EP1961108A1 - Device for obtaining information about the rotor position of electric machines - Google Patents

Device for obtaining information about the rotor position of electric machines

Info

Publication number
EP1961108A1
EP1961108A1 EP06829472A EP06829472A EP1961108A1 EP 1961108 A1 EP1961108 A1 EP 1961108A1 EP 06829472 A EP06829472 A EP 06829472A EP 06829472 A EP06829472 A EP 06829472A EP 1961108 A1 EP1961108 A1 EP 1961108A1
Authority
EP
European Patent Office
Prior art keywords
current
phase
electric machine
inductance
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06829472A
Other languages
German (de)
French (fr)
Inventor
Rolf Strothmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STROTHMANN, ROLF
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1961108A1 publication Critical patent/EP1961108A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the invention relates to a device for obtaining information that can be used for controlling the flow of electrical machines about the state of the machines.
  • EP 1 005 716 B1 discloses a device for determining the rotor rotational position during engine operation by applying pulses to phase strands of, in particular, multi-pole electrical machines and by evaluating the neutral point potential.
  • the possibility of being able to determine the rotor position in such a way is based on the fact that the inductance of the phase strands within the half magnetic period is an unambiguous function of the rotational angle ⁇ of the rotor, as described in EP 1 005 716 Bl incorporated herein.
  • Measuring voltage pulses can therefore generate a potential signal in the star point, which depends on the respective inductance of the phase strand and therefore is a measure of the position of the rotor within half the magnetic period.
  • the invention has for its object to provide a new device of the type mentioned, which extends the possibilities for controlling the energization of electrical machines and in particular can complement the above-mentioned device for determining the rotor rotational position advantageous.
  • the device for solving this object according to the invention is characterized by a device which evaluates a measurement signal for obtaining the state information, which is influenced by changing the inductance of Polwicklungsphasen- strands of the electric machine due to current flow through the phase strands.
  • the measurement signal may be, for example, a voltage dependent on the phase-strand inductances, a current change or a phase angle.
  • the changes in the inductance of pole winding phase strands considered here are based on a weakening or strengthening of the magnetic field passing through the pole windings. For large, flowing through the electrical machine operating currents, the field strength change in the pole windings and thus their inductance change can be significant. Consequently, changes in inductance can provide information about the current status of the electrical machine.
  • the state information relates to the orientation of a selected phase strand to the north or south pole or, in multi-pole machines, the north poles or south poles of the magnetic field.
  • current supplies either lead to an increase or decrease in the inductance of the relevant phase string, so that it is possible to conclude by evaluating a signal dependent on the changed inductance on the rotational position in front of a north or south pole.
  • the current which changes the inductance may be a current flowing in the context of the operating current of the electrical machine and / or a current generated separately by said device.
  • the device for generating the current is preferably provided in such a way that the generated current does not influence the torque of the electrical machine, ie forms a reactive current.
  • the current may be a component of a resulting current vector including a phase angle of 90 ° with a torque producing component of that current vector, based on the magnetic period.
  • the former component thus does not contribute to the torque of the electric machine.
  • the measurement signal may be influenced by a change in the ratio of the inductance of the phase strands. Such an influence is present in particular when, according to a preferred embodiment of the invention, the measuring signal is the potential at the star point in the star-connected phase strands of the electrical machine. In the star point, there is always a division of the voltage across the phase strands, wherein in three-phase machines for the division of the inductive resistance of a strand and the parallel connection of the inductive resistors of the other two strands is authoritative.
  • the device further comprises a device which applies voltage pulses to at least one of the Polwindlungsphasenstrlinde and evaluated to determine the rotational position of the rotor within half a magnetic period by the voltage pulses generated at the star point of the star-connected phase strands potential.
  • Fig. 1 is a schematic representation of an electrical machine with a
  • FIG. 2 shows a diagram explaining the application of measuring voltage pulses to the phase strings of the electrical machine of FIG. 1
  • FIG. 3 shows a representation explaining the rotational position of the rotor
  • FIG. 4 shows the relationship between the pole windings passing through Magnetic field H of the electric machine and the induction B in the PoI windings and the inductance L of the pole windings.
  • Fig. 1 shows phase strands 1 to 3 of the pole winding circuit of a not shown otherwise 3-phase electric machine.
  • the machine has a plurality of magnetic periods formed by permanent magnets on the rotor, which correspond to a rotational angle ⁇ , which is substantially smaller than 360 ° and is for example 12 °.
  • the phase strands 1 to 3, which are connected to one another in a star point 4, are each connected at their end remote from the star point to a voltage supply circuit 5 through which the electric machine is operated according to the pulse width modulation method.
  • the star point 4 is connected to a potential or the voltage U at the star point 4 detecting means 6, which in turn communicates with a control device 7, which u.a. controls the power supply of the electric machine by the circuit 5.
  • the means 6 for detecting the neutral point potential is connected on the output side to a device 8 which, controlled by the device 7, forms differences M between voltage values U, which the voltage detection device 6 supplies as output values.
  • Voltage difference values determined by the difference-forming device 8 can be supplied to a comparison and classification device 9 which determines from the voltage difference values M a rotational angle interval (i) decisive for the rotational position of the rotor of the electric machine within a half magnetic period ⁇ / 2.
  • a calculation device 10 connected to the devices 8 and 9 determines the exact rotational position of the rotor within the interval (i) of half the magnetic period.
  • .DELTA.t applied by the circuit 5 from the operating voltage pulses 1 1 to 13 separate Meßwoods- pulses 14 to 16 are mutually offset in time.
  • the time interval .DELTA.t is so small that the rotational position of the rotor practically does not change within this interval.
  • the measuring voltage pulses 14 to 16 generate correspondingly time-offset voltage signals U 1, U 2 and U 3 at the neutral point 4, which detects the device 6 activated simultaneously with the generation of the measuring voltage pulses 14 to 16 by the control device 7.
  • U 1, U 2 and U 3 According to a (explained below) dependency of the inductance of the pole windings of the phase strands 1 to 3 of the rotation angle ⁇ within a half magnetic period .DELTA. ⁇ / 2 results depending on the rotation angle ⁇ within the half magnetic period for the voltage signals Ul, U2 and U3 each have a periodic , approximately sinusoidal course, wherein the three voltage signals are mutually phase-shifted by 120 °.
  • the approximately sinusoidal periodic curves M1 ( ⁇ ), M2 ( ⁇ ) and M3 ( ⁇ ) shown in FIG. 3 are also phase-shifted by 120 ° relative to one another. One full period of these curves corresponds to half a magnetic period each.
  • the comparison and classification device 9 can determine the rotation angle interval (i) in which the rotor is currently located.
  • the exact calculation of the rotational position within the intervals (i) by the device 10 is based on aresin or / and arctan functions, which are preferably applied to differences in the potential profiles.
  • the phase change and thus the continuation of the intervals can be determined by monitoring switching states that occur in the normal Nutzbestromung or can be generated by slight modification (time-delayed switching on and off).
  • the angle of rotation ⁇ of the rotor can be determined by counting the number of half magnetic periods passed through.
  • FIG. 4a shows the relationship shown in FIG. 4a between the magnetic field H of the rotor passing through the pole windings of the phase strands and the induction field B resulting in the iron-containing pole windings.
  • the B-field generated by the H-field of the permanent magnets of the rotor changes in the pole windings of the phase strands.
  • the slope dB / dH which is proportional to the inductance of the phase strands, also changes.
  • FIG. 4b shows the inductance L. as a function of the H-field.
  • the pulse voltage U B applied to one of the phase strands 1 to 3 is divided, whereby, depending on the rotational position of the rotor, different division ratios and thus different potentials result at the position.
  • Decisive for the division ratio are the inductive resistance of each acted upon by the voltage UB phase strand and the inductive resistance of the parallel connection of the other two phase strands. Due to the symmetry of the curve L (H) with respect to the L-axis, however, it can not be distinguished whether half the magnetic period, within which the
  • Rot Arthurlage was determined, is formed by a north pole or a south pole.
  • the electric machine is energized by pulse width modulation such that the voltage resulting from the phase current flows, field vector H or B * generated by the totality of the pole windings, a first, exactly to the middle, between two poles of the rotor field directed component and a second, directed to one pole of the rotor field component is formed.
  • the two components thus include a phase angle of 90 °.
  • the additional reactive current causes a change of the H-field and thus also of the B-field in the pole windings of the phase strands.
  • the second current component may be e.g. be generated so that the pole winding passing through H-FeId is weakened and the inductance L of these pole windings increases accordingly, if this assumption applies.
  • the "operating point” then moves to the left in the positive part of the curve L (H) in Fig. 4b. If the assumption was wrong and the pole windings are actually in front of a south pole, this leads to an increase in the amount of the field passing through the pole windings.
  • the "working point” then moves to the left in the negative part of the curve L (H).
  • the inductance L decreases.
  • the decrease or increase of the inductance causes the resulting from the signals Ml to M3, rotating with the angle ⁇ pointer increases or decreases in length. From the change in length can be close to a north or south pole.
  • variable-length pointer could be carried out in the context of normal operation current by pulse width modulation without separate measurement voltage pulses 14 to 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

