculé par le gaz expiré dans la branche expiratoire 18 du circuit principal, ainsi qu'une valve d'échappement 10 permettant d'évacuer tout surplus gazeux éventuel et/ou toute surpression gazeuse éventuelle dans la branche expiratoire 18.
Par ailleurs, le ventilateur de l'invention comporte, de façon connue en soi, un soufflet 4a de ventilation mécanique incorporé dans une enceinte 4b, ainsi qu'un ballon de ventilation manuelle 5, lesquels peuvent être sélectivement reliés fluidiquement au circuit principal CP pour l'alimenter en gaz sous pression, via un sélecteur 6 soufflet/ballon.
Dans l'exemple, le circuit principal CP, indifféremment appelé "circuit patient", est constitué par l'ensemble des éléments qui viennent d'être cités, à savoir : les éléments 4a, 4b, 5 à 12 et 16 à 18.
Des moyens de pilotage 3 comprenant, par exemple, au moins une carte électronique de contrôle et un ou plusieurs logiciel ou programmes informatiques embarqués permettent de recueillir au moins une partie des informations ou signaux issus de tout ou partie des capteurs de l'appareil et de les traiter et/ou de réaliser tous les calculs nécessaires au suivi des concentrations en gaz et/ou à la commande des différents éléments de l'appareil.
En particulier, un capteur 11 de débit inspiratoire et un capteur 12 de débit expiratoire, agencés respectivement sur les branches inspiratoire 16 et expiratoire 18 du circuit principal (CP), mesurent les débits inspiratoires et respiratoires dans lesdites branches et transmettent les signaux de mesure ainsi obtenus aux moyens de pilotage 3 via des liaisons électriques adaptées. De cette manière les moyens de pilotage 3 sont aptes à commander le soufflet 4 et/ou l'ouverture de la valve d'échappement 10 et/ou l'entrée des gaz appropriés dans le bloc d'entrée 1 auxquels sont reliés lesdits moyens de pilotage 3, via des liaisons électriques dédiées, comme visible sur la figure 1.
Afin de pouvoir réaliser une mesure et un suivi efficace de la teneur en xénon du mélange gazeux, l'appareil de l'invention incorpore un module S6 d'analyse de gaz appelé "banc gaz" incluant un capteur à fil(s) chaud(s) balayé par un flux dérivé de gaz anesthésique.
Le module S6 d'analyse de gaz est représenté une seconde fois de façon agrandie et détaillée à la figure 1 (cf. à l'extrémité de la flèche courbe)
Plus précisément, comme visible sur la figure 1 , une partie du flux de gaz à base de xénon véhiculé par le circuit principal CP de gaz est prélevé, au niveau de la pièce 17 en Y, via une ligne de prélèvement S1 qui communique fluidiquement avec ledit le circuit principal CP.
La ligne S1 véhicule le gaz anesthésique jusqu'au module S6 en le faisant préalablement transiter par un piège S2 à eau, où la vapeur d'eau qu'il contient est éliminée avant d'être convoyé, via une ligne de transfert S3, jusqu'au module S6.
Le module S6 d'analyse de gaz comprend, quant à lui, agencé sur le passage du flux de gaz :
- une pompe d'aspiration S6-A (par exemple du type de celle équipant les bancs gaz BGA4800 ou BGA4700 de la société ANDROS ou AION de la société ARTEMA) pour créer un débit d'aspiration de gaz anesthésique connu (Dc),
- un capteur à fil(s) chaud(s) S6-E, constitué dans l'exemple d'un fil de platine unique, parcouru par un courant électrique d'intensité (I) donnée, par exemple une intensité de 100 mA environ, avec mesure de la tension (V) aux bornes dudit fil lorsque celui-ci est en contact avec le flux contenant le xénon,
- une cellule infra-rouge S6-B (du type par exemple de celle équipant les bancs gaz BGA4800 ou BGA4700 de la société ANDROS ou de celle équipant le banc gaz AION de la société ARTEMA) permettant de mesurer les concentrations instantanée et/ou moyenne et/ou inspirée et/ou expirée de dioxyde de CO2, de N2O, d'halogénés, d'éthanol ou de tout autre gaz mesurable par cette technologie infra-rouge,
- une cellule paramagnétique à O2 ou une pile chimique S6-C (du type par exemple de celles équipant les bancs gaz BGA4800 ou BGA4700 de la société ANDROS ou AION de la société ARTEMA selon les options) pour mesurer les concentrations instantanées et/ou moyenne et/ou inspirée et/ou expirée de O2, - des moyens de commande S6-D à logiciel intégré sur une carte électronique de contrôle (du type par exemple de celle équipant les bancs gaz BGA4800 ou BGA4700 de la société ANDROS ou AION de la société ARTEMA),
- des liaisons appropriées reliant la cellule infra-rouge S6-B et la cellule à oxygène S6-C aux moyens de commande S6-D.
