EP1961276B1 - Ensemble circuit et procede permettant de faire fonctionner des lampes a decharge haute pression - Google Patents

Ensemble circuit et procede permettant de faire fonctionner des lampes a decharge haute pression Download PDF

Info

Publication number
EP1961276B1
EP1961276B1 EP06830249A EP06830249A EP1961276B1 EP 1961276 B1 EP1961276 B1 EP 1961276B1 EP 06830249 A EP06830249 A EP 06830249A EP 06830249 A EP06830249 A EP 06830249A EP 1961276 B1 EP1961276 B1 EP 1961276B1
Authority
EP
European Patent Office
Prior art keywords
frequency
bridge
phase
lamp
circuit arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06830249A
Other languages
German (de)
English (en)
Other versions
EP1961276A1 (fr
Inventor
Herbert Kästle
Thomas Rossmanith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP1961276A1 publication Critical patent/EP1961276A1/fr
Application granted granted Critical
Publication of EP1961276B1 publication Critical patent/EP1961276B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • H05B41/2883Load circuits; Control thereof the control resulting from an action on the static converter the controlled element being a DC/AC converter in the final stage, e.g. by harmonic mode starting

Definitions

  • the invention relates to a circuit arrangement for operating high-pressure gas discharge lamps.
  • High-pressure gas discharge lamps are also referred to below as lamps.
  • the invention relates to a method for operating such lamps. Descriptions which relate to advantageous embodiments of the circuit arrangement, apply in a corresponding manner also for the method.
  • the invention deals with lamp operation with modulated operating frequency.
  • the modulation should prevent acoustic resonances in the lamp see eg EP 744883 , There are also cases in which the modulation specifically stimulates acoustic resonances in order to mix the gas filling of the lamp.
  • a circuit arrangement for operating a high-pressure gas discharge lamp generally comprises an inverter which provides a high-frequency alternating voltage having an operating frequency which is in the range between 10 kHz and 10 MHz.
  • the inverter can be known to be designed as a full bridge, which is fed by a DC voltage. This is described in the following reference: Bill Andreycak, "Phase Shifted Zero Voltage Transition Design Considerations and the UC3875 PWM Controller", Unitrode Application Note U-136A, 1997.
  • the full bridge has a bridge branch fed at each end by a half-bridge branch becomes. The voltages that the half-bridge branches have to each other have a phase to each other.
  • the amplitude of the voltage applied to the bridge branch is maximum and has a value corresponding to a supply voltage that feeds the full bridge. If the phase is zero, then the amplitude is zero.
  • the voltage at the bridge branch and thus the output voltage of the inverter can be regulated by means of the phase.
  • the expression of the resonance points of the lamp generally decreases with increasing frequency. Ie. At low frequencies, it is critical to provide the lamp with much energy because strong resonances can form. At higher frequencies, however, the lamp more energy can be fed, since the resonances are less pronounced there.
  • the coupling network generally has a low-pass character. Ie. At low frequencies, the lamp is fed more energy than at high frequencies.
  • the invention is now based on the finding that the frequency dependence of the coupling network can trigger the instability of the lamp, because it is just the frequencies are less attenuated at which strong resonances occur. From this realization follows that the frequency dependence of the coupling network must be compensated. This is done according to the invention by controlling the phase synchronous to the operating frequency. So the phase points in a circuit arrangement according to the invention as the operating frequency to a modulation. In the time domain, the frequency dependence of the coupling network causes a decreasing amplitude of the lamp current with increasing frequency.
  • the frequency dependence of the coupling network in the power spectrum of the lamp line is such that the spectral power density decreases towards high frequencies.
  • the inventive modulation of the phase ensures that the amplitude of the lamp current is approximately independent of the operating frequency or even increases towards higher frequencies.
  • the power spectrum of the lamp power is evenly distributed or even increases to higher frequencies.
  • the time profile of the operating frequency is selected so that all possible operating frequencies between the maximum frequency and the minimum frequency is generated substantially for the same amount of time by the inverter.
  • the overcompensation causes more energy to be coupled into the lamp as the operating frequency increases. This has an advantageous effect on the stability of the lamp operation, since resonance points of the lamp tend to be more strongly attenuated with increasing frequency. The lamp thus converts more energy at operating frequencies at which the resonance points of the lamp are more heavily damped.