The invention relates to a device for obtaining information about the condition of electric machines that can be used to supply said machines with current. According to the invention, the device is provided with a unit (6, 8), which evaluates a measuring signal to obtain the condition information, said signal being influenced by a modification of the inductance of pole winding phases (1-3) of the electric machine, caused by the current flow. The measuring signal can, for example, relate to the potential at the neutral point (4) of star-connected phases (1-3).

Description

VORRICHTUNG ZUR GEWINNUNG VON INFORMATIONEN ÜBER DIE ROTORPOSITION ELEKTRISCHER MASCHINEN DEVICE FOR OBTAINING INFORMATION ON THE ROTOR POSITION OF ELECTRICAL MACHINES
Die Erfindung betrifft eine Vorrichtung zur Gewinnung für die Steuerung der Bestro- mung elektrischer Maschinen verwendbarer Information über den Zustand der Maschinen.The invention relates to a device for obtaining information that can be used for controlling the flow of electrical machines about the state of the machines.
Aus der EP 1 005 716 Bl geht eine Vorrichtung zur Bestimmung der Rotordrehlage während des Motorbetriebs durch Anlegen von Impulsen an Phasenstränge insbe- sondere vielpoliger elektrischer Maschinen und durch Auswertung des Sternpunktpotentials hervor. Die Möglichkeit, auf solche Weise die Rotordrehlage bestimmen zu können, beruht darauf, dass die Induktivität der Phasenstränge innerhalb der halben magnetischen Periode eine eindeutige Funktion des Drehwinkels Φ des Rotors ist, wie dies in der hier einbezogenen EP 1 005 716 Bl beschrieben ist. Mess- Spannungsimpulse können daher im Sternpunkt ein Potentialsignal erzeugen, das von der jeweiligen Induktivität des Phasenstrangs abhängt und daher ein Maß für die Stellung des Rotors innerhalb der halben magnetischen Periode ist.EP 1 005 716 B1 discloses a device for determining the rotor rotational position during engine operation by applying pulses to phase strands of, in particular, multi-pole electrical machines and by evaluating the neutral point potential. The possibility of being able to determine the rotor position in such a way is based on the fact that the inductance of the phase strands within the half magnetic period is an unambiguous function of the rotational angle φ of the rotor, as described in EP 1 005 716 Bl incorporated herein. Measuring voltage pulses can therefore generate a potential signal in the star point, which depends on the respective inductance of the phase strand and therefore is a measure of the position of the rotor within half the magnetic period.
Der Erfindung liegt die Aufgabe zugrunde, eine neue Vorrichtung der eingangs er- wähnten Art zu schaffen, welche die Möglichkeiten zur Steuerung der Bestromung elektrischer Maschinen erweitert und insbesondere die oben erwähnte Vorrichtung zur Bestimmung der Rotordrehlage vorteilhaft ergänzen kann.The invention has for its object to provide a new device of the type mentioned, which extends the possibilities for controlling the energization of electrical machines and in particular can complement the above-mentioned device for determining the rotor rotational position advantageous.
Die diese Aufgabe lösende Vorrichtung nach der Erfindung ist gekennzeichnet durch eine Einrichtung, die zur Gewinnung der Zustandsinformation ein Messsignal auswertet, welches durch Änderung der Induktivität von Polwicklungsphasen- strängen der elektrischen Maschine infolge Stromfluss durch die Phasenstränge beeinflusst ist. Bei dem Messsignαl kann es sich zum Beispiel um eine von den Phasenstranginduk- tivitäten abhängige Spannung, eine Stromänderung oder einen Phasenwinkel handeln.The device for solving this object according to the invention is characterized by a device which evaluates a measurement signal for obtaining the state information, which is influenced by changing the inductance of Polwicklungsphasen- strands of the electric machine due to current flow through the phase strands. The measurement signal may be, for example, a voltage dependent on the phase-strand inductances, a current change or a phase angle.
Die hier betrachteten Änderungen der Induktivität von Polwicklungsphasen- strängen beruhen auf einer Schwächung oder Stärkung des die Polwicklungen durchsetzenden Magnetfeldes. Bei großen, durch die elektrische Maschine fließenden Betriebsströmen kann die Feldstärkenänderung in den Polwicklungen und damit deren Induktivitätsänderung erheblich sein. Folglich können Induk- tivitätsänderungen Aufschluss über den Bestromungszustand der elektrischen Maschine geben.The changes in the inductance of pole winding phase strands considered here are based on a weakening or strengthening of the magnetic field passing through the pole windings. For large, flowing through the electrical machine operating currents, the field strength change in the pole windings and thus their inductance change can be significant. Consequently, changes in inductance can provide information about the current status of the electrical machine.
In einer bevorzugten Ausführungsform der Erfindung betrifft die Zustandsinformation die Ausrichtung eines ausgewählten Phasenstrangs zum Nord- oder Südpol bzw., bei vielpoligen Maschinen, den Nordpolen oder Südpolen des Magnetfeldes. Hier führen je nach Stellung des Rotors Bestromungen entweder zu einer Erhöhung oder Verringerung der Induktivität des betreffenden Phasenstrangs, so dass durch die Auswertung eines von der geänderten Induktivität abhängigen Signals auf die Drehlage vor einem Nord- oder Südpol geschlossen werden kann.In a preferred embodiment of the invention, the state information relates to the orientation of a selected phase strand to the north or south pole or, in multi-pole machines, the north poles or south poles of the magnetic field. Here, depending on the position of the rotor, current supplies either lead to an increase or decrease in the inductance of the relevant phase string, so that it is possible to conclude by evaluating a signal dependent on the changed inductance on the rotational position in front of a north or south pole.