La sortie de la pompe d'aspiration S6-A du module S6 est reliée à la branche expiratoire du circuit principal, via une ligne de ré-injection S4, de manière à y renvoyer le gaz qui y a été prélevé par la ligne de prélèvement S1.
Par ailleurs, comme représenté, les signaux de mesure obtenus avec le capteur à fil(s) chaud(s) S6-E sont transmis aux moyens de commandes S6-D, via une liaison adaptée S6-F, lesdits moyens de commande S6-D étant eux-mêmes reliés, via une liaison S5 électrique adaptée, aux moyens de pilotage 3.
Les calculs notamment de concentrations en xénon du gaz anesthésique sont effectués par les moyens de commandes S6-D du module S6.
Le module S6 d'analyse de gaz est par exemple un module du type BGA4800, BGA4700 ou BGA4900 de la société ANDROS ou AION de la société ARTEMA auquel on a ajouté notamment des moyens capteur à fil(s) chaud(s) tel que, par exemple, un capteur FIL CHAUD de la société TAEMA.
Ce module S6 d'analyse de gaz permet donc de réaliser sur le gaz aspiré par la ligne de prélèvement S1 à un débit continu, de préférence réglable à quelques dizaine ou centaines de mL/min, au moins:
- une mesure en temps réel de O2, AA (halogène présent, dont la nature aura été automatiquement détecté ou sélectionné par l'utilisateur selon le type de banc gaz utilisé), N2O, CO2 de manière à obtenir les teneurs ou concentrations correspondantes : 02%, C02%, AA% et N20%,
- une mesure des fractions inspirées par le patient pour ces mêmes gaz de manière à obtenir les valeurs de fractions inspirées correspondantes : FiO2, inCO2, FiAA et FiN2O, et
- une mesure des fractions expirées par le patient pour ces gaz de manière à obtenir les valeurs de fractions expirées correspondantes : FeO2, etCO2, FeAA et FeN2O. II est à noter que le capteur à fil(s) chaud(s) S6-E, bien que représenté en entrée du module S6 et en amont de la cellule S6-C, peut être aussi inséré ailleurs, en particulier en aval de la pompe d'aspiration S6-A et/ou en amont de ou sur la ligne de ré-injection S4, cette dernière étant connectée ou non au circuit principal.
Le capteur à fil(s) chaud(s) S6-E réalise, en temps réel, la mesure de la tension (V) aux bornes du fil chaud générée par le gaz aspiré et la transmet par la liaison S6-F, avec un retard connu, plus ou moins court, de quelques dizaines voire quelques centaines de ms en fonction du débit d'aspiration réglé, au logiciel de contrôle S6-D de l'analyseur de gaz d'anesthésie pour que celui-ci en déduise, via la formule (1 ) ci-avant, notamment :
- une mesure en temps réel de la teneur en xénon (Xe%) en utilisant la valeur de réglage du débit d'aspiration de l'analyseur de gaz S6 d'anesthésie et la mesure temps réel de la tension du fil chaud, éventuellement compensée par les mesures de concentration temps réel 02%, CO2%, AA%, N2O% et/ou
- une mesure de la fraction inspirée en xénon (FiXe) en utilisant la mesure temps réel de la teneur en xénon (Xe%) au moment de l'insufflation, la fenêtre de calcul et détermination de FiXe étant phasée sur celle de calcul et détermination de la mesure inCO2, et accessoirement FiO2, FiAA et FiN2O et/ou
- une mesure de la fraction expirée en xénon (FeXe) en utilisant la mesure temps réel de la teneur en xénon (Xe%) au moment de l'expiration, la fenêtre de calcul et détermination de FeXe étant phasée sur celle de calcul et détermination de la mesure etC02, et accessoirement FeO2, FeAA et FeN2O.
De manière alternative, le module S6 d'analyse de gaz peut être utilisé pour réaliser une mesure de concentration moyenne en xénon en utilisant la mesure temps réel (Xe%) obtenue en utilisant la valeur de réglage du débit d'aspiration de l'analyseur de gaz d'anesthésie S6 et la valeur moyenne de la mesure de tension (V) du fil chaud calculée à partir de la mesure temps réel de la tension du fil chaud, éventuellement compensée par les mesures de concentration moyennes 02%, C02%, AA%, N20% elle-même calculées à partir des mesures temps réel 02%, C02%, AA%, N20%, et ce, à l'aide de la formule (1). Afin de garantir une sécurité d'utilisation accrue, le circuit principal est doublé d'un circuit auxiliaire 26 venant se raccorder sur la ligne 27 d'amenée du gaz contenant le xénon qui alimente elle-même le circuit principal.
Ce circuit auxiliaire 26 est utilisé en cas d'arrêt ou de dysfonctionnement du circuit principal.
Le circuit auxiliaire 26 comprend un insufflateur manuel 28 relié fluidiquement audit circuit auxiliaire 26 lequel est actionnable manuellement par l'utilisateur, c'est-à-dire le personnel soignant de manière à envoyer du gaz anesthésique au patient 15. En aval du circuit auxiliaire 26 est agencée une interface patient, telle qu'un masque respiratoire ou une sonde trachéale, alimentant les voies aériennes supérieures dudit patient 15 en gaz anesthésique, lorsque le médecin ou analogue actionne l'insufflateur 28, qui comprend classiquement un ballon et une valve inspiratoire et expiratoire.