  • overcompensation can be neutralized. This is possible by a suitable temporal distribution of the operating frequencies. If the length of time that the inverter generates a particular operating frequency increases as the frequency increases, then the power output of the lamp power may be substantially the same despite overcompensation at all operating frequencies. Ie. the switching transistors of the inverter are clocked at high frequencies for a shorter time than would be the case without overcompensation. This leads to a reduction of the switching losses in the switching transistors. High frequencies mean frequencies that are closer to the maximum frequency than the minimum frequency. Overcompensation can thus be used to stabilize the lamp operation or to improve the efficiency of the circuit arrangement. There are also mixed forms possible in which Both advantages are exploited by the overcompensation is only partially neutralized by a temporal distribution of the operating frequencies.
  • the modulation of the operating frequency does not have to be periodic with a modulation frequency.
  • the modulation may, for example, be controlled by a noise generator or by chaos.
  • the relationship between operating frequency and phase defines a modulator characteristic.
  • the modulator characteristic establishes a linear relationship with a modulation factor between operating frequency and phase.
  • a modulation factor between operating frequency and phase.
  • the modulation factor must therefore be set so that the compensation condition is met.
  • the time course operating frequency is preferably triangular or sawtooth. In the case of a linear modulator characteristic, the time course of the phase is then triangular or sawtooth-shaped.
  • the modulator characteristic is designed to achieve this.
  • the control of the phase by the modulator can be extended to a control of the phase.
  • the modulator requires a measuring input which is supplied with a measure of the amplitude of the lamp current or the power of the lamp. Depending on the measured variable The modulator sets its modulator characteristic or its modulation factor so that the measured quantity remains constant.
  • a minimum frequency of 45 kHz and a maximum frequency of 55 kHz has proven to be advantageous.
  • the inverter superimposes a direct component on the lambing current whose sign changes at an alternating frequency which is less than one tenth of the minimum frequency.
  • the DC component is generated by a full-bridge inverter whose switches have a duty cycle that deviates from 50%.
  • the half bridge branches of the full bridge each comprise a first and a second switch.
  • the full bridge inverter If a first on time of the first switch is equal to a second on time of the second switch, the full bridge inverter generates a square wave voltage without DC component. If the first one-time is reduced by an asymmetry time, while the second time is extended by this asymmetry time, the AC voltage generated by the full-bridge inverter contains a DC component. To avoid a one-sided load on the lamp, the asymmetry time is alternately subtracted and added to the alternating frequency alternately the first and the second time. The change of asymmetry does not have to be abrupt. Less stress on the components used results when the change from peeling to adding the asymmetry time takes place continuously. For example, the time course of the value of the asymmetry times can be triangular. At any time, the sum of the asymmetry times of the first and second switches is zero.
  • the power spectrum of the lamp power comprises components in a frequency range between twice the minimum frequency and twice the maximum frequency.
  • additional components occur in a frequency range between the Minimum frequency and the maximum frequency. It also shares above double the maximum frequency, but generally play no role in terms of stable lamp operation.
  • the double minimum frequency is greater than the maximum frequency, a spectral gap arises between the maximum frequency and the double minimum frequency in which no power is output to the lamp.
  • the minimum frequency and the maximum frequency are selected so that particularly pronounced resonances of the lamp fall into this spectral gap.
  • FIG. 1 shows a schematic diagram of a circuit arrangement, with which the present invention can be realized.
  • the circuit has two input terminals 1 and 2 to which a rectified mains voltage can be connected.
  • the input terminals 1 and 2 are coupled to a PFC stage which effects a power factor correction and provides a supply voltage Us between the potentials 3 and 4.
  • Parallel to the supply voltage Us a storage capacitor C1 is connected, which is to buffer the supply voltage Us.
  • a potential of the supply voltage serves as the reference potential of the circuit arrangement. Without limitation of generality, the potential 4 is assumed as a reference potential in the following.
  • the supply voltage represents the power supply for a full-bridge inverter.
  • Each half-bridge branch consists of the series connection of an upper switch S1, S3 and a lower switch S2, S4.
  • the switches are preferably designed as a MOSFET, but can also be embodied as other semiconductor switches.
  • MOSFETs the source of the respective upper switch S1, S3 is connected to the drain of the respective lower switch S2, S4 at a connection point.