Der die Induktivität ändernde Strom kann ein im Rahmen der Betriebsbestromung der elektrischen Maschine fließender Strom oder/und ein durch die genannte Einrichtung gesondert erzeugter Strom sein.The current which changes the inductance may be a current flowing in the context of the operating current of the electrical machine and / or a current generated separately by said device.
Im letzteren Fall die Einrichtung zur Erzeugung des Stromes vorzugsweise derart vorgesehen, dass der erzeugte Strom das Drehmoment der elektrische Maschine nicht beeinflusst, also einen Blindstrom bildet.In the latter case, the device for generating the current is preferably provided in such a way that the generated current does not influence the torque of the electrical machine, ie forms a reactive current.
Der Strom kann insbesondere eine Komponente eines resultierenden Stromvektors sein, welche mit einer ein Drehmoment erzeugenden Komponente dieses Stromvektors, bezogen auf die magnetische Periode, einen Phasenwinkel von 90° einschließt. Die erstgenannte Komponente trägt somit nicht zum Drehmoment der elektrischen Maschine bei.In particular, the current may be a component of a resulting current vector including a phase angle of 90 ° with a torque producing component of that current vector, based on the magnetic period. The former component thus does not contribute to the torque of the electric machine.
Das Messsignal kann durch eine Änderung des Verhältnisses der Induktivität der Phasenstränge beeinflusst sein. Eine solche Beeinflussung liegt insbesondere dann vor, wenn entsprechend einer bevorzugten Ausführungsform der Erfindung das Messsignal das Potential am Sternpunkt im Stern verschalteter Phasenstränge der elektrischen Maschine ist. Im Sternpunkt erfolgt stets eine Teilung der über den Phasensträngen liegenden Spannung, wobei in dreiphasigen Maschinen für die Teilung der induktive Widerstand eines Strangs und die Parallelschaltung der induktiven Widerstände der anderen beiden Stränge maßgebend ist.The measurement signal may be influenced by a change in the ratio of the inductance of the phase strands. Such an influence is present in particular when, according to a preferred embodiment of the invention, the measuring signal is the potential at the star point in the star-connected phase strands of the electrical machine. In the star point, there is always a division of the voltage across the phase strands, wherein in three-phase machines for the division of the inductive resistance of a strand and the parallel connection of the inductive resistors of the other two strands is authoritative.
Zweckmäßig umfasst die Vorrichtung ferner eine Einrichtung, welche Spannungs- impulse an wenigstens einen der Polwicklungsphasenstränge anlegt und zur Ermittlung der Drehlage des Rotors innerhalb einer halben magnetischen Periode durch die Spannungsimpulse das am Sternpunkt der im Stern verschalteten Phasenstränge erzeugte Potential auswertet.Suitably, the device further comprises a device which applies voltage pulses to at least one of the Polwindlungsphasenstränge and evaluated to determine the rotational position of the rotor within half a magnetic period by the voltage pulses generated at the star point of the star-connected phase strands potential.
Eine solche Lagebestimmung innerhalb einer halben magnetischen Periode gibt keinen Aufschluss darüber, ob die halbe magnetische Periode durch einen Nordoder Südpol gebildet ist. Die Kenntnis der Ausrichtung des ausgewählten Phasenstrangs zu einem Nord- oder Südpol bildet hierzu eine vorteilhafte Ergänzung.Such a position determination within half a magnetic period gives no information about whether half the magnetic period is formed by a north or south pole. The knowledge of the orientation of the selected phase strand to a north or south pole forms an advantageous supplement to this.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der beilie- genden, sich auf diese Ausführungsbeispiele beziehenden Zeichnungen näher erläutert. Es zeigen:The invention will be explained in more detail below with reference to exemplary embodiments and the accompanying drawings relating to these exemplary embodiments. Show it:
Fig. 1 eine schematische Darstellung einer elektrischen Maschine mit einerFig. 1 is a schematic representation of an electrical machine with a
Vorrichtung nach der Erfindung, Fig. 2 eine das Anlegen von Messspannungsimpulsen an die Phasenstränge der elektrischen Maschine von Fig. 1 erläuternde Darstellung, Fig. 3 eine die Ermittlung der Drehlage des Rotors erläuternde Darstellung, und Fig. 4 den Zusammenhang zwischen dem die Polwicklungen durchsetzenden Magnetfeld H der elektrischen Maschine und der Induktion B in den PoI- Wicklungen bzw. der Induktivität L der Polwicklungen.FIG. 2 shows a diagram explaining the application of measuring voltage pulses to the phase strings of the electrical machine of FIG. 1, FIG. 3 shows a representation explaining the rotational position of the rotor, and FIG. 4 shows the relationship between the pole windings passing through Magnetic field H of the electric machine and the induction B in the PoI windings and the inductance L of the pole windings.