Selon l'invention, la ligne de dérivation S1 peut être raccordée fluidiquement au circuit auxiliaire 26 en un site 30 situé entre l'insufflateur 28 et le patient 15, comme représenté par la ligne 29, par l'intermédiaire de moyens de raccordement adaptés, par exemple un raccord ou un filtre ou un masque équipé d'un port de connexion de la ligne de prélèvement, par exemple, un connecteur de type LUER.
Dans ce cas, le suivi de la concentration en xénon se fait dans le circuit auxiliaire 26 et non plus dans le circuit principal CP.
Le circuit auxiliaire 26 est avantageusement aménagé dans les différents modes de réalisation de l'invention montrés sur les figures 1 à 8.
Dans les réalisations des figures 2 à 4, les éléments identiques à ceux décrits ci-dessus pour la figure 1 sont désignés par les mêmes références et ne sont pas décrits en détail une seconde fois.
La figure 2 représente une première variante du mode de réalisation de l'appareil de la figurel , selon laquelle les signaux de mesure issus du capteur à fil(s) chaud(s) S6-E sont transmis, dans ce cas, aux moyens de pilotage 3 via une liaison directe spécifique S5-A. Les calculs notamment de concentrations en xénon du gaz anesthésique sont effectués dans les moyens de pilotage, comme détaillé précédemment. En outre, dans ce cas, les moyens de commande S6-D sont également reliés, via une liaison S5-B électrique adaptée, aux moyens de pilotage 3. Le suivi de la concentration en xénon est donc réalisé par les moyens de pilotage 3 du ventilateur et non par le module S6.
La figure 3 représente une deuxième variante du mode de réalisation de l'appareil de la figurai utilisable pour réaliser une anesthésie sous xénon uniquement, sans utilisation d'halogénés.
Dans ce cas, les mesures réalisées par le module S6 sont identiques aux mesures réalisées dans le cas de la figure 1 , à l'exception de celles concernant les halogénées, lesquelles ne sont plus réalisées du fait de la suppression de la cuve d'halogénés 14 et du support de cuve 13. En effet, comme on le voit sur la figure 3, le flux de gaz issu du mélangeur 2 est envoyé directement (sans se charger en composés halogènes, faute de cuve) vers le circuit principal.
Un tel appareil peut être utile lorsqu'il faudra par exemple coupler une anesthésie inhalatoire au xénon à une anesthésie de type intra-veineuse ou analogue puisque, dans une telle situation médicale, une anesthésie par produits halogènes n'est pas requise du fait de l'utilisation de produits intra-veineux.
La figure 4 représente une troisième variante du mode de réalisation de l'appareil de la figure 1. Cette variante est aussi utilisable pour réaliser une anesthésie sous xénon uniquement, sans utilisation d'halogénés, basée sur une combinaison des modes de réalisation des figures 2 et 3. Plus précisément, l'appareil de la figure 4 se distingue de celui de la figure 2, uniquement en ce qu'il ne comprend pas de cuve d'halogénée.
Les modes de réalisation des figures 1 à 4 sont des modes particulièrement préférés de l'invention.
La figure 5 illustre un second mode de réalisation d'un appareil d'anesthésie selon l'invention incluant des moyens de mesure en temps réel du débit de xénon dans le flux principal de gaz par l'intermédiaire, comme précédemment, de l'utilisation d'un capteur à fil(s) chaud(s) de manière à en déduire par exemple les concentrations instantanées et/ou moyenne de xénon dans le circuit principal CP, ainsi que des moyens de mesure en temps réel du débit de gaz insufflé au patient et expiré par celui-ci dans le circuit principal. Comme visible sur la figure 5, l'appareil de ventilation comporte les mêmes éléments que ceux de la figure 1 , à l'exception du module S6 qui a été supprimé et remplacé, dans ce cas, par un autre module M1 analyseur de gaz venant se positionner directement sur le circuit principal de gaz. En particulier, le module M1 analyseur de gaz vient s'enficher dans des moyens de raccordement patient, tel un adaptateur patient M2, lui-même connecté sur la pièce 17 en Y à l'extrémité du circuit principal. De cette manière, le module analyseur M1 peut réaliser, sur le gaz insufflé au patient 15 puis expiré par celui-ci, au moins les mêmes mesures que dans le cas de la figure 1.
Le module M1 utilisable à cette fin est par exemple l'analyseur de gaz d'anesthésie IRMA OR ou OR+ disponible (avec son adaptateur patient M2 correspondant) auprès de la société PHASE IN et auquel on a ajouté notamment un capteur à fil(s) chaud(s).