  • the left half-bridge branch has a connection point A and the right half-bridge branch has a connection point B. At the connection points A and B, there is a respective half-bridge voltage with respect to the reference potential.
  • the control terminals of the switches are connected to a controller.
  • the controller includes an oscillator that generates an operating frequency with which the control terminals of the switches S1, S2, S3 and S4 are driven.
  • the switches of a half bridge branch are alternately driven. This results in the connection points A and B with respect to the reference potential in each case a rectangular alternating voltage UA or UB whose amplitude follows the supply voltage and whose respective frequency corresponds to the operating frequency.
  • Between the connection points A and B is the bridge branch, to which a bridge voltage UAB is applied.
  • the bridge voltage UAB represents the inverter output voltage of the full-bridge inverter.
  • the effective value of the bridge voltage UAB can be set via the phase ⁇ between the voltages UA and UB.
  • a series circuit consisting of a lamp inductor L1 and a parallel capacitor Cp is connected.
  • the lamp inductor L1 and the parallel capacitor Cp are connected at a connection point 5.
  • the connection points B and 6 can be supplied to terminals on which then a lamp can be connected.
  • the lamp inductor L1, the parallel capacitor Cp and the series capacitor Cs form the coupling network.
  • the parallel capacitor Cp causes a resonance increase at certain operating frequencies and can be omitted.
  • the series capacitor Cs suppresses DC components in the lamp current IL and can also be omitted.
  • an ignition device that briefly provides a high voltage to start the lamp.
  • the coupling network accomplishes an impedance transformation from the AC voltage UAB to the lamp. It can also contain a transformer.
  • the impedance transformation of the coupling network has a transfer function which describes the frequency dependence of the lamp current IL relative to the AC voltage UAB.
  • the transfer function has band pass character. In conventional dimensions, the operating frequency is above the resonance frequency of the transfer function. Above the resonance frequency, the transfer function has a low-pass character.
  • the controller includes a modulator with a modulator output.
  • the modulator output is coupled to the oscillator such that the operating frequency can be influenced by the modulator.
  • the modulator causes the oscillator to generate an operating frequency that oscillates continuously in a range between a minimum frequency and a maximum frequency.
  • the timing of the operating frequency is periodic with a modulation frequency.
  • a typical value for the modulation frequency is in the 100 Hz range.
  • the modulator can also be realized by a microcontroller in which a modulator characteristic for controlling the phase is stored by software.
  • the modulator characteristic can also be tuned in an optimization process to a lamp to be operated.
  • Other frequency-dependent effects that are not based on the coupling network can also be taken into account in the modulator characteristic. For example, leads or the lamp itself may have a frequency dependence.
  • FIG. 2 shows the time course of voltages of the full-bridge inverter FIG. 1 , Scaling was omitted since basic connections should be explained.
  • the voltages shown are in the range between 10 V and 500 V.
  • the frequency of the illustrated time courses lies in the range of the above-mentioned ranges for the operating frequency.
  • the time course of the voltage UA is shown.
  • the voltage UA is present between the connection point A and the reference potential 4.
  • the voltage UB is applied between the connection point B and the reference potential 4.
  • the voltage UAB is between the connection point A and the connection point B and represents the bridge voltage which is supplied to the lamp via the coupling network.
  • the voltage UAB is not zero only if the instantaneous voltages UA and UB are different.
  • the period of time for which the supply voltage or the negative supply voltage is present at the connection points A and B can thus be set via the phase .phi.
  • the effective value of the voltage UAB is thus adjustable by the phase ⁇ .
  • the controller evaluates the supply voltage in such a way that the phase decreases as the supply voltage increases.
  • FIG. 3 shows the time course of the envelope of the lamp voltage FIG. 1 , ie the voltage between the connection points 6 and B.
  • a profile of the lamp voltage as it is known from the prior art.
  • the phase ⁇ is kept constant and not adapted to the time course of the operating frequency to compensate for the transfer function of the coupling network. It can be clearly seen how the lamp voltage varies with a frequency of about 100 Hz, which corresponds to the modulation frequency.
  • FIG. 4 also shows the time course of the envelope of the lamp voltage FIG. 1 ,
  • the phase ⁇ is adapted to the time profile of the operating frequency.
  • the adaptation is advantageously chosen so that the transfer function of the coupling network is largely compensated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Claims (14)