Fig. 1 zeigt Phasenstränge 1 bis 3 der Polwicklungsschaltung einer im übrigen nicht gezeigten 3-phasigen elektrischen Maschine. In dem betrachteten Ausführungsbeispiel weist die Maschine eine Vielzahl durch Permanentmagnete am Läufer gebildete magnetische Perioden auf, denen ein Drehwinkel ΔΦ entspricht, welcher wesentlicher kleiner als 360° ist und beispielsweise 12° beträgt. Die in einem Sternpunkt 4 miteinander verbundenen Phasenstränge 1 bis 3 sind an ihrem dem Sternpunkt fernen Ende jeweils mit einer Spannungsversorgungsschal- tung 5 verbunden, durch welche die elektrische Maschine nach dem Impuls- weitenmodulationsverfahren betrieben wird.Fig. 1 shows phase strands 1 to 3 of the pole winding circuit of a not shown otherwise 3-phase electric machine. In the considered embodiment, the machine has a plurality of magnetic periods formed by permanent magnets on the rotor, which correspond to a rotational angle ΔΦ, which is substantially smaller than 360 ° and is for example 12 °. The phase strands 1 to 3, which are connected to one another in a star point 4, are each connected at their end remote from the star point to a voltage supply circuit 5 through which the electric machine is operated according to the pulse width modulation method.
Der Sternpunkt 4 ist verbunden mit einer das Potential bzw. die Spannung U am Sternpunkt 4 erfassenden Einrichtung 6, die ihrerseits mit einer Steuereinrichtung 7 in Verbindung steht, welche u.a. die Spannungsversorgung der elektrischen Maschine durch die Schaltung 5 steuert.The star point 4 is connected to a potential or the voltage U at the star point 4 detecting means 6, which in turn communicates with a control device 7, which u.a. controls the power supply of the electric machine by the circuit 5.
Die der Erfassung des Sternpunktpotentials dienende Einrichtung 6 ist ausgangs- seitig verbunden mit einer Einrichtung 8, die, gesteuert durch die Einrichtung 7, Differenzen M zwischen Spannungswerten U bildet, welche die Spannungser- fassungseinrichtung 6 als Ausgangswerte liefert.The means 6 for detecting the neutral point potential is connected on the output side to a device 8 which, controlled by the device 7, forms differences M between voltage values U, which the voltage detection device 6 supplies as output values.
Durch die Differenzbildungseinrichtung 8 ermittelte Spannungsdifferenzwerte sind einer Vergleichs- und Klassifizierungseinrichtung 9 zuführbar, welche aus den Spannungsdifferenzwerten M ein für die Drehlage des Rotors der elektrischen Maschine maßgebendes Drehwinkelintervall (i) innerhalb einer halben magnetischen Periode ΔΦ/2 ermittelt.Voltage difference values determined by the difference-forming device 8 can be supplied to a comparison and classification device 9 which determines from the voltage difference values M a rotational angle interval (i) decisive for the rotational position of the rotor of the electric machine within a half magnetic period ΔΦ / 2.
Eine mit den Einrichtungen 8 und 9 verbundene Berechnungseinrichtung 10 bestimmt dann die genaue Drehlage des Rotors innerhalb des Intervalls (i) der halben magnetischen Periode.A calculation device 10 connected to the devices 8 and 9 then determines the exact rotational position of the rotor within the interval (i) of half the magnetic period.
Gemäß Fig. 2 werden im Rahmen der Impulsweitenmodulation Betriebsspannungsimpulse 1 1 bis 13 z.B. einer Batteriespannung UB in jedem Modulationszyklus (oder in ausgewählten Modulationszyklen) um Δt zeitverzögert an die jeweiligen Phasenstränge 1 bis 3 angelegt. Während des Zeitraums Δt durch die Schaltung 5 ange- legte, von den Betriebsspannungsimpulsen 1 1 bis 13 getrennte Messspannungs- impulse 14 bis 16 sind zueinander zeitversetzt. Das Zeitintervall Δt ist so klein, dass sich die Drehlage des Rotors innerhalb dieses Intervalls praktisch nicht ändert.According to FIG. 2, operating voltage pulses 1 1 to 13, e.g. a battery voltage UB in each modulation cycle (or in selected modulation cycles) by Δt time-delayed applied to the respective phase strands 1 to 3. During the period .DELTA.t applied by the circuit 5, from the operating voltage pulses 1 1 to 13 separate Meßspannungs- pulses 14 to 16 are mutually offset in time. The time interval .DELTA.t is so small that the rotational position of the rotor practically does not change within this interval.
Die Messspannungsimpulse 14 bis 16 erzeugen am Sternpunkt 4 entsprechend zeit- versetzte Spannungssignale U 1 , U2 und U3, welche die mit der Erzeugung der Messspannungsimpulse 14 bis 16 durch die Steuereinrichtung 7 zeitgleich aktivierte Einrichtung 6 erfasst. Entsprechend einer (weiter unten erläuterten) Abhängigkeit der Induktivität der Polwicklungen der Phasenstränge 1 bis 3 vom Drehwinkel Φ innerhalb einer halben magnetischen Periode ΔΦ/2 ergibt sich abhängig vom Drehwinkel Φ innerhalb der halben magnetischen Periode für die Spannungssignale Ul , U2 und U3 jeweils ein periodischer, annähernd sinusförmiger Verlauf, wobei die drei Spannungssignale zueinander um 120° phasenverschoben sind.The measuring voltage pulses 14 to 16 generate correspondingly time-offset voltage signals U 1, U 2 and U 3 at the neutral point 4, which detects the device 6 activated simultaneously with the generation of the measuring voltage pulses 14 to 16 by the control device 7. According to a (explained below) dependency of the inductance of the pole windings of the phase strands 1 to 3 of the rotation angle Φ within a half magnetic period .DELTA.Φ / 2 results depending on the rotation angle Φ within the half magnetic period for the voltage signals Ul, U2 and U3 each have a periodic , approximately sinusoidal course, wherein the three voltage signals are mutually phase-shifted by 120 °.