Le module M1 est représenté une seconde fois de façon agrandie et détaillée à la figure 5 (cf. à l'extrémité de la flèche courbe).
Plus précisément, ce module M1 reçoit du logiciel de contrôle des moyens de pilotage 3 du ventilateur, avec un retard connu, plus ou moins court, de quelques dizaines à quelques centaines de millisecondes (ms), la mesure en temps réel du débit de gaz insufflé et expiré, ce débit étant mesuré par l'intermédiaire des capteurs de débit 11 et 12 comme expliqué ci-avant.
Par ailleurs, le gaz anesthésique provenant de la pièce 17 en Y pénètre le module M1 en traversant un capteur fil(s) chaud(s) M1-D, agencé en série, entre une cellule à infra-rouge M1-A et une sonde d'intubation 18 pour réaliser, en temps réel, la mesure de la tension (V) aux bornes du fil chaud générée par les gaz insufflés et expirés, comme précédemment, et qui la transmet par une liaison M1-E, avec un retard connu, plus ou moins court, de quelques dizaines à quelques centaines de ms, au logiciel de calcul des moyens de commande M1-C de l'analyseur M1. En variante, le capteur à fil(s) chaud(s) M1-D est agencé entre la pièce 17 en Y et la cellule M1-A à infra rouge.
Une cellule M 1 -B à O2 du module M1 permet de mesurer la teneur en oxygène. L'envoi des informations de débits par les moyens de pilotage 3 du ventilateur aux moyens de commande M1-C du module M1 se fait via une liaison M3.
En outre, les moyens de commande M1-C du module M1 sont eux-mêmes reliés à la cellule M1-B à O2, au capteur à fil(s) chaud(s) M1-D via la liaison M1-E, et à la cellule à infra-rouge M1-A.
En appliquant la formule (2) ci-avant, les moyens de commande M1-C peuvent en déduire les mêmes concentrations, notamment celle en xénon, et les autres informations décrites dans le cas de la figure 1.
Bien entendu, comme précédemment (figure 1 ), il est possible de réaliser également une mesure de concentration moyenne de xénon Xe% en utilisant la mesure temps réel Xe% ainsi obtenue, cette dernière étant obtenue en utilisant la mesure temps réel du débit de gaz insufflé et expiré ainsi que la mesure temps réel de la tension du fil chaud, éventuellement compensée par les mesures de concentration moyennes 02%, C02%, AA% et N20% comme expliqué auparavant.
Dans les réalisations des figures 6 à 8, les éléments identiques ceux décrits ci-dessus pour la figure 5 sont désignés par les mêmes références et ne sont pas décrits en détail une seconde fois.
La figure 6 représente une première variante du mode de réalisation de l'appareil de la figure 5, dans lequel le monitorage de la concentration moyenne de xénon est opérée par les moyens de pilotage 3 du ventilateur et non plus dans le module M1.
Pour ce faire, les signaux de mesure issus du capteur à fil(s) chaud(s) M1- D sont transmis par la liaison M3-A au logiciel de contrôle des moyens de pilotage 3 du ventilateur. Les moyens de pilotage 3 du ventilateur peuvent ainsi en déduire une mesure de concentration moyenne en xénon Xe% en utilisant la mesure temps réel Xe%, comme précédemment et à l'aide de la formule (2) ci-avant.
Les moyens de commande M1-C du module M1 sont quant à eux reliés aux moyens de pilotage 3 du ventilateur via une ligne M3-B dédiée. Les figures 7 et 8 représentent respectivement des variantes de l'appareil de la figure 5 et de la figure 6, utilisables pour une anesthésie sous xénon uniquement, sans utilisation d'halogénés, variantes pour lesquelles la cuve d'halogénés 14 et le support de cuve 13 ont été supprimés (comme dans les modes de réalisation des figures 3 et 4 ci-avant).
Dans le cas de la figure 7, le monitorage des concentrations inspirées/expirées de xénon se fait dans et par le module M1 , comme dans le cas de la figure 5, alors que dans le cas de la figure 8, il est opéré dans le ventilateur par les moyens de pilotage 3, comme pour la figure 6.
L'appareil de l'invention est utilisable en toute circonstance et en tout lieu, en particulier en bloc opératoire, durant les phases d'anesthésie au xénon, de manière à améliorer la sécurité des patients et s'inscrit dans le cadre des obligations de surveillance des gaz anesthésiants. Dans un tel gaz, le xénon gazeux est toujours mélangé avec de l'oxygène seul, de l'air ou alors avec de l'oxygène et éventuellement un ou plusieurs composés halogènes et/ou avec du protoxyde d'azote.
Bien entendu, le capteur à fil(s) chaud(s) selon l'invention pourrait utiliser un ou plusieurs fils composés de tout matériau conducteur de l'électricité approprié.