  1. Montage pour faire fonctionner une lampe (Lp) à décharge dans un gaz à haute pression, le montage ayant les caractéristiques suivantes :
    • un onduleur ( S1,S2,S3,S4 ) à pont complet ayant deux demi-branches de pont et une branche de pont entre elles, une tension ( UA,UB ) de demi-pont pouvant être appliquée dans la branche de pont par chaque demi-branche de pont ;
    • les tensions ( UA,Ub ) de demi-pont ont l'une par rapport à l'autre une phase ( ϕ ) réglable par un régisseur.
    • la lampe ( Lp ) à décharge dans un gaz à haute pression peut être couplée à la branche de pont ;
    • l'onduleur ( S1,S2,S3,S4 ) à pont complet fournit à la lampe (Lp) à décharge dans un gaz à haute pression un courant ( IL ) de lampe, qui est sensiblement un courant alternatif ayant une fréquence de fonctionnement modulée qui oscille continuellement dans une plage comprise entre une fréquence minimum et une fréquence maximum ;
    dans lequel le montage est caractérisé
    en ce que le régisseur règle la phase ( ϕ ) en fonction de la fréquence de fonctionnement de manière à ce que la phase ( ϕ ) augmente lorsque la fréquence de fonctionnement s'élève.
  2. Montage suivant la revendication 1, caractérisé en ce que
    la différence entre la fréquence maximum et la fréquence minimum est d'au moins de 10 kHz.
  3. Montage suivant la revendication 1 ou 2, caractérisé en ce que
    chaque demi-branche de pont a deux interrupteurs ( S1/S2, S3/S4 ) et le régisseur met à disposition des signaux de commande des interrupteurs ( S1, S2, S3, S4 )
    et en outre le régisseur comprend un oscillateur qui fixe la fréquence de fonctionnement
    et un modulateur commande l'oscillateur de façon à ce que la fréquence de fonctionnement ait une courbe dans le temps entre la fréquence minimum et la fréquence maximum,
    et en outre le modulateur commande la phase ( ϕ ).
  4. Montage suivant la revendication 3, caractérisé en ce que
    entre l'onduleur ( S1,S2,S3,S4 ) à pont complet et la lampe ( Lp ) est monté un réseau ( L1,Cs,Cp ) de couplage, qui a une fonction de transfert qui décrit la variation de l'amplitude du courant ( IL ) de la lampe en fonction de la fréquence de fonctionnement,
    et en outre le modulateur synchronise la variation dans le temps de la phase ( ϕ ) par une caractéristique de modulateur sur la variation dans le temps de la fréquence de fonctionnement de façon à ce que la variation dans le temps de la phase compense l'effet de la fonction de transfert.
  5. Montage suivant la revendication 4, caractérisé en ce que,
    lorsque la fréquence de fonctionnement prend la valeur de la fréquence maximum, la phase ( ϕ ) prend la valeur de 180° ou n.
  6. Montage suivant l'une des revendications précédentes, caractérisé en ce que
    le spectre de la puissance d'une lampe (Lp) en fonctionnement est réparti uniformément.
  7. Montage suivant l'une des revendications 1 à 3, caractérisé en ce que
    le spectre de la puissance d'une lampe (Lp) en fonctionnement augmente d'une manière monotone avec la fréquence.
  8. Montage suivant la revendication 3, caractérisé en ce que
    le modulateur produit une relation linéaire entre la phase ( ϕ ) et la fréquence de fonctionnement.
  9. Montage suivant l'une des revendications précédentes, caractérisé en ce que
    le régisseur a une entrée de mesure qui est couplée à une grandeur de mesure de l'amplitude du courant ( IL ) de la lampe,
    le régisseur établissant à chaque instant une phase qui donne une amplitude à peu près constante au courant ( IL ) de la lampe.
  10. Montage suivant la revendication 1, caractérisé en ce que
    la courbe temporelle de la phase ( ϕ ) est sinusoïdale, triangulaire ou en dents de scie.
  11. Montage suivant l'une des revendications précédentes, caractérisé en ce que
    une tension ( Us ) d'alimentation alimente l'onduleur ( S1,S2,S3,S4 ) à pont complet
    et le régisseur exploite la tension ( Us ) d'alimentation de façon à ce que la phase ( ϕ ) diminue lorsque la tension de l'alimentation s'élève.
  12. Montage suivant l'une des revendications précédentes, caractérisé en ce que
    les demi-branches du pont comprennent respectivement un premier ( S1/S3 ) et un deuxième ( S2/S4 ) interrupteur électronique, le premier interrupteur ( S1/S3 ) étant fermé pendant une première unité de temps et le deuxième ( S2/S4 ) étant fermé pendant une deuxième unité de temps venant ensuite
    et en outre la première et la deuxième unité de temps se composent respectivement d'un temps de base et d'un temps d'asymétrie, les temps de base étant égaux pour les deux unités de temps, tandis que les temps d'asymétrie sont égaux en valeur absolue, mais ont des signes différents
    et en outre, les temps d'asymétrie ont une courbe temporelle ayant une fréquence variable qui est plus petite que le dixième de la fréquence minimum.
  13. Procédé pour faire fonctionner des lampes à décharge à haute pression comprenant un onduleur ( S1,S2,S3,S4 ) à pont complet ayant deux demi-branches de pont une branche de pont comportant les stades de procédé suivants :
    • couplage d'une lampe ( Lp ) à décharge à haute pression à la branche de pont ;
    • la branche de pont est alimentée par deux demi-tensions ( UA,UB ) de pont qui sont produites par les demi-branches du pont ;
    • une phase ( ϕ ) que les demi-tensions ( UA,UB ) du pont ont l'une par rapport à l'autre est réglée par un régisseur.
    • un courant ( Il ) de lampe, que l'onduleur ( S1,S2,S3,S4 ) à pont complet fournit à la lampe ( Lp ) à décharge dans un gaz à haute pression, a une fréquence de fonctionnement qui varie continuellement dans une plage comprise entre une fréquence minimum et une fréquence maximum, dans lequel, le procédé est caractérisé en ce que
    la phase est réglée en fonction de la fréquence de fonctionnement de façon à ce que la phase ( ϕ ) augmente lorsque la fréquence de fonctionnement s'élève.
  14. Procédé suivant la revendication 13, caractérisé en ce que
    l'on règle la phase ( ϕ ) en fonction de la fréquence de fonctionnement de façon à ce que le spectre de la puissance émise sur la lampe (Lp) à décharge à haute pression soit réparti uniformément.
EP06830249A 2005-12-14 2006-11-30 Ensemble circuit et procede permettant de faire fonctionner des lampes a decharge haute pression Expired - Fee Related EP1961276B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005059762A DE102005059762A1 (de) 2005-12-14 2005-12-14 Schaltungsanordnung und Verfahren zum Betreiben von Hochdruck-Gasentladungslampen
PCT/EP2006/069152 WO2007068603A1 (fr) 2005-12-14 2006-11-30 Ensemble circuit et procede permettant de faire fonctionner des lampes a decharge haute pression