Aus den Spannungssignalen Ul , U2 und U3 bildet die Einrichtung 8 Differenzen Ml = U1-U2, M2 = U2-U3 und M3 = U3-U1. Drei weitere mögliche Differenzen unter- scheiden sich von diesen Differenzen nur im Vorzeichen.From the voltage signals Ul, U2 and U3, the device 8 forms differences Ml = U1-U2, M2 = U2-U3 and M3 = U3-U1. Three further possible differences differ from these differences only in the sign.
Die Abhängigkeit dieser Differenzen vom Drehwinkel Φ ist in Fig.3 dargestellt.The dependence of these differences on the angle of rotation Φ is shown in FIG.
Auch die in Fig. 3 gezeigten, etwa sinusförmigen periodischen Kurven Ml (Φ), M2 (Φ) und M3 (Φ) sind um 120° zueinander phasenverschoben. Eine volle Periode dieser Kurven entspricht jeweils einer halben magnetischen Periode.The approximately sinusoidal periodic curves M1 (Φ), M2 (Φ) and M3 (Φ) shown in FIG. 3 are also phase-shifted by 120 ° relative to one another. One full period of these curves corresponds to half a magnetic period each.
Wie Fig. 3 ferner zu entnehmen ist, ergeben sich innerhalb einer vollen Periode der Kurve Ml zwölf Intervalle i = 1 bis 12, für die gilt:As can also be seen from FIG. 3, twelve intervals i = 1 to 12 result within a full period of the curve M 1, for which the following applies:
i = l : Ml positiv, M2 negativ, M3 positiv, Ml kleiner M3 i = 2: Ml positiv, M2 negativ, M3 positiv, Ml größer M3 i = 3: Ml positiv, M2 negativ, M3 negativ, M2 kleiner M3 i = 4: Ml positiv, M2 negativ, M3 negativ, M2 größer M3 i = 5: Ml positiv, M2 positiv, M3 negativ, Ml größer M2 i = 6: Ml positiv, M2 positiv, M3 negativ, Ml kleiner M2 i = 7: Ml negativ, M2 positiv, M3 negativ, Ml größer M3 i = 8: Ml negativ, M2 positiv, M3 negativ, Ml kleiner M3 i = 9: Ml negativ, M2 positiv, M3 positiv, Ml größer M3 i = 10: Ml negativ, M2 positiv, M3 positiv, Ml kleiner M3 i = 1 1 : Ml negativ, M2 negativ, M3 positiv, Ml kleiner M2 i = 12: Ml negativ, M2 negativ, M3 positiv, Ml größer M2.i = l: Ml positive, M2 negative, M3 positive, Ml smaller M3 i = 2: Ml positive, M2 negative, M3 positive, Ml larger M3 i = 3: Ml positive, M2 negative, M3 negative, M2 smaller M3 i = 4: Ml positive, M2 negative, M3 negative, M2 greater M3 i = 5: Ml positive, M2 positive, M3 negative, Ml greater M2 i = 6: Ml positive, M2 positive, M3 negative, Ml smaller M2 i = 7: Ml negative, M2 positive, M3 negative, Ml greater M3 i = 8: Ml negative, M2 positive, M3 negative, Ml smaller M3 i = 9: Ml negative, M2 positive, M3 positive, Ml greater M3 i = 10: Ml negative , M2 positive, M3 positive, Ml smaller M3 i = 1 1: Ml negative, M2 negative, M3 positive, Ml less M2 i = 12: Ml negative, M2 negative, M3 positive, Ml greater M2.
Durch Bestimmung des Vorzeichens dreier ermittelter Differenzwerte Ml , M2 und M3 und durch Vergleich dieser Werte untereinander kann die Vergleichs- und Klassifizierungseinrichtung 9 das Drehwinkelintervall (i) ermitteln, in welchem der Rotor gerade liegt. Die genaue Berechnung der Drehlage innerhalb der Intervalle (i) durch die Einrichtung 10 erfolgt gestützt auf aresin- oder/und arctan-Funktionen, die vorzugweise auf Differenzen der Potentialverläufe angewandt werden. Die Phasenveränderung und damit auch die Fortschaltung der Intervalle kann durch Beobachtung von Schaltzuständen ermittelt werden, die auch in der normalen Nutzbestromung vorkommen bzw. sich durch geringe Modifikation (zeitversetztes Ein- und Ausschalten) erzeugen lassen.By determining the sign of three determined difference values Ml, M2 and M3 and by comparing these values with one another, the comparison and classification device 9 can determine the rotation angle interval (i) in which the rotor is currently located. The exact calculation of the rotational position within the intervals (i) by the device 10 is based on aresin or / and arctan functions, which are preferably applied to differences in the potential profiles. The phase change and thus the continuation of the intervals can be determined by monitoring switching states that occur in the normal Nutzbestromung or can be generated by slight modification (time-delayed switching on and off).
Der Drehwinkel Φ des Rotors lässt sich durch Zählung der durchlaufenen halben magnetischen Perioden ermitteln.The angle of rotation Φ of the rotor can be determined by counting the number of half magnetic periods passed through.
Die oben erwähnte Änderung der Induktivität der Polwicklungen der Phasenstränge 1 bis 3 beruht auf dem in Fig. 4a gezeigten Zusammenhang zwischen dem die Polwicklungen der Phasenstränge durchsetzenden Magnetfeld H des Läufers und dem sich in den Eisen enthaltenden Polwicklungen ergebenden Induktionsfeld B. Je nach Drehstellung des Rotors innerhalb einer halben magnetischen Periode ändert sich das durch das H-FeId der Permanentmagnete des Läufers erzeugte B- FeId in den Polwicklungen der Phasenstränge. Mit der Änderung des B-Feldes ändert sich auch die Steigung dB/dH, welche der Induktivität der Phasenstränge proportional ist. Fig. 4b zeigt die sich in Abhängigkeit vom H-FeId ergebende Induktivität L.The above-mentioned change in the inductance of the pole windings of the phase strands 1 to 3 is based on the relationship shown in FIG. 4a between the magnetic field H of the rotor passing through the pole windings of the phase strands and the induction field B resulting in the iron-containing pole windings. Depending on the rotational position of the rotor within half a magnetic period, the B-field generated by the H-field of the permanent magnets of the rotor changes in the pole windings of the phase strands. With the change of the B-field, the slope dB / dH, which is proportional to the inductance of the phase strands, also changes. FIG. 4b shows the inductance L. as a function of the H-field. FIG.