Claims

REVENDICATIONS
1. Appareil d'anesthésie ventilatoire d'un patient par administration d'un gaz contenant du xénon gazeux comprenant :
- un circuit principal de gaz (CP) en circuit ouvert ou fermé comportant une branche inspiratoire (16) pour acheminer un mélange gazeux contenant du xénon vers le patient et une branche expiratoire (18) pour véhiculer le mélange gazeux contenant du xénon expiré par le patient,
- des moyens d'alimentation (1 , 2) en xénon gazeux reliés au circuit principal pour alimenter la branche inspiratoire (16) du circuit principal (CP) avec un gaz contenant du xénon,
- des moyens de détermination de concentration de xénon (S6, M1 ) pour déterminer la teneur en xénon gazeux dans au moins une partie du circuit principal (CP), caractérisé en ce que lesdits moyens de détermination de concentration de xénon (S6 ; M 1 ) comprennent :
- au moins un capteur à fil(s) chaud(s) (S6-E ; M1-D) comportant au moins un fil conducteur de l'électricité en contact direct avec au moins une partie du flux gazeux contenant le xénon, et
- des moyens de calcul (3 ; S6-D ; M1-C) coopérant avec le capteur à fil(s) chaud(s) (S6-E ; M1-D) de manière à déterminer la concentration de xénon (Xe%) dans ledit flux gazeux,
- des moyens de génération de courant électrique apte à et conçus pour générer un courant un électrique dans au moins un fil chaud dudit au moins un capteur à fil(s) chaud(s) (S6-E , M1-D),
- des moyens de mesure de tension aptes à mesurer au moins une valeur de tension (V) aux bornes d'au moins un fil chaud dudit au moins un capteur à fil chaud (S6-E , M1-D) ou aux bornes d'au moins une résistance agencée en série avec au moins un fil chaud dudit au moins un capteur à fil chaud (S6-E , M1-D), lorsque ledit au moins un fil chaud est en contact avec le flux gazeux et est parcouru par un courant électrique d'intensité (I),
- et en ce que les moyens de calcul (3 ; S6-D ; M1-C) coopèrent avec les moyens de mesure de tension de manière à déterminer, à partir de la mesure de tension (V) effectuée par lesdits moyens de mesure de tension, la concentration de xénon (Xe%) dans ledit flux.
2. Appareil selon la revendication 1 , caractérisé en ce qu'il comporte des moyens de génération de courant réglable aptes à et conçus pour générer un courant électrique dans le ou dans chacun des fils chauds dudit au moins un capteur à fil(s) chaud(s) (S6-E , M1-D), lesdits moyens de génération de courant étant conçus pour et aptes à contrôler l'intensité du courant électrique parcourant le ou les fils chauds dudit au moins un capteur à fil chaud (S6-E , M1-D) de telle manière que, quelle que soit la composition du gaz traversant ledit au moins un capteur à fil(s) chaud(s) (S6-E , M1-D), l'intensité du courant traversant le ou les fils chauds est maintenue sensiblement constante et/ou la température du ou des fils chauds desdits au moins un capteur(s) à fil(s) chaud(s) est maintenue sensiblement constante.
3. Appareil selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que les moyens de calcul utilisent au moins une valeur de tension (V) transmise par les moyens de mesure de tension et au moins une valeur de débit du gaz anesthésique contenant du xénon, pour déterminer la concentration en xénon (Xe%) dans ledit flux de gaz.
4. Appareil selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit au moins un capteur à fil(s) chaud(s) (S6-E) est agencé sur une ligne de dérivation (S1 , S3, S4) communiquant fluidiquement avec le circuit principal (CP), le raccordement de la ligne de dérivation (S1 , S3, S4) au circuit principal (CP) se faisant sur la branche inspiratoire (16) et/ou sur la branche expiratoire (18) et/ou en un site localisé à proximité immédiatement de la bouche du patient, de préférence au niveau d'un site de raccordement (17) entre la branche inspiratoire (16) et la branche expiratoire (18) dudit circuit principal (CP), par exemple au niveau d'une pièce de raccordement en Y ou d'un filtre bactériologique agencé sur le circuit principal (CP).
5. Appareil selon la revendication 6, caractérisé en ce que des moyens de contrôle de débit de gaz (S6-A) sont agencés sur la ligne de dérivation (S1 , S3, S4) de manière à obtenir un débit d'aspiration de gaz anesthésique connu (Dc), de préférence un débit constant et/ou stable.