Publications (2)

Publication Number Publication Date
EP1961276A1 EP1961276A1 (fr) 2008-08-27
EP1961276B1 true EP1961276B1 (fr) 2009-04-01

Family

ID=37726795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830249A Expired - Fee Related EP1961276B1 (fr) 2005-12-14 2006-11-30 Ensemble circuit et procede permettant de faire fonctionner des lampes a decharge haute pression

Country Status (7)

Country Link
US (1) US7839093B2 (fr)
EP (1) EP1961276B1 (fr)
AT (1) ATE427644T1 (fr)
CA (1) CA2633451A1 (fr)
DE (2) DE102005059762A1 (fr)
ES (1) ES2325098T3 (fr)
WO (1) WO2007068603A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054377A1 (de) * 2009-11-24 2011-05-26 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung und Verfahren zum Betreiben einer Entladungslampe
DE102010029981A1 (de) * 2010-06-11 2011-12-15 Osram Gesellschaft mit beschränkter Haftung Elektronisches Betriebsgerät für Gasentladungslampen mit verringerter Verlustleistung und Verfahren zum Betreiben des Betriebsgerätes
US8217583B2 (en) * 2010-07-21 2012-07-10 Grenergy Opto, Inc. Gas-discharge lamp controller utilizing a novel reheating frequency generation mechanism
US9225253B2 (en) * 2012-10-23 2015-12-29 Microchip Technology Inc. High voltage switching linear amplifier and method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE261235T1 (de) 1995-05-23 2004-03-15 Praezisa Ind Elektronik Verfahren bzw. vorrichtung zum betrieb einer hochdruckentladungslampe
US6803730B2 (en) * 2001-03-21 2004-10-12 International Rectifier Corporation Single stage PFC + ballast control circuit/general purpose power converter
US7034800B2 (en) * 2001-11-14 2006-04-25 Matsushita Electric Industrial Co., Ltd. Driving circuit and driving method for piezoelectric transformer, backlight apparatus, liquid crystal display apparatus, liquid crystal monitor, and liquid crystal TV
DE10333820A1 (de) 2003-07-24 2005-02-17 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betreiben mindestens einer Hochdruckentladungslampe
EP1656340B1 (fr) * 2003-08-12 2012-07-18 Boehringer Ingelheim International GmbH Procédés de préparation de composés d'acide 1-carbamoylcycloalkylcarboxylique