Am Sternpunkt wird die jeweils an einen der Phasenstränge 1 bis 3 angelegte Impulsspannung UB geteilt, wobei sich je nach Drehlage des Rotors unterschied- liehe Teilungsverhältnisse und damit unterschiedliche Potentiale am Standpunkt ergeben. Maßgebend für das Teilungsverhältnis sind der induktive Widerstand des jeweils mit der Spannung UB beaufschlagten Phasenstrangs und der induktive Widerstand der Parallelschaltung der beiden anderen Phasenstränge. Aufgrund der Symmetrie der Kurve L(H) in bezug auf die L-Achse kann jedoch nicht unter- schieden werden, ob die halbe magnetische Periode, innerhalb welcher dieAt the neutral point, the pulse voltage U B applied to one of the phase strands 1 to 3 is divided, whereby, depending on the rotational position of the rotor, different division ratios and thus different potentials result at the position. Decisive for the division ratio are the inductive resistance of each acted upon by the voltage UB phase strand and the inductive resistance of the parallel connection of the other two phase strands. Due to the symmetry of the curve L (H) with respect to the L-axis, however, it can not be distinguished whether half the magnetic period, within which the
Rotordrehlage ermittelt wurde, durch einen Nordpol oder einen Südpol gebildet ist.Rotordrehlage was determined, is formed by a north pole or a south pole.
Um festzustellen, ob die halbe magnetische Periode einen Nord- oder Südpol betrifft, erfolgt in dem hier beschriebenen Ausführungsbeispiel ausgehend von der Kenntnis der Drehlage innerhalb der halben magnetischen Periode eine Be- stromung der elektrischen Maschine durch Impulsweitenmodulation derart, dass der aus den Phasenstrangströmen resultierende, durch die Gesamtheit der Polwicklungen erzeugte Feldvektor H bzw. B* eine erste, genau auf die Mitte, zwischen zwei Polen des Läuferfelds gerichtete Komponente und eine zweite, genau auf einen Pol des Läuferfeldes gerichtete Komponente gebildet ist. Bezogen auf die magnetische Periode des Läuferfeldes schließen die beiden Komponenten also einen Phasenwinkel von 90° ein. So erzeugt nur die erste Komponente ein Dreh- moment, die zweite Komponente, die einen Blindstrom darstellt, liefert zum Drehmoment der elektrischen Maschinen keinen Beitrag.In order to determine whether half the magnetic period relates to a north or south pole, in the embodiment described here, starting from the knowledge of the rotational position within half the magnetic period, the electric machine is energized by pulse width modulation such that the voltage resulting from the phase current flows, field vector H or B * generated by the totality of the pole windings, a first, exactly to the middle, between two poles of the rotor field directed component and a second, directed to one pole of the rotor field component is formed. Based on the magnetic period of the rotor field, the two components thus include a phase angle of 90 °. Thus, only the first component generates a torque, the second component, which represents a reactive current, provides no contribution to the torque of the electrical machines.
Der zusätzliche Blindstrom sorgt jedoch für eine Veränderung des H-Feldes und damit auch des B-Feldes in den Polwicklungen der Phasenstränge. Wird ange- nommen, die Polwicklungen eines ausgewählten Phasenstranges des Rotors stehen vor einem Nordpol, so kann die zweite Stromkomponente z.B. so erzeugt werden, dass das die Polwicklungen durchsetzende H-FeId geschwächt wird und die Induktivität L dieser Polwicklungen entsprechend zunimmt, wenn diese Annahme zutrifft. Der „Arbeitspunkt" wandert dann im positiven Teil der Kurve L(H) in Fig. 4b nach links. War die Annahme falsch und die Polwicklungen stehen in Wirklichkeit vor einem Südpol, so führt dies zu einer Vergrößerung des Betrages des die Polwicklungen durchsetzenden Feldes. Der „Arbeitspunkt" wandert dann im negativen Teil der Kurve L(H) nach links. Die Induktivität L nimmt ab.However, the additional reactive current causes a change of the H-field and thus also of the B-field in the pole windings of the phase strands. Assuming that the pole windings of a selected phase strand of the rotor are in front of a north pole, the second current component may be e.g. be generated so that the pole winding passing through H-FeId is weakened and the inductance L of these pole windings increases accordingly, if this assumption applies. The "operating point" then moves to the left in the positive part of the curve L (H) in Fig. 4b. If the assumption was wrong and the pole windings are actually in front of a south pole, this leads to an increase in the amount of the field passing through the pole windings. The "working point" then moves to the left in the negative part of the curve L (H). The inductance L decreases.
Die Abnahme oder Zunahme der Induktivität führt dazu, dass der aus den Signalen Ml bis M3 resultierende, mit dem Winkel Φ umlaufende Zeiger seiner Länge nach zu- oder abnimmt. Aus der Längenänderung lässt sich auf einen Nord- oder Südpol schließen.The decrease or increase of the inductance causes the resulting from the signals Ml to M3, rotating with the angle Φ pointer increases or decreases in length. From the change in length can be close to a north or south pole.
Die Beobachtung eines längenveränderlichen Zeigers ließe sich auch im Rahmen der normalen Betriebsbestromung durch Impulsweitenmodulation ohne gesonderte Messspannungsimpulse 14 bis 16 durchführen. The observation of a variable-length pointer could be carried out in the context of normal operation current by pulse width modulation without separate measurement voltage pulses 14 to 16.