6. Appareil selon l'une des revendication 4 ou 5, caractérisé en ce que les moyens de contrôle de débit de gaz (S6-A) permettent de contrôler le débit du gaz contenant le xénon de manière à assurer un débit souhaité, de préférence constant et/ou stable, dudit gaz véhiculé par la ligne de dérivation (S1 , S3, S4) et mis au contact d'au moins un fil chaud.
7. Appareil selon l'une quelconque des revendications 4 à 6, caractérisé en ce que les moyens de contrôle de débit de gaz (S6-A) comprennent une pompe d'aspiration de gaz, de préférence la pompe d'aspiration est associée à une électronique de commande de ladite pompe pouvant être programmée pour générer un débit d'aspiration précis et stable à une ou plusieurs valeurs prédéfinies et connues.
8. Appareil selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit au moins un capteur à fil(s) chaud(s) (M1-D) est agencé directement sur le circuit principal (CP) sur la branche inspiratoire (16) et/ou expiratoire (18) et/ou à la jonction (17) entre les branches inspiratoire (16) et/ou expiratoire (18).
9. Appareil selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comporte des moyens de mesure du débit inspiratoire (Dpi) et/ou du débit expiratoire (Dpe) et/ou du débit principal (Dp) à la jonction entre les branches inspiratoire (16) et expiratoire (18) du flux gazeux circulant dans le circuit principal (CP), de préférence les moyens de mesure de débit comprennent un capteur (11 ) de débit inspiratoire et un capteur (12) de débit expiratoire, agencés respectivement sur les branches inspiratoire (16) et expiratoire (18) du circuit principal, pour mesurer les débits inspiratoire et respiratoire dans lesdites branches et transmettre les signaux de mesure ainsi obtenus à des moyens de pilotage (3; S6-D ; M1-C) pour déterminer la concentration en Xénon dans la branche inspiratoire (16) et/ou dans la branche expiratoire (18) et/ou à la jonction (17) entre les branches inspiratoire et expiratoire.
10. Appareil selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit au moins un capteur à fil(s) chaud(s) (S6-E ; M1-D) comprend plusieurs fils ayant des orientations différentes relativement au flux gazeux, de préférence deux fils chauds.
1 1. Appareil selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les moyens de calcul sont incorporés dans un module (S6 ; M1 ) analyseur de gaz venant se raccorder au circuit principal.
12. Appareil selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les moyens de calcul sont incorporés dans le module de pilotage du ventilateur (3).
13. Appareil selon les revendications 1 à 12, caractérisé en ce qu'il comporte, en outre, un circuit auxiliaire de gaz comportant une branche inspiratoire auxiliaire (26) permettant d'acheminer un gaz contenant du xénon vers le patient au moyen d'un insufflateur (28) manuel, les moyens de détermination de la concentration en xénon étant conçus et adaptés pour pouvoir se raccorder audit circuit auxiliaire de gaz (26) pour y déterminer la teneur en xénon, lorsque du gaz contenant du xénon est administré au patient via ledit circuit auxiliaire (26) de gaz, notamment en cas d'arrêt ou de dysfonctionnement du circuit principal (CP).
14. Appareil selon les revendications 1 à 13, caractérisé en ce que les moyens de calcul utilisent les valeurs de tension (V) et de débit (D) pour déterminer une concentration en xénon (Xe %) dans le flux gazeux à partir d'une ou plusieurs courbes linéaires mémorisées dans des moyens de mémorisation de l'appareil, de préférence une ou des droites de type a. [Xe] + b = V où : V est la tension, [Xe] la teneur en xénon et a et b sont des coefficients positifs ou négatifs correspondant à un débit de gaz (D) donné.
15. Appareil selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la ou les courbes linéaires pour autant de valeurs de débit que souhaitées ou que nécessaires sont étalonnées avant mémorisation et/ou réactualisées périodiquement et automatiquement au cours de l'utilisation de l'appareil.
EP06842137A 2005-12-14 2006-12-11 Appareil d'anesthesie ventilatoire avec dispositif de mesure de la concentration de xenon Withdrawn EP1962935A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553862A FR2894486B1 (fr) 2005-12-14 2005-12-14 Dispositif de mesure de la concentration de xenon et appareil d'anesthesie ventilatoire utilisant le xenon
PCT/FR2006/051326 WO2007068849A2 (fr) 2005-12-14 2006-12-11 Appareil d'anesthesie ventilatoire avec dispositif de mesure de la concentration de xenon

Publications (1)