Also Published As

Publication number Publication date
EP1961276A1 (fr) 2008-08-27
ES2325098T3 (es) 2009-08-25
US20080284345A1 (en) 2008-11-20
DE502006003353D1 (de) 2009-05-14
ATE427644T1 (de) 2009-04-15
DE102005059762A1 (de) 2007-06-21
CA2633451A1 (fr) 2007-06-21
WO2007068603A1 (fr) 2007-06-21
US7839093B2 (en) 2010-11-23

Similar Documents

Publication Publication Date Title
EP1872627B1 (fr) Pfc numerique parametrable
DE102011109333B4 (de) Elektrische Versorgungvorrichtung mit Stromformsignal sowie Verfahren zum Betrieb der elektrischen Versorgungsvorrichtung
DE102009030106B4 (de) Verfahren zur Ansteuerung von Gasentladungslampen
DE102013216877A1 (de) Getakteter elektronischer Energiewandler
DE69817992T2 (de) Elektronisches vorschaltgerät
DE102004047399A1 (de) Vereinfachte Topologie für HID-Lampen
EP1961276B1 (fr) Ensemble circuit et procede permettant de faire fonctionner des lampes a decharge haute pression
EP1330945B1 (fr) Ballast electronique avec circuit en pont integral
WO2016050689A2 (fr) Convertisseur électronique de puissance cadencé
CA2550279A1 (fr) Appareil permettant de fournir une tension de fonctionnement a modulation sinusoidale d'amplitude, systeme d'eclairage et methode de generation d'une tension modulee en amplitude
EP1961274B1 (fr) Ensemble circuit et procédé pour faire fonctionner une lampe à décharge à haute pression
EP2417837A1 (fr) Circuiterie et procédé de fonctionnement d'une lampe à décharge à haute pression
EP1901592B1 (fr) Ballast électronique doté d'une commande à onduleur asymétrique
EP2713489B1 (fr) Procédé de fonctionnement d'un convertisseur PFC actif pendant puissance faible utilisant modulation fenêtre avec commande en boucle ouverte de largeur
US7282866B2 (en) Discharge lamp lighting apparatus
DE102005059763A1 (de) Schaltungsanordnung und Verfahren zum Betreiben von Hochdruck-Gasentladungslampen
EP1339268A2 (fr) Ballast por lampes avec un convertisseur régulé de type SEPIC
EP2266374B1 (fr) Régulation de puissance de lampes à décharge dans des circuits en demi-pont ou en pont intégral
DE29622825U1 (de) Bestrahlungsgerät
DE10242326A1 (de) Elektronisches Vorschaltgerät mir passiver Leistungsfaktorkorrektur
DE102005056229A1 (de) Steuerschaltung sowie Verfahren zur Ansteuerung einer Gasentladungslampe
Lin et al. High power factor of metal halide lamp with dimming control
DE102016208227B4 (de) Getaktete Stromversorgungseinheit mit galvanischer Trennung
DE19816965B4 (de) Vorschaltgerät für Leuchtstofflampen
AT506509A1 (de) Frequenzumrichter und verfahren zum betreiben desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AT DE ES FI FR GB IT SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FI FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006003353

Country of ref document: DE

Date of ref document: 20090514

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2325098

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091019

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101125

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111213

Year of fee payment: 6

Ref country code: SE

Payment date: 20111117

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006003353

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006003353

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 427644

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006003353

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131120

Year of fee payment: 8

Ref country code: DE

Payment date: 20131121

Year of fee payment: 8

Ref country code: GB

Payment date: 20131120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20131113

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006003353

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201