Claims

Patentansprüche: claims:
1. Vorrichtung zur Gewinnung für die Steuerung der Bestromung elektrischer1. Apparatus for obtaining the control of the energization of electrical
Maschinen verwendbare Information über den Zustand der Maschinen, gekennzeichnet durch eine Einrichtung, die zur Gewinnung der Zustandsinformation ein durch Änderung der Induktivität von Polwicklungsphasen- strängen der elektrischen Maschine infolge Stromfluss durch die Phasenstränge beeinflusstes Messsignal auswertet.Machine usable information about the state of the machines, characterized by a device which evaluates to obtain the state information by changing the inductance of Polwindlungsphasen- strands of the electric machine as a result of current flow through the phase strands affected measurement signal.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der die Induktivität der Polwicklungsphasenstränge (1-3) ändernde Strom ein im Rahmen der Bestromung der elektrischen Maschine fließender Strom oder ein durch die genannte Einrichtung erzeugter, gesonderter Strom ist.2. Device according to claim 1, characterized in that the inductance of the Polwicklungsphasenstränge (1-3) changing current is a current flowing in the context of the energization of the electric machine or a generated by said means, separate stream.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Einrichtung zur Erzeugung des Stromes derart vorgesehen ist, dass der Strom das Drehmoment der elektrischen Maschine nicht beeinflusst.3. A device according to claim 2, characterized in that the means for generating the current is provided such that the current does not affect the torque of the electric machine.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Strom eine Komponente eines resultierenden Stromvektors ist, welche mit einer ein Drehmoment erzeugenden Komponente dieses Stromvektors, bezogen auf die magnetische Periode, einen Phasenwinkel von 90° einschließt.4. The device according to claim 3, characterized in that the current is a component of a resulting current vector, which includes a torque-generating component of this current vector, based on the magnetic period, a phase angle of 90 °.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Messsignal durch eine Änderung des Verhältnisses der Induktivitäten der Polwicklungsphasenstränge (1-3) beeinflusst ist.5. Device according to one of claims 1 to 4, characterized in that the measuring signal is influenced by a change in the ratio of the inductances of the Polwindlungsphasenstränge (1-3).
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das Messsignal das Potential am Sternpunkt im Stern verschalteter Phasenstränge (1-3) ist. 6. Apparatus according to claim 5, characterized in that the measuring signal is the potential at the neutral point in the star-connected phase strands (1-3).
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Zustandsinformation die Ausrichtung eines ausgewählten Phasenstrangs zum Nord- oder Südpol bzw., bei vielpoligen Maschinen, den Nord- oder Südpol des Magnetfeldes betrifft.7. Device according to one of claims 1 to 6, characterized in that the state information relates to the orientation of a selected phase strand to the north or south pole or, in multi-pole machines, the north or south pole of the magnetic field.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, gekennzeichnet durch eine weitere Einrichtung, welche Spannungsimpulse an wenigstens einen der Polwicklungsphasenstränge (1-3) anlegt und zur Ermittlung der Drehlage des Rotors der elektrischen Maschine innerhalb einer halben magnetischen Periode durch die Spannungsimpulse (14-16) das am Sternpunkt im Stern verschalteter Phasenstränge (1-3) erzeugte Potential auswertet. 8. Device according to one of claims 1 to 7, characterized by a further device which voltage pulses to at least one of the Polwicklungsphasenstränge (1-3) applies and for determining the rotational position of the rotor of the electric machine within half a magnetic period by the voltage pulses (14 -16) evaluates the potential generated at the star point in the star-connected phase strands (1-3).
EP06829472A 2005-12-15 2006-12-09 Device for obtaining information about the rotor position of electric machines Withdrawn EP1961108A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005059858 2005-12-15
DE102006046637A DE102006046637A1 (en) 2005-12-15 2006-09-29 Status information producing device for e.g. three-phase electrical machine, has voltage measuring device and difference providing device for evaluating measuring signal controlled by changing inductance of pole coil of phase cables
PCT/EP2006/011880 WO2007073854A1 (en) 2005-12-15 2006-12-09 Device for obtaining information about the rotor position of electric machines