Publication Number Publication Date
EP1962935A2 true EP1962935A2 (fr) 2008-09-03

Family

ID=36940667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06842137A Withdrawn EP1962935A2 (fr) 2005-12-14 2006-12-11 Appareil d'anesthesie ventilatoire avec dispositif de mesure de la concentration de xenon

Country Status (5)

Country Link
US (1) US8141552B2 (fr)
EP (1) EP1962935A2 (fr)
CA (1) CA2633000A1 (fr)
FR (1) FR2894486B1 (fr)
WO (1) WO2007068849A2 (fr)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858236B1 (fr) 2003-07-29 2006-04-28 Airox Dispositif et procede de fourniture de gaz respiratoire en pression ou en volume
FR2894486B1 (fr) 2005-12-14 2008-11-21 Air Liquide Dispositif de mesure de la concentration de xenon et appareil d'anesthesie ventilatoire utilisant le xenon
FR2931682B1 (fr) * 2008-05-27 2010-07-30 Air Liquide Amelioration de la precision de mesure de la teneur en xenon dans un appareil d'anesthesie ventilatoire.
EP2168623B1 (fr) * 2008-09-26 2011-09-21 General Electric Company Agencement pour la détection d'une fuite dans un système d'anesthésie
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
DE102009004107A1 (de) 2009-01-08 2010-07-15 Linde Aktiengesellschaft Beatmen von Patienten
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
EP2316515B1 (fr) * 2009-10-28 2019-07-17 General Electric Company Agencement pour contrôler la valeur d'effet narcotique de gaz respirable
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8469030B2 (en) * 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
FR2958754B1 (fr) * 2010-04-12 2012-10-26 Centre Nat Rech Scient Capteur a fil chaud de taille sublimillimetrique et procede de realisation associe.
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
DE102012215594B3 (de) * 2012-09-03 2013-08-01 Sick Ag Verfahren zur Laserspektroskopie von Gasen
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
CN111565780B (zh) * 2017-10-27 2023-02-21 深圳迈瑞生物医疗电子股份有限公司 麻醉机及麻药输出浓度监测方法、系统、设备、存储介质
US11896767B2 (en) 2020-03-20 2024-02-13 Covidien Lp Model-driven system integration in medical ventilators
CN113398417B (zh) * 2021-05-25 2024-04-12 丰都县人民医院 一种具有换向功能的麻醉剂浓度调节装置
CN117503106B (zh) * 2023-11-27 2024-06-11 苏州邦伊医疗科技有限公司 呼出气中丙泊酚浓度与血药浓度的动态相关系数检测系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913379A (en) * 1973-10-18 1975-10-21 Tibor Rusz Dynamic gas analyzer
DE3712598A1 (de) * 1987-04-14 1988-10-27 Siemens Ag Inhalations-anaesthesiegeraet
JPS6449541A (en) * 1987-08-19 1989-02-27 Anzai Sogyo Co Ltd Xenon gas inhalation system
US5230331A (en) * 1990-07-19 1993-07-27 R. J. Instruments Hot wire anemometer adapted for insertion in a calibration socket of a pulmonary gas flow monitor
WO1992003724A1 (fr) 1990-08-17 1992-03-05 The Commonwealth Industrial Gases Limited Analyseur de gaz
US5099834A (en) 1991-07-16 1992-03-31 Union Carbide Industrial Gases Technology Corporation Method for anesthesia
SE9500175L (sv) * 1995-01-19 1996-07-20 Siemens Elema Ab Förfarande och anordning för att identifiera minst ett narkosmedel i en narkosutrustning
DE29613243U1 (de) * 1996-07-31 1996-10-17 Drägerwerk AG, 23558 Lübeck Gassensor
DE29706003U1 (de) * 1997-03-27 1997-08-28 Sensor Devices GmbH, 44319 Dortmund Xenon-Gassensor
CA2617553C (fr) * 1997-06-17 2011-12-13 Fisher & Paykel Healthcare Limited Systeme d'humidification pour appareillage respiratoire
US6076392A (en) 1997-08-18 2000-06-20 Metasensors, Inc. Method and apparatus for real time gas analysis
DE19745954A1 (de) 1997-10-17 1999-04-22 Bernd Horst Dr Meier Verfahren und Vorrichtung zur Messung von Gasgemischen
FR2782647B1 (fr) 1998-09-01 2000-12-01 Taema Dispositif d'anesthesie inhalatoire comportant des moyens de surveillance de la pression du gaz dans le circuit annexe
AU3502200A (en) 1999-02-25 2000-09-14 Metasensors, Inc. Methods and apparatus for real time fluid analysis
FR2803758B1 (fr) 2000-01-19 2002-10-18 Taema Ventilateur d'anesthesie avec commutation automatique de circuit
DE10045829A1 (de) 2000-09-14 2002-04-04 Messer Griesheim Gmbh Volatile Anästhesiemittel mit Xenon
DE10218834A1 (de) * 2002-04-26 2003-12-04 Siemens Ag Wärmeleitfähigkeits-Gasanalysator
GB0210023D0 (en) 2002-05-01 2002-06-12 Air Prod & Chem Medical gas recirculation system
US7010433B2 (en) 2003-03-27 2006-03-07 Southwest Research Institute Indirect measurement of diluents in a multi-component natural gas
DE102004015406A1 (de) * 2004-03-26 2005-10-13 Ino Therapeutics Gmbh Verfahren und Vorrichtung zur Administration von Xenon an Patienten
US6945123B1 (en) * 2004-06-28 2005-09-20 The General Electric Company Gas flow sensor having redundant flow sensing capability
FR2894486B1 (fr) 2005-12-14 2008-11-21 Air Liquide Dispositif de mesure de la concentration de xenon et appareil d'anesthesie ventilatoire utilisant le xenon
FR2894487A1 (fr) 2005-12-14 2007-06-15 Air Liquide Dispositif de mesure de la concentration de xenon et appareil d'anesthesie ventilatoire utilisant le xenon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007068849A2 *