Publications (1)

Publication Number Publication Date
EP1961108A1 true EP1961108A1 (en) 2008-08-27

Family

ID=37814540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06829472A Withdrawn EP1961108A1 (en) 2005-12-15 2006-12-09 Device for obtaining information about the rotor position of electric machines

Country Status (3)

Country Link
EP (1) EP1961108A1 (en)
DE (1) DE102006046637A1 (en)
WO (1) WO2007073854A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047217A2 (en) 2007-10-09 2009-04-16 Nase Industrie-Elektronik Method and apparatus for unambiguous determination of the rotor position of an electrical machine
DE102010052799A1 (en) 2010-11-24 2012-05-24 Rolf Strothmann Apparatus for determining position of rotor of electrical machine, calculates rotational position of rotor affected by magnetic field of core based on measurement signals indicating magnetization degree of core wound with pole winding
DE102011008141A1 (en) 2011-01-08 2012-07-12 Rolf Strothmann Device for determining the position of the rotor of an electrical machine
DE102012006010A1 (en) 2012-03-24 2013-09-26 Volkswagen Aktiengesellschaft Apparatus for determining rotor position of electric machine, has second integrator that is provided to integrate the integrated applied voltage in asymmetry unit by first integrator, to obtain rotor position of machine
DE102013219908A1 (en) 2013-10-01 2015-04-02 Continental Teves Ag & Co. Ohg Method for controlling and / or regulating a permanently excited synchronous machine
DE202016106678U1 (en) 2016-11-30 2016-12-12 Ebm-Papst Mulfingen Gmbh & Co. Kg Device for determining the rotor position
DE102016123065A1 (en) 2016-11-30 2018-05-30 Ebm-Papst Mulfingen Gmbh & Co. Kg Device and method for determining the rotor position

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117165A (en) * 1990-06-29 1992-05-26 Seagate Technology, Inc. Closed-loop control of a brushless DC motor from standstill to medium speed
JPH0834711B2 (en) * 1990-08-18 1996-03-29 日本ビクター株式会社 Method of detecting rotor stop position in brushless DC motor without position detector
JP2001516198A (en) 1997-08-18 2001-09-25 ロルフ シユトロートマン, Separately excited electric machine
EP1160966A1 (en) 2000-05-31 2001-12-05 Ecole Polytechnique Fédérale de Lausanne (EPFL) Rotor position detection method for a brushless motor and device for carrying out the method
JP2007511190A (en) * 2003-11-06 2007-04-26 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Method for detecting rotor position of synchronous motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2007073854A1 *

Also Published As

Publication number Publication date
DE102006046637A1 (en) 2007-06-21
WO2007073854A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
EP1961107B1 (en) Device and method for determining the rotational position of a rotor in an electric machine
DE69016550T2 (en) Device and method for determining the position of a rotor in a brushless DC motor.
EP1816739B1 (en) Method and apparatus for control of a multi-phase electronically commutated motor
DE69111916T2 (en) Device and method for determining the rotor position of a brushless DC motor.
DE112013005190T5 (en) Improvements in electric power steering systems
EP1961108A1 (en) Device for obtaining information about the rotor position of electric machines
WO1992019038A1 (en) Process and circuits for determining machine-related electromagnetic and mechanical state variables on electrodynamic induction machines supplied via converters
EP2727235B1 (en) Method and device for measuring phase current profiles and a exciter current profile in an electrically excited electrical machine
EP1834401B1 (en) Method and circuit arrangement for determination of the rotor position of a brushless dc motor without sensors
DE102012013652A1 (en) Method and device for determining the position of a brushless electric drive
EP1514342B1 (en) Method and circuit arrangement for operating stepper motors
DE102009011674A1 (en) Method for operating electrical machine, involves feeding alternative voltages in one of stator windings, where alternative voltage has multiple voltage impulses
DE102014107949A1 (en) Method and device for detecting a zero crossing of a current through a strand of a brushless DC motor
DE102010029558A1 (en) Method and device for determining a zero crossing of a strand current of an electronically commutated electric machine, in particular for determining a rotor position of the electric machine
EP2215713A2 (en) Stationary rotor position identification method
EP1856792B1 (en) Method for detecting the position of a rotor
EP2474090B1 (en) Method and device for determining a rotor position of a synchronous machine
DE102020205796A1 (en) Method for diagnosing a fault in a motor circuit
DE102004062580B4 (en) Method and device for controlling a multiphase, electronically commutated motor
EP2643928B1 (en) Apparatus for determining the angular position of the rotor of an electric machine
EP4016835A1 (en) Method for determining the angular position of the rotor of a synchronous motor fed by an inverter and device for carrying out the method
DE102017127410A1 (en) Method and circuit arrangement for determining the position of a rotor of an electric motor
EP2661810B1 (en) Apparatus for determining the position of the rotor of an electric machine
EP2319169A1 (en) Method for detecting the rotor position of an electric machine, and device for the same
DE102013218122A1 (en) Electronically commutated electrical machine and method for operating an electrical machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100728

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STROTHMANN, ROLF

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STROTHMANN, ROLF

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 6/18 20160101ALI20190508BHEP

Ipc: H02P 23/14 20060101AFI20190508BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190624

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191105