Also Published As

Publication number Publication date
WO2007068849A2 (fr) 2007-06-21
FR2894486B1 (fr) 2008-11-21
CA2633000A1 (fr) 2007-06-21
US20090090359A1 (en) 2009-04-09
FR2894486A1 (fr) 2007-06-15
US8141552B2 (en) 2012-03-27
WO2007068849A3 (fr) 2007-10-18

Similar Documents

Publication Publication Date Title
EP1962935A2 (fr) Appareil d&#39;anesthesie ventilatoire avec dispositif de mesure de la concentration de xenon
FR2624744A1 (fr) Procede de regulation d&#39;un dispositif de ventilation artificielle et un tel dispositif
FR2862227A1 (fr) Dispositif et procede d&#39;alimentation d&#39;un patient en gaz respiratoire
FR2908049A1 (fr) Procede permettant de determiner la consommation d&#39;un absorbeur de co2 dans un dispositif d&#39;assistance respiratoire a systeme de reinspiration.
EP3040096B1 (fr) Appareil d&#39;assistance respiratoire avec détection de tout arrêt de la turbine
EP2293835B1 (fr) Amelioration de la precision de mesure de la teneur en xenon dans un appareil d&#39;anesthesie ventilatoire
EP2522384A1 (fr) Appareil de distribution de NO avec ligne de calibration intégrée et installation associée
EP1118347A1 (fr) Appareil d&#39;anesthésie respiratoire à valve de décharge pilotée
FR2806632A1 (fr) Dispositif de mesure d&#39;un composant de gaz respiratoire dans une conduite de gaz respiratoire
EP2581103A1 (fr) Procédé de calibration d&#39;un appareil de distribution de gaz alimenté par une source de NO
FR2894487A1 (fr) Dispositif de mesure de la concentration de xenon et appareil d&#39;anesthesie ventilatoire utilisant le xenon
BE1020244A3 (fr) Appareil d&#39;analyse diagnostique d&#39;oxide nitrique.
EP2211958A2 (fr) Appareil d&#39;anesthésie respiratoire au xénon ou au n2o
FR2911281A1 (fr) Dispositif d&#39;injection de no a securite amelioree
FR3120314A1 (fr) Interface de ventilation de patient destinée à être couplée à un ventilateur médical et à une source de gaz
FR3133316A1 (fr) Dispositif de délivrance de NO avec circuit de secours
CA3191354A1 (fr) Appareil de delivrance de no avec systeme de ventilation manuelle
FR3133318A1 (fr) Dispositif de délivrance de NO avec circuit de secours à débit contrôlé
FR3133315A1 (fr) Appareil de délivrance de NO à deux sorties de gaz
CN111093746B (zh) 麻醉机、氧电池校准系统及其校准方法
AU2017100108A4 (en) Method for Monitoring Gas Analyser and Breathing Apparatus
CA3183761A1 (fr) Dispositif de delivrance de no avec systeme de dosage d&#39;urgence
FR2981158A1 (fr) Module d&#39;analyse de gaz pour appareil de ventilation de patient
EP4039302A1 (fr) Appareil de fourniture de gaz thérapeutique à un patient avec contrôle de la pression au masque
FR3031447A1 (fr) Ventilateur medical a vanne d&#39;echappement proportionnelle associee a un capteur de debit bidirectionnel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080605

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DAVIET, CHRISTIAN

Inventor name: BLANDIN, RICHARD

Inventor name: KISSI, NOUREDDINE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KISSI, NOUREDDINE

Inventor name: BLANDIN, RICHARD

Inventor name: DAVIET, CHRISTIAN

17Q First examination report despatched

Effective date: 20111005

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20